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MENU FOR THE WEEK 

• Today:  how to describe the onset of structure formation in 

cosmology, how to start incorporating the effect of magnetic fields


• Tuesday: non-linear structure formation, cosmological simulations


• Wednesday: clusters of galaxies and their magnetic signatures


• Thursday: simulating magnetic fields evolution and dynamo in 

cosmology


• Friday: constraining cosmic magnetism combining observations and 

numerical simulations 
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OUTLINE

In this lesson we will (briefly) see:


• how to describe the onset of structure formation in cosmology, 

starting from simple perturbations


• how to roughy predict the typical overdensity of the building blocks 

of the cosmic web


• how to start incorporating the presence of magnetic fields in the 

process of structure formation




THE UNIVERSE IS EXPANDING

vr = H ⋅ D
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Hubble 1929
Lemaitre 1927

Hubble-Lemaitre law: recession velocity 
increases with distance



HUBBLE-LEMAITRE LAW

vr = H0 ⋅ D

H0 ≈ 70
km/s
Mpc

Example: on average a galaxy distant from 20Mpc, moves away from 
us at the speed of vr = (20Mpc) ⋅ H0 ≈ 1400 km/s

Example: on average a galaxy with a distance rate of 21,000km/s is at a 
distance of D = (21000 km/s)/H0 ≈ 300 Mpc

H0 is the "constant" (actually not 
constant!) derived by Hubble.

Historically, the estimate has 
oscillated between 10 and 100 km/

s Mpc.



Kirshner 2003 PNAS

vr = H ⋅ D

THE UNIVERSE IS EXPANDING

(Hubble diagram shown before)



THE UNIVERSE IS EXPANDING
D ≈ 4200Mpc

Bachall 2015
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vr ≈ c = 3 ⋅ 105km/s

(more modern version with distance modulus vs redshift) 

(Hubble 
diagram shown 
before)



Example: the distribution of the 
radio galaxies observed around 
the north celestial pole is very 
homogeneous and isotropic.

Many key aspects of structure formation in cosmology can be capture 
already combining Newtonian physics with Hubble-Lemaitre law
Key assumptions:
• homogeneity
• isotropy

NEWTONIAN COSMOLOGY

Such  assumptions remained for 
several decades only "working 
hypotheses", before the 
observations confirmed them.

Condon 2018



NEWTONIAN DYNAMICS OF THE UNIVERSE

M

We try to see, using simple 

Newtonian dynamics, what is the 

dynamics of the Universe, by 

considering a very large portion of 

it, with M is the total mass contained 

in the sphere of radius R.

R

If the Universe expand as a whole, its “scale radius” R expands too. 

It was R=0 at t=0 and we normalise it so that R=1 today, so 0<R<1 in 

the past.       [note: in modern cosmology R is referred as “a”]



BIRKHOFF'S THEOREM
We first need Birkhoff’s theorem for this: it is the General 
Relativity analogous to Gauss's theorem for electric field:

Field (gravitational) with spherical symmetry in an isotropic field is equivalent 
to a field generated by a distribution of point mass contained by the sphere.

M

M is the total mass contained in the sphere of 
radius R.

We can use Netwonian mechanics instead of 

General Relativity if , which means 

when:

GM
Rc2

≪ 1

R
• the typical velocity of particles is much lower

than c: 

• the system is much larger than its 
Schwarzschild radius:   

v2

2
=

GM
R

≪ c2 →
2GM

c2
≪ R

R ≫ RS =
2GM

c2

R ≫ RS =
2GM

c2



The scale factor of an expanding Universe is 
 at  and  at  

We apply Newton’s law to a portion of the Universe with 
radius , mass  and density 

R(t) = 0 t = 0 R0 = 1 t = t0

R M ρ = M/[(4π/3)R3]

From    (with   )  ··R = −
GM
R2

= −
4πG

3
ρR3

R2
ρ(t)R3 = ρ(t0)R3

0(t)

we get      

and after multiplying for  we have  

R2 ··R +
4π
3

Gρ(t0) = 0
·R ·R[R2 ··R +

4π
3

Gρ(t0)] = 0

which after integration gives       ·R2 =
8π
3

Gρ(t0)
R

− k =
const

R
− k

with k = (U-T) being the total (potential+kinetic) energy

NEWTONIAN COSMOLOGY

M
R



R2 ··R +
4π
3

Gρ(t0) = 0 ·R2 =
8π
3

Gρ(t0)
R

− k

in order to have a static Universe it should be:
··R = 0 ·R = 0and

…which can only be possibile in a Universe without matter at all

ρ = 0

Instead if  , only dynamical solutions for R(t) existρ > 0

NEWTONIAN COSMOLOGY
Let’s notice that if these two relations are true



·R2 =
8π
3

Gρ(t0)
R

− k

Three possible scenarios:

k = 0 R ∝ t2/3

k > 0

k < 0
R ∝ t2/3 (for small t)
R ∝ t (for large t)

Einstein-DeSitter model
"Flat universe"

"Closed universe"

“Open universe"

NEWTONIAN COSMOLOGY

Notice: the connection between the total energy k and 
geometry makes sense only in Einstein’s GR theory



FLAT UNIVERSE

k = 0 ·R2 =
8π
3

Gρ(t0)
R

R ∝ t2/3by solving we get 

The expansion velocity goes to 0 at infinite time

∝ t2/3

(Einstein- DeSitter)

This Universe has Eucledian 
geometry.  This is the most 

simple model that approaches, 
under many respects, the flat 
ΛCDM cosmology we think 

best describes our Universe.



k < 0 ·R2 =
8π
3

Gρ(t0)
R

+ |k |

Two different trends for small or large times

t → 0 ·R2 ≈
8π
3

Gρ(t0)
R

→ R ∝ t2/3

t → ∞ ·R2 ≈ k → R ∝ t ∝ t

∝ t2/3

This Universe has infinite volume.

The sum of the angles

of the triangle <180°

OPEN UNIVERSE



CLOSED UNIVERSE

k > 0 ·R2 =
8π
3

Gρ(t0)
R

− k

Rmax =
8π
3

Gρ0

k
with maximum radius for ·R = 0

Rmax

Such universe has a finite 
volumebut no boundaries. 

The  final contraction velocity 
is infinite. The sum of the 

angle of the triangle >180°

The analytical solution is parametrized by the “cycloid" 

R(θ) = R0
Ω

2(Ω − 1)
(1 − cos θ)

t(θ) =
1

H0

Ω
2(Ω − 1)1/2

(θ − sin θ)

Rmax = R0
Ω

(Ω − 1)

tmax =
π
2

Ω
(Ω − 1)3/2

H−1
0

for   we have the maximum radius: θ = π



What is the exact density making the Universe flat?  if we set k=0:

This is the density required to make the 
Universe “flat”

THE COSMOLOGICAL CRITICAL DENSITY

·R2 = H2
0 R2 =

8π
3

Gρ(t0)
R

=
8πG

3
ρR2

→ ρcr =
3H2

0

8πG

From the most recent estimates of H0, we get : ρcr = 9.20 ⋅ 10−27 kg/m3

In cosmology, density is often referred to the critical one: Ω = ρ/ρcr

From modern observations, we know that the Universe is flat, hence . 
However, matter (dark+ordinary) only makes 
The rest appears to be contributed by dark energy, providing  today

Ω = 1
ΩM ≈ 0.3

ΩΛ ≈ 0.7



Key differences wrt Newtonian cosmology: 

• 10 potentials, not one!


• Link between geometry and total energy k is evident through the 
metric


• mass-less components (e.g. photons) affects the metric through 



• Pressure (like density) exerts gravitational attraction


• Non-linear theory


• The problem of an infinite dimension of the Universe is eliminated 
(delayed potentials)


• it allows including components with negative pressure (e.g. dark 
energy)


E = mc2

RELATIVISTIC COSMOLOGY



Einstein’s General Relativity enters the room. If we assume
• the Robertson-Walker metric and
• a perfect fluid (of photons, matter or dark energy, but 

without viscosity or thermal conduction)

Einstein's cosmological eq. are simplified in:

·R2 =
8π
3

GρR2 − k{
2

··R
R

+
·R2

R2
= −

8πGp
c2

−
k

R2

RELATIVISTIC COSMOLOGY

known as “Friedman 
equations”

which admit solutions identical to the one we derived for the 
Newtonian case.
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COLLAPSE OF ONE TOP HAT PERTURBATION
The simplest type of perturbation is the spherical top-hat. 

We assume flat Einstein-de-Sitter Universe ( ) with 

one overdense ( ) spherical region of radius R. 

Birkhoff’s theorem says we can ignore everything outside 

and that this behaves like a closed Universe! 

ρ = ρcr

ρ > ρcr
M

R

We can then use the same parametric solution for a closed universe:     

                        and             

                 with  and    and  

R = A(1 − cos θ) t = B(θ − sin θ)
Rmax = 2A tmax = πB A3 = GMB2

Let’s expand cos and sin at early times ( ) up to the 5th order: 

     and    
so we finally get  (only valid for early times!):   

   and 

.  

t → 0
sin θ = θ − θ3/6 + θ5/120 − . . . cos θ = 1 − θ2/2 + θ4/24 − . . .

R = (Aθ2/2)(1 − θ2/12)
t = (Bθ3/6)(1 − θ2/20)
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From this we derive the linear growth of the scale of the top-hat perturbation

R(t) =
A
2 ( 6t

B )2/3(1 +
θ2

30 )(1 −
θ2

12 ) =

R(t) =
A
2 ( 6t

B )2/3[1 −
1
20 ( 6t

B )2/3)]

• The lowest order behaviour for   is  as in EdS. 

•  The first correction to this behavious yields a fractional change in radius of 

order    giving a density perturbation 

• Next, let’s see the overdensity at the maximum expansion of the sphere 

(“turnaround”)

t → 0 R(t) ∝ t2/3

δR
R

= −
1

20 ( 6t
B )2/3

δρ
ρ

=
3
20 ( 6t

B )2/3 ≪ 1

COLLAPSE OF ONE TOP HAT PERTURBATION
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At the “turnaround”  it is  and radius , at a time .  
At this time, the radius the sphere would have if it had the critical density is 

 , so the 

density contrast at turnaround is the inverse ratio of volumes

θ = π R = Rta = 2A tta = πB

R0 =
A
2 ( 6t

B )2/3

ρ
ρcr

=
R3

0

R3
ta

= [ (2A)3

[ A
2 ( 6t

B )2/3]3
]−1 =

9π2

16
≈ 5.5

After turnaround, the sphere undergoes gravitational 
collapse until   and . 
The linear theory would (wrongly) predict an overdensity 

, which is a is reference value used 

in analytical treatments of the growth of structure, such as 
the Press-Schechter formalism (see later).

θ = 2π t = 2πB

ρ
ρcr

=
3

20
12π ≈ 1.686

COLLAPSE OF ONE TOP HAT PERTURBATION
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The linear theory breaks down as the perturbation evolves.  There are three interesting epochs:

(1) TURNAROUND The sphere breaks away from the general expansion and it reaches a 
maximum radius at  and .  As we just saw, at turnaround the true over density 
with respect to the background is just  

 

(2) COLLAPSE   If only gravity operates, the sphere will collapse to a singularity at .

(3)  VIRIALISATION In reality the gas in the spherical overdensity will shock and thus be heated, 
and the dark matter will undergo “violent relaxation” in which particles get redistributed in 
phase space.   The end point of this violent process is a gravitationally-bound dark-matter halo 
with gravitational binding energy   and kinetic energy K,  linked by the virial 
theorem, .  This process is assumed to take place when the sphere has collapsed 
by a factor 2 from turnaround (so  and ).

(4) Conventionally, it is assumed that this stable virialized radius is eventually achieved only at the 
collapse time ( ), at which point the density contrast between the virialised sphere and 
the background universe is again obtained by the inverse ratio of volumes:  

                                        

θ = π tta = πB
ρ(tta)/ρcr ≈ 5.5

θ = π

U = − GM/Rta
U = − 2K

θ = 3π/2 Rvir = Rta /2

θ = 2π

δvir =
ρvir

ρcr
− 1 =

R3
0

R3
vir

− 1 =
(6π)2

2
− 1 ≈ 177

COLLAPSE OF ONE TOP HAT PERTURBATION
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• This is strictly valid for a critical EdS Universe.  ( )

• If  because the Universe is open or because there is dark energy (ΛCDM) then the 
curvature or cosmological-constant terms in the Friedmann equation increase the expansion 
rate of the ambient Universe and so the ambient density is thus smaller at virialization.  

Ωm = 1
Ωm < 1

(credits: F. Van den Bosch)

• Approximated relations are 
   andδvir ≈ (18π2 + 60x − 32x2)/Ωm(tvir) − 1 for (ΩΛ = 0)

δvir ≈ (18π2 + 82x − 39x2)/Ωm(tvir) − 1 for (ΩΛ ≠ 0)

COLLAPSE OF ONE TOP HAT PERTURBATION
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COLLAPSE OF PERTURBATIONS - FULL CASE
We consider an initial density perturbation field characterized by a dimensionless density 
fluctuation (or density contrast) as function of space ( )

where is the matter density field at the position , and  is the mean mass density of the 
background Universe. The primordial properties of this field are set during inflation. Most 
inflationary models predict a homogeneous and isotropic Gaussian random fluctuation field 
(Guth and Pi 1982), which is confirmed by analysis the Cosmic Microwave Background.  

The perturbed cosmological Friedmann’s equations need to be solved here.
But  in its linear evolutary stage,  the problem can be simplified: for scales large enough, we 
treat a  self-gravitating fluid with zero pressure, which collapses while the Universe expands.  
All solutions we are going to see applies for a MATTER DOMINATED epoch ( )

⃗x

δ( ⃗x) =
ρ( ⃗x) − ρ̄

ρ̄

ρ( ⃗x) ⃗x ρ̄

z ≤ 3000
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The spatial scale above which we can consider a collapse only driven by gravity and with 

negligible pressure is the Jeans scale:        , 


with  the Boltzmann constant, T the gas temperature, G the Newton’s  

constant, μ the mean molecular weight and ρ the mass density of the gas.


 perturbations undergo gravitational instability in a timescale: .  


In EdS cosmology the expansion timescale of the Universe is    

(  is the Hubble constant). Since   ,   global collapse is impossible.  


However,  density flucutations ( ) can produce patches of the Universe where  

and they undergo local collapse by “detaching from the Hubble flow” and produce patchy 
collapsing regions - similar to a set of top-hat perturbations. 

λj =
15kBT
4πGμρ

kB

L ≥ λj tJ ∼ 1/ ρG

τH = 1/H0 ∼ 3/(8πGρ)

H0 tj ∼ τ

δ ≥ 0 tj ≤ τH

COLLAPSE OF PERTURBATIONS - FULL CASE
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The evolution of a  self-gravitating, pressureless and non-relativistic 
density contrast     on   scales  is described by the continuity, 
the Euler, and the Poisson equations combined:

δ L ≥ λJ

Note that patial derivatives are with respect to the comoving coordinate , while  is the 

cosmic expansion factor such that  is the proper coordinate,  is 

the total velocity of a fluid element (with   giving the Hubble flow and  giving the 

peculiar velocity),  is the gravitational potential and 

is the time-dependent Hubble parameter, which is in ΛCDM cosmology:

x a(t)
r = xa(t) v = ·r = ·ax + u

·ax u = a ·x
ϕ(x) H(t) = ·a /a = E(t)H0

COLLAPSE OF PERTURBATIONS - FULL CASE
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When small density fluctuations (δ ) are considered, 

all the non-linear terms with respect to δ and u can be ignored, 

the above equations can be written as 


which delineates the Jeans instability of a fluid with no pressure under the counter-effect of 
the cosmic expansion. 


This is a second order differential equation in time t, its solution can be written as 


where  and   the growing and decaying modes of  and , 

are the corresponding spatial distribution of the primordial matter field.

The specific evolution with time depends on the detail of the Cosmological model.

≪ 1

D+(t) D−(t) δ(x, t) δ+(x, t) δ−(x, t)

COLLAPSE OF PERTURBATIONS - FULL CASE
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General solutions for equation      


        we get growing/decaying solutions


       we get oscillating solutions (pressure)


In Einstein de Sitter              and 


hence 


if we look for  solutions we get          


when  we thus have gravitational instability, and get 


    with  solutions   (growing)  and   (decaying)


when  we get instead oscillations 


Solutions can be get for closed and open models, by using the appropriate ,

d2δ
dt2

+ 2H
dδ
dt

+ (csk2 − 4πGρ̄)δ = 0

λ ≫ λJ = cs(π/ρ̄G)1/2

λ ≪ λJ = cs(π/ρ̄G)1/2

ρ̄ = 1/(6πGt2) a = a0(t/t0)2/3 ·a /a = 2/(3t)
d2δ
dt2

+ (4/3t)
δ
dt

−
2

3t2
(1 −

c2
s k2

4πGρ̄
)δ = 0

δ ∝ tn δρ
ρ

= exp(i ⃗k ⋅ ⃗r )t[1±5(1−4v2
s k2/(25πGρ)1/2]/6

λ ≥ λJ
δρ
ρ

∼ t[1±5(1−(λJ /λ)2)1/2]/6 δ+ ∼ t2/3 δ− ∼ t−1

λ ≪ λJ
δρ
ρ

∼ exp[i( ⃗k ⋅ ⃗r ± kcs ln t)]

H(t) a(t), ρ(t)

COLLAPSE OF PERTURBATIONS - FULL CASE
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In the Einstein-de-Sitter model (EdS,  = 1,  = 0) the Hubble constant evolves as 


  In this case the solution for the growing and th decreasing modes are 


   and 


So in this particular case, cosmic expansion and gravitational instability proceed at the 
same rate. 


ΩM ΩΛ

H(t) =
2
3t

D+(t) = (t/ti)2/3 ∝ a(t) D−(t) = (t/ti)−1

COLLAPSE OF PERTURBATIONS - FULL CASE

Instead in models with  < 1 (like ΛCDM, where 

 ~ 0.3) there is an epoch, when the 
cosmological constant begins to be significant, at 
which the characteristic time-scale of expansion 
turns out to be shorter than in the EdS case

ΩM

ΩM



We can study the statistical evolution of the  
density field.  If the primordial density field is a 
realization of a random field, its statistics can be 
describe with a  2 point correlation function:


,    


where the brackets denote an average over all 
realizations over the entire Universe. 

δ( ⃗x, t)

ξ( ⃗r ) = ⟨δ( ⃗x + ⃗r )δ( ⃗x)⟩

STATISTICAL VIEW: POWER SPECTRUM

This tells us the average number of 
galaxies within a distance 





The two-point correlation function of 
galaxies is to a very good approximation 
a power law.  Galaxies and dark matter 
have slightly different 

r

⟨Nr⟩ =
4πr3

3
⟨n⟩ + 4π⟨n⟩∫

r

0
ξ(r′￼12)r′￼12dr′￼12

ξ(r)

simulated 

observed (galaxies)

average                            excess



In a complementary view (which leads to easier numerical computation) we can deal 

with the Fourier transform of the density field,





This allows us to define the power spectrum , from


      (where  is the Dirac delta function)


The correlation funciton and the power spectrum are related via:  


If the power spectrum is a power law, , then the correlation function is a power 

law too  with .  

The spectral index n = 0 is a white-noise (i.e., no correlations) spectrum, and the n = 1 
spectrum is a Peebles-Harrison-Zeldovich or “flat” scale-invariant spectrum.

δ̃( ⃗k) = ∫ d3xeik⃗⋅x⃗δ(x⃗)

P(k)

⟨δ̃( ⃗k)δ̃( ⃗k′￼)⟩ = (2π)3δD( ⃗k + ⃗k′￼)P(k) δD

P(k) = ∫ d3xξ( ⃗x)ei ⃗k⋅ ⃗x

P(k) ∝ kn

ξ(r) ∝ r−γ γ = n + 3

STATISTICAL VIEW: POWER SPECTRUM



In practice,  it is impossible to measure the density perturbation   at a particular 
point. Instead, it is only possible to measure the density perturbation smoothed over 
some volume:





where  is a “window function”. The most simple is again


the spherical top-hat:   for   or 

otherwise.


The mass variance smoothed within the radius R is thus:





Notice: this quantity, if  comoving, is used

 to normalize the power spectrum of cosmological model 

in CMB studies (  in CDM). 

δ( ⃗x, t)

δR( ⃗x, t) = ∫ d3r W( ⃗r ) δ( ⃗x + ⃗r )

W( ⃗r )
WR(r) = 3/(4πR3) r ≤ R WR(r) = 0

σ2(R) =
1

2π ∫ P(k)W2(k)k2dk

R = 8Mpc/h

σ8 ≈ 0.7 − 0.8 Λ

STATISTICAL VIEW: POWER SPECTRUM



STATISTICAL VIEW: POWER SPECTRUM
The comoving scale that entered the horizon at the epoch of matter-radiation equality is 

.   

Modes with  entered the horizon at earlier times, during radiation domination, 
while  modes  entered the horizon at later times, during matter domination.  


The growth of density perturbations is different during radiation domination than it is during 
matter domination, and so  has an important role in determining  . 

The primordial power spectrum predicted by inflation is the Harrison-Zeldovich one 

. This gets “processed” by the growth of density perturbations once they 
enter the horizon, resulting in the power spectrum of the Universe today: 




LH = 16(Ωmh2)−1Mpc
k ≥ 2π/LH

k < 2π/LH

LH = 2π/kH P(k)

Pprim(k) ∝ k1

P(k) = T(k)Pprim(k)

T(k) is a “transfer function” that 
accounts for the effects of 
gravitational amplification of a 
density-perturbation as a function of 
k. The calculation of T(k) is based on 
the solutions for  given before, 
and it requires sophiticated 
calculations/numerical integration.

δ(t)

∝ k1



STATISTICAL VIEW: POWER SPECTRUM

To a first order, the agreement between 
the theoretical and the observed power 
spectrum (from different astronomical 
probes) is extremely good.

The power spectrum fully describes the 
statistics of a Gaussian field, and it is used to 
constrain cosmology, as the growth of 
perturbations in different cosmologies 
changes the  functionT(k)
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QUANTIFYING PRESENT DAY COSMIC STRUCTURES
From the statistical distribution of  
fluctuations as a function of scale on can 
derive the expected mass distribution of 
collapsing halos, considering that all 
fluctuations with  will collapse 
(a few important models: Press and 
Schechter’74, Sheth & Tormen’98, 
Jenskins 2001, Tinker+10)

σ2

δ > 1.686



WHAT IF THERE IS A MAGNETIC FIELD? 

In analogy with the ordinary Jeans length,      (where  = sound speed) 


we must introdyce the magnetic Jeans length to be   


Hence the total Jeans length is larger ( )  than the unmagnetised case. 

λj = cs
π

ρG
cs

λB = vA
π

ρG

∼ λB + λj

For   magnetic effects can be neglected, 


while for  magentic field affects the evolution of


 ordinary matter and can change the halo mass function.


It is  (in comoving units)  hence the evolution on scales tyical 

of galactic halos can be affected by a range of primordial magnetic fields.

L ≫ λB

L < λB

λB ∼ 0.1Mpc
Brms

[nG]



WHAT IF THERE IS A MAGNETIC FIELD? 
The evolution of the baryonic density fluctuations  now becomes:δ

with 

The above equations are ordinary differential equations and their solution can be 
expressed as a linear combination of the homogeneous solution determined by the 
standard cosmological solution seen above,   and the inhomogeneous solution 
source by magnetic fields, .


As long as flucutations are in the linear regime:    

δlin
ΛCDM

δlin
B

δlin ≈ δlin
ΛCDM + δlin

B

+ Poisson equations for gravity, continuity & momentum equation for DM etc..



WHAT IF THERE IS A MAGNETIC FIELD? 

By opportunely computing the transfer

function T(k) to evolve the primordial 
spectrum under the effect of PMFs we 
can estimate the modifications ot the 
matter spectrum modified by magnetic 
fields.


The modificat ions depend on the 
amplitude and on the spectral shape of 
the input magnetic power spectrum 




Modifications to standard cosmological 
perturbations are confined to 

PB(k) ∝ knB

1/L ≥ 1/λB

Kahniashvili et al. 2013, https://arxiv.org/pdf/1211.2769



WHAT IF THERE IS A MAGNETIC FIELD? 

The modified spectrum determines a 
different distribution of . 


This might change a distorsion of the 
mass distribution of halos with respect to 
ΛCDM.  


For :


• suppression of  halos


• henancement of  
halos

σ2(R)

Brms ∼ 1 − 10nG

M ≤ 109M⊙

M ≥ 1010 − 1011M⊙

Kahniashvili et al. 2013, https://arxiv.org/pdf/1211.2769



WHAT IF THERE IS A MAGNETIC FIELD? 
Notice however: the full incorporation of primordial magnetic fields in cosmological 
structure formation is still subject of active research.


The full range of physical effects of PMFs can be properly taken into account only 
with full numerical simulations:


• PMFs can source velocity fields which adds to primordial velocity fields, and can 
source additional overdensities;


• PMFs can get amplified via dynamo and inhibit collapse in halos;


• PMFs can dissipate energy and heat up baryons and change the thermal & 
ionisation history of the Universe


(see e.g. Ralegankar et al. 2025 for a recent work)



• “Introduction to Cosmology” by John Peacock (2010)     https://
indico.ictp.it/event/a09159/session/2/contribution/1/material/0/0.pdf

• “Large-Scale Structure Formation: From the First Non-linear Objects to 
Massive Galaxy Clusters”   Planelles, Schelicher & Bykov, 2014

• “Matter power spectrum induced by primordial magnetic fields: from the 
linear to the non-linear regime” JCAP08(2025)011 Ralegankar, Garaldi 

& Viel  2025

SOME SUGGESTED READING

https://indico.ictp.it/event/a09159/session/2/contribution/1/material/0/0.pdf
https://indico.ictp.it/event/a09159/session/2/contribution/1/material/0/0.pdf

