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OUTLINE

In this lesson we will (briefly) see:

e how to describe the formation of the cosmic web

e what are the techniques for cosmological simulations

e what are the numerical problems and how to incorporate several

physical mechanisms (including magnetic fields)



NON-LINEAR STRUCTURE FORMATION

Some important criticalities:

gravity leads to high density contrasts: §p/p>>1000

extremely wide range of spatial scales in processes (from ~kpc to ~100 Mpc), of
density range (p~0.1<p> to p~10*<p>).

supersonic converging flows (shocks) & sub-sonic turbulent flows (halos)
galaxy formation physics can feedback on structure formation itself

some phenomena “emerge” only at large enough dynamical range (e.g. turbulence,
dynamo) — need of extremely large Reynolds number

numerical simulations needed



STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

The “Zeldovich approximation” follows the motion of a fluid element in

a Lagrangian-to-Eulerian mapping of the equations of hydrodynamics.

T x(a,t) = a+ ¥,

where ( is the initial position and W(q, ?) is the linear displacement

field, given by ¥(q,t) = D(t) ¥y(q)

where D(?) is the linear growth factor seen yesterday and ¥ (q) = — V¢y(qQ) is

related to the initial density contrast via the Poisson equation: V2¢0 =0

Mass conservation allows to relate the Eulerian overdensity field 5(X, t) to the

divergence of the displacement field:

6(q,t) ~ —D(t) V - Yo(q)




STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

To generate initial conditions, one has to generate a set of complex numbers with a randomly
distributed phase ¢ and with amplitude normally distributed with a variance given by the desired
power spectrum, P(k). This can be obtained by drawing two random numbers ¢ in ]0, 1] and A in

10, 1] for every point in k-space. Sk _ \/—2P(|k|)1n(A)ei2”¢‘
To obtain the perturbation field generated from this distribution, one needs to é(q) = 5k Zk oikq
generate the potential ®(qg) on a grid q in real space via a Fourier transform, e.g. . k2

Then through the Zeldovich approximation we can update positions and velocities:
x = q— DT (2)8(q) v =D"(2)V®(q)

small (2D) N-boyd sim




STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

To generate initial conditions, one has to generate a set of complex numbers with a randomly
distributed phase ¢ and with amplitude normally distributed with a variance given by the desired
power spectrum, P(k). This can be obtained by drawing two random numbers ¢ in ]0, 1] and A in

10, 1] for every point in k-space. Sk _ \/—2P(|k|)1n(A)ei27T¢‘

To obtain the perturbation field generated from this distribution, one needs to é(q) = 5_keikq
generate the potential ®(qg) on a grid q in real space via a Fourier transform, e.g.

Then through the Zeldovich approximation we can update positions and velocities:
x = q— DT (2)8(q) v =D"(2)V®(q)

ArsiRsas PAA IR SRR~ 1

This powerful approach
ceases its validity when
streams of particle cross
each other producing
“caustics”

A stage that in nature will
lead to the clustering of
matter and the formation of
shocks in ordinary matter

full simulation Zeldovich




STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

Side note:

this process is a simple analogy with the formation of light caustics at the
bottom of a pool of water.

A uniform screen of light (top) first passes through tiny corrugations at the top of
water.

While propagating to the bottom light rays start crossing each other and produce
caustics of light, which resemble the formation of cosmological filaments (in this
case, the vertical direction will be time dimension in cosmology)
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STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

Side note:

this process is a simple analogy with the formation of light caustics at the
bottom of a pool of water.

A uniform screen of light (top) first passes through tiny corrugations at the top of
water.

While propagating to the bottom light rays start crossing each other and produce
caustics of light, which resemble the formation of cosmological filaments (in this
case, the vertical direction will be time dimension in cosmology)
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https://www.youtube.com/watch?v=0fjk8X1KuyE&t=1s



STRUCTURE FORMATION: THE ZELDOVICH PANCAKE

Basic steps described by the “Zeldovich pancake”
model (1970) for the 1D collapse of cold, self-
gravitating gas after a small velocity perturbation (even
without dark matter)

G.a small dp/{p) < 1 overdensity is formed
2. matter keeps falling towards the overdensity

3. when the infall velocity v, ~ 1/2GM/r exceeds the

sound speed, shocks are formed.
4. Kinetic infall energy is converted into thermal energy

5. An ~isothermal dense gas core dp/{p) > 10%with a

declining density profile is formed.
6. Sharp boundaries with the outer (cold) Universe are
marked by strong accretion shocks

(M = velc, > 107)

7.the collapse is most probable to happen along 1
\ direction first, leading to a flat pancake structure

(The presence of dark matter alters the above picture
by giving even more infall kinetic enerqgy to the gas.)

d shell crossing , *
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FIG. 6. Distributions of pressure (p), density (p), and tempera-
ture (7) a short time after the formati

on of a gas pancake.



The simulated 1D evolution of the Zeldovich pancake




STRUCTURE FORMATION: THE ZELDOVICH APPROXIMATION

A A -

The linear theory of perturbations, applied to the
uniform isotropic cosmological solution, is now well
understood. It is generally admitted that its predic-
tions are limited by dg/¢ < 1, and that further events
must be followed by numerical calculations. Such
calculations, in three dimensions and with random
initial conditions, promise to be tedious. Therefore

at least qualitatively, is of interest.

https.//articles.adsabs.harvard.edu/pdf/1970A%26A.....5...847



https://articles.adsabs.harvard.edu/pdf/1970A%26A.....5...84Z

SIMULATING COSMIC STRUCTURES

About 83% of matter is Dark Matter, so this is the first component to model.
This is obtained by evolving a discrete distribution of point masses, and using
trajectory integrator coupled to several possible gravity solvers

grav.potential

dp
. force equation g7 — ™MV? <

expanS|on terms

dx P
* velocity equation = /

introducing the pecular velocity v = aX

we can write: dv a Vo
— t+V-=——
dt a a

* expansion rate a = Ho\/1+ 29(a=1 — 1) + 24(a2 - 1),

Since Dark Matter is collision-less, it must be modelled



Early “N-Body” simulation of a collision between galaxies




SIMULATING COSMIC STRUCTURES

one early N-body simulation of the collapse of matter perturbations forming the
cosmic web



SIMULATING COSMIC STRUCTURES

Digital Sky Sl
Survey Ll e

The web-like pattern of cosmic matter is one of the few actual “discoveries”
made first by cosmological simulations, and later confirmed with telescopes



SIMULATING COSMIC STRUCTURES
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— at the end of the '70s, many simulation
using N-body methods or Zeldovich approx.
consistently predicted a web-like structure for
cosmic matter

— only a few years later, the first big telescope
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VOIDS, SHEETS, FILAMENTS AND CLUSTERS
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the iIIennium Simulation - pringel et a 2005




SIMULATING COSMIC STRUCTURES

¢ All cosmological codes use the N-body approach for dark matter.

e Different particle integrators for trajectories can be used, depending on
the desired accuracy of the model (e.g. “leapfrog”, “KDK”, “DKD”,
Runge-Kutta etc...)

e Different gravity solvers have been developed, to make gravity
computations require less than ~ N? operations as in direct summation

Hockney & Eastwood Barnes & Hut (1986): Dehnen (2000): the
(1985): the Particle- the Tree methiod Fast Multipole Method
Mesh method (PM)
NATURE VOL 32¢ 4 DECEMBER 1986
® ° ...l‘] _ * l A h
e g ’ ‘. \| &) —=a
G o oo e
o o : 11 .l - cell A cell B

~ O(N log N) ~ O(N log N) ~ O(N)



Log Density

SIMULATING COSMIC STRUCTURES

Navarro-Frenk-White profile

| pere .
() (o)

Concentration:
(S = RA / s

rs R200c Ryir R200m log r

L661 ONYM 9 Yueid ‘OLeABN S}pei)

Log radius

Also the analytical description of the density profile of dark matter halos -
still consistent with observations on most scales- was first derived thanks to
N-body dark matter simulations



SIMULATING COSMIC STRUCTURES
“BARYONS™

For “baryons” (=collisional ordinary matter), the minimal set
of equations for their evolution is :

ov 1 a 1 1
- - EAMRLTY dy =2 VP- 2V
velocity equation ot + a(V Vv + o apv aV ;
0 3a 1
continuity gp t—p+ EV - (pv) =0

energy conservation %(pu) + %v . V(pu) = —(pu + P) (iv —_— 33)



SIMULATING COSMIC STRUCTURES
“BARYONS™

grav.potential

velicity expansion terms pressure  (gas+DM)
ov 1 a 1 1
«  velocity equation 5% T E(V -V)v + V= —a—pvp — ;Vﬁpa
op 3a 1
e continuity density 5 + —P + ;V - (pv) =

e energy conservation %(pu + %V - V(pu) = —(pu + P) (%V v 3%)

internal energy
(+ radiation, heating, chemistry...magnetic fields & cosmic rays)

these equations are coupled to an N-body codes to evolve DM and get the tota
gravitational potential, ®



dark matter baryons




TWO BASIC METHODS

“Smoothed Particle

Hydrodynamics”

discretize space discretize mass
representation on a mesh representation by fluid elements
(volume elements) (particles)
e s v
7 e
1 S
Sy :
O. © ¢ .
principle advantage: principle advantage:
high accuracy (shock capturing), low resolutions adjusts
numerical viscosity automatically to the flow
) . colla
. e, B

[obuLds A :syupaid



TWO BASIC METHODS

Eulerian

from fluid variables (u,) to reconstruction at the cell interfaces
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Fig. 9 Reconstruction of the principal variables (un) on the grid using different methods,
like piecewise constant (PCM), piecewise linear (PLM) or piecewise parabolic (PPM). The
reconstruction scheme then allows one to calculate cell averages (i) as well as the left and
right-hand sided values on the cell boundaries (ul, , 5,u” 10 5)-



TWO BASIC METHODS

Eulerian

from fluid variables (u,) to reconstruction at the cell interfaces
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Fig. 9 Reconstruction of the principal variables (un) on the grid using different methods,
like piecewise constant (PCM), piecewise linear (PLM) or piecewise parabolic (PPM). The
reconstruction scheme then allows one to calculate cell averages (i) as well as the left and
right-hand sided values on the cell boundaries (ul, , 5,u” 10 5)-



TWO BASIC METHODS

Riemann solvers:

iterative algorithm to
compute the evolution of
fluid quantities at the
interfaces, based on
physical solutions from
standard hydro-dynamics.

The fluid values at the cell
centre are updated using all
3D fluxes given by the
Riemann solver.

This directly ensures that
ordinary matter is evolved
based on physical solutions

interface

L-I-

before Riemann
solver step




TWO BASIC METHODS

Riemann solvers:

iterative algorithm to
compute the evolution of
fluid quantities at the
interfaces, based on
physical solutions from
standard hydro-dynamics.

The fluid values at the cell
centre are updated using all
3D fluxes given by the
Riemann solver.

This directly ensures that
ordinary matter is evolved

based on physical solutions

before Riemann
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TWO BASIC METHODS

Smoothed Particle Hydrodynamics

kernel Wn

A discrete set of N particles is used pairrt\gfeg
to sample a continuous fluid
distribution

Fluid quantities are estimated by -
convolving a set of " e ) )
“neighbouring” particles

~ O(10%) with a kernel function (4;) = (A(x;)) = Z —L AW (x; — x5, h)

dt 2 J

The momentum equation  dwi _1 Y m (& n ﬂzz' n Hij) (v} = vi) VaW (x; — x5, h).
becomes: j



TWO BASIC METHODS

Smoothed Particle Hydrodynamics

To make an N-body method collisional, we enforce some viscous
dissipation for nearby particles (otherwise they will cross each otherl!)

In SPH, this was traditionally done with an adjustable artificial viscosity
(i), which is on for approaching particles (V - v < 0)

1
08

. 061

04

d a - _a, a 2 s |
( 7 ) =Yy e Pl
dt / av b Pab

02

where

Vb T .

u . ,,._2?_;‘;'52' Vab * Tab < 01
ab = @

0 Vab * Tab 2 Oa

This ensures the right energy
dissipation at shocks, but also
introduces unphysical viscosity

Fig. 1. 1D Sod shock tube computed using artificial viscosity with constant
coefficients & = 1 and 8 = 2.



TWO BASIC METHODS

Eulerian

discretize space

representation on a mesh
(volume elements)

3 &
7

PROS:
+ Fair sampling of all volume
+ Physical hydro solutions from
Riemann solver
+ Captures well shocks
CONS
- non Galileian invariant
- had problems in conserving angular
momentum

“Smoothed Particle

discretize mass

Hydrodynamics”

representation by fluid elements
(particles)

PROS:
+ Fair sampling of mass
+ Automatically provides higher
resolution where matter clusters
+ Conserves angular momentum
CONS
- artificial viscosity
- difficult to accurately follow sharp
hydro features




a 2.5

WHICH METHOD IS BEST?

Tests of 1D shocks vs analytical solution

4.5 1 1 T 1.8 T T T
— Enzo (PPM) 4 -~
4011 — Enzo (Zeus)3
5s|| —Flash - (|
' — Gadget2 2
Hydra & .
3.0 © 1.4} r' SPH codes
o -
..
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-0.10 -0.05 0.00 0.05 0.10 0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06
radius radius

old SPH codes always provide smoother

reconstruction of shocks (+spurious generation
of entropy) Tasker et al. 2009




WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

The “Santa Barbara” comparison project (Frenk+99)

12 codes to simulate the evolution of the same (?) cluster
Dark Matter z=0

Couchman

Dark matter
density:
quite similar
(gravity is
“easy”!)

All codes used a
similar N-body
approach




WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

The “Santa Barbara” comparison project (Frenk+99)

12 codes to simulate the evolution of the same (?) cluster

Gas matter
density:
quite different.

Differences in
hydro solver and
time stepping
makes
simulations
inconsistent




WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

The “Santa Barbara” comparison project (Frenk+99)

12 codes to simulate the evolution of the same (?) cluster

Temperature z=0

Couchman

Gas matter
temperature:
very different.

Further
differences in the
thermodynamics

of gas




WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

The “Santa Barbara” comparison project (Frenk+99)

12 codes to simulate the evolution of the same (?) cluster

X-ray (variable) z=0

Couchman

X-ray emission:
very different.

how can we
observationally
validate theoretical
predictions, if
numerics
introduces so
many differences?




WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

Simulated binary merger:  the colored points represent: SPH particles from two
halos (left, GADGET) and tracer particles on top of an Eulerian simulation with the
same two halos (right, FLASH)

GADGET—2

1.0 — T 1.0 "7

0.5} S R 0.5k

R ' R
= 0.0F - = 0.0F
> [ > ]
-0.5F . -"jl-.f' - -0.5F .
i ] i . . .Gyr
— 1.0 0o 0 0 ., . . > ) . . . . 1 . . . . — 1.0 o o i g e
-1.0 —0.5 0.0 0.5 1.0 —1.0 —0.5 0.0 0.5 1.0
x_(Mpc) x (Mpc)

Depending on the method, very different level of “mixing”

between the two cluster. Particles settle do difference place _
in the two cases! Mitchell+2009




WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

Grid simulation
(FLASH): more mixing
between clusters, gas

in the centre of the
newly formed cluster
has high entropy

SPH_simulation
(Gadget): less mixing
between clusters, gas

in the centre of the
newly formed cluster
has low entropy

energy dissipation and
entropy mixing are
different in the two
methods
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(£=0)/Kyg, Mitchell+2009



WHICH METHOD IS BEST? SOME EARLY CODE COMPARISON

¥ .-t': * “h A ; e YL
Overall good convergence of thermal gas distribution



WHICH METHOD IS BEST? AN EARLY CODE COMPARISON

Map of shocks (displayed: Mach number) :
very different distributions

grid simulation, grid simulation, grid simulation,
___PPMsolver ~_ SPH solver TVD solver

T
?3 29 AR

Vazza et al. 2012



WHICH METHUD IS BEST? AN EARLY CODE COMPARISON

512

PPM

TVD

_ SPH

No clear convergence with resolution:
grid codes produce sharper shocks, SPH clumpier shocks.
How can we predict cosmic ray acceleration? Vazza et al. 2012




WHICH METHOD IS BEST?  ADVECTION PROBLEMS

Galileian invariance: the solution to a physical problem does not depend on the reference

frame. Ideally, a simulation should get the same solution even if its reference frame moves.
But in grid methods, the errors in advection may dominates physical velocity differences and
instabilities are damped by numerical diffusion: solutions are not galileian invariant!

Springel 201C

v.= 0.033 v= 10.000 v = 100.000 v= 0.033 v = 1,000 v = 10.000 v = 100.000
fixed-mesh fixed-mesh fixed-mesh moving-mesh moving-mesh moving-mesh moving-mesh

/O\

Rayleigh-Taylor instabilities in a grid simulation: moving vs static mesh.

\

Y -

=N —

- v =P vV

This motivated the development of “moving mesh” codes. e.g. AREPO and GIZMO



DODDD D

WHICH METHOD IS BEST?

Effective numerical diffusion
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WHICH METHOD IS BEST?

Adaptive Mesh Refinement :
Eulerian method can increase the local spatial resolution
where needed




WHICH METHOD IS BEST?

Adaptive Mesh Refinement :

* in simulations of cosmic
structures, finer grids are
generated for example
where the matter density
iIncreases because of
gravitational collapse

 fluxes on coarse resolution
levels are used as
boundary conditions for
high resolution cells




WHICH METHOD IS BEST?  ADVECTION PROBLEMS

New methods to “combine the best of both worlds”:

mesh continuously generated following moving
mass points (— galileian invariance, high resolution)

« fluid dynamics computed with Riemann solvers (—
accurate reconstruction of shocks, fluid instabilities)

New Meshless Methods Here (MFV, MFM)  Unstr ~Mesh Methods Smoothed—Particle Hydrodyr

GIZMO - Hopkins 2015



WHICH METHOD IS BEST?  ADVECTION PROBLEMS

New methods to “combine the best of both worlds”:
mesh continuously generated following moving

mass points (— galileian invariance, high resolution)

« fluid dynamics computed with Riemann solvers (—
accurate reconstruction of shocks, fluid instabilities)

moving meshless

GIZMO - Hopkins 2015



Advantages/disadvantages of each method

Lagrangian: Eulerian: Hybrid
Moving volume element Static volume element (moving-mesh)

Smears out shocks and ) )
: .. Riemann solvers are great for capturing shocks!
discontinuities

: : : Truncation errors depend on : : :
Naturally Galilean-invariant velocities P Naturally Galilean-invariant

Choose a code according to the needs of your problem!

R —— e




MORE COMPLICATIONS:

Dark matter only (N-body) Dark matter + baryons (hydrodynamical)

To form galaxies and
their stars, much more
IS needed:

» cooling

* chemistry

* radiative transport
- star formation

* black holes

- feedback

* COSMIC rays

* magnetic fields
 dust

etc...

Zoom (details)

Large volume (statistics)

Vogelsberger+?2



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

turning gas into stars Py = eﬁi with 7g=

gas density

Figure 8: Left panel: projected density map of a zoom-in cosmological simulation of a
Milky-Way-size halo with radiative cooling and no feedback. Middle panel: projected
temperature map. Right panel: stellar surface density map. The image is 500 kpc
across. Credit figure and simulation: R. Teyssier.



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

turning gas into stars

letting stars do feedback

several possible
implementations of
feedback in numerics
(thermal, kinetic,
mechanical..); all are
“true” at some given
scale.

ATnhost = fhostmej

1 2
AI;host = fhostESN + thostmej |V* — Vhost

[N
log(T' [K])



STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLEI

turning gas into stars

letting stars do feedback

growing supermassive black holes

“seed” black holes (e.9- Mpy speq ™~ 10* — 10°M,)
are injected in halos at high redshift

they grow matter based on either hot gas accretion
(Bondi-Hoyle formula)

cg &0TC

¥ow  min (4mGzM2BHpB _ 4nGMBHmp]

and/or cold gas accretion Bondi  Eddington limit




STAR FORMATION, FEEDBACK, ACTIVE GALACTIC NUCLE]

giant elliptical galaxy

spiral galaxy

dwarf galaxy

- turning gas into stars

o _1‘53 20% of baryons |
- letting stars do feedback E
. . g -2. stellar AGN feedback
- growing supermassive black holes g feedback
-3.0 ) ) Moster+A(2010)_‘
1" 12 13 14

log( halo mass )

- letting supermassive black holes do feedback

: . y 2
A fraction €, of the accreted mass rate is released outwards as feedback energy Lg;; = €, Mg c
N u merlcal I’eCI pes have been [ (xa) r;diaiive lfeedlbac‘k | I (b) n;ec*wtanixml l:aedt;ackl I I(C) thermal feedback ]O ——
. vy @) O particle
implemented for radiative, . s o lalals © O o
. ISRIEIEIR! L/
mechanical, thermal feedback K\ b | ’ o/ e °No
. MBH MBH [ o MBH (o \
e.g. for mechanical feedback: - ight ray OF 1 o | 3 9 40
p 30.4 pc \O O = pc(/
4 N K2 @ \ 0O o /
. | o« rlelelele . NG o .
2 2 v ~ IAEAEAEAE] )
Piin = €xinLH = €kinérMpuC™ = - MjetVjer, . N . 0 ol o’ 0g°
_ = ray splitting o O gas . (&)
7 cell size = 15.2 pc | <~ ot width -—» O particle O
v: c 26kin€r — 6000 kln S_l Figure 2. Two-dimensional schematic views of the different modes of massive black hole feedback. (a) Radiative feedback model described in Section 2.7: photon
Jet — . - rays carrying the energy are adaptively traced via full radiative transfer, (b) mechanical feedback model described in Section 2.8: a momentum is injected to the cells
n_le( around the MBH along pre-calculated directions, and (c) thermal feedback model predominantly used in particle-based galactic scale simulations: thermal energy is
kernel-weighted to the neighboring gas particles around the MBI
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Vogelsberger+20




SIMULATING COSMIC RAYS IN COSMIC STRUCTURES

The usual equations must include a “two-fluid” model for cosmic ray protons

continuity op+ V- (pu) =0,
momentum conservation p(0iu+u-Vu)= — V(Pru + PC;:)/,
energy conservation Overn + V - (ergu) = — Pru(V -u) +T + A,
CR energy conservation Oiecr + V - (ecﬁﬁ) = — PCQ{V ‘)

+ V- (kcrVecr) + Lcr,
Pry = (yra — 1)€eTH,

4

Pcr = (ycr — 1)€cr,
source terms, diffusion of CRs...

state equations



SIMULATING COSMIC RAYS IN COSMIC STRUCTURES

601 Myr
,/“L“il.\': —)()(%

Milky-way like galaxy:

Constant Diffusion

EVA(Y)

VS gas stars turbulence CRs

601 Myr
Variable Diffusion Jans + 20%

Semenov+21

—> more realistic

diffusion make the CR
distribution clumpier



SIMULATING COSMIC RAYS IN COSMIC STRUCTURES

Once injected, the accelerated cosmic rays can be modelled as a second fluid which
interact with the “normal” one of thermal gas, which evolves accordingtoal” = 4/3
eq. of state.

The composite gas+CR fluid evolves according to an “effective” equation

of state:
5/3E, + 4/3E

E,+ Ecg

COSMIC RAY energy GAS energy




SIMULATING COSMIC RAYS IN COSMIC STRUCTURES

Simulated distribution of CRs (accelerated by cosmic shocks) in the cosmic web

COSMIC RAY enetgy
e - %

(Vazza+12)




SIMULATING COSMIC RAYS IN COSMIC STRUCTURES

Effect of cosmic ray acceleration in the density and temperature profile of a simulated galaxy clusters:
a model with cosmic rays (blue) hasa ~ 5 — 10 % lower density and temperature than a standard
model without cosmic ray effects (black). This is a combined effect of a reduced thermalisation at
shocks (“thermal leakage”) as well as of the I'.4 < 5/3 effective adiabatic index of gas.
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SIMULATING MAGNETIC FIELDS IN COSMIC
STRUCTURES

New set of equations, now with links between gas and B, for
ideal MHD ((single fluid, no resistivity, large conduction)

o ap 1
continuity ot ;V - (pv) =0, (1)
dov 1 . BB p 1
momentum conservation S~ * V- |\eWHIpt——= ) = ——pv——"pVe, (2)
v |E+p IB{;/ _ (- E
energy conservation o oY |EFPV- BB-v)=—7 T 2
1
— LY.V AT+ -V Feng, 3)
a a
oL v B/— 0 4
magnetic induction o oy X (VxB)=0. @)

b= Bproper/a2

more on this on Thursday!




EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Simulated dynamical effects
of PMFs on the growth of
structures

Map: gas density distributions
at z=0.2 for different simulations
with varying normalisation and

slope of PMFs, or of oy

[with 1 caveat:

B is here introduced only at the
begin of the simulation

(z = 30)_but is not used to

B8 “perturb” the initial conditions
i obtained for ACDM...it is still

diffcult]]

Rudakovskyi+25



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Simulated dynamical effects
of PMFs on the growth of

720.2 structures
— 508, fiducial
less halos than ACDM Ly
~-- B09
B409

s B209
"§ n=2.0
=
o n=-2.9
;:T s05
(o]
=
A
s 10
=

more halos than ACDM

11.0 11.5 12.0 12.5 13.0 13.5
l0g10 M20o/(M o /h)

- B-fields > 2nG at z = 30 perturb the mass function similar to a
slightly reduced oy (i.e. o3 &~ 0.75) in ACDM

+ Differences between scenarios are better highlighted by other
diagnostics (e.g. network analysis)

Rudakovskyi+25




EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Non linear modifications to the ACDM growth factor has started to be worked with
full cosmological simulations (analytical T(k) transfer function forny < — 1.5
spectra, with Pz(k) o k", or approximate solutions otherwise)
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w0
1.257,
1.00
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1072

1.50

1.25

1.00 ~
Q
c

0.750

0.50

0.25

First cosmological MHD 1.50

simulations with initial
conditions perturbed by

PMFs (here ng = — 2 and
By = 0.20G)

1.25

1.00~
Q
c

0.75@

0.50

0.25

Figure 2. A thin slice of 0.3 Mpc/h is cut out of the simulation A volume and projected onto a
2D plane. This simulation has Biyvpe = 0.2nG and ng = —2. Left panel shows the map of PMF
strength and the right panel shows the overdensity map of the total matter. The limits on the
colour-bars are chosen manually for better visualization. These limits are not to be confused with the
maximum/minimum values observed in the simulation. The square black box surrounds a region with

an overdensity at z = 4.
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EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Non linear modifications to the ACDM growth factor has started to be worked with
full cosmological simulations (analytical T(k) transfer function forny < — 1.5
spectra, with Pz(k) o k", or approximate solutions otherwise)

- Magnetic-field dependent “boost” to the initial growth of M ~ 10° — 10! halos.
« On large scales, baryons can be initially more perturbed than DM

mass variance ~ kzP(k) different simulated PMFs amplitudes/spectra:

compared to ACDM:
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Cruz et al. 2023
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Shaw & Lewis 2012

Ralegankar et al. 2024

at different redshifts baryons vs DM
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Ralengakar+25



EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Cosmological simulations has started exploring in detail the different non-linear effects
related to the possible presence of PMFs on different observable scales of the cosmic

web
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T
|
|
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|
|
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1 { Boera+19 op

Modification of matter power-spectra,

detectable via Lyman-a forrest:
Kahniashvili+2013, Pavicevic et al 2025
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FIG. 2: Flux power spectra difference between PMF models
at z = 4.6, where APp = PEMF — Pp .o¢, and the reference
ACDM model. The shaded region with error bars show the
observational 1o uncertainty.

Change of the cosmic star formation
history compared with ACDM
Sanati+2020,24 ; Ralegankar+24;
Marinacci+15
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EFFECTS OF PMFS IN COSMOLOGICAL SIMULATIONS

Working out the exact effect of magnetic fields on the growth of structures
Is not really trivial:

(B-V)B ( B? )
the force on baryons scales as JXxB= —Vi—
Ho 240

and therefore it is also the topology of B which sets the force (not only the
amplitude). Are PMFs clumpy or smooth? Tangled or regular?

e.g. very tangled PMFs with low normalisation can have more dynamical
effects of smooth PMFs with higher normalisation.

...Full MHD simulations are necessary to work out Pz(k) dependent effects



HAVE FUN.

A couple of online interactive tools to
produce cosmological simulations:

https://www.galaxymakers.org/
galform.php

https://galaxym.ovh/



https://www.galaxymakers.org/galform.php
https://www.galaxymakers.org/galform.php
https://galaxym.ovh/

SOME SUGGESTED READING

o Y. Zeldovich 1970, “Gravitational instability: An
approximate theory for large density perturbations.”
https.//articles.adsabs.harvard.edu/pdf/
1970A%26A.....5...84Z"

o R. Sunyaev & Y. Zeldovich 1972, “ Protocluster
Fragmentation and Intergalactic Gas Heating"
https://articles.adsabs.harvard.edu/pdf/
1972A%26A....20..189S

o K. Dolag et al. 2008 “Simulation techniques for
cosmological simulations” https./
arxiv.org/pdf/0801.1023

e R. Teyssier 2025, “Numerical Cosmology” https:/
arxiv.org/pdf/2510.13129
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