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OUTLINE

In this lesson we will (briefly) see:

e arecap on small scale dynamo amplification in the intracluster

medium

e how magnetic fields are introduced and evolved in MHD

cosmological codes (and their numerical challenges)



AMPLIFICATION OF COSMIC MAGNETIC FIELDS

- Supposing we have a weak initial seed B-field, how is this amplified by
structure formation, and up to which level?

- Motions in highly conductive fluids (~ideal MHD) produce currents

which can sustain the steady growth of Ug = [Bz/ (87)dV through the

transfer of kinetic into magnetic energy.

- A small scale dynamo: magnetohydrodynamical process converting

turbulent kinetic energy ({ \7) =0, (V*)2 > 0) into magnetic energy
- First introduced by Kazantsev (1968), see also Brandenburg &
Subramanian (2005) and Rincon (2019) for reviews

time

g o

see Brandenburg’s lecture (14/01)

Cho 2015



AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

Stochastic gas motions driven by turbulence stretch and fold E)—Iines
At every stretch and fold cycle the magnetic field will grow

exponentially: B o e”’

e @D, e
\ Twist

Merge .
(requires a tiny bit
of magnetic diffusion) 7 /

Fol
3D essential old

B2 c t

. >
~15(L/v) t

FIGURE 9. The famous stretch-twist-fold dynamo cartoon, adapted from Vainshtein &
Zel'dovich (1972) and many others.

It can operate in systems that are turbulent and that do not have a
large organised motion (rotation) e.g. clusters of galaxies/ISM/...



AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

Also through the use of numerical simulations, 3 main s

stages have been identified:
kinematic exponential (fast) , non-linear (slower), saturated (end)
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Schekochihin+2005 exponential growth depends on the Reynolds Number R, =~ L/1




AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

What decides saturation? The end of the kinematic phase occurs at the
scale where stretching by turbulence is balanced by magnetic tension

B-VB ~u-Vu~ u?/l ~B?/l = u*~ B?so approximate equipartition
between turbulent kinetic and magnetic energy at this scale

From induction equation, one can approximately derive that now:

d(B)>
dt

~ y¥()(B)* ~ ”13*/ [*| where y*(¢) = u;./I* are the largest processed

eddies by dynamo, and € = ul3*/l* = 13/l is a constant in Kolmogorov

turbulence.

So we finally get: [{|B?|) & negt |i.e. the total magnetic energy is a tiny

fraction (7 ~ 1072) of the total kinetic energy processed by the cascade.

(e.g. Rincon 2019)



AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

At saturation:

+ the magnetic spectrum reaches ~equipartition with the kinetic spectrum at the

; Energy spectra

" Run A: Re~390, Pr_=1 \ W\ \
(v=n=5%10"*) \ \;\ ] 1
10-8 . | . A }a\ Soa 258
1 10 102
k/2n

(Meneguzzi+1981) (Schekochihin+2005)



IMPORTANT CAVEAT ON THE PRANDTL NUMBER!

A key parameter in dynamos is the Prandtl number:
Pr, = v/n = Re_,/Re, the ratio between viscosity
and resistivity. It depends on the fluid, not on the

flow. The ICM likely has Pr, > 1!l

results on growth factors from simulations with different Re and Rm

& 102 [

—0— Laplac1an
— 5 — B8-ordér hyper
—A— Ponty et al. 2006

:"Pm: 100 l,—"Pm:l
10 1 L L LLLL 1 L L Ll

< T ]llllll, T T ||||”|..' T T ]Il]]]l" T T T 11T
100 (I 057 B '

[ 027057 (ifferent Pr, . ﬂ—l

W o<y<02 Slmllal‘ growth factor ;

[ —0.2¢7<0 _

I—o.s’<7<—o.2 . o L \

;oy<=05 99

7

1 lnl"‘.:Pn;lzlofli 1L 111PnI1=|O|01 ]|'|1|

10-t 1 10 102

103 10#

Rm
Clusters (ICM) ?
1020} Galaxies (Warm ISM)
Large Pm 5
/0, <1 e >
7. 8
Low Pm E
g
/6, > 1 3
- .. ] .
Planets
Liquid metal exp.
Re
1 10 108 102

+ “due to computing power limitations implying

finite numerical resolutions, most virtual MHD
fluids of computer simulations have

0.1 < Pr, < 10. Hence, it is and will remain
impossible in a foreseeable future to simulate
magnetic-field amplification in any kind of regime
found in nature. The best we can hope for is that
simulations of largish or smallish Pr,, regimes can
provide glimpses of the asymptotic dynamics”

(e.g. Rincon 2019)



AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

gas temperature magnetic field strength

v

14“.

S
- &

Example of a small-scale dynamo in a simulated cluster of galaxies
(R, ~ 100, Pr,, = 1)




AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

Example of a small-scale dynamo in a simulated cluster of galaxies




AMPLIFICATION OF COSMIC MAGNETIC FIELDS : SMALL SCALE DYNAMO

Kinematic stage Seed field

Saturated stage

spectra, any memory of seed fields is lost!

Uni

Simulated dynamo “in a

box”,
R,~3-10% Pry, =2
ICM-like, starting from 3
different seed fields:
Uniform

PL and Par : two different
stochastic B models
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HOW TO SIMULATE THE EVOLUTION OF MAGNETIC
FIELDS IN COSMOLOGY?

L ap 1
continuity PPl C—ZV -(pv) =0, (D
: 1 BB ' 1
momentum conservation 22Y 4 -V (pvv+1p* - —) = —Zov—=pVe, @
at a a a a /
t] O + 1V (E+p*)v 1B‘(;‘/v) - 2E 5
energy conservation a + - p . = a
1
— PV .Vg AT+ -V Feng, 3)
a a
L B ¥ 1 "4
magnetic induction 3 gV X (vxB)=0. 4)

(ideal MHD: single fluid, no resistivity, large conduction)

usually the comoving B is the one evolved: B = Bphysa2 =B, /(1+2)

phys



SIMULATING MAGNETIC FIELDS IN COSMIC
STRUCTURES

magnetic induction Z_B — 1v x (v x B) = 0. 4)
t  a

the difficult part of any MHD simulation is to conserve the
flux of B,i.e. V-B =0 no magnetic monopoles!

If magnetic monopoles are forming due to numerical truncation errors, the
induction equation doesn’t remove them.

Monopoles can accumulate and produce a spurious force parallel to the field
lines. div B can grow without bounds (numerical instability).

For long time integration, this lead to inconsistent results and quite often to
code crashes or, worse, incorrect solutions.

The goal of computational MHD is to design div B preserving schemes.



DIV B CLEANING METHODS

As a natural extension of finite-volume schemes to MHD equations, the B-

field is defined at the centre of cells/voxels:

_
Bikj —

1 [ —
—‘ B (x,y,2)dxdydz with
Vily

V=[x X I X Wis s Vi) X 2215 241

Due to discretisation errors, this representation of B

does ensure that V - B = (0 and as iteration
proceeds, this can lead to the growth of spurious

magnetic fields.

i-1, j+1

-1/2,

J+1/2
L 4

i+1,j+1
@)

i+1/2, j+1/2
L 4

o}

e}

i-1,7 i-1/2,5 i, i+1/2,j i+l,j

i,j+1/2

@)

The logic of “div B cleaning” schemes was first tested by Brackbill & Barnes

(1980) with the projection method:

- compute numerical monopoles as mi; = (B;\1, - Biili,

(example for 2D case)

x,i+1/2,j

)/Ax+ (B"

J y

- solve for the potential with the poisson equations A® = m

. correct the cell-centred magnetic field with this B

—

clean

+1/2
i, j+1/2

Bn+l/2

S
i-1/2,j-12 i,j-1/2 i+1/2, j-1/2
o] (o] O
i-1,j-1 i, j-1 i+1,j-1
| .

— §n+1/2 — VP




DIV B CLEANING METHODS

Problem with projection method: the Poisson equation is non-local, solving it
Is time consuming, and the correction to B can lead to large errors in gas
pressure when the code the solver is iterated .

The “Hyperbolic Dedner cleaning method” (Dedner 2002) introduces an

additional scalar field, v, with its evolution equation, to be coupled with the
induction equation :

B
aa—t+V-(VB—BV+|pI)=O,
o o

_ V-B=--21

ot T clz,w’

»#(V-B) ¢ d(V-B)

or? cg ot

With solution:

- V*(V-B) =0, “telegraph equation”

This means that the numerical divergence of the magnetic field is not only
advected outward with ¢, speed, but also with a diffusivity cg :

Downside: the Dedner method is “diffusive” as it diffuse information away from
where divB is produced.



DIV B CLEANING METHODS

simple test with advection of a magnetic loop

Hyperbolic/parabolic

Tricco et al. 2016




DIV B CLEANING METHODS

Another divB cleaning approach is the “8-waves cleaning method” by
Powell (1994) which aims to subtracts the unstable V -B terms from the
equation of motion.

This requires a source term proportional to V -B

aa—I:+V-(VB—BV)=—V(V-B)
a(val:B)+V-[V(V-B)]=O.

...however, the subtraction necessarily violates momentum conservation, so
one would like to minimize the subtracted terms.

Moreover, many studies have shown that certain types of problems, treated
only with this method, will converge to the wrong solution



THE CONSTRAINED TRANSPORT METHOD

The induction equation in integral form suggests a surface-average form:
dB+Vx(Bxu)=0 (Stokes theorem) 8,] B-ds+j(B><u)-dl:0
S L

The magnetic field is face-centred while Euler-type variables are cell-centred
(staggered mesh approach).

1
(Byis1/2.% = S j B,(y, z)dydz S = [yi-1/2, Yis1/2] X [2i=1725 Ti=1/2]
s
‘ Bz,i,j,k+1/2
kS

E v,i+1/2,] K+1/2

-
$ ‘ ?'l+1,?-1+1'?,k
B Bx.i+1lz,i,k
Wigaos |
L /},
yi+1/2,,k-1/2

Similar to potential vector methods (Yee 1966; Dorfi 1986; Evans & Hawley 1988).

slide courtesy of R. Teyssier



THE CONSTRAINED TRANSPORT METHOD

Surface-averaged magnetic fields are updated conservatively:

Bn+l = B® + g ( Fn+1."2 - Fn+l,-'2 )_ E ( n+1/2 _ pn+l)2 )
zd Jk=1/2 = T xi k=172 Ax \ ni+1/2,jk-1/2 “vi-1/2, k=172 Ay “x,0,j+1.2,k-1/2 “xi J-1/2k-1/2

B! — B" + E EntliZ _ g1z )_ ﬂ Entl/2 _ gl )
yiog=1j2k = “yi =112k Az XA JU2EA2 Txdj12K-102) 0 A T2 12,120 T i 142,112k

Bn+l - " +§ (Fn+1,-'2 _ gn+lf2 )_ E (F’H-l"'z _ gpn+l)2 )
=12,k = Tni-l2 gk T A \Tni- 12,412k T i-12,j-1/2k Az “vi—-1/2,jk+1/2 “yi-142,jk=1/2

using time-averaged electric fields defined at cell edge center:

: A°l;’2
ntl/2 e . '
bx.i,]'—l,'z’k—l‘IZ - —AtAx r f bx(x, )1_”2, 24_1,2)dtdx
heE i-1/2

n+1/2 1 Y
/ e — : . L ] r
Eyivze12 = Athy j‘n l . Ey(xi-1/2, ¥, Ze-1/2)dedy

. Zk+1/2
+1/2 - ~ : L
E i imjo1on = YT f: f E(xi-1/2,¥ 1,2, 2)dtdz
k=142

The total flux (div B) across each cell bounding surface vanishes exactly !

But how do we compute the electric field on cell edges ?

slide courtesy of R. Teyssier




THE CONSTRAINED TRANSPORT METHOD

We write Faraday’s law ;B = V X E using now the EMF vector E =ux B
We use a finite- surface approximation for the magnetic field

V12 1 41,2
n
i11/2. 1 = .t‘(xH-l}Z )d B".. - By(x,y; l'2dx
x,z+l,a2,.1 Ay L » y)ay Vi, j+1/2 Ax b J'( Y+l )
Integral form of the indu&tlon equation using Stoke’s theorem
+1/2 n+1/2
B.:HI’Z,] Bx z+1/".; (E:l,wl /2, j+1/2 i Ez.i—1/'2.j+l,’2)
Ar
n+1/2 n+1/2
Bn dJt1/2 = B;'l]+l'2 = Ax (F J+1/2, 54172 F:.,i+l;'2,j-l,'2)
By construction, div B vanishes exactly:
32,”1;2,,- = B:,i—l,"l.j B:.,i,jﬂ,'z L BL j-1/2
+ =0
Ax Ay

For piece-wise initial constant data, the flux function is self-similar at corner points.

For pure induction, the exact Riemann solution is:

.—’
n fl
? /'T b,“.].o uB;,I+IJ+102+B”,!j +1/2 va.i*l,Q.jH +B},l+lu.j
N Zi+12, /4172 — 2 2

" - B /{E - B”"
|u| a1, J+1/2 vi j+1/2 A |V| i+1/2,j+1 wit+l/2,j
Induction Riemann problem .
2 \__/ 2

The CT methods preserves V - B = () to machine precision!

slide courtesy of R. Teyssier



Loop advection » Orszag-Tang vortex

0 025050.75 14 -3

|divB/BlI

Hopkins 2016



Two different time steps of the Taylor Instabilty: Powell method generates a wrong solution

CT

B |divB/BlI B |divB/BlI

g f.’d‘}. i
(n..*,m"ﬁ‘} .'ld ka1




COMPARISON OF METHODS WITH TESTS

Two different time steps of the MRI Instabilty: Powell method amplifies B _a lot

B |divB/BlI B |divB/BlI

Dedner

Powell




COMPARISON OF METHODS WITH TESTS

log10(|B|2/87t>

MRI Instabilty: Powell method spuriously amplifies B_a lot
(SRS PRSP R RS R

05}

1o}

————
— CG

— = = Dedner
--=+ Powell :
—— CT-Grid (ATHENA )]
—— CT-Grid (HAM) )

Hopkins 2016



WHICH METHOD IS THE BEST?

Lagrangian: Eulerian: Hybrid
Moving volume element Static volume element (moving-mesh)

Smears out shocks and : :
: .. Riemann solvers are great for capturing shocks!
discontinuities
Hard to implement V - B = (0 jll Easy to implement V - B =0 | Hard to implement V- B =0

: : : Truncation errors depend on : : :
Naturally Galilean-invariant Naturally Galilean-invariant

Choose a code according to the needs of your problem!
S — ——————

slide courtesy of E. Ntormousi



SIMULATING MAGNETIC FIELDS IN CUSMIC STRUCTURES

“Historical” simulations !

Q“N“, Dark Matter Boundary
Gas+ Dark M.:mel

non-MHD (passive B) Eulerian simulation
(Miniati+2002)

—-6.3358e+00

—7.3086e+00

—8.2815e+00

—9.2544e+00

—1.0227¢+01

Rotation Waosure

“—!!-a-u-w-l-z;uv

—1.1200e+01

SPH-MHD simulation with
—1.2173e+01

. -9
Sgeld flel_ldgég G Eulerian-MHD simulation with seed field
(Dolag+ ) 3-107'"G (Bruggen+2005)



SIMULATING MAGNETIC FIELDS IN COSMIC STRUCTURES
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SIMULATING MAGNETIC FIELDS IN COSMIC STRUCTURES
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SIMULATING MAGNETIC FIELDS IN COSMIC STRUCTURES

All MHD simulations report a (| B|, p) phase diagram similar to
the following picture:
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SIMULATING MAGNETIC FIELDS IN COSMIC STRUCTURES

All MHD simulations report a (| B|, p) phase diagram similar to
the following picture:

1
Core

|
0 Cluster I
I |

Filoments | | saturation B* ~ po;

-2 Sheets ' \ dynamo
amplification

B > By(p/py)*?

I
I
I I )
I I

_ I I

10 ' I B \

et i Shear + Turbulence compression B ocp2/3
I

I
I
I
I

P I+ Major Merger

|
|
| ' ' - “frozen-field”

10-6F =, . .
1 1 | 1 | 1 1 1
10-" 100 1 10 102 10° 10%  10°

p/<p>

seed B field

- most of the volume evolves by compression B o By(p/{p))*?, with By=seed field
. -turn of the relation at densities > halos due to dynamo amplification
HpH ! " / P Dolag+06



COMPARISON AND PROBLEMS

Comparison projects for forces small-scale dynamo in a box, grid (FLASH)
vs SPH (Phantom)

1283 2563

102

109

102
> I
e .
GC) 10 1
w
-6 J.
e Flash 1283
1 Flash 2563
i Flash 512
-8 .
10 Phantom 1283 -----

Phantom 2563 - ----
Phantom 5}23 """

10-10

log IBI

Quite consistent results in both codes (Phantom uses Dedner cleaning and
Flash the Constrainted Transport). Agreement typically improves with
resolution.

Tricco+2016



COMPARISON AND PROBLEMS

moving CT moving Powell

Growth of magnetic field in a
spiral galaxy for the same
moving mesh simulation
(AREPO):

- for this setup, the moving CT
leads to a slow ampilification
in final equipartition with
turbulent kinetic energy

« The 8-waves Powell cleaning
instead uncorrectly generates
spurious large dynamo
amplification, much higher
than the kinetic energy

Mocz+2016

Figure 7. Comparison of the magnetic field strength of the same disc in Fig. 4 at time { = 0.5 Gyr in the formation process, simulated using the CT and
Powell schemes. The figure displays a physical size of 40 kpc. The CT approach exhibits much better preservation of the topological winding of the magnetic
field. The Powell scheme shows substantial divergence error noise seen on the cell level while this is absent to machine precision in CT.

moving CT moving Powell
10* 10° . v x - . —_—
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Figure 6. Comparison of magnetic field saturation in the formation of a disc simulated with the CT and Powell schemes. The CT method shows equipartition
between magnetic energy density and turbulent kinetic energy density, whereas the Powell technique saturates the field at higher values, exceeding the thermal
pressure by about a factor of five.



COMPARISON AND PROBLEMS

ENZO cosmological simulation (fixed grid) with the same B,

Dedner cleaning Constrained transport

1.67e-10 347e-10 8.28e-10 2.13e-09 5.61e-09 1.49¢-08

« approximately consistent results for the two solvers across the cosmic web ,
what about dynamo-dominated regions?




g(k) [erg cm™ kpc]

COMPARISON AND PROBLEMS

Turbulent and magnetic spectra in two (different) evolving simulated clusters obtained with
Adaptive Mesh Refinement and using:

Constrained Transport (Xu et al. 2012) or Dedner Cleaning (Dominguez-Fernandez+2019)

r—— v ey kE:Z='0.0' — o
10_13_ 2=0.25 A
2=0.5 oo
2=1.0 e 10-12 -
.14 '_ Z=15
10077 e . Z=2.0 --------- 3
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2=0.256 == 107134
10‘15_ Z=0.5 . o
z=1.0 X
9' 1014 4
10'16_ g
uw
j 10715.
-17 =
107'F =
10716 4
1078} e
10~17.
1070 1
10-13
20 . . :
10 10° 10!
0.01 0.1 k[1/2Mpc])

k k']

Similar level of amplification in the same timescales (notice: 2 different clusters here!)
Estimated efficiency of conversion of kinetic energy into magnetic power: ~ 2 —3 %



HOW TO KNOW IF THERE IS REAL SMALL-SCALE
DYNAMO IN A SIMULATION?

resolution
AMR4

resolution

5%’
. gg " ‘
logl0[muG]) \

-2.5 -2.2 -1.8 -14 -1.1 -0.76 -0.4 -0.05 0.3

Vazza+2018

1) evolution with resolution: by increasing resolution the Reynolds number
changes, and so must the effect of the dynamo




HOW TO KNOW IF THERE IS REAL SMALL-SCALE
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2) time growth and saturation levels: the field must grow final r%agnetic energy
should be a few % of the kinetic energy. The final amplifed field should be
independent on the seed field value



Vazza+2018

HOW TO KNOW IF THERE IS REAL SMALL-SCALE
DYNAMO IN A SIMULATION?
102 ’ '
AMR3
AMR4
Nv.elocity field AMR5 ]
104: -
% 10°- magnetlcflelg_‘___:'_'..
: b
108
1070 . e 1 e
1 10 100
k=1/Mpc

-2.5

3) power spectra: magnetic spectra must evolve and approach
equipartition with kinetic energy. The kinetic spectrum gets modified



HOW TO KNOW 1

F THERE IS REAL SMALL-SCALE
DYNAMO 1

R
N A SIMULATION?
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F1G. 8.— Scatter plot of B vs. K at ¢ = 8 during the kinematic stage of our B vt
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4) distribution of “curvature (K)”: there must be anti-correlation between
magnetic field amplitude and curvature (magnetic tension prevents bending!)



WHAT IS THE ORIGIN OF COSMIC MAGNETISM ?

. . oB 1
magnetic induction 37 -V x(vxB)=0.
a

even the most explosive dynamo must start from a non-
zero initial seed field By,

As long as the ideal MHD picture applies to the dynamics
of large scale structures we need “seeds” of magnetic
fleld for dynamo to start.

What are the B-field seeds?

Must they be primordial, or also astrophysical seeding
scenarios can do the job?



SOME SUGGESTED READING

o F. Rincon 2019, “LECTURE NOTES on
Dynamo theories "https://arxiv.org/pdf/
1903.07829"

o J. Donnert at al. 2018 “Magnetic Field
Ampilification in Galaxy Clusters and Its

Simulation”
https.//arxiv.org/pdf/1810.09783
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