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1 Spherical coordinates

In order to simplify notation, we define the operators

d, = o, (1)
dg = 7"7169 (2)
dy = w716¢ (3)

where w = rsin @ is the cylindrical radius, and write the
gradient as

d, v
grad U = | dy0 (4)
de ¥
The divergence and curl operators are written as
divA=D,A, +DgAly+ d¢A¢ (5)
and
DgAy —dgpAg
curl A = d¢A7« - D,«A¢ y (6)
D, Ay — dp A,
and the laplacian of a scalar, V2 = div grad , is
VU =DV + D30 + d3 ¥ (7)

see Table 1 for the definition of additional operators, and
Table 2 for the relations between them.

Table 1: Useful operators in spherical coordinates.

D, =r20,(r?")
D, =7"19,.(r-)
Dt =70, (r 1)

Dy =7 'sin 10 9y(sinf )
D, =r"1sinfdy(sin 10")

Express all spatial derivatives in fully non-conservative
form. Arrange mixed operators such that the innermost

Table 2: Some useful identities. The ‘=’ symbol indicates
the definition of an operator, so D? is not meant to be the
same as the operator D, applied twice.

a2 =d,d, d2 = dydy 42 = dydy
DZ2=D,D, = D,d, | D2 = Dydy
D2 =d,D, =D; 'd, | Df =dyDy

d,Dg = DgD; ! | dpdy = dyD, "

derivative operator is in the r-direction, the next one in
the #-direction, and the ¢-operator is the outermost one.

DyD, Ay + d¢DTA¢ — DgAT — diAr

d¢D9A¢ +dgD, A, — diAg — DgAg
d¢DTAT + dgdqug — D2A¢ — 'DgA(lg

curl?A =

(8)

is the double-curl.

d,D; A, +d.DgAg + d,dp Ay
deD, A, + dgDgAy + d9d¢A¢
d¢D7.A7. + d(z)DgAg + d¢d¢A¢

graddiv A = (9)

or, written such that r-operators come first and ¢ opera-
tors last,

D?_A, + DQDT_lAg + dd,DT_lAqg
dyD, A, + DgAg + d¢D0_1A¢
d¢DTAT + d¢D9A9 + diA¢

graddiv A = (10)

The laplacian of a vector is evaluated as V? = grad div —
curlcurl and can be written as

(V2 — 27‘72)‘4,« — 27‘71(]:)9143 + d¢A¢)
(V2 —w2)Ag + 2r~1(dg A, — cot Od,Ay)
(V2 — w2 Ay + 2r 1 (dp A, + cot 0dsAp)
(11)

V32A =



Table 3: Spatial operators relevant in spherical coordinates. w = rsin 6 is the cylindrical radius.

d, =0, dg = 7"71(99 d¢ = w*16¢
D,=r"1+4d, Dg=7r"Tlcotd +dg
D t=—r"14+d, D(;l:—r_lcotH—i—dg
D, =2r144d,
T =0 & =770 B =203
DZ=2r"1d, +d? | D =r"tcotfdy +dj
DZ=-2r2+D? | Df=-w 2+D}
2 ... without radial derivatives dpdy = @ 2044 (23)
Useful for solar surface observations curl2
D% = 27'7187’ + arr (24)
DoAy — dpAs
curl A = +dg A, , (12)
—dgA,
graddiv A = (grad div A)cart + (grad div A)extr  (25)
Compute A, = T# from J, = L?A,.
2 2
, ~Dpdr = dy s (grad div A)eare =  (26)
curl A N +d¢D9;44¢ i dgje (13) A’I‘,T'r‘ + T_1A979r + w_1A¢7¢T
+dodsds — DAy r Ao+ 172 Agge + 1w Ay e (27)
. . ‘(DilATJ@ + ’I"flwilAg’gqg + w’2A¢,¢¢
3 Modified cartesian operators
(grad div A)exey = (—2r72A4, +2r'4,.,) (28)
Consider first
d, Dy A, 4+ d,DgAg + drdp Ay .
araddiv A = | dyDoA. + dyDody + dydod, | (14) 4 L.egendre polynomials
dyD, A, +dyDgAy + dpds A
Lt Ag =dyS, Ay =—dyS. (29)
Write explicitly Backward transformation
4, D, = -2r 2 4+2r719, + 0, (15) L
S (r,0) = \ Ny Sem (r) P (cos 0), 30
d,Dg=—r"2cot@+r"tcot00, —r 20 +7r 0 (16) (r,0) ; e Sem(r) P ( ) (30)
-1 -1 -1
drd¢ =—r w 3¢ +w 8“1) (17) where
— 9p—2 -1 £ —m)!
Aoy =270 1 Oro (18) Nem = 5(2¢+1) Eu :;v (31)
dgDg = —r~2(1 + cot?d) +r 2 cot 0 Ip + 1 20pg  (19) '
1 11 are the normalization coefficients of the Legendre polyno-
dody = —r" @™ cot 00y + @ Dps (20) mials. Forward transformation
dgD, =1 tw 0y + w10, (21) x
d¢D9 =r~tw ot 93(75 + r71w7189¢ (22) Sem (T) =V Nem /O Pém (COS G)S(Tv 9) sin6 do (32)



Useful relation

dPm (4 D)(l+m) ., L(l—m+1)

Sl = T e T 20+1
(33)

m +m . l—-m+1_
COS GP/ = T_Hpg_l + WPKJ,-l (34)

5 Spherical Bessel functions

. sin z
Jo(z) = o= /221 /5(2) (35)
. sinz cosz
I (36)
) 3 1\ . 3
ja(z) = <z3 — z) sinz — — cosz (37)

Zeros: ji(z)) =0, z0 = 7w, 21 = 4.493409, 25 = 5.763459.
Note that

dji/dlnz|,, = —1. (38)
6 Relative magnetic helicity
Hrcl - /(A + AP) . (B — BP) d‘/, (39)

where Bp = V X Ap is a potential (current-free) reference
field in the interior with Bp, = B, on r = R. We express
Ap in terms of the poloidal part of the superpotential,

Ap =V x (D). (40)
The corresponding current is
Jp =V xV xVx(#®) = -V x (#V?®). (41)

The potential field is current-free, i.e. Jp = 0, so we re-
quire

V20 = 0. (42)
We solve this equation in spectral space and define
Dy(r) =/ Nom / Py(cos0)P(r, 0)sin 6 d6. (43)
0
where m = 0. The backward transform is
L
(I)(T, 0) = Z V Nem (I)Z(T)PE(COS 9)7 (44)
=1

and
(£ —m)!
(€ +m)!
are the normalization coefficients of the Legendre polyno-
mials.

It is convenient to define (i)g = r®y, so the potential
equation in spectral space reads

0e+1)
7‘2

Nem = 5(20+1) (45)

Y — o, =0,

(46)

where and primes denote radial derivatives. Since the ra-
dial components of B and Bp coincide on r = R, we have

B,=-1-VxVxrd=-V1d (47)
onr = R. In spectral space this corresponds to the bound-

ary condition
~ R?

(48)

where

be = \/Nom / Py(cos0) B (R, 0)sin0do.  (49)
0

7 Useful relations in axisymmetry
A useful relation in connection with axisymmetry is

D2dg = dyDydy = dgD3. (50)

It allows to show that the vacuum condition in axisym-
metry, D?A, = 0, is equivalent to the general vacuum
condition, V2® = 0, where ® is the poloidal superpoten-
tial of the vacuum field, so A = V x (#®). Here we have
introduced the operator

D?*=-w?+V?=D?+Dj, (51)
which is frequently used in axisymmetry. In axisymmetry,
only the ¢ component of the A of a potential field is finite,
and Ay = rdg®. Thus,

D?Ay = D*rdp® = rdgD2® + rdgD3® = rdpVZ® = 0
(52)
Another useful relation in axisymmetry is

dPy(cos §)

10 = P} (cos®)

(53)



7.1 Examples

DZji(kr) = (2r2 — k) ji(kr) (54)
Djsinh = —2r ?sind (55)
Thus
b(r,0) = j1(kr)sinf (56)
is an eigenfunction of D? with
D?b + k*b = 0. (57)
A particular solution of the potential equation
D?a =0 (58)
is
o={ i mrii (59)

where @w = rsinf.

7.2 Constant o sphere

The axisymmetric steady state dynamo equations for o =
const and nr = R =1 are

ab+ D*a=0, —aD?*a+ D*b=0. (60)
A solution that satisfies the boundary condition
da/dr+2a=0 onr=1 (61)
is
a=k '[ji(kr) + ir]sin6, b= ji(kr)sin6 (62)
(with k = 4.493409) in r < 1 and
a=3k"'r?sing, b=0 (63)
inr>1
7.3 Rewrite
A=adp+V xco, (64)
B =b¢p+V xad, (65)
where D?c = —band ¢ = O on r = 1is assumed. Therefore,
c =k %j(kr)sin6 (66)

7.4 The potential part of B

Both in the interior and the exterior the field has a poten-
tial part, VW. This can be seed by splitting

a=ag+a (67)
with
ap = k™1 (kr)sing, a; =ik 'rsing, (68)
where a; satisfies
B, =V xa¢p=VU. (69)
In this case, By = 2k~'z (in r < 1), so
U=2k""rcost r<l1, (70)
and
U=1k""r"2cosf r>1. (71)
7.5 Vacuum reference field
Ap =app+V x cpd, (72)
Bp =bpd + V X ap, (73)
ap = irk~'sinf, bp =0, cp=0. (74)
7.6 Integral over P
/7T Py(cosf)sinfdb = 2 (75)
o 20+ 1

8 Magnetic helicity in spheres em-
bedded in a vacuum

The helicity integral can be split into toroidal and poloidal
components, i.e.

A-B=ab+ A, B, (76)
The poloidal part of the helicity integral can be written in
the form

A, -B,=ab+V - (ap x A). (77)



This shows first of all that the magnetic helicity for the
infinite volume (surface integral vanishes) can be written
as

H =
V+Vext

(ab+ A, - By) dV:2/ abdV.  (78)

1%

This is gauge-invariant, because there is no surface term.
Since b = 0 outside the sphere, this integral is only over
the sphere. Except for the case of the constant « sphere,
H will always be zero because of cancelation between the
two hemispheres. Thus, the magnetic helicity integral for
the infinite upper half space is, in the Coulomb gauge,

HY =2 / ab dV + / aA,-dS.  (79)
N 0=m/2

The second integral vanishes for fields with dipolar sym-
metry (A, =0 on the midplane).

8.1 Relative helicity

We make use of the fact that for the vacuum field only ap is
finite. The contribution from the toroidal components to
the relative helicity integral is just [(a+ap)bdV, because
the vacuum field does not have a toroidal field. For the
poloidal contribution we note that the vacuum field has a
purely toroidal vector potential, so we have

A, - (B—Bp),=bla—ap)+V-[(a— ap) x A,l. (80)
However, on the boundary we always have

a=ap ondV, (81)
so the relative magnetic helicity is always (both for

toroidal and poloidal fields)

HD =2 / ab V. (82)
14
In particular, we have
HIY =2 / ab dV. (83)
N

8.2 Mean-field af) dynamo

We consider here the case without meridional circulation,
so we have

(0, —nrD*) a=ab (84)

(0 —nrD*)b=¢-V x aB, + wB, - VQ.  (85)

We are interested in the evolution of ab, so from the first
equation we have

bdra = ab® — nrjb, (86)
where j = —D?a. From the second equation we have
adib = aB? —npJy, - By, — 1V - Fy. (87)

The factor 1/2 enters in the expression for the helicity flux,
because the relative magnetic helicity is given by 2ab, so

Fu = —2(aB, —nrd,) X ¢pa — 20w By, (88)
where we have made use of the identities

a¢ -V x aB, = aB2 + aB,, x ¢a, (89)

aD*h=—-J,-B, -V -J, x ¢a, (90)

wa By, - VQ =V (awQ By). (91)

The last one comes from the helicity flux due to the

toroidal velocity, U = quB,
(U x By) x a¢ = awS) B, (92)

We also note that in axisymmetry the poloidal magnetic
field can be written in the form

B, =V xap =—w ¢ x V(wa) (93)
Thus, the final magnetic helicity equation is
4 preen _ 2/ EB-¢ Fy-dS (94)
dt v ov
where o
§-B=aB?>-nrJ-B (95)
where we have omitted the overbars again, and
FH - 2Ep X At7 (96)
where Ay = (;Aﬁa and
E,=-U x B, — (aBp —n1Jyp). (97)

This equation is true even if there was meridional circula-
tion, because the poloidal flow does not enter, so that

Ep = _Ut X Bp — (OéBp - nTJp) (98)



is the relevant expression even in the general case (al-
though then the symbol E, is misleading, because one
would think there would be the additional term U, x By
which is not the case). On the other hand, U, = 0 on
the boundary, so there would not have been any confusion
anyway. The expression (88) is therefore to be preferred.

8.3 Advective gauge
Assume U = (0,0, w ), so

A
% —UxB=0V(wA,) = @A,V Ve  (99)
with ¢ = Uy Ay,
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