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Cosmological magnetic field observations
Lecture 5 

Magnetic field measurements across cosmological epochs

Measurement / limits from Recombination epoch
• Physics of recombination in presence of magnetic fields
• Hubble tension problem
• Global fit of Cosmic Microwave Background, Supernova Type Ia, Baryon Acoustic Oscillations data with account of 

magnetic field

Measurement / limits from gravitational wave data
• Gravitational wave production by magnetic fields
• Stochastic gravitational wave background
• Nano-Hz gravitational wave background
• Cosmological interpretation of gravitational wave backgorund detection

General discussion
• Is there a convincing evidence for cosmological magnetic field?
• Where would this field come from?



Recombination
The Universe at temperatures 𝑇 ≪ 1	MeV is a mixture of 
blackbody photon gas, neutrinos and dark matter (that 
are not interacting with the rest of matter) and non-
relativistic gas of protons, atomic nuclei and electrons.

As soon as the temperature drops below the ionisation 
energy of hydrogen 𝐸& ∼ 10	eV, electrons and protons 
can recombine into hydrogen atoms.  Densities of 
protons 𝑛', free elecrons, 𝑛( , and hydrogen atoms, 𝑛), 
in thermal equilibrium are derived from Maxwell 
distribution, 

𝑛* = 𝑔
𝑚*𝑇
2𝜋

+/-
exp −

𝑚*
𝑇

so that   
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2𝜋

0+-
exp

𝐸&
𝑇

(Saha equation for, 𝑋, the ionisation fraction: 𝑋 = 𝑛'/(𝑛' + 𝑛))). 

The number density of protons and atomic nuclei is much smaller than that of photons, 𝜂1 = (𝑛' + 𝑛))/𝑛2 ≃ 10034, 
𝑛2 = 2𝜁 3 /𝜋- 𝑇+. Using 𝑛' = 𝑋𝜂1𝑛2 = 𝑋𝜂1 2𝜁 3 /𝜋- 𝑇+, one finds the ionisation fraction as a function of temperature

1 − 𝑋
𝑋- = 𝜂1

𝜁 3 	2
5
-

𝜋3/-
𝑇
𝑚(

+
-
exp

𝐸&
𝑇

The ionisation fraction is 𝑋 ≃ 0.5	when the temperature is 𝑇 ≃ 0.3	eV. 

Recombination



Recombination

Recombination of electron and positron results in decrease of 𝑋and also in 
emission of a photon. If the energy of the photon is 𝐸2 = 𝐸&, the photon 
released at formation of the hydrogen atom would ultimately be absorbed 
by another hydrogen atom and would re-ionise it, increasing 𝑋.	As a result, 
no change of 𝑋 would happen.

An alternative possibility is that electron settles at an energy level 𝑛 > 1, 
and than transits to the ground state releasing another photon. The energy 
of the two released photons is not sufficient for re-ionisation of another 
atom and the decrease of 𝑋 is preserved.

Other than photoelectric emission / absorption, photon gas is coupled to 
matter through Compton scattering process, 𝛾 + 𝑒0 → 𝛾 + 𝑒0. Once the 
abundance of free electrons drops, this process becomes inefficient and 
photons “decouple” from matter.  

Overall, kinetic equations for coupled photon, proton, electron and 
hydrogen gases needs to be solved to establish the details  of 
Recombination dynamics.



Recombination in the presence of magnetic field
Apart from photon gas, proton+electron gas is coupled to magnetic field. Lorentz force induces 
plasma motions, guided by the Euler equation with the Lotentz force term

𝜌1𝜕6𝑣⃗ + 𝑣⃗ ⋅ ∇ 𝑣⃗ + 𝑐7-∇𝜌1 = −
𝐵× ∇×𝐵

4𝜋 − 𝛼𝜌1𝑣⃗
where 𝛼𝑣⃗ is the “photon drag” term due to the Compton scattering of photons with mean free 
path 𝑙8 = 𝜎9𝑛( 03. This expression is valid on scales much smaller than the mean free path of 
photons. The coefficient  𝛼 = 4𝜌2/3𝜌1 𝑙8. 𝑐7 is the baryonic speed of sound, 𝑐7- = 𝑝1/𝜌1.

Magnetic field is dynamically important on distance scales on which the first term o the r.h.s. is 
comparable to the second:

𝐵-

4𝜋𝜌1𝐿
∼ 𝛼𝑣

On these scales, the velocity 𝑣 ∼ 𝑣:,1- /𝛼𝐿 is established (𝑣:,1 = 𝐵/ 4𝜋𝜌1 is the Alfven velocity). 

Plasma motions lead to formation of inhomogeneities in the baryonic gas. Using the last term on 
the l.h.s. of Euler equation, one can estimate the level of the density fluctuations

𝑐7-

𝐿
𝛿𝜌1
𝜌1

∼ 𝛼𝑣 ∼
𝑣:,1-

𝐿 , 	
𝛿𝜌1
𝜌1

∼
𝑣:,1-

𝑐7-
If magnetic field is strong enough, 

𝐵-

4𝜋𝜌1
≫
𝑇-

𝑚'
- , 𝐵 ≫ 4𝜋	𝑚'𝜂1𝑛2

𝑇
𝑚'

∼
8𝜁 3
𝜋

	 𝜂1
3
-𝑇

5
-

𝑚'

3
-

fluctuations of the baryonic density are of the order of one. In this case, ionisation fraction is 
decreased in over-dense regions and recombination completes earlier. 

Abel et al., https://arxiv.org/abs/2503.09599 
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Cosmic Microwave Background

Photons remained coupled to baryonic gas as long as there 
were enough free electrons in the medium so that the rate of 
the Compton scattering reaction 𝛾 + 𝑒0 → 𝛾 + 𝑒0, 𝑅8 = 𝜎9𝑛(  
remained higher than the expansion rate 𝐻.

Fluctuations of the baryon-photon gas density had the form 
of sound waves propagating with the speed 𝑐7- = 𝑝/𝜌 = 𝑤 =
1/3. The longest wavelength of such perturbations at the 
moment of photon decoupling was 𝜆7 = 𝑐7𝑡).

This wavelength (the size of the “sound horozon” at the ”last 
scattering” of photons) is imprinted in the angular power 
spectrum of CMB fluctuations. 

Earlier completion of recombination in presence of magnetic 
field would decrease the size of the sound horizon and shift 
the peak of the CMB angular power spectrum. 

sound horizon angular size



”Hubble tension” problem 
The expansion rate of the present-day Universe, 𝐻4, can be 
measured using a variety of techniques that can be divided 
onto two broad types: 

• Measurements based on the data at small 𝑧
• Measurements based on the data at large 𝑧

Small-z measurements include e.g. observations of Type Ia 
supernova in the Universe up to redshifts 𝑧 ∼ 1. 

These different types of measurements are inconsistent at >
5𝜎 significance level.

https://arxiv.org/abs/2504.01669 

https://arxiv.org/abs/2504.01669
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”Hubble tension” problem 
The expansion rate of the present-day Universe, 𝐻4, can be 
measured using a variety of techniques that can be divided 
onto two broad types: 

• Measurements based on the data at small 𝑧
• Measurements based on the data at large 𝑧

Small-z measurements include e.g. observations of Type Ia 
supernova in the Universe up to redshifts 𝑧 ∼ 1. 

These different types of measurements are inconsistent at >
5𝜎 significance level.

The Hubble parameter in SN Ia observations is derived from 
measurements of luminosity distance-redshift relation:

https://arxiv.org/abs/1710.00845 

𝐷@ = 1+ 𝑧 𝐷A ≃
1
𝐻4

𝑧 +
1
2 1 − 𝑞4 𝑧-

where 

𝐷A = ^
B

3 𝑑𝑎C

𝐻 𝑎C 𝑎C- =
1
𝐻4
^
4

D 𝑑𝑧′
1 + 𝑧′ - ΩE 1 + 𝑧′ + +ΩF

The main assumption of the measurement is that there exist 
”standard” or “standartizeable candles” for which the 
luminosity distances are measurable. Supernova Type Ia are 
considered to be such sources. 

https://arxiv.org/abs/1710.00845


”Hubble tension” problem 

In CMB measurements, the Hubble parameter is derived from the measurement 
of the angular scale of CMB fluctuations, 𝜃 = 𝑅7/𝐷A, where 𝑅7 = 𝑅)/ 3 is the 
”sound horizon” at the moment of decoupling of photons and   

𝐷A = ^
B

3 𝑑𝑎C

𝐻 𝑎C 𝑎C- =
1
𝐻4
^
4

D 𝑑𝑧′
1 + 𝑧′ - ΩE 1 + 𝑧′ + +ΩF

Is the comoving distance to the “last scattering surface”, of photons. 

Increase in 𝐻4 would lead to decrease of 𝐷A and increase of 𝜃	(that is the 
measured quantity). Same 𝜃 can be found if 𝑅7 is smaller than derived from 
ΛCDM model. 

Earlier recombination in presence of magnetic field leads to smaller 𝑅7.

𝜃 =
𝑅%
𝐷&



𝒃𝚲CDM model
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Global fit to the CMB+LSS data favours non-zero 𝐵 and 
relaxes the Hubble tension

CMB epoch field, evolved to 𝑧 = 0
https://arxiv.org/abs/2503.09599 
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𝒃𝚲CDM model
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Within sensitivity reach of 
gamma-ray telescopes

https://arxiv.org/abs/2503.09599


Gravitational wave signature of magnetic field
Wave equation for gravitational waves

𝜕I6
- eℎ + 𝑘- eℎ =

16𝜋𝐺J
𝑎

e𝑇99

The comoving quantities eℎ*K = 𝑎ℎ*K , e𝑇99 = 𝑎L𝑇99 where TT stands for “transverse traceless”. Suppose the source term is constant, and 
is active during a finite time,

e𝑇99 = j
𝐵-

8𝜋 , 0 < 𝑡̃ < 𝜏̃

0, 	 𝑡̃ > 𝜏̃

Solutions with eℎ 0 = 𝜕I6 eℎ 0 = 0: eℎ = -M!N"

BO"
(1 − cos𝑘𝑡̃)

At the end of forcing

𝜕I6 eℎ 𝜏̃ =
2𝐺J𝐵-

𝑎𝑘 sin𝑘𝜏̃
And the energy density of gravitational waves is 

𝜌PQ =
𝜕I6 eℎ

-

32𝜋𝐺J
=

𝐺J𝐵L

8𝜋𝑎-𝑘- sin
- 𝑘𝜏̃

Modes with 𝑘 ≪ 𝜏̃03	have 

s𝜌PQ =
𝜕I6 eℎ

-

32𝜋𝐺J
=
𝐺J e𝐵L𝜏̃-

8𝜋𝑎- =
8𝜋𝐺J𝜏̃- s𝜌N-

𝑎- =
8𝜋𝐺J
𝑎- 𝜏̃-ΩN- s𝜌- = 3ΩN- t𝐻-𝜏̃-

Taking 𝜏̃ ∼ e𝐿R'(, one finds 
s𝜌PQ ∼ ΩN- 𝐻𝐿R'(

-

The energy density in gravitational waves may be sizeable part of the overall energy density if magnetic field forcing the gravitational 
radiation has 𝐵 ∼ 𝐵(S in which case 𝐿R'( ∼ 𝑅). Once generated, the gravitational waves evolve as radiation and their relative density 
compared to the photon density stays approximately constant. This implies that present-day ΩPQ ∼ Ω8TN ∼ 100L if 𝐵 ∼ 𝐵(S



Gravitational wave signature of magnetic field

s𝜌PQ ∼ ΩN- 𝐻𝐿R'(
-, 𝑘 ∼ 2𝜋/𝐿R'(

at production. Once generated, gravitational waves evolve as radiation and their relative density compared to the photon density 
stays approximately constant. This implies that present-day ΩPQ ∼ Ω8TN ∼ 100L if 𝐵 ∼ 𝐵(S or 

ΩPQ ∼ 100L
𝐵
𝐵(S

L

, 𝜆PQ ∼ e𝐿R'(

today. The frequency

𝑓PQ =
1
𝜆PQ

∼ 10
e𝐿R'(
1	pc

03

nHz



Gravitational wave detection: pulsar timing arrays

𝑓PQ =
1
𝜆PQ

∼ 10
e𝐿R'(
1	pc

03

nHz

Gravitaitonal waves in this frequency range are detectable 
using “Pulsar Timing Arrays”: multiple radio telescope monitor 
a set of (millisecond) pulsars over many years, because they 
are known to be good clock standards (very regular and 
modelable pulse arriving time pattern). Gravitational waves 
passing through the lines-of-sight toward pulsars perturb the 
timing pattern of pulsars.

Several PTA collaborations  exist: 
• NanoGRAV (North American Nanohertz Observatory 

for Gravitational Waves)
• EPTA (European Pulsar Timing Array)
• PPTA (Parkes Pulsar Timing Array)
• CPTA (Chinese pulsar timing array)
• MPTA (MeerKAT Pulsar Timing Array 

EPTA



Gravitational wave detection: pulsar timing arrays
Consider a +	polarized gravitational wave in 𝑧	direction:

ℎ*K =
ℎU	 0 0
0 −ℎU 0
0 0 0

𝑑𝑠- = −𝑑𝑡- + 𝛿*K + ℎ*K 𝑑𝑥*𝑑𝑥K
Consider a pulsar at a distance 𝐷 in 𝑥 direction. Its signal propagates according to 

𝑑𝑡 = 1 + ℎU 𝑡, 𝑥 𝑑𝑥 ≃ 1 +
1
2ℎU 𝑡, 𝑥 𝑑𝑥

Consider two subsequent pulses, at 𝑡(3, 𝑡(- = 𝑡(3 +𝑇.	Signal travel times

𝑡V3 − 𝑡(3 = 𝐷 +
1
2^6#$

6#$UW
𝑑𝑡	ℎU( 𝑡C, 𝑡(3 +𝐷 − 𝑡′)

𝑡V- − 𝑡(- = 𝐷 +
1
2^6#"

6#"UW
𝑑𝑡′	ℎU( 𝑡C, 𝑡(3 +𝑇 +𝐷 − 𝑡′)

Time between the reception of the two pulses 
𝑡V- − 𝑡V3 = 𝑇 + Δ𝑇

Δ𝑇 = ^
6#$

6#$UW
𝑑𝑡′ [ℎU 𝑡C +𝑇, 𝑥 𝑡C − ℎU(𝑡C, 𝑥 𝑡C )]

This corresponds to a relative shift of pulse arrival time by

𝑧(𝑡V3) =
Δ𝑇
𝑇 ≃ (ℎU 𝑡V3, 0 − ℎU 𝑡(3, 𝐷 )	

A general expression of arbitrary polarization and arbitrary wave 𝑛Q and pulrar 𝑛' 
directions is

𝑧(𝑡V3) =
𝑛'* 𝑛'

K

2(1 + 𝑛Q𝑛')
(ℎ*K 𝑡V3, 0 − ℎ*K 𝑡(3, 𝐷𝑛'

EPTA



Stochastic gravitational wave background

𝑧(𝑡V3) =
𝑛'* 𝑛'

K

2(1 + 𝑛Q𝑛')
(ℎ*K 𝑡V3, 0 − ℎ*K 𝑡(3, 𝐷𝑛'

Consider a set of pulsars in different directions and a set of ways going 
isortopically in all directions. Total metric perturbation

ℎ*K = }
:XU,0

^𝑑𝑓^𝑑-𝑛	~ℎ: 𝑓, 𝑛 𝑒*K: 𝑛 𝑒0*-YZ(60\ ⃗̂)

Considering two pulsars, 𝑝B, 𝑝1 separated by an angle Θ on the sky, one can 
compute the time average correlator 

⟨𝑧'% 𝑡 , 𝑧'&(𝑡)⟩ =
1 − cosΘ

2 log
1 − cosΘ

2 −
1− cosΘ

12 +
1
3

(the Hellings-Downs curve).

Observation of the Hellings-Downs correlation function is considered as a 
signature of the presence of Stochastic Gravitational Wave Background (SGWB) 
signal in the data (distinguishable this way from systematic effects and 
calibration errors).



𝑧(𝑡V3) =
𝑛'* 𝑛'

K

2(1 + 𝑛Q𝑛')
(ℎ*K 𝑡V3, 0 − ℎ*K 𝑡(3, 𝐷𝑛'

Consider a set of pulsars in different directions and a set of ways going 
isortopically in all directions. Total metric perturbation

ℎ*K = }
:XU,0

^𝑑𝑓^𝑑-𝑛	~ℎ: 𝑓, 𝑛 𝑒*K: 𝑛 𝑒0*-YZ(60\ ⃗̂)

Considering two pulsars, 𝑝B, 𝑝1 separated by an angle Θ on the sky, one can 
compute the time average correlator 

⟨𝑧'% 𝑡 , 𝑧'&(𝑡)⟩ =
1 − cosΘ

2 log
1 − cosΘ

2 −
1− cosΘ

12 +
1
3

(the Hellings-Downs curve).

Observation of the Hellings-Downs correlation function is considered as a 
signature of the presence of Stochastic Gravitational Wave Background (SGWB) 
signal in the data (distinguishable this way from systematic effects and 
calibration errors).

NanoGRAV, https://arxiv.org/abs/2306.16213 

Stochastic gravitational wave background detection
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NanoGRAV, https://arxiv.org/abs/2306.16213 

Stochastic gravitational wave background detection

The energy density of the SGWB 

Ω`MaN =
2𝜋-

3𝐻4-
𝑓-ℎA- 𝑓 =

2𝜋-𝐴`MaN- 𝑓-

3𝐻4-
𝑓

1	yr03
-b

	

ℎA 𝑓 = 𝐴`MaN
𝑓

1	yr03
b

	

For a population of inspiralling supermassive black holes, the theoretical 
expectation is 𝛼 = −2/3. The power spectrum is 

𝑆 MaN 𝑓 = Γ
Acdef
-

12𝜋-
𝑓

1	yr03
02

yr+, 𝛾 = 3 − 2𝛼	

The measured values:
𝐴`MaN ≃ 1003L, 𝛾 ≃ 3.5 → 𝛼 = 1.25

So that 

Ω`MaN ≃ 100g
𝑓

1	yr03
-.5

Exercise 1 Consider the 1-𝜎	contour of the gravitational wave 
signal measurement on the right and plot the spectrum of the 
gravitational wave signal measurement by PTAs in 𝑓,Ω`MaN 𝑓  
representation. 

https://arxiv.org/abs/2306.16213
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Gravitational wave signature of magnetic field?

The energy density of the SGWB 

Ω`MaN =
2𝜋-

3𝐻4-
𝑓-ℎA- 𝑓 =

2𝜋-𝐴`MaN- 𝑓-

3𝐻4-
𝑓

1	yr03
-b

	

ℎA 𝑓 = 𝐴`MaN
𝑓

1	yr03
b

	

For a population of inspiralling supermassive black holes, the 
theoretical expectation is 𝛼 = −2/3. The power spectrum is 

𝑆 MaN 𝑓 = Γ
Acdef
-

12𝜋-
𝑓

1	yr03
02

yr+, 𝛾 = 3 − 2𝛼	

The measured values:
𝐴`MaN ≃ 1003L, 𝛾 ≃ 3.5 → 𝛼 = 1.25

So that 

Ω`MaN ≃ 100g
𝑓

1	yr03
-.5

Interpreting this as due to the presence of magnetic field, 

Ω`MaN ∼ 100g
𝐵

0.2𝐵(S

L

𝐿R'( ≃ 0.2	𝐶
𝐵
𝐵(S

𝑅)
The field has to come from the QCD phase transition, 

e𝑅),h8W ≃ 2
𝑔∗
50

03j 𝑇
150	MeV

03
pc	 @	QCD	epoch
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The SGWB and CMB signatures of cosmological field are 
“not inconsistent” with each other. The evolutionary path 
connecting the two measurements is consistent with 
current understanding of evolution of non-helical magnetic 
field generated at the QCD phase transiiton.
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The horizon size is 

e𝑅),la ≃ 100+
𝑔∗
10-

03j 𝑇
170	GeV

03
pc	 @	EW	epoch

Gravitational waves that would originate from this phase 
transition would have frequencies in the 𝜇Hz range or higher.

Observations in 𝜇Hz – mHz range will be possible with LISA 
(Large Space Interferometer Antenna). 

A field originating from EW phase transition and leaving a relic 
consistent with the CMB signature would need to be partially 
helical (see lectures of A.Brandenburg for difference in 
evolution of helical and non-helical fields).
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Exercise 2. Express the sensitivities of different 
gravitational wave detectors in 𝑓,Ω`MaN(𝑓) 
representation. In cosmological context, these 
detectors are sensitive to the signal from different 
cosmological epochs (at different temperatures). 
Estimate the temperature ranges of sensitivity of each 
detector. Estimate the magnetic field strength that can 
be probed through the gravitational wave signature.


