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In this lesson we will (briefly) see:


• how to describe the formation of the cosmic web 


• what are the techniques for cosmological simulations


• what are the numerical problems and how to incorporate several 

physical mechanisms (including magnetic fields)




Some important criticalities:


• gravity leads to high density contrasts: δρ/ρ 1000


• extremely wide range of spatial scales in processes (from ~kpc to ~100 Mpc),  of 
density range (ρ~0.1<ρ> to ρ~ <ρ>). 


• supersonic converging flows (shocks) & sub-sonic turbulent flows (halos)


• galaxy formation physics can feedback on structure formation itself 


• some phenomena “emerge” only at large enough dynamical range (e.g. turbulence, 
dynamo)   need of extremely large Reynolds number

≫

104

→

NON-LINEAR STRUCTURE FORMATION

numerical simulations needed



STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

The “Zeldovich approximation” follows the motion of a fluid element in 

a Lagrangian-to-Eulerian mapping of the equations of hydrodynamics. 

where  is the initial position and  is the linear displacement 
field, given by 

q Ψ(q, t)

where  is the linear growth factor seen yesterday and  is 

related to the initial density contrast via the Poisson equation: 

D(t) Ψ0(q) = − ∇ϕ0(q)
∇2ϕ0 = δ

Mass conservation allows to relate the Eulerian overdensity field  to the 
divergence of the displacement field:

δ( ⃗x, t)



STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION
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To generate initial conditions, one has to generate a set of complex numbers with a randomly 
distributed phase φ and with amplitude normally distributed with a variance given by the desired 
power spectrum, P(k). This can be obtained by drawing two random numbers φ in ]0, 1] and A in 
]0, 1] for every point in k-space.

To obtain the perturbation field generated from this distribution, one needs to 
generate the potential Φ(q) on a grid q in real space via a Fourier transform, e.g.

Then through the Zeldovich approximation we can update positions and velocities:

This powerful approach 
ceases its validity after the 
interpenetration of particle 
flows as it cannot capture 
the clustering due to self-
gravity, as well as 
collisional effects in 
ordinary matter


 



STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

Ze
ld

ov
ic

h
fu

ll 
si

m
ul

at
io

n
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Then through the Zeldovich approximation we can update positions and velocities:

This powerful approach 
ceases its validity after the 
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STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

Side note: 

this process is a simple analogy with the formation of optical caustics at the 
bottom of a pool of water.

A uniform screen of light (top) first passes through tiny corrugations at the top of 
water.

While propagating to the bottom light rays start crossing each other and produce 
caustics of light, which resemble the formation of cosmological filaments (in this 
case, the vertical direction will be time dimension in cosmology)



STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

Side note: 

this process is a simple analogy with the formation of optical caustics at the 
bottom of a pool of water.

A uniform screen of light (top) first passes through tiny corrugations at the top of 
water.

While propagating to the bottom light rays start crossing each other and produce 
caustics of light, which resemble the formation of cosmological filaments (in this 
case, the vertical direction will be time dimension in cosmology)

https://www.youtube.com/watch?v=0fjk8X1KuyE&t=1s



Basic steps described by the “Zeldovich pancake” 
model (1970) for the 1D collapse of cold, self-
gravitating gas after a small velocity perturbation (even 
without dark matter)


1. a small  overdensity is formed

2. matter keeps falling towards the overdensity


3. when the infall velocity  exceeds the 

sound speed, shocks are formed. 

4. Kinetic infall energy is converted into thermal energy

5. An ~isothermal dense gas core with a 

declining density profile is formed.

6. Sharp boundaries with the outer (cold) Universe are 

marked by strong accretion shocks 
( )


7. the collapse is most probable to happen along 1 
direction first, leading to a flat pancake structure 

(The presence of dark matter alters the above picture 
by giving even more infall kinetic energy to the gas.)

δρ/⟨ρ⟩ ≪ 1

vff ∼ 2GM/r

δρ/⟨ρ⟩ ≥ 102

ℳ = vff /cs ≥ 102

STRUCTURE FORMATION: THE ZELDOVICH PANCAKE



The simulated 1D evolution of the Zeldovich pancake

STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION



STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION



• force equation 

• velocity equation 

introducing the pecular velocity   

we can write:

v = a ·x

About 83% of matter is Dark Matter, so this is the first component to model. 
This is obtained by evolving a discrete distribution of point masses, and using 
trajectory integrator coupled to several possible gravity solvers

expansion terms

grav.potential

• expansion rate

Since Dark Matter is collision-less, it must be modelled

SIMULATING  COSMIC STRUCTURES



SIMULATING  COSMIC STRUCTURES

Early “N-Body” simulation of a collision between galaxies



SIMULATING  COSMIC STRUCTURES

one early N-body simulation of the collapse of matter perturbations forming the 
cosmic web



SIMULATING  COSMIC STRUCTURES

The web-like pattern of cosmic matter is one of the few actual “discoveries” 
made first by cosmological simulations, and later confirmed with telescopes



SIMULATING  COSMIC STRUCTURES



VOIDS, SHEETS, FILAMENTS AND CLUSTERS
approximate overdensities of 
cosmic structures:


halos           

filaments     

sheets         

voids           

δ ∼ 102 − 104

δ ∼ 10
δ ∼ 1
δ ≤ 0



the Millennium Simulation - Springel et al 2005 

SIMULATING  COSMIC STRUCTURES



SIMULATING  COSMIC STRUCTURES
• All cosmological codes use the N-body approach for dark matter. 

• Different particle integrators for trajectories can be used, depending on 
the desired accuracy of the model  (e.g. “leapfrog”, “KDK”, “DKD”, 
Runge-Kutta etc…) 

• Different gravity solvers have been developed, to make gravity 
computations require less than  operations as in direct summation∼ N2

Barnes & Hut (1986): 
the Tree method

Dehnen (2000): the 
Fast Multipole Method

Hockney & Eastwood 
(1985): the Particle-
Mesh method (PM)

∼ O(N log N ) ∼ O(N log N ) ∼ O(N )



Also the analytical description of the density profile of dark matter halos - 
still consistent with observations on most scales- was first derived thanks to 
N-body dark matter simulations 

SIMULATING  COSMIC STRUCTURES



• velocity equation 

• continuity 

• energy conservation

For “baryons” (=collisional ordinary matter), the minimal set 
of equations for their evolution is :

SIMULATING  COSMIC STRUCTURES 
“BARYONS”



• velocity equation 

• continuity 

• energy conservation

expansion terms pressure
grav.potential 
(gas+DM)

internal energy

velocity

density

(+ radiation,  heating, chemistry…magnetic fields & cosmic rays)

SIMULATING  COSMIC STRUCTURES 
“BARYONS”



dark matter baryons

SIMULATING  COSMIC STRUCTURES



TWO BASIC METHODS

Eulerian Lagrangian “Smoothed Particle 
Hydrodynamics”



TWO BASIC METHODS
Eulerian

from fluid variables ( ) to reconstruction at the cell interfacesun

3 different 
possible 
reconstruction 
methods
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TWO BASIC METHODS
Eulerian

from fluid variables ( ) to reconstruction at the cell interfacesun

3 different 
possible 
reconstruction 
methods
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what will the 
 fluid do here?

we have to 
solve for the 
FLUX across 

cells 
 “Riemann 
Solver”

→



TWO BASIC METHODS
Eulerian

in
te

rfa
ceRiemann solvers:

iterative algorithm to 
compute the evolution of 
fluid quantities at the 
interfaces, based on  
physical solutions from 
standard hydro-dynamics.


The fluid values at the cell 
centre are updated using all 
3D fluxes given by the 
Riemann solver.


This directly ensures that 
ordinary matter is evolved 
based on physical solutions

before Riemann 
solver step
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TWO BASIC METHODS
Smoothed Particle Hydrodynamics

A discrete set of N particles is used 
to sample a continuous fluid 

distribution

Fluid quantities are estimated by 
convolving a set of 

“neighbouring” particles 
 with a kernel function ∼ O(102)

The momentum equation 
becomes:



TWO BASIC METHODS
Smoothed Particle Hydrodynamics

To make an N-body method collisional, we enforce some viscous 
dissipation for nearby particles (otherwise they will cross each other!)

In SPH, this was traditionally done with an adjustable artificial viscosity 
( ), which is on for approaching particles ( )μab ∇ ⋅ v < 0

This ensures the right energy 
dissipation at shocks, but also 
introduces unphysical viscosity



TWO BASIC METHODS

PROS: 
+ Fair sampling of all volume 
+ Physical hydro solutions from 

Riemann solver 
+ Captures well shocks 

CONS 
- non Galileian invariant 
- had problems in conserving angular 

momentum

Eulerian Lagrangian “Smoothed Particle 
Hydrodynamics”

PROS: 
+ Fair sampling of mass 
+ Automatically provides higher 

resolution where matter clusters 
+ Conserves angular momentum  

CONS 
- artificial viscosity  
- difficult to accurately follow sharp 

hydro features



WHICH METHOD IS BEST?
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Tasker et al. 2009

Tests of 1D shocks vs analytical solution

grid codes

SPH codes

old SPH codes always provide smoother 
reconstruction of shocks (+spurious generation 

of entropy)



12 codes to simulate the evolution of the same (?) cluster 

Dark matter 
density:  

quite similar

(gravity is 
“easy”!)


All codes used a 
similar N-body 

approach

WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON
The “Santa Barbara” comparison project (Frenk+99)



The “Santa Barbara” comparison project (Frenk+99)
12 codes to simulate the evolution of the same (?) cluster 

Gas matter 
density:  

quite different.


Differences in 
hydro solver and 

time stepping 
makes 

simulations 
inconsistent


WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON



12 codes to simulate the evolution of the same (?) cluster 

Gas matter 
temperature:  
very different.


Further 
differences in the 
thermodynamics 

of gas 


WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON
The “Santa Barbara” comparison project (Frenk+99)



12 codes to simulate the evolution of the same (?) cluster 

X-ray emission:  
very different.


how can we 
observationally 

validate theoretical 
predictions, if 

numerics 
introduces so 

many differences? 


WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON
The “Santa Barbara” comparison project (Frenk+99)



Mitchell+2009

WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON
Simulated binary merger:      the colored points represent: SPH particles from two 
halos (left, GADGET) and tracer particles on top of an Eulerian simulation with the 

same two halos (right, FLASH)


Depending on the method, very different level of “mixing” 
between the two cluster. Particles settle do difference place 

in the two cases! 



WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

Grid simulation 
(FLASH): more mixing 
between clusters, gas 

in the centre of the 
newly formed cluster 

has high entropy

SPH simulation 
(Gadget): less mixing 
between clusters, gas 

in the centre of the 
newly formed cluster 

has low entropy

energy dissipation and 
entropy mixing are 
different in the two 

methods Mitchell+2009



resolution

 Overall good convergence of thermal gas distribution

WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON



grid simulation, 

TVD solver

grid simulation, 

PPM solver

grid simulation, 

SPH solver

WHICH METHOD IS BEST? AN EARLY CODE COMPARISON

Vazza et al. 2012

Map of shocks  (displayed: Mach number) : 

very different distributions

map of shocks Mach number  ( )log10 M



WHICH METHOD IS BEST? AN EARLY CODE COMPARISON

Vazza et al. 2012
No clear convergence with resolution:


grid codes produce sharper shocks, SPH clumpier shocks. 
How can we predict cosmic ray acceleration?

resolution

map of shocks Mach number  ( )log10 M



WHICH METHOD IS BEST?    ADVECTION PROBLEMS

Springel 2010

Galileian invariance: the solution to a physical problem does not depend on the reference 
frame.  Ideally, a simulation should get the same solution even if its reference frame moves.

But in grid methods, the errors in advection may dominates physical velocity differences and 
instabilities are damped by numerical diffusion:  solutions are not galileian invariant! 

Rayleigh-Taylor instabilities in  a grid simulation: moving  vs static mesh.


This motivated the development of “moving mesh” codes. e.g. AREPO and GIZMO

⃗V⃗V⃗V ⃗V⃗V⃗V



WHICH METHOD IS BEST?

Robertson+2011

⃗V

resolution

Eulerian codes needs to 
decrease  as much as 

possible. If , then 

 should be as small as 
possible, i.e. increasing 
resolution 

         …it’s expensive! 

α
|v | > 0

Δx

Effective numerical diffusion 
coefficient in Eulerian solvers

advection velocity 

cell resolution

constant <1



WHICH METHOD IS BEST?
Adaptive Mesh Refinement : 

Eulerian method can increase the local spatial resolution 
where needed 

⃗V



WHICH METHOD IS BEST?
Adaptive Mesh Refinement : 


⃗V

• in simulations of cosmic 
structures, finer grids are 
generated for example 
where the matter density 
increases because of 
gravitational collapse


• fluxes on coarse resolution 
levels are used as 
boundary conditions for 
high resolution cells




GIZMO - Hopkins 2015

AREPO - Springel 2010

GIZMO - Hopkins 2015

WHICH METHOD IS BEST?    ADVECTION PROBLEMS

New methods to “combine the best of both worlds”:

•  mesh continuously generated following moving 

mass points (  galileian invariance, high resolution) 


• fluid dynamics computed with Riemann solvers (  
accurate reconstruction of shocks, fluid instabilities)

→
→



AREPO - Springel 2010

GIZMO - Hopkins 2015

WHICH METHOD IS BEST?    ADVECTION PROBLEMS

New methods to “combine the best of both worlds”:

•  mesh continuously generated following moving 

mass points (  galileian invariance, high resolution) 


• fluid dynamics computed with Riemann solvers (  
accurate reconstruction of shocks, fluid instabilities)

→
→





To form galaxies and 
their stars, much more 
is needed:

• cooling

• chemistry

• radiative transport

• star formation

• black holes

• feedback

• cosmic rays

• magnetic fields

• dust

etc…

MORE COMPLICATIONS:

Vogelsberger+20



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

• turning gas into stars


gas density gas temperature gas stellar density



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

• turning gas into stars


gas density gas temperature
• letting stars do feedback 


several possible 
implementations of 
feedback in numerics 
(thermal, kinetic, 
mechanical..); all are 
“true” at some given 
scale.




STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

• turning gas into stars


gas density gas temperature
• letting stars do feedback 


• growing supermassive black holes


“seed” black holes (e.g. ) 
are injected in halos at high redshift


they grow matter based on either hot gas accretion 
(Bondi-Hoyle formula)


and/or cold gas accretion 


MBH,seed ∼ 104 − 106M⊙

 Bondi       Eddington limit



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

• turning gas into stars


gas density gas temperature
• letting stars do feedback 


• growing supermassive black holes


A fraction  of the accreted mass rate is released outwards as feedback energy 
ϵr LBH = ϵr
·MBHc2

• letting supermassive black holes do feedback

Numerical recipes have been 
implemented for radiative, 
mechanical, thermal feedback 

e.g. for mechanical feedback:



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

Vogelsberger+20



SIMULATING  COSMIC RAYS IN COSMIC STRUCTURES
The usual equations must include a “two-fluid” model for cosmic ray protons

• continuity


• momentum conservation


• energy conservation


• CR energy conservation


• state equations


• source terms, diffusion of CRs…  



Milky-way like galaxy:

Constant Diffusion

vs

Variable Diffusion

Semenov+21

 more realistic 
diffusion make the CR 
distribution clumpier 

→

gas             stars                   turbulence         CRs

SIMULATING  COSMIC RAYS IN COSMIC STRUCTURES



Once injected, the accelerated cosmic rays can be modelled as a second fluid which 
interact with the “normal” one of thermal gas, which evolves according to a  
eq. of state. 

The composite gas+CR fluid evolves according to an “effective” equation 

of state: 

 

Γ = 4/3

Γeff =
5/3Eg + 4/3ECR

Eg + ECR
≤ 5/3

COSMIC RAY energy             GAS energy

SIMULATING  COSMIC RAYS IN COSMIC STRUCTURES



Simulated distribution of CRs (accelerated by cosmic shocks) in the cosmic web 

(Vazza+12)

GAS energy                                                          COSMIC RAY energy                

SIMULATING  COSMIC RAYS IN COSMIC STRUCTURES



Effect of cosmic ray acceleration in the density and temperature profile of a simulated galaxy clusters: 
a model with cosmic rays (blue) has a  lower density and temperature than a standard 
model without cosmic ray effects (black).  This is a combined effect of a reduced thermalisation at 
shocks (“thermal leakage”) as well as of the  effective adiabatic index of gas. 

∼ 5 − 10 %

Γeff ≤ 5/3

SIMULATING  COSMIC RAYS IN COSMIC STRUCTURES



SIMULATING MAGNETIC FIELDS IN COSMIC 
STRUCTURES

• continuity


• momentum conservation


• energy conservation


• magnetic induction


• 
B = Bproper /a2

New set of equations, now with links between gas and , for 
ideal MHD ((single fluid, no resistivity, large conduction)


B

more on this on Thursday! 



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Rudakovskyi+25

Simulated dynamical effects 
of PMFs on the growth of 
structures 

[with 1 caveat:


B is here introduced only at the 
begin of the simulation 

(  ) but is not used to 
“perturb” the initial conditions 
obtained for ΛCDM…it is still 
diffcult!]

z = 30

Map: gas density distributions 
at z=0.2 for different simulations 
with varying normalisation and 

slope of PMFs, or of σ8



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Rudakovskyi+25

• B-fields  at  perturb the mass function similar to a 
slightly reduced  (i.e. ) in ΛCDM 


• Differences between scenarios are better highlighted by other 
diagnostics (e.g. network analysis)

≥ 2nG z = 30
σ8 σ8 ≈ 0.75

Simulated dynamical effects 
of PMFs on the growth of 
structures

less halos than ΛCDM

more halos than ΛCDM



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Ralengakar+25

Non linear modifications to the CDM growth factor has started to be worked with 
full cosmological simulations  (analytical T(k) transfer function for  
spectra, with , or approximate solutions otherwise)

Λ
nB ≤ − 1.5

PB(k) ∝ kn

First  cosmological MHD 
simulations with initial 
conditions perturbed by 
PMFs (here  and 

)
nB = − 2

B1Mpc = 0.2nG



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Ralengakar+25

Non linear modifications to the CDM growth factor has started to be worked with 
full cosmological simulations  (analytical T(k) transfer function for  
spectra, with , or approximate solutions otherwise)


• Magnetic-field dependent “boost” to the initial growth of  halos.   

• On large scales, baryons can be initially more perturbed than DM

Λ
nB ≤ − 1.5

PB(k) ∝ kn

M ∼ 105 − 1011

mass variance  different simulated PMFs amplitudes/spectra:∼ k2P(k)
compared to ΛCDM:

at different redshifts baryons vs DM 



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Modification of matter power-spectra, 
detectable via Lyman-  forrest: 
Kahniashvili+2013, Pavicevic et al 2025 

α

Change of the cosmic star formation 
history compared with ΛCDM 
Sanati+2020,24 ;  Ralegankar+24; 
Marinacci+15

Cosmological simulations has started exploring in detail the different non-linear effects 
related to the possible presence of PMFs on different observable scales of the cosmic 
web  



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS
Working out the exact effect of magnetic fields on the growth of structures 
is not really trivial:


the force on baryons scales as


and therefore it is also the topology of  which sets the force (not only the 
amplitude). Are PMFs clumpy or smooth? Tangled or regular?


e.g. very tangled PMFs with low normalisation can have more dynamical 
effects of smooth PMFs with higher normalisation.

B

…Full MHD simulations are necessary to work out  dependent effectsPB(k)



A couple of online interactive tools to 
produce cosmological simulations:  

https://www.galaxymakers.org/
galform.php 

https://galaxym.ovh/

HAVE FUN:

https://www.galaxymakers.org/galform.php
https://www.galaxymakers.org/galform.php
https://galaxym.ovh/


• K. Dolag et al. 2008 “Simulation techniques 
for cosmological simulations”                   

https://arxiv.org/pdf/0801.1023 

• R. Teyssier 2025, “Numerical Cosmology”  
https://arxiv.org/pdf/2510.13129  

SOME SUGGESTED READING

https://arxiv.org/pdf/0801.1023
https://arxiv.org/pdf/2510.13129

