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1 Spherical coordinates

In order to simplify notation, we define the operators

dr = ∂r (1)

dθ = r−1∂θ (2)

dφ = ̟−1∂φ (3)

where ̟ = r sin θ is the cylindrical radius, and write the
gradient as

gradΨ =





drΨ
dθΨ
dφΨ



 (4)

The divergence and curl operators are written as

divA = DrAr +DθAθ + dφAφ (5)

and

curlA =





DθAφ − dφAθ

dφAr −DrAφ

DrAθ − dθAr



 , (6)

and the laplacian of a scalar, ∇2 ≡ div grad , is

∇2Ψ = D2
rΨ+D2

θΨ+ d2φΨ; (7)

see Table 1 for the definition of additional operators, and
Table 2 for the relations between them.

Table 1: Useful operators in spherical coordinates.

Dr = r−2∂r(r
2 ·)

Dr = r−1∂r(r ·) Dθ = r−1 sin−1θ ∂θ(sin θ ·)

D−1
r = r∂r(r

−1 ·) D−1
θ = r−1 sin θ ∂θ(sin

−1θ ·)

Express all spatial derivatives in fully non-conservative
form. Arrange mixed operators such that the innermost

Table 2: Some useful identities. The ‘≡’ symbol indicates
the definition of an operator, so D2

r is not meant to be the
same as the operator Dr applied twice.

d2r = drdr d2θ = dθdθ d2φ = dφdφ
D2

r ≡ DrDr = Drdr D2
θ ≡ Dθdθ

D2
r ≡ drDr = D−1

r dr D2
θ ≡ dθDθ

drDθ = DθD
−1
r dθdφ = dφD

−1
θ

derivative operator is in the r-direction, the next one in
the θ-direction, and the φ-operator is the outermost one.

curl 2A =





DθDrAθ + dφDrAφ −D2
θAr − d2φAr

dφDθAφ + dθDrAr − d2φAθ −D2
rAθ

dφDrAr + dθdφAθ −D2
rAφ −D2

θAφ



 (8)

is the double-curl.

grad divA =





drDrAr + drDθAθ + drdφAφ

dθDrAr + dθDθAθ + dθdφAφ

dφDrAr + dφDθAθ + dφdφAφ



 (9)

or, written such that r-operators come first and φ opera-
tors last,

grad divA =





D2
rAr +DθD

−1
r Aθ + dφD

−1
r Aφ

dθDrAr +D2
θAθ + dφD

−1
θ Aφ

dφDrAr + dφDθAθ + d2φAφ



 (10)

The laplacian of a vector is evaluated as ∇2 = grad div −
curl curl and can be written as

∇
2A =





(∇2 − 2r−2)Ar − 2r−1(DθAθ + dφAφ)
(∇2 −̟−2)Aθ + 2r−1(dθAr − cot θ dφAφ)
(∇2 −̟−2)Aφ + 2r−1(dφAr + cot θ dφAθ)





(11)
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Table 3: Spatial operators relevant in spherical coordinates. ̟ = r sin θ is the cylindrical radius.

dr = ∂r dθ = r−1∂θ dφ = ̟−1∂φ
Dr = r−1 + dr Dθ = r−1 cot θ + dθ
D−1

r = −r−1 + dr D−1
θ = −r−1 cot θ + dθ

Dr = 2r−1 + dr
d2r = ∂2

r d2θ = r−2∂2
θ d2φ = ̟−2∂2

φ

D2
r = 2r−1dr + d2r D2

θ = r−1 cot θ dθ + d2θ
D2

r = −2r−2 +D2
r D2

θ = −̟−2 +D2
θ

2 ... without radial derivatives

Useful for solar surface observations

curlA =





DθAφ − dφAθ

+dφAr

−dθAr



 , (12)

Compute Ar ≡ T r̂ from Jr = L2Ar.

curl 2A =





−D2
θAr − d2φAr

+dφDθAφ − d2φAθ

+dθdφAθ −D2
θAφ



 (13)

3 Modified cartesian operators

Consider first

grad divA =





drDrAr + drDθAθ + drdφAφ

dθDrAr + dθDθAθ + dθdφAφ

dφDrAr + dφDθAθ + dφdφAφ



 (14)

Write explicitly

drDr = −2r−2 + 2r−1∂r + ∂rr (15)

drDθ = −r−2 cot θ + r−1 cot θ ∂r − r−2∂θ + r−1∂rθ (16)

drdφ = −r−1̟−1∂φ +̟−1∂rφ (17)

dθDr = 2r−2∂θ + r−1∂rθ (18)

dθDθ = −r−2(1 + cot2θ) + r−2 cot θ ∂θ + r−2∂θθ (19)

dθdφ = −r−1̟−1 cot θ∂φ + r−1̟−1∂θφ (20)

dφDr = r−1̟−1∂φ +̟−1∂rφ (21)

dφDθ = r−1̟−1 cot θ∂φ + r−1̟−1∂θφ (22)

dφdφ = ̟−2∂φφ (23)

curl2

D2
r = 2r−1∂r + ∂rr (24)

grad divA = (grad divA)cart + (grad divA)extr (25)

(grad divA)cart = (26)




Ar,rr + r−1Aθ,θr +̟−1Aφ,φr

r−1Ar,rθ + r−2Aθ,θθ + r−1̟−1Aφ,φθ

̟−1Ar,rφ + r−1̟−1Aθ,θφ +̟−2Aφ,φφ



 (27)

(grad divA)extr = (−2r−2Ar + 2r−1Ar,r ) (28)

4 Legendre polynomials

Aθ = dφS, Aφ = −dθS. (29)

Backward transformation

Sm(r, θ) =
L
∑

ℓ=1

√

NℓmSℓm(r)Pm
ℓ (cos θ), (30)

where

Nℓm = 1
2 (2ℓ+ 1)

(ℓ−m)!

(ℓ+m)!
(31)

are the normalization coefficients of the Legendre polyno-
mials. Forward transformation

Sℓm(r) =
√

Nℓm

∫ π

0

Pm
ℓ (cos θ)S(r, θ) sin θ dθ (32)
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Useful relation

sin θ
dPm

ℓ

dθ
= −

(ℓ+ 1)(ℓ+m)

2ℓ+ 1
Pm
ℓ−1 +

ℓ(ℓ−m+ 1)

2ℓ+ 1
Pm
ℓ+1

(33)

cos θPm
ℓ =

ℓ+m

2ℓ+ 1
Pm
ℓ−1 +

ℓ−m+ 1

2ℓ+ 1
Pm
ℓ+1 (34)

5 Spherical Bessel functions

j0(z) =
sin z

z
≡

√

π/2zJ1/2(z) (35)

j1(z) =
sin z

z2
−

cos z

z
(36)

j2(z) =

(

3

z3
−

1

z

)

sin z −
3

z
cos z (37)

Zeros: jl(zl) = 0, z0 = π, z1 = 4.493409, z2 = 5.763459.
Note that

dj1/d ln z|z1 = −1. (38)

6 Relative magnetic helicity

Hrel =

∫

(A+AP) · (B −BP) dV, (39)

where BP = ∇×AP is a potential (current-free) reference
field in the interior with BPr = Br on r = R. We express
AP in terms of the poloidal part of the superpotential,

AP = ∇× (r̂Φ). (40)

The corresponding current is

JP = ∇×∇×∇× (r̂Φ) = −∇× (r̂∇2Φ). (41)

The potential field is current-free, i.e. JP = 0, so we re-
quire

∇2Φ = 0. (42)

We solve this equation in spectral space and define

Φℓ(r) =
√

Nℓm

∫ π

0

Pℓ(cos θ)Φ(r, θ) sin θ dθ. (43)

where m = 0. The backward transform is

Φ(r, θ) =

L
∑

ℓ=1

√

Nℓm Φℓ(r)Pℓ(cos θ), (44)

and

Nℓm = 1
2 (2ℓ+ 1)

(ℓ−m)!

(ℓ+m)!
(45)

are the normalization coefficients of the Legendre polyno-
mials.
It is convenient to define Φ̃ℓ = rΦℓ, so the potential

equation in spectral space reads

Φ̃′′

ℓ −
ℓ(ℓ+ 1)

r2
Φ̃ℓ = 0, (46)

where and primes denote radial derivatives. Since the ra-
dial components of B and BP coincide on r = R, we have

Br = −r ·∇×∇× rΦ = −∇2
⊥
Φ̃. (47)

on r = R. In spectral space this corresponds to the bound-
ary condition

Φ̃ℓ(R) =
R2

ℓ(ℓ+ 1)
bℓ (48)

where

bℓ =
√

Nℓm

∫ π

0

Pℓ(cos θ)Br(R, θ) sin θ dθ. (49)

7 Useful relations in axisymmetry

A useful relation in connection with axisymmetry is

D2
θdθ = dθDθdθ = dθD

2
θ. (50)

It allows to show that the vacuum condition in axisym-
metry, D2Aφ = 0, is equivalent to the general vacuum
condition, ∇2Φ = 0, where Φ is the poloidal superpoten-
tial of the vacuum field, so A = ∇× (r̂Φ). Here we have
introduced the operator

D2 = −̟−2 +∇2 = D2
r +D2

θ , (51)

which is frequently used in axisymmetry. In axisymmetry,
only the φ component of the A of a potential field is finite,
and Aφ = rdθΦ. Thus,

D2Aφ = D2rdθΦ = rdθD
2
rΦ+ rdθD

2
θΦ = rdθ∇

2Φ = 0
(52)

Another useful relation in axisymmetry is

dPℓ(cos θ)

dθ
= P 1

ℓ (cos θ) (53)
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7.1 Examples

D2
rj1(kr) =

(

2r−2 − k2
)

j1(kr) (54)

D2
θ sin θ = −2r−2 sin θ (55)

Thus
b(r, θ) = j1(kr) sin θ (56)

is an eigenfunction of D2 with

D2b+ k2b = 0. (57)

A particular solution of the potential equation

D2a = 0 (58)

is

a =

{

̟ for r ≤ 1,
̟/r3 for r > 1.

(59)

where ̟ = r sin θ.

7.2 Constant α sphere

The axisymmetric steady state dynamo equations for α =
const and ηT = R = 1 are

αb+D2a = 0, −αD2a+D2b = 0. (60)

A solution that satisfies the boundary condition

da/dr + 2a = 0 on r = 1 (61)

is

a = k−1[j1(kr) +
1
3r] sin θ, b = j1(kr) sin θ (62)

(with k = 4.493409) in r ≤ 1 and

a = 1
3k

−1r−2 sin θ, b = 0 (63)

in r > 1.

7.3 Rewrite

A = aφ̂+∇× cφ̂, (64)

B = bφ̂+∇× aφ̂, (65)

whereD2c = −b and c = 0 on r = 1 is assumed. Therefore,

c = k−2j1(kr) sin θ (66)

7.4 The potential part of B

Both in the interior and the exterior the field has a poten-
tial part, ∇Ψ. This can be seed by splitting

a = a0 + a1 (67)

with

a0 = k−1j1(kr) sin θ, a1 = 1
3k

−1r sin θ, (68)

where a1 satisfies

B1 = ∇× a1φ̂ = ∇Ψ. (69)

In this case, B1 = 2
3k

−1z (in r < 1), so

Ψ = 2
3k

−1r cos θ r < 1, (70)

and

Ψ = 1
3k

−1r−2 cos θ r > 1. (71)

7.5 Vacuum reference field

AP = aPφ̂+∇× cPφ̂, (72)

BP = bPφ̂+∇× aPφ̂, (73)

aP = 1
3rk

−1 sin θ, bP = 0, cP = 0. (74)

7.6 Integral over P
∫ π

0

Pℓ(cos θ) sin θ dθ =
2

2ℓ+ 1
(75)

8 Magnetic helicity in spheres em-

bedded in a vacuum

The helicity integral can be split into toroidal and poloidal
components, i.e.

A ·B = ab+Ap ·Bp (76)

The poloidal part of the helicity integral can be written in
the form

Ap ·Bp = ab+∇ · (aφ̂×Ap). (77)
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This shows first of all that the magnetic helicity for the
infinite volume (surface integral vanishes) can be written
as

H =

∫

V+Vext

(ab+Ap ·Bp) dV = 2

∫

V

ab dV. (78)

This is gauge-invariant, because there is no surface term.
Since b = 0 outside the sphere, this integral is only over
the sphere. Except for the case of the constant α sphere,
H will always be zero because of cancelation between the
two hemispheres. Thus, the magnetic helicity integral for
the infinite upper half space is, in the Coulomb gauge,

H
(Cou)
N = 2

∫

N

ab dV +

∫

θ=π/2

aAp · dS. (79)

The second integral vanishes for fields with dipolar sym-
metry (Ar = 0 on the midplane).

8.1 Relative helicity

Wemake use of the fact that for the vacuum field only aP is
finite. The contribution from the toroidal components to
the relative helicity integral is just

∫

(a+aP)bdV , because
the vacuum field does not have a toroidal field. For the
poloidal contribution we note that the vacuum field has a
purely toroidal vector potential, so we have

Ap · (B−BP)p = b(a− aP)+∇ · [(a− aP)φ̂×Ap]. (80)

However, on the boundary we always have

a = aP on ∂V , (81)

so the relative magnetic helicity is always (both for
toroidal and poloidal fields)

H(rel) = 2

∫

V

ab dV. (82)

In particular, we have

H
(rel)
N = 2

∫

N

ab dV. (83)

8.2 Mean-field αΩ dynamo

We consider here the case without meridional circulation,
so we have

(

∂t − ηTD
2
)

a = αb (84)

(

∂t − ηTD
2
)

b = φ̂ ·∇× αBp +̟Bp ·∇Ω. (85)

We are interested in the evolution of ab, so from the first
equation we have

b∂ta = αb2 − ηTjb, (86)

where j = −D2a. From the second equation we have

a∂tb = αB2
p − ηTJp ·Bp − 1

2∇ · FH. (87)

The factor 1/2 enters in the expression for the helicity flux,
because the relative magnetic helicity is given by 2ab, so

FH = −2(αBp − ηTJp)× φ̂a− 2a̟ΩBp, (88)

where we have made use of the identities

aφ̂ ·∇× αBp = αB2
p + αBp × φ̂a, (89)

aD2b = −Jp ·Bp −∇ · Jp × φ̂a, (90)

̟aBp ·∇Ω = ∇ · (a̟ΩBp). (91)

The last one comes from the helicity flux due to the
toroidal velocity, U = ̟Ωφ̂,

(U ×Bp)× aφ̂ = a̟ΩBp (92)

We also note that in axisymmetry the poloidal magnetic
field can be written in the form

Bp ≡ ∇× aφ̂ = −̟−1φ̂×∇(̟a) (93)

Thus, the final magnetic helicity equation is

d

dt
H(rel) = 2

∫

V

E ·B −

∮

∂V

FH · dS (94)

where
E ·B = αB2 − ηTJ ·B (95)

where we have omitted the overbars again, and

FH = 2Ep ×At, (96)

where At = φ̂a and

Ep = −U ×Bp − (αBp − ηTJp). (97)

This equation is true even if there was meridional circula-
tion, because the poloidal flow does not enter, so that

Ep = −U t ×Bp − (αBp − ηTJp) (98)
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is the relevant expression even in the general case (al-
though then the symbol Ep is misleading, because one
would think there would be the additional term Up ×Bt

which is not the case). On the other hand, Up = 0 on
the boundary, so there would not have been any confusion
anyway. The expression (88) is therefore to be preferred.

8.3 Advective gauge

Assume U = (0, 0, ̟Ω), so

∂A

∂t
= U ×B = Ω∇(̟Aφ) = −̟Aφ∇Ω−∇φ (99)

with φ = UφAφ.
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