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Cosmological magnetic field observations
Lecture 3
Magnetic fields in the present-day Universe

Magnetic field of the Milky Way

* Synchrotron emission from interstellar medium
* Cosmicrays

* Global models of the Milky Way magnetic field

Magnetic fields of distant galaxies galaxy groups and clusters
* Synchrotron emission from other galaxies
* Polarized dust emission from distant galaxies
* Magnetized outflows from galaxies

* Magnetic fields in galaxy groups and galaxy clusters

Magnetic fields of galaxy in filaments and voids of the Large Scale Structure
* Measurement of field in filaments

* Upper bounds on the void field from Faraday rotation and ultra-high-energy cosmic rays



Synchrotron radiation

Reminder: dipole radiation from relativistic charge moving along a
circle
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If the gyration is due to magnetic field B, the gyroradiusis R =

E /eB (E is particle energy). The radiation mechanism is called
synchrotron in this case. The emission spectrum is peaked at the
energy / frequency
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With intensity
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Synchrotron radiation is up to 70% polarized.

Synchrotron radiation per se does not provide a measurement of
magnetic field, if the energy distribution of relativistic electrons is
not known a-priori.
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High-energy electrons in Milky Way
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Cosmic rays in Milky Way

Cosmic ray electron flux is a sub-dominant component of the overall
flux of cosmic rays: charged high-energy particles penetrating the
Earth atmosphere and mostly coming from outside the solar system.

Cosmic ray spectrum is a broken powerlaw extending up to 102° eV.
Galactic cosmic rays, presumably injected by phenomena related to
supernova in the Galactic disk. They escape from the disk into a
broader halo and ultimately into intergalactic medium along
Galactic magnetic field lines. The escape rate is regulated by
scattering on inhomogeneities of turbulent Galactic magnetic field.

Primary cosmic rays from supernovae interact with interstellar gas
producing y-ray and neutrino glow of the Galaxy and generating
secondary cosmic rays. Observations of y-rays and neutrinos and
measurements of abundances of secondary cosmic rays can be
used to constrain the details of cosmic ray diffusion

...... and hence to constrain the Galactic magnetic field.
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Cosmic rays in Milky Way

Cosmic ray electron flux is a sub-dominant component of the overall
flux of cosmic rays: charged high-energy particles penetrating the
Earth atmosphere and mostly coming from outside the solar system.

Cosmic ray spectrum is a broken powerlaw extending up to 102° eV.
Galactic cosmic rays, presumably injected by phenomena related to
supernova in the Galactic disk. They escape from the disk into a
broader halo and ultimately into intergalactic medium along
Galactic magnetic field lines. The escape rate is regulated by
scattering on inhomogeneities of turbulent Galactic magnetic field.

Primary cosmic rays from supernovae interact with interstellar gas
producing y-ray and neutrino glow of the Galaxy and generating
secondary cosmic rays. Observations of y-rays and neutrinos and
measurements of abundances of secondary cosmic rays can be
used to constrain the details of cosmic ray diffusion

...... and hence to constrain the Galactic magnetic field.

Numerical models of cosmic ray population in the galaxy do not yet
include the detailed Galactic magnetic field structure. The adopt
simplistic Milky Way model of “leaky box” model of height H, with
particles diffusing out of the box with phenomenological diffusion
coefficient D(E) « E¥, within the escape time t ;. = H?/D




Global galactic magnetic field model from RM+DM+Synchrotron

Ideally, modelling of cosmic ray escape from the
Galaxy should be based on knowledge of geometry
of the ordered magnetic field of the Milky Way and
of the structure of the turbulent field.
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Measurements of magnetic fields in present-day Universe
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Magnetic fields in other galaxies
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Observations of synchrotron emission are commonly used to infer
magnetic fields in other galaxies. Similar to the Milky Way, The
synchrotron emission is polarized and is subject to Faraday
rotation.
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Exercise 1. “Minimal energy argument”. Consider a source of
size R providing synchroton luminosity L at frequency vy =
ws/2m. Find an estimate of magnetic field that minimizes the
total energy needed to provide the observed luminosity (energy
in magnetic field plus energy in relativistic electrons).



https://arxiv.org/pdf/1001.5230
https://arxiv.org/pdf/1001.5230
https://arxiv.org/pdf/1001.5230

Magnetic fields in high redshift galaxies
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Faraday rotation can also be used to statistically infer the existence
of magnetic fields in galaxies at high redshifts. Bernet et al.

https://arxiv.org/pdf/0807.3347 have dound that the RM aoong lines os"
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Apart from Faraday rotation, polarized dust emission is observed in
high redshift galaxies. Example on the right: galaxy SPT0346-52 at °
redshift z = 5.6 (!) has ordered magnetic field on kpc scales.
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Magnetized bubbles around galaxies?

Star formation activity and active galactic nuclei
in galaxies are known to drive outflows in the
form of non-relativistic winds and relativistic
jets.

These spread matter and magnetic fields into
circumgalactic medium. Cosmological
simulations (like Illustris-TNG) show that
magnetized bubbles are forming around
galaxies in result of this process.

Such magnetized bubbles have not yet been
observed and their extent has not been
measured.
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Galaxy groups and galaxy clusters

POSSUM survey provides dense enough Rotation Measure ”grid” on the sky,
to enable measurements of magnetic fields on galaxy group and galaxy

cluster scales.
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Faraday rotation and synchrotron emission in galaxy clusters
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Galaxy clusters are sources of polarized radio synchrotron emission on their own (radio halos and radio relics). Properties of
the synchrotron signal (minimal energy argument?) and Faraday rotation can be used to infer strength and spatial structure of
magnetic field.
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Measurements of magnetic fields in present-day Universe
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Measurements of magnetic fields in present-day Universe (’
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Residual Rotation Measure

https://arxiv.org/abs/2102.01709

———
1250 pealrad m] 250
The RMintegral
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is composed of several parts from propagation of the signal inside the source and source host galaxy (intrinsic RM), intergalactic
medium, the Milky Way interstellar medium, RM = RM;, + RM;qp + RMy,. Subtracting the Galactic contribution, one finds the
“residual” RM, RRM = RM — RM,;,. The Milky Way contribution can be either estimated from the analytical model of from
averaging of the RM over certain sky regions around the direction of interest (as picture above).
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Residual Rotation Measure

1250 pealrad m] 250

Exercise 2. Download the Galactic Rotation Measure model shown in this figure,
https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/faraday2020.html, and apply it to the
RM dataset studied in exercise 5 of Lecture 2 to obtain the RRM dataset. Calculate the mean and the
root mean square spread of the RRM values.
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Rotation measure of intergalactic space

The radio signal from sources at non-zero redshift propagates through expanding Universe.
The rotation of polarization angle accumulated during signal propagation between redshift

Z+dzandzis
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acdzisdl = dt = T T ha BT The density of the Universe today, p,, has a

contribution by non-relativistic matter, (),,, po, with equation of state w = 0 and dark energy
with density (1, p, and with w = —1. The matter density scales as a=3 = (1 + z)3 while the
dark energy density is independent of a. The Friedman equation reads
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Rotation measure of intergalactic space

Integrating over the distance to the source one finds

n,(2)B(z)

dz
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non-evolving comoving magnetic field, n,(z) = — =
7)?B,. In this case RM grows at z > 1 as
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—if B o p?/3,n, « p, L « p~1/3, overdensities give enhanced

contributions to RM

— outflows from galaxies magnetize intergalactic
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medium beyond the magnetization by the
compressed relic cosmological field.
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In the simple case of homogeneous electron density diluted by the Universe expansion and

This simple "toy model” does not work because of the presence of LSS: both n, and B scale
with (over)density of the LSS, cosmological simulations need to be used:
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Magnetic field in filaments of the Large Scale Structure
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Rotation measure limit on the void fields

LOFAR RRM data also impose an upper bound on the field in
voids (oversensities 6p/p < 0).

The void field is mostly not processed by structure formation and
it may be the relic cosmological magnetic field, statistically
homogeneous and isotropic, characterized by power spectrum
with the slope ng(= a in the figure on the right).

The bound depends on the slope of the field power spectrum.
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Rotation measure limit on the void fields
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