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Today: how to describe the onset of structure formation in

cosmology, how to start incorporating the effect of magnetic fields

Tuesday: non-linear structure formation, cosmological simulations

Wednesday: clusters of galaxies and their magnetic signatures

Thursday: simulating magnetic fields evolution and dynamo in

cosmology

Friday: constraining cosmic magnetism combining observations and

numerical simulations



In this lesson we will (briefly) see:

* how to describe the onset of structure formation in cosmology,

starting from simple perturbations

* how to roughy predict the typical overdensity of the building blocks

of the cosmic web

* how to start incorporating the presence of magnetic fields in the

process of structure formation



THE UNIVERSE IS EXPANDING

Velocity-Distance Relation among Extra-Galactic Nebulae.
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Hubble-Lemaitre law: recession velocity Hubble 1929
iIncreases with distance



HUBBLE-LEMAITRE LAW

Vr — H() ) D HO is the "constant" (actually not
constant!) derived by Hubble.

ki / Historically, the estimate has
70 /5 oscillated between 10 and 100 km/

U Mpc s Mpc.

Example: on average a galaxy distant from 20Mpc, moves away from
us at the speed of v. = (20Mpc) - Hy &~ 1400 km/s

Example: on average a galaxy with a distance rate of 21,000km/s is at a
distance of D = (21000 km/s)/H, ~ 300 Mpc



THE UNIVERSE IS EXPANDING

4x‘|04 ' | J T ! I J | : ! ' |
" Hubble Diogram for Type la Supernovae
3x104 E =
.'f“ i
m -
g I
>
O
e,
Q
> -
1x10% F i
. v.=H-D
: Kirshner 2003 PNAS -
: | R | . | 1 | 2 | ) | L
/\o 0 100 200 300 400 500 600 700

(Hubble diagram shown before) Distonce [Mpc]



THE UNIVERSE IS EXPANDING

_ . . . D =~ 4200Mpc
(more modern version with distance modulus vs redshift)
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NEWTONIAN COSMOLOGY

Many key aspects of structure formation in cosmology can be capture
already combining Newtonian physics with Hubble-Lemaitre law

Key assumptions:
- homogeneity

- Isotro

Such assumptions remained for
several decades only "workin
hypotheses", before the
observations confirmed them.

Example: the distribution of the
radio galaxies observed around
the north celestial pole is very thon S = 2.5 mJy at 14 GHz are indicated by pormts on this

equal-area plot covering the sky within 15° of the north celestial
pole. Nearly all of these sources are extragalactic and so distant

h O m Og e n eo u S a n d i SOt ro p i C . (median redshift (z) ~ 1) that their distribution is quite isotropic.

—

Condon 2018




NEWTONIAN DYNAMICS OF THE UNIVERSE

the Universe expand as a whole, its “scale radius” R expands too.
was R=0 at t=0 and we normalise it so that R=1 today, so 0<R<1 in

the past. [note: in modern cosmology R is referred as “a’]

e try to see, using simple
ewtonian dynamics, what is the
ynamics of the Universe, by

considering a very large portion of

it, with M is the total mass contained

in the sphere of radius R.



BIRKHOFF'S THEOREM

We first need Birkhoff’s theorem for this: it is the General
Relativity analogous to Gauss's theorem for electric field:

Field (gravitational) with spherical symmetry in an isotropic field is equivalent
to a field generated by a distribution of point mass contained by the sphere.

M is the total mass contained in the sphere of
radius R.

We can use Netwonian mechanics instead of

General Relativity if —— << 1, which means
Rc?

when:

- the typical velocity of particles is much lower

v:i GM ., 2GM
thanc:—=T<<c

<

A 4

Cc2
* the system is much larger than its
2GM

Cc2

Schwarzschild radius: R > Rg =



NEWTONIAN COSMOLOGY

The_scale factor of an expanding Universe is
Rt)=0atr=0and Ry=1atr =,

We apply Newton’s law to a portion of the Universe with

radius R, mass M and density p = M/[(47/3)R’]

GM 472G pR>

FromR= - — = —
R? 3 R?

5 3 A7
we get R°R + ?Gp(to) =0

(with  p(OR> = p(1)R; (1))

o . o oas AT
and after multiplying for R we have R[R“R + ?Gp(to)] =0

. 81 Gp(t
which after integration gives | R” = 3” p}i ) —k =

const
R

with k = (U-T) being the total (potential+kinetic) energy




NEWTONIAN COSMOLOGY

Let’s notice that if these two relations are true

R2R +—Gp(t,) = 0 R? =
3 P( 0) 3 »

In order to have a static Universe it should be:

R:O and R:O

...which can only be possibile in a Universe without matter at all

p=70

Instead if p > 0, only dynamical solutions for R(t) exist




NEWTONIAN COSMOLOGY

R2 . 37 Gp(tO)
3 R

Three possible scenarios:

Einstein-DeSitter model R x t*3
k=0 . : .
Flat universe
k>0 "Closed universe"
. . R o t*? (for small t)
k<0 Open universe

R « t (for large t)

Notice: the connection between the total energy k and
geometry makes sense only in Einstein’s GR theory



FLAT UNIVERSE

k=0 P2 — 81 Gplio) (Einstein- DeSitter)
3 R N

by solving we get R o 173

The expansion velocity goes to 0 at infinite time

This Universe has Eucledian X t2/ 3
geometry. This is the most R(t)
simple model that approaches,
under many respects, the flat
ACDM cosmology we think
best describes our Universe.




OPEN UNIVERSE

R2 _ ST Gp(tO) |
3 R

k<0 | k|

Two different trends for small or large times

Rz -~ 37 Gp(tO)

t — () y R o 123
3 R
[ = o0 Rink—> Rt
. . o R (1)
This Universe has infinite volume.
The sum of the angles
~ 123

of the triangle <180°

X I




CLOSED UNIVERSE

R2 _ STt Gp(tO) K

3 R

. . . 8 Gpy :
with maximum radius R, .= 3 % for R=0

The analytical solution is parametrized by the “cycloid"

k>0

Q
R(0) = R, (1 —cosB)
Z(Q — 1) Such universe has a finite
1 Q , volumebut no boundaries.
1) = H, 2(Q — )12 (6 — sin 6) The final contraction velocity
0 is infinite. The sum of the
angle of the triangle >180°

for @ = & we have the maximum radius:

Q
RmaX — RO (Q . 1) R() Rmax

i @) -1 |




THE COSMOLOGICAL CRITICAL DENSITY

What is the exact density making the Universe flat? if we set k=0:

7 1) _ ST Gp(to) _ 3G

R* = H:R pR*
3 R 3
3H;
— P = This is the density required to make the
cr S1(; Universe “flat”
From the most recent estimates of HO, we get : Per=9.20- 107 kg/m’

In cosmology, density is often referred to the critical one: 2 = p/p,_..

From modern observations, we know that the Universe is flat, hence €2 = 1.
However, matter (dark+ordinary) only makes €2,, ~ 0.3

The rest appears to be contributed by dark energy, providing €2, =~ 0.7 today




RELATIVISTIC COSMOLOGY

Key differences wrt Newtonian cosmology:

* 10 potentials, not one!

* Link between geometry and total energy k is evident through the
metric

* mass-less components (e.g. photons) affects the metric through
E = mc?

* Pressure (like density) exerts gravitational attraction
* Non-linear theory

* The problem of an infinite dimension of the Universe is eliminated
(delayed potentials)

* it allows including components with negative pressure (e.g. dark
energy)



RELATIVISTIC COSMOLOGY

Einstein’s General Relativity enters the room. If we assume
the Robertson-Walker metric and
a perfect fluid (of photons, matter or dark energy, but
without viscosity or thermal conduction)

Einstein's cosmological eq. are simplified in:

: 3
R = —ﬂGpR2 —k

3 known as “Friedman
equations”

ZR | R? 3rGp  k

R R2 2 R?

which admit solutions identical to the one we derived for the
Newtonian case.



COLLAPSE OF ONE TOP HAT PERTURBATION

The simplest type of perturbation is the spherical_top-hat.

We assume flat Einstein-de-Sitter Universe (p = p,,) with
one overdense (p > p_ ) spherical region of radius R.
Birkhoff’s theorem says we can ignore everything outside

and that this behaves like a closed Universe!

We can then use the same parametric solution for a closed universe:
R=A(l —cosf) and t = B(6 —sin0)
withR __=2Aandt, = zB and A°> = GMB*

Let’s expand cos and sin at early times (f — 0) up to the 5th order:
sind =0 —0%/6+60°/120—... and cos@=1-6%/2+6%24— ...
so we finally get (only valid for early times!):
= (A0%/2)(1 — 6%/12) and
t = (BO/6)(1 — 6%/20).



COLLAPSE OF ONE TOP HAT PERTURBATION

From this we derive the linear growth of the scale of the top-hat perturbation

61 0> 0>

RO ==(5)" (1+55)(1-—5) =
R =5(5)" 1 - 55(5)")

« The lowest order behaviour for t — 0 is R(¢) « > as in EdS.

* The first correction to this behavious yields a fractional change in radius of

d oK 1(6t)2/3 iving a density perturbati
order — = — IVINQg a densl erwurpation
R 20\ B giving yp

) 3 6t

p 20" B

* Next, let’s see the overdensity at the maximum expansion of the sphere

(“turnaround”)



COLLAPSE OF ONE TOP HAT PERTURBATION

At the “turnaround” itis @ = w and radius R = R, = 2A, atatime t,, = nB.
At this time, the radius the sphere would have if it had the critical density is

A 61, 23
0= —(—) , SO the
2B 0[ T "T =TT cnn
density contrast at turnaround is the inverse ratio of volumes | ,
1.5 | [
p R | (2A)3 - Or? - 2 1of | :
Per R T[S 16 ¢« o
2 B i I I
_ _ 0.0— M BT : \:1 |
After turnaround, the sphere undergoes_gravitational 00 02 04[7/(3}1?]6 08 10
collapse until @ = 2zxand t = 27B. 0. 0 R S
E 4.44 |
The linear theory would (wrongly) predict an overdensity 4 | : =
L —127 ~ 1.686, which is a is reference value used - _ : : E
Por 20 A3 : 1,686
é 1 1.06 .
in analytical treatments of the growth of structure, such as 13 | e
the Press-Schechter formalism (see later). 051 g | Lk
0.0 0.2 0.4 0.6 0.8 1.0

t [2/(3H,)]



COLLAPSE OF ONE TOP HAT PERTURBATION

The linear theory breaks down as the perturbation evolves. There are three interesting epochs:

(1) TURNAROUND The sphere breaks away from the general expansion and it reaches a

maximum radius at 0 = w and f,, = zB. As we just saw, at turnaround the true over density

with respect to the background is just p(¢,))/p.,. ~ 5.5

(2) COLLAPSE If only gravity operates, the sphere will collapse to a singularity at & = 7.

(3) VIRIALISATION In reality the gas in the spherical overdensity will shock and thus be heated,
and the dark matter will undergo “violent relaxation” in which particles get redistributed in

phase space. The end point of this violent process is a gravitationally-bound dark-matter halo
with gravitational binding energy U = — GM/R,, and kinetic energy K, linked by the virial
theorem, U = — 2K. This process is assumed to take place when the sphere has collapsed
by a factor 2 from turnaround (so @ = 3n/2 and R;, = R, /2).

(4) Conventionally, it is assumed that this stable virialized radius is eventually achieved only at the
collapse time (6 = 2x), at which point the density contrast between the virialised sphere and
the background universe is again obtained by the inverse ratio of volumes:

s _Pir_ _R 62
vir — T R_3 T
Per ]

— 1 =177




COLLAPSE OF ONE TOP HAT PERTURBATION

o This is strictly valid for a critical EAS Universe. (£2,, = 1)

o If 2 < 1 because the Universe is open or because there is dark energy (ACDM) then the
curvature or cosmological-constant terms in the Friedmann equation increase the expansion
rate of the ambient Universe and so the ambient density is thus smaller at virialization.

e Approximated relations are
5, ~ (18x* + 60x — 32x%)/Q, (t,.) — 1 for (2, =0) and
5, ~ (187 + 82x — 39x%)/Q, (t,.) — 1 for (, # 0)

linear I non-linear

SC model
shell crossing

& virialization

physical density

bound halo

i
y
1
:
r
§
v
)
' }
§

)
....... linear theory

WARNING background
not to scale density:; CL_3

(credits: F. Van den Bosch) scale factor



COLLAPSE OF PERTURBATIONS - FULL CASE

We consider an initial density perturbation field characterized by a dimensionless density
fluctuation (or density contrast) as function of space ()
pxX)—p

p

6(X) =

where p(X)is the matter density field at the position X, and p is the mean mass density of the
background Universe. The primordial properties of this field are set during inflation. Most
inflationary models predict a homogeneous and isotropic Gaussian random fluctuation field

(Guth and Pi 1982), which is confirmed by analysis the Cosmic Microwave Background.
ST s e .
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The perturbed cosmological Friedmann’s equations need to be solved here.

But in its linear evolutary stage, the problem can be simplified: for scales large enough, we
treat a self-gravitating fluid with zero pressure, which collapses while the Universe expands.
All solutions we are going to see applies for a MATTER DOMINATED epoch (z < 3000)




COLLAPSE OF PERTURBATIONS - FULL CASE

The spatial scale above which we can consider a collapse only driven by gravity and with
15k, T
ArnGup

negligible pressure is the Jeans scale: /lj = \/

with kB the Boltzmann constant, T the gas temperature, G the Newtor

constant, p the mean molecular weight and p the mass density of the ga$"

L> /1]- perturbations undergo gravitational instability in a timescale: ; ~ 1/4/pG.

In EAS cosmology the expansion timescale of the Universe is 7,; = 1/Hy ~ \/3/(87Z'G,0)

(H, is the Hubble constant). Since L~T, global collapse is impossible.

However, density flucutations (0 > 0) can produce patches of the Universe where l; < Ty

and they undergo local collapse by “detaching from the Hubble flow” and produce patchy
collapsing regions - similar to a set of top-hat perturbations.



COLLAPSE OF PERTURBATIONS - FULL CASE

The evolution of a self-gravitating, pressureless and non-relativistic

density contrast 6 on L > A; scales is described by the continuity,

the Euler, and the Poisson equations combined:

98
- V-[(l 8)u]=0
ou o V9
Y +2H()u+ (u-V)u= p

V2¢ = 4n G pa*s,
Note that patial derivatives are with respect to the comoving coordinate x, while a(t) is the
cosmic expansion factor such that » = xa(?) is the proper coordinate, v =7 = dx + u is
the total velocity of a fluid element (with ax giving the Hubble flow and u = ax giving the
peculiar velocity),(x) is the gravitational potential and H(?) = a/a = E(¢)H,
is the time-dependent Hubble parameter, which is in ACDM cosmology:

H(t)

0

E@)=——=[(1422u+ (1 +2)>1 — 20 — 24) + 24]".




COLLAPSE OF PERTURBATIONS - FULL CASE

When small density fluctuations (6 << 1) are considered,
all the non-linear terms with respect to 6 and u can be ignored,
the above equations can be written as

38

09
FY9) +2H(t)— =4 Gpé.

which delineates the Jeans instability of a fluid with no pressure under the counter-effect of

the cosmic expansion.

This is a second order differential equation in time t, its solution can be written as

8(X9 t) — 6-{-(X, tl)D+(t) +6—(Xa ti)D—(t)’

where D_ () and D_(#) the growing and decaying modes of 0(x, f) and 0, (x, 1), 0_(x, 1)

are the corresponding spatial distribution of the primordial matter field.
The specific evolution with time depends on the detail of the Cosmological model.



COLLAPSE OF PERTURBATIONS - FULL CASE

| | d’s do , i
General solutions for equation —7 +2H = + (¢c,k —4nGp)o =0

A>A;=c(x/ pG)? we get growing/decaying solutions

A< Ay =cln/ pG)2  we get oscillating solutions (pressure)

In Einstein de Sitter  p = 1/(62Gt*) a = ay(t/ty))*> and d/a = 2/(31)

d*s 5 2 ck?
hence — + (4/3t)— — —(1 — -0 =0
dt? dt 312 47Gp
if we look for 6  t" solutions we get o4 exp(il_é . 7Y ES(A=vik*/(252Gp) P1/6
p

when A > A; we thus have gravitational instability, and get

op 151,10 6
p

2/3

with solutions 0, ~ - (growing) and o_ ~ t~! (decaying)

when 1 < 4; we get instead oscillations RN exp[i(lz -7 £ ke, Int)]
p

Solutions can be get for closed and open models, by using the appropriate H(?),a(t), p(t)




COLLAPSE OF PERTURBATIONS - FULL CASE

In the Einstein-de-Sitter model (EdS, Q2,, =1, 2, = 0) the Hubble constant evolves as

H(r) = 3 In this case the solution for the growing and th decreasing modes are
[
D. () = (t/t,)*° < a(t) and D_(f) = (¢/t)~!

So in this particular case, cosmic expansion and gravitational instability proceed at the

Samerate_ 0—1'Tr11 7 Ll vy e
-0.2| -
%\\0
Instead in models with QM < 1 (like ACDM, where ~ 04 D 4
=Y o3
Q2,, ~ 0.3) there is an epoch, when the o of
~ -0.6
cosmological constant begins to be significant, at
which the characteristic time-scale of expansion _osl
b) 0, ,+0,,=1

turns out to be shorter than in the EdS case

) 0. U4 08 DB
log (1+2)



STATISTICAL VIEW: POWER SPECTRUM

We can study the statistical evolution of the 8(X, )

1000.00F T T T T T T T T T T T T
density field. If the primordial density field is a : ]
realization of a random field, its statistics can be e E
describe with a 2 point correlation function: 10.00;_ _
E(F) = (8(F + F)S(X)), 5 oo

0.10;— : | d —;
. Simulate -
where the brackets denote an average over all B | a
L . . o0t observed (galaxies) E
realizations over the entire Universe. s 1 1 :
0.1 SR ““;.0 R llll110.0 g l1100.0
r{ h'Mpc |
This tells us the average number of S el ol S B e e e e
10° galaxies : T dark matter 102
. . . . . z=0.00 z=0.00
galaxies within a distance r . =139 1 =13 1
4]”/,3 r P DN =855 | z=855 | o
— / / / .
(N,) = 3 (n) +4rx(n) | E(rirdr, ek . d
0 e \ ;
average excess 10 \ 5 10’
The two-point correlation function of i g g
. . : : 107 - N —10"
galaxies is to a very good approximation - .
i AN ETIT] B S ST TTT] B S AT R T TT] B | VA TTT L TR TIT] B AT AR WETHT i
a_power |aW. Galaxies and dark matter 0.01 0.10 r|1v11i>C)co//z| 10.00 100.00 0.1 rlN;p;glhl 10.0 100.0

. . A A
have S“ghtly d|ﬁ:erent 5(7‘) evolves little in time evolves strongly in time



STATISTICAL VIEW: POWER SPECTRUM

In a complementary view (which leads to easier numerical computation) we can deal
with the Fourier transform of the density field,

5(k) = Jd%eiﬁ'ié(i)

This allows us to define the power spectrum P(k), from

?:‘J-' c' Y
;‘:f

(5(%)5(%’)) = (27:)361)(1_5 + k)P(k) | (where Op is the Dirac delta i "

The correlation funciton and the power spectrum are related via:| P(k) = Jd3x5(5c’)eik"—5

If the power spectrum is a power law, P(k) « k", then the correlation function is a power
law too &(r) & r " withy = n + 3.

The spectral index n = 0 is a white-noise (i.e., no correlations) spectrum, and the n = 1
spectrum is a Peebles-Harrison-Zeldovich or “flat” scale-invariant spectrum.



STATISTICAL VIEW: POWER SPECTRUM

In practice, it is impossible to measure the density perturbation 8(x, ) at a particular

point. Instead, it is only possible to measure the density perturbation smoothed over

some volume:

Sp(X, 1) = [d%» W(7) 6(X + 7)

where W(7) is a “window function”. The most simple is again

the spherical top-hat: Wx(r) = 3/ (4zR>) forr < R or Wi(r) =0

otherwise.

The mass variance smoothed within the radius R is thus:

2

o’(R) = 1 JP(k) W2(k)k*dk

Notice: this quantity, if R = 8Mpc/h comoving, is used
to normalize the power spectrum of cosmological model

in CMB studies (og =~ 0.7 — 0.8 in ACDM).

b

TR

\Io smoothlng

Bk e

no"_\ T ‘.v {g "

mx;,:;’ 5 , . ; o
»,,

-
.‘)

T 2 .

.IJ.. - .‘ <
. . ~~ ‘ e »

R =8 Mpc/h




STATISTICAL VIEW: POWER SPECTRUM

The comoving scale that entered the horizon at the epoch of matter-radiation equality is
Ly, = 16(Q h*)~'Mpc.

Modes with k > 27Z/LH entered the horizon at earlier times, during radiation domination,
while k < 27/L;; modes entered the horizon at later times, during matter domination.

The growth of density perturbations is different during radiation domination than it is during

matter domination, and so Ly = 2n/ky has an important role in determining P(k) .
The primordial power spectrum predicted by inflation is the Harrison-Zeldovich one

pnm(k) x k. This gets “processed” by the growth of density perturbations once they

enter the horizon, resulting in the power spectrum of the Universe today:
P (k) T(k) prlm( ) 10° Transfer Function 7, 10" Power Spectrum o}

x k!

T(k) is a “transfer function” that

accounts for the effects of 10"
gravitational amplification of a
density-perturbation as a function of
K. The calculation of T(k) is based on 107 |

the solutions for 6(¢) given before,
and it requires sophiticated

- Processed Spectrum o, (z=0)
- Harrison-Zeldovich Spectrum

calculations/numerical integration. 10307 0" 0 w0 000 10° 10° 0

g=k/(9h* Mpc ) g=k/(0h* Mpc )




STATISTICAL VIEW: POWER SPECTRUM

Current observational constraints on P(k)

To a first order, the agreement between
the theoretical and the observed power
spectrum (from different astronomical
probes) is extremely good.

P(k) [h—2 Mpc?]

= | H+  Planck TT N
++  Planck EE : .
10t | = Planck ¢¢ ll|\-
i 4 SDSS DR7 LRG ]
! +H+ BOSS DR9 Ly-a forest ]
[ ++  DES Y1 cosmic shear I
N I T S
- e e large scales Wavenumber k [h Mpc ! small scales
104 . 1 The power spectrum fully describes the
.| statistics of a Gaussian field, and it is used to
J N\ constrain cosmology, as the growth of
10% £ QCDM“ | . . . . :
Dce=0.% Bo=3 : perturbations in different cosmologies
Qypy= 1 | changes the T(k) function
e

k [h Mpc-!]



QUANTIFYING PRESENT DAY COSMIC STRUCTURES

halo halo

From the statistical distribution of ¢ | |
fluctuations as a function of scale on can
derive the expected mass distribution of

collapsing halos, considering that all

fluctuations with 6 > 1.686 will collapse
(a few important models: Press and
Schechter’74, Sheth & Tormen’98,
Jenskins 2001, Tinker+10)

»_IIE T ITIIITI 1 TTIHII] LI ITHH[ | o | IIIIIII 1 IIIITA
107! o
= lines=Press-Schechter model B
= 10-2 :_ _: field galaxy  galaxy group massive cluster super cluster
3 - 3 e e e e e e Y ————,,
§ - a RS RS JA g | |
= - . \v/ Wv\ 800 — 1500 km/s
- 10_3 = — T e ) i i =
P = e 100 — 300 km/s 1500 km/s
,E,; - . 300 500 km/s
o 104 B =
B, = -
= . . 006-05keV 05-15keV 3— 13 keV 3 - 13 keV
10-° {. =
| : kT M\
- z=6 z=2.5 - _ 1 ]
10—6 1111111 11 1111111 1 1111111 N1 111111[ L1 111111 L 7 kev (1015h_1M ) ( + ler)
F0I0.. TOn. 10 . (@ 0ie I8 ©

M, (h—'M,)

vir



WHAT IF THERE IS A MAGNETIC FIELD?

. . 7[
In analogy with the ordinary Jeans length, /1]- = ¢, [—— (where ¢, = sound speed)

pG

[T
we must introdyce the magnetic Jeans lengthtobe Az = v, _G
P

Hence the total Jeans length is larger ( ~ Ag + /lj) than the unmagnetised case.

B L) ™M T —": '\-\:__r'_"' " AT
R TN LT

For L > Az magnetic effects can be neglected, i%é
while for L < Az magentic field affects the evolution of h; bS
<

ordinary matter and can change the halo mass function. :\%b P

It is Ag ~ O.lMpC[ rg; (in comoving units) hence the evolution on scales tyical
n

of galactic halos can be affected by a range of primordial magnetic fields.




WHAT IF THERE IS A MAGNETIC FIELD?

The evolution of the baryonic density fluctuations 6 now becomes:

@Jrﬁ-a
ot a

+

Ovy,
Rt H Tt
o + HvUp +

The above equations are ordinary differential equations and their solution can be
expressed as a linear combination of the homogeneous solution determined by the

standard cosmological solution seen above, 5K%DM and the inhomogeneous solution
source by magnetic fields, 51?”.

n

: : : : i lin ~, Sli lin
As long as flucutations are in the linear regime: 0™ & 0, 1, + 0p




WHAT IF THERE IS A MAGNETIC FIELD?

By opportunely computing the transfer

10°

function T(k) to evolve the primordial = g ' ' 3

S 10k -

spectrum under the effect of PMFs we = “F

= 10°E E

can estimate the modifications ot the = .F E

matter spectrum modified by magnetic 0k .

fields. 'k 3

107! E - =N

-1]

The modifications depend on the _ .

amplitude and on the spectral shape of = E

= -

. . — =

the Iinput magnetic power spectrum < =

= E

n 3

1 no magnetic term ‘1_51;

Modifications to standard cosmological e e 0 kl[%Mpcl]
perturbations are confined to 1/L > 1/44

Fi1Gc. 1.— The magnetic field matter power spectra for ng = —2.9
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Kahniashvili et al. 2013, https://arxiv.org/pdf/1211.2769



WHAT IF THERE IS A MAGNETIC FIELD?

The modified spectrum determines a P
different distribution of 02(R). S 00|
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Kahniashvili et al. 2013, https://arxiv.org/pdf/1211.2769



WHAT IF THERE IS A MAGNETIC FIELD?

Notice however: the full incorporation of primordial magnetic fields in cosmological
structure formation is still subject of active research.

The full range of physical effects of PMFs can be properly taken into account only

with full numerical simulations:

* PMFs can source velocity fields which adds to primordial velocity fields, and can

source additional overdensities;
* PMFs can get amplified via dynamo and inhibit collapse in halos;
* PMFs can dissipate energy and heat up baryons and change the thermal &

ionisation history of the Universe

(see e.g. Ralegankar et al. 2025 for a recent work)



SOME SUGGESTED READING

*  ‘Introduction to Cosmology” by John Peacock (2010)  https:/

indico.ictp.it/event/a09159/session/2/contribution/1/material/0/0.pdf

e “Large-Scale Structure Formation: From the First Non-linear Objects to

Massive Galaxy Clusters” Planelles, Schelicher & Bykov, 2014

e “Matter power spectrum induced by primordial magnetic fields: from the
linear to the non-linear regime” JCAP08(2025)011 Ralegankar, Garaldi
& Viel 2025
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