The Pencil Code:
A High-Order MPI code for MHD Turbulence

User’s and Reference Manual

| B

;=
|

|

October 28, 2025
https://pencil-code.org
https://github.com/pencil-code/pencil-code

https://pencil-code.org
https://github.com/pencil-code/pencil-code

The PENCIL CODE: multi-purpose and multi-user maintained
http://www.nordita.org/~brandenb/talks/misc/PencilCode04.htm

r = = T
timestep o m e x XxA BBA @ W 08 o0 Mmoo BO ¢ @ Wlyr
start O X X AKX KRG [FIN O @ R0@OE o MRer @ ¢ Ox * ypar
register o ameemex mee Dol DR x SIER G0 0F 90 DRIT 90D & oEEdcnIm Oxx D tork
radiation_ray oo oM 0o A M0 <tk o4 A0 MRS O® A thei
radiation_exp praTTe ¢ tare
pscalar Moocw mexOxE AWsA o 9 006 66 % 6 0 A S o w gtrf
power_spectrum THEC M X OUN X XA & o & 6 X% OHAD
param_io B % WO T TR HOCOMIHEN 30 0 D0 CHOOMNSDA0 D [N abt>

Mokefile pommn mmsmm e mixsmmeos
magnetlc 00 I O K EOCNEE. TEmamsisssse 4 oD Dotk oD Ermmeg:

ianization ok SN i olamy o OB o O ngrs
interstellar B X Soindh Daniomme CORO® ¢ B N O ¢ A memi
initcond Boriombo DMBNEINEN ABTOR 0080 O [SIS0 DG COMBEEN ¥De 0 i
hydra D L e A yrr—————— SV o « gV
forcing DRI WX X BIXIX X T #EK O W @ D% wox mxo on x 0 dobl
equ N R 0 7 et o DO W B 13646 W0 500- DUEITHOMD - SmeneD e < o> & dint
entrapy promsenme: x RIS O CRDOSDE G ¢ GmtbEEsawosx O chri
dustyelocity X% M B COMMMRNISABAIS NS & 0000 & 00 OO0 BOS * bran
dustdensity X M0 0 COMATIMMGHIS DO O BB o0 OE 064 B bing
density MRS oCRN RIDCWARIN AT E) 00 OcERAMNE IMIZIE GREIINMG @ Delmnse 2 ande
cdata TR ¢ R "o SERBANANG (G TR 2040 GBI GIENIO0 COOTRNNOIGCTN Dabex O OJOh
2002 2003 2004 2005 2006 2007 2008

Figure 1: Check-in patterns as a function of time for different subroutines. The different users are marked
by different symbols and different colors.

150
100
50

0
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Figure 2: GitHub check-in pattern since 2002; see
https://github.com/pencil-code/pencil-code/graphs/contributors

1i

http://www.nordita.org/~brandenb/talks/misc/PencilCode04.htm
https://github.com/pencil-code/pencil-code/graphs/contributors

Contributors to the code

(in inverse alphabetical order according to their user name)

An up to date list of Pencil Code contributors can be found at GitHub.

xiang-yu
wladimir.lyra
weezy

wdobler
vpariev

torkel
tavo-buk
tgastine
tobson, theine
tarek
sven.bingert
steveb

asnodin
rplasson
qiancg
pkapyla
onlymee
nishkpph
nils.e.haugen
NBabkovskaia
mrheinhardt
mppiyali
mkorpi
miikkavaisala
michiellambrechts
Mewek
mcmillan
mattias
luizfelippesr
koenkemel
karlsson
jwarne
jpekkila
jnskrueger
jaarnes

joishi
JenSchober
Illarl

Tomsnl
grsarson
fredgent
fadiesis

dorch
bdintrans
dhrubaditya
colinmcnally
ChristerSandin
chaochinyang
Bourdin. KIS
AxelBrandenburg
apichat

amjed
alihyder727
alexanderhubbard
andreas-schreiber
ajohan

Xiang-Yu Li
Wladimir Lyra

S. Louise Wilkin
Wolfgang Dobler
Vladimir Pariev

Ulf Torkelsson
Gustavo Guerrero
Thomas Gastine
Tobias (Tobi) Heinemann
Tarek A. Yousef

Sven Bingert

Steve Berukoff
Andrew Snodin
Raphael Plasson
Chengeng Qian

Petr1 Kapyla

Antony (tOnY) Mee
Nishant K. Singh
Nils Erland L. Haugen
Natalia Babkovskaia
Matthias Rheinhardt
Piyali Chatterjee
Maarit J. Korpi-Lagg (née Korpi, Mantere, Kéapyla)
Miikka Vaisala
Michiel Lambrechts
Ewa Karchniwy
David McMillan
Mattias Christensson
Luiz Felippe S. Rodrigues
Koen Kemel

Torgny Karlsson
Jorn Warnecke
Johannes Pekkila
Jonas Krueger
Jgrgen Aarnes

Jeff' S. Oishi

Jennifer Schober

Illa R. Losada

Simon Candelaresi
Graeme R. Sarson
Frederick Gent
Fabio Del Sordo
Bertil Dorch

Boris Dintrans
Dhrubaditya Mitra
Colin McNally
Christer Sandin
Chao-Chin Yang
Philippe Bourdin
Axel Brandenburg
Apichat Neamvonk
Amjed Mohammed
Ali Hyder

Alex Hubbard
Andreas Schreiber
Anders Johansen

1ii

Pacific Northwest National Laboratory
New Mexico State Uniw.
University of Newcastle
Bruker, Potsdam

University of Rochester
Chalmers University

Univ. Minas Gerais

MPI for Solar System Research
NBIA, Copenhagen

University of Trondheim

Ges. f. wiss. Datenverarb.
UCLA

University of Newcastle
Avignon Université

Beijing Inst. of Technology
University of Gottingen

Bank of Am. Merrill Lynch, London
TUCAA

SINTEF, Trondheim
University of Helsinki

Aalto University, Espoo
Bangalore

Aalto University

Academia Sinica, Inst. Astron. & Astro
Lund Observatory

Silesian University of Techn.
York University, Toronto
formerly at Nordita

Radboud University

Nordita, Stockholm

Nordita

MPS, Géttingen

Aalto University

Trondheim

Trondheim

Bates College

EPFL, Lausanne

McDonald Observatory, USA
University of Glasgow
University of Newcastle

Aalto University, Espoo
Nordita, Stockholm

University of Copenhagen
Observatoire Midi-Pyrénées, Toulouse
Nordita, Stockholm

NBIA, Copenhagen

Nordita

The University of Alabama
Space Res. Inst., Graz

Nordita, Stockholm

University of Newcastle
University of Oldenburg

New Mexico State Univ.

Am. Museum Nat. History
MPI Heidelberg

GLOBE Institute, Copenhagen Univers

https://github.com/pencil-code/pencil-code/graphs/contributors
https://www.pnnl.gov/science/staff/staff_info.asp?staff_num=10102
http://astronomy.nmsu.edu/wlyra/
http://www.mas.ncl.ac.uk/~n9405169/
http://www.kis.uni-freiburg.de/~dobler/
http://www.pas.rochester.edu/~vpariev/
http://fy.chalmers.se/~torkel/
https://orcid.org/0000-0002-2671-8796
http://www.mps.mpg.de/homes/gastine/
http://www.damtp.cam.ac.uk/user/theine/
http://www.pvv.org/~tarek/
http://www.svenbingert.de
http://www.physics.ucla.edu/~steveb/
http://www.ncl.ac.uk/math/postgrad/postgrads.htm
https://github.com/pencil-code/pencil-code
http://www.helsinki.fi/~kapyla/
http://www.mas.ncl.ac.uk/~n7026413/pencil-code/movies/
http://www.sintef.no/Kontakt-oss/Alle-ansatte/?EmpId=1199
http://www.nordita.org/~nbabkovs/
http://www.helsinki.fi/~rei/
http://www.mn.uio.no/astro/english/people/aca/piyali/index.html
http://research.aalto.fi/en/persons/maarit-korpi-lagg
http://www.asiaa.sinica.edu.tw/people/cv.php?i=mvaisala
http://pc500.astro.lu.se/~michiel/
http://brunhes.eas.yorku.ca/dave/CV/
http://www.nordita.org/~mattias/
http://www.nordita.org/~koen/
http://www.nordita.org/people/people.php?variant=single&cn=Torgny+Karlsson
http://www.nordita.org/~warnecke/
https://github.com/pencil-code/pencil-code
https://github.com/pencil-code/pencil-code
http://cms.jsoishi.org/
https://jennifer-schober.com/
https://www.gla.ac.uk/schools/mathematicsstatistics/staff/simoncandelaresi/
http://www.mas.ncl.ac.uk/~ngrs/home.html
http://fagent.wikidot.com/
http://www.nordita.org/~fabio/
http://www.astro.ku.dk/~dorch/
http://www.ast.obs-mip.fr/dintrans
http://www.nordita.org/~dhruba
http://www.astro.uu.se/~christer/CS_index.html
https://physics.ua.edu/people/chao-chin-yang/
https://www.iwf.oeaw.ac.at/en/user-site/philippe-bourdin/
http://www.nordita.org/~brandenb/
Apichat.Neamvonk@ncl.ac.uk
http://ehf.uni-oldenburg.de/member.php?nav=staff&sprache=english&show=43
http://www.linkedin.com/pub/alexander-hubbard/47/906/379
https://github.com/pencil-code/pencil-code
http://pc366.astro.lu.se/anders/index_en.php

Copyright © 2001-2025 Wolfgang Dobler & Axel Brandenburg

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

iv

License agreement and giving credit

The content of all files under :pserver:$USER@svn.nordita.org:/var/cvs/brandenb are
under the GNU General Public License (http://www.gnu.org/licenses/gpl.html).

We, the PENCIL CODE community, ask that in publications and presenta-
tions the use of the code (or parts of it) be acknowledged with reference
to [40] “Pencil Code Collaboration, J. Open Source Software, 6, 2807 (2021)
The Pencil Code, a modular MPI code for partial differential equations and
particles: multipurpose and multiuser-maintained.” This automatically gives a
reference to the web sites http://www.nordita.org/software/pencil-code/| and
https://github.com/pencil-code/pencil-code. As a courtesy to the people involved in
developing particularly important parts of the program (use svn annotate src/*.f90 to
find out who did what!) we suggest to give appropriate reference to one or several of the
following (or other appropriate) papers (listed here in temporal order):

Dobler, W., Haugen, N. E. L., Yousef, T. A., & Brandenburg, A.: 2003, “Bottleneck ef-
fect in three-dimensional turbulence simulations,” Phys. Rev. E 68, 026304, 1-8
(astro-ph/0303324)

Haugen, N. E. L., Brandenburg, A., & Dobler, W.: 2003, “Is nonhelical hydromag-
netic turbulence peaked at small scales?” Astrophys. J. Lett. 597, 1.141-L144
(astro-ph/0303372)

Brandenburg, A., Kipyla, P., & Mohammed, A.: 2004, “Non-Fickian diffusion and
tau-approximation from numerical turbulence,” Phys. Fluids 16, 1020-1027
(astro-ph/0306521)

Johansen, A., Andersen, A. C., & Brandenburg, A.. 2004, “Simulations of dust-
trapping vortices in protoplanetary discs,” Astron. Astrophys. 417, 361-371
(astro-ph/0310059)

Haugen, N. E. L., Brandenburg, A., & Mee, A. J.: 2004, “Mach number dependence
of the onset of dynamo action,” Monthly Notices Roy. Astron. Soc. 353, 947-952
(astro-ph/0405453)

Brandenburg, A., & Multamaiki, T.: 2004, “How long can left and right handed life forms
coexist?” Int. J. Astrobiol. 3, 209-219 (g-bio/0407008)

McMillan, D. G., & Sarson, G. R.: 2005, “Dynamo simulations in a spherical shell of
ideal gas using a high-order Cartesian magnetohydrodynamics code,” Phys. Earth
Planet. Int.153, 124-135

Heinemann, T, Dobler, W., Nordlund, A., & Brandenburg, A.: 2006, “Radiative transfer
in decomposed domains,” Astron. Astrophys. 448, 731-737 (astro-ph/0503510)

Dobler, W., Stix, M., & Brandenburg, A.: 2006, “Convection and magnetic field genera-
tion in fully convective spheres,” Astrophys. J. 638, 336-347 (astro-ph/0410645)

Snodin, A. P., Brandenburg, A., Mee, A. J., & Shukurov, A.: 2006, “Simulating field-
aligned diffusion of a cosmic ray gas,” Monthly Notices Roy. Astron. Soc. 373, 643-
652 (astro-ph/0507176)

Johansen, A., Klahr, H., & Henning, T.: 2006, “Dust sedimentation and self-sustained
Kelvin-Helmholtz turbulence in protoplanetary disc mid-planes,” Astrophys. .
636, 1121-1134 (astro-ph/0512272)

de Val-Borro, M. and 22 coauthors (incl. Lyra, W.): 2006, “A comparative study
of disc-planet interaction,” Monthly Notices Roy. Astron. Soc. 370, 529-558
(astro-ph/0605237)

Johansen, A., Oishi, J. S., Mac Low, M. M., Klahr, H., Henning, T., & Youdin, A.: 2007,
“Rapid planetesimal formation in turbulent circumstellar disks,” Nature 448,

\%

http://www.gnu.org/licenses/gpl.html
http://www.nordita.org/software/pencil-code/
https://github.com/pencil-code/pencil-code
http://arXiv.org/abs/astro-ph/0303324
http://arXiv.org/abs/astro-ph/0303372
http://arXiv.org/abs/astro-ph/0306521
http://arXiv.org/abs/astro-ph/0310059
http://arXiv.org/abs/astro-ph/0405453
http://arXiv.org/abs/abs/q-bio/0407008
http://arXiv.org/abs/astro-ph/0503510
http://arXiv.org/abs/astro-ph/0410645
http://arXiv.org/abs/astro-ph/0507176
http://arXiv.org/abs/astro-ph/0512272
http://arXiv.org/abs/astro-ph/0605237

1022-1025 (arXiv/0708.3890)

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N.: 2008, “Global magnetohydrody-
namical models of turbulence in protoplanetary disks I. A cylindrical potential
on a Cartesian grid and transport of solids,” Astron. Astrophys. 479, 883-901
(arXiv/0705.4090)

Brandenburg, A., Radler, K.-H., Rheinhardt, M., & Kapyla, P. J.: 2008, “Magnetic diffu-
sivity tensor and dynamo effects in rotating and shearing turbulence,” Astrophys.
J. 676, 740-751 (arXiv/0710.4059)

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N.: 2008, “Embryos grown in the dead
zone. Assembling the first protoplanetary cores in low-mass selfgravitating cir-
cumstellar disks of gas and solids,” Astron. Astrophys. 491, 1L41-1L.44

Lyra, W., Johansen, A., Klahr, H., & Piskunov, N.: 2009, “Standing on the shoulders of
giants. Trojan Earths and vortex trapping in low-mass selfgravitating protoplan-
etary disks of gas and solids,” Astron. Astrophys. 493, 1125-1139

Lyra, W., Johansen, A., Zsom, A., Klahr, H., & Piskunov, N.: 2009, “Planet formation
bursts at the borders of the dead zone in 2D numerical simulations of circumstel-
lar disks,” Astron. Astrophys. 497, 869-888 (arXiv/0901.1638)

Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D.: 2009, “Turbulent dynamos in spher-
ical shell segments of varying geometrical extent,” Astrophys. J. 697, 923-933
(arXiv/0812.3106)

Haugen, N. E. L., & Kragset, S.: 2010, “Particle impaction on a cylinder in a crossflow
as function of Stokes and Reynolds numbers,” JJ. Fluid Mech. 661, 239-261
Rheinhardt, M., & Brandenburg, A.: 2010, “Test-field method for mean-field coefficients

with MHD background,” Astron. Astrophys. 520, A28 (arXiv/1004.0689)

Babkovskaia, N., Haugen, N. E. L., Brandenburg, A.: 2011, “A high-order public domain
code for direct numerical simulations of turbulent combustion,” J. Comp. Phys.
230, 1-12 (arXiv/1005.5301)

Johansen, A., Klahr, H., & Henning, Th.: 2011, “High-resolution simulations of planetes-
imal formation in turbulent protoplanetary discs,” Astron. Astrophys. 529, A62

Johansen, A., Youdin, A. N., & Lithwick, Y.: 2012, “Adding particle collisions to the for-
mation of asteroids and Kuiper belt objects via streaming instabilities,” Astron.
Astrophys. 537, A125

Lyra, W. & Kuchner, W. : 2013, “Formation of sharp eccentric rings in debris disks with
gas but without planets,” Nature 499, 184-187

Yang, C.-C., & Johansen, A.: 2016, “Integration of Particle-Gas Systems with Stiff Mu-
tual Drag Interaction,” Astrophys. J. Suppl. Series 224, 39

Roper Pol, A., Brandenburg, A. Kahniashvili, T., Kosowsky, A., & Mandal, S.: 2020, “The
timestep constraint in solving the gravitational wave equations sourced by hydro-
magnetic turbulence,” Geophys. Astrophys. Fluid Dyn. 114, 130-161

This list is not always up-to-date. We therefore ask the developers to check in new rele-
vant papers, avoiding however redundancies.

We are aware of the fact that certain extensions to the code may still be under intense
development and no paper can be quoted yet. Again, if your work directly profits from
such code, as a courtesy to those developers, we suggest to contact them, if possible, and
ask whether there is anything else that can be quoted instead.

It is also sometimes nice to see that the PENCIL CODE is being acknowledged for having
inspired certain other developments, so for example in the GALPROP program [41].

vi

http://arXiv.org/abs/0708.3890
http://arXiv.org/abs/0705.4090
http://arXiv.org/abs/0710.4059
http://arXiv.org/abs/0901.1638
http://arXiv.org/abs/0812.3106
http://arXiv.org/abs/1004.0689
http://arXiv.org/abs/1005.5301

Foreword

This code was originally developed at the Turbulence Summer School of the Helmholtz
Institute in Potsdam (2001). While some SPH and PPM codes for hydrodynamics and
magnetohydrodynamics were publicly available, this did not seem to be generally the
case for higher order finite-difference or spectral codes. This has changed since 2001;
examples are the SpECTRE code, which is a discontinuous Galerkin code, and there
are also the Snoopy and Dedalus codes, which are spectral. Having been approached by
people interested in using our code, we decided to make it as flexible as possible and
as user-friendly as seems reasonable, and to put it onto a public CVS repository. Since
21 September 2008 it is distributed via https://github.com/pencil-code/pencil-code.
The code can certainly not be treated as a black box (no code can), and in order to
solve a new problem in an optimal way, users will need to find their own optimal set of
parameters. In particular, you need to be careful in choosing the right values of viscosity,
magnetic diffusivity, and radiative conductivity.

The PENCIL CODE is primarily designed to deal with weakly compressible turbulent
flows, which is why we use high-order first and second derivatives. To achieve good par-
allelization, we use explicit (as opposed to compact) finite differences. Typical scientific
targets include driven MHD turbulence in a periodic box, convection in a slab with non-
periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic
box, accretion disc turbulence in the shearing sheet approximation, etc. Furthermore,
nonlocal radiation transport, inertial particles, dust coagulation, self-gravity, chemical
reaction networks, and several other physical components are installed, but this num-
ber increases steadily. In addition to Cartesian coordinates, the code can also deal with
spherical and cylindrical polar coordinates.

Magnetic fields are implemented in terms of the magnetic vector potential to ensure
that the field remains solenoidal (divergence-free). At the same time, having the mag-
netic vector potential readily available is a big advantage if one wants to monitor the
magnetic helicity, for example. The code is therefore particularly well suited for all kinds
of dynamo problems.

The code is normally non-conservative; thus, conserved quantities should only be con-
served up to the discretization error of the scheme (not to machine accuracy). There is
no guarantee that a conservative code is more accurate with respect to quantities that
are not explicitly conserved, such as entropy. Another important quantity that is (to
our knowledge) not strictly conserved by ordinary flux conserving schemes is magnetic
helicity.

There are currently no plans to implement adaptive mesh refinement into the code,
which would cause major technical complications. Given that turbulence is generically
space-filling, local refinement to smaller scales would often not be very useful anyway.
On the other hand, in some geometries turbulence may well be confined to certain re-
gions in space, so one could indeed gain by solving the outer regions with fewer points.

In order to be cache-efficient, we solve the equations along pencils in the z direction.
One very convenient side-effect is that auxiliary and derived variables use very little
memory, as they are only ever defined on one pencil. The domain can be tiled in the y
and z directions. On multiprocessor computers, the code can use MPI (Message Pass-
ing Interface) calls to communicate between processors. An easy switching mechanism
allows the user to run the code on a machine without MPI libraries (e.g., a notebook
computer). Ghost zones are used to implement boundary conditions on physical and

vii

https://github.com/pencil-code/pencil-code

processor boundaries.

A high level of flexibility is achieved by encapsulating individual physical processes
and variables in individual modules, which can be switched on or off in the file
‘Makefile.local’ in the local ‘src’ directory. This approach avoids the use of difficult-
to-read preprocessor directives, at the price of requiring one dummy module for each
physics module. For nonmagnetic hydrodynamics, for example, one will use the module
‘nomagnetic.f90’ and specifies

MAGNETIC = nomagnetic
in ‘Makefile.local’, while for MHD simulations, ‘magnetic.f90” will be used:
MAGNETIC = magnetic

Note that the term module as used here is only loosely related to Fortran modules: both
‘magnetic.f90’ and ‘nomagnetic.f90’ define an F90 module named Magnetic — this is the
basis of the switching mechanism we are using.

Input parameters (which are set in the files ‘start.in’, ‘run.in’) can be changed without
recompilation. Furthermore, one can change the list of variables for monitoring (diag-
nostic) output on the fly, and there are mechanisms for making the code reload new
parameters or exit gracefully at runtime. You may want to check for correctness of these
files with the command pc_configtest.

The requirements for using the Pencil-MPI code are modest: you can use it on any Linux
or Unix system with a F95 and C compiler suite, like GNU gcc and gfortran, together
with the shell CSH, and the Perl interpreter are mandatory requirements.

Although the PENCIL CODE is mainly designed to run on supercomputers, more than
50% of the users run their code also on Macs, and the other half uses either directly
Linux on their laptops or they use VirtualBox on their Windows machine on which they
install Ubuntu Linux. If you have IDL as well, you will be able to visualize the re-
sults (a number of sample procedures are provided), but other tools such as Python, DX
(OpenDX, data explorer) can also be used and some relevant tools and routines come
with the PENCIL CODE.

If you want to make creative use of the code, this manual will contain far too little in-
formation. Its major aim is to give you an idea of the way the code is organized, so you
can more efficiently read the source code, which contains a reasonable amount of com-
ments. You might want to read through the various sample directories that are checked
in. Choose one that is closest to your application and start modifying. For further en-
hancements that you may want to add to the code, you can take as an example the lines
in the code that deal with related variables, functions, diagnostics, equations etc., which
have already been implemented. Just remember: grep is one of your best friends when
you want to understand how certain variables or functions are used in the code.

We will be happy to include user-supplied changes and updates to the code in future
releases and welcome any feedback.

wdobler@gmail.com Potsdam
AxelBrandenburg@gmail.com Stockholm

viii

Acknowledgments

Many people have contributed in different ways to the development of this code. We
thank first of all Ake Nordlund (Copenhagen Observatory) and Bob Stein (University of
Michigan) who introduced us to the idea of using high-order schemes in compressible
flows and who taught us a lot about simulations in general.

The calculation of the power spectra, structure functions, the remeshing procedures,
routines for changing the number of processors, as well as the shearing sheet approxi-
mation and the flux-limited diffusion approximation for radiative transfer were imple-
mented by Nils Erland L. Haugen (University of Trondheim). Tobi Heinemann added
the long characteristics method for radiative transfer as well as hydrogen ionization.
He also added and/or improved shock diffusion for other variables and improved the
resulting timestep control. Anders Johansen, Wladimir (Wlad) Lyra, and Jeff Oishi con-
tributed to the implementation of the dust equations (which now comprises an array of
different components). Antony (Tony) Mee (University of Newcastle) implemented shock
viscosity and added the interstellar module together with Graeme R. Sarson (also Uni-
versity of Newcastle), who also implemented the geodynamo set-up together with David
McMillan (currently also at the University of Newcastle). Tony also included a method
for outputting auxiliary variables and enhanced the overall functionality of the code
and related idl and dx procedures. He also added, together with Andrew Snodin, the
evolution equations for the cosmic ray energy density. Vladimir Pariev (University of
Rochester) contributed to the development and testing of the potential field boundary
condition at an early stage. The implementation of spherical and cylindrical coordinates
is due to Dhrubaditya (Dhruba) Mitra and Wladimir Lyra. Wlad also implemented the
global set-up for protoplanetary disks (as opposed to the local shearing sheet formalism).
He also added a N-body code (based on the particle module coded by Anders Johansen
and Tony), and implemented the coupled evolution equations of neutrals and ions for
two-fluid models of ambipolar diffusion. Boris Dintrans is in charge of implementing the
anelastic and Boussinesq modules. Philippe-A. Bourdin implemented HDF5 support and
wrote the optional I0-modules for high-performance computing featuring various com-
munication strategies. He also contributed to the solar-corona module and worked on
the IDL GUI, including the IDL routines for reading and working with large amounts of
data. Again, this list contains other recent items that are not yet fully documented and
acknowledged.

Use of the PPARC supported supercomputers in St Andrews (Mhd) and Leicester (Ukaff)
is acknowledged. We also acknowledge the Danish Center for Scientific Computing for
granting time on Horseshoe, which is a 512+140 processor Beowulf cluster in Odense
(Horseshoe).

X

Contents

21 O . 7
4.2.2 Modularitq
4.3 Files in the run directories o o v i

1re O onliguration 1ileso 00000000 ..

: ’ . -
5.1.5 Testingthecoddo v
5.2 Adapting ‘Makefile.src’ [obsolete; see Sect. ﬁ

NANZING LNE QIULIONY & ¢ v v v v vt vt h e e e e e e e e e e e e e

.

[y

WwWwN NN

O© 300 OO T i

5.13 Physical Units o o oo 35
5.14 Minimum amount of viscosityl 36
5.15 The time Stem . .« « o o v v e e e e 36
5.15.1 The usual RK-2N time stepl 36

- - imestepl., 37

5.16 Boundary conditions o et e e e e 37
15.16.1 Where to specify boundary conditions 37
5.16.2 How to specify boundary conditions 38

5.19.5 PYERON . . . o o e e 45
|5_.2D_R41nning on multi-processor compUtersot 48
15.20.1 How to run a sample problem in parallel 48

SPLECISION « + v v v e e e e e e e e e e e e e e e e e 50
15.22 Power Spectrumml« ot oo e e 50
15.23 Other power spectral o o v o e 52

5.24 Structure functiond 53
[5.25 Particled 54

The equations 59
6.1 Continuity equation « v v vt e e e 59
6.2 Equation of motionl 59
6.3 Induction equation« . v et e e e 60
6.4 Entropy equationl oo e e e 60
i NG . . . o e e e e e e e e e e 61

6.4.2 Alternative description « v v v v e 61
16.5__Transport equation for a passive scalan 61
6.6 Bulk viscosityl 62

x1

6.11 Self-gravityl . . . o o v 66

16.12 Incompressible and anelastic equations 66

6.17.1 Tracer particled 70
............................... 70

6.18 N-body SOLVENl o v o e 71
mmgcal expansion and scale factonlo 72
16.20 Test-field equationsd« v v v v e e e e 73
16.21 Gravitational wave equationsttt 73
i uently Asked Questions 77

7.1 Download and Setup« . v vt e e 77

7.2 _Compilation| 77
[7.2.1 _Error: ‘relocation truncated to fit] 77
17.2.2 Problems compiling syscalls 78
17.2.3 _Unable to open include file: chemistryh 78
[7.2.4 Compiling with ifcunder Linux, 78
[7.2.5 _Segmentation fault with ifort 8.0 under Linux 79
17.2.6 _The underscore problem: linking with MPI 79
17.2.7 _Compilation stops with the cryptic error messaged 80
17.2.8 The code doesn’tcompile). 80
17.2.9 _Some samples don’t even compile) 80
17.2.10 Internal compiler error with Compag/DecF90 81

[7.2.11 Assertion failure under SunOS 81
[7.2.12 After some dirty tricks I got pencil code to compile with MPI .. 82
17.2.13 Error: Symbol ‘'mpi comm world’ at (1) has no IMPLICIT typd . . . 82

[7.2.14 Error: Can’t open included file’'mpifhl 82
17.2.15 Compilation fails on MacOS Sonoma or Montereyl 83
[7.2.16 Compilation fails on Tanmay’s MacOS 83

[7.3.1 The pencil check complains fornoreason! 83
17.3.2 _The pencil check reports MISSING PENCILS and quits 84
[7.3.3 The pencil check reports unnecessarvpencild 84
[7.3.4 The Dencﬂ check reports that most or all Denmh are mmsmd . 84

the pencil check tr1

X1l

76 P : T

7.7

General questions

idl problem when Ol’ DATran amy00 000 e ...

O DOPUTIIOUS A0 [l LNE MNEe Series 111e« . ¢ . 0.0 e e e ..
D A 1 a

0D ()] v\ [l D d Ql) [) DO . & ¢ ¢ ¢ ¢« ¢ e ¢ e e e e e e e e e .

.............................

«

xiil

[11 Useful internals 113
[11.1 Global variables o o o 113
[11.2 Subroutines and functiond 113

B.2.3 Module names o o oo 130

B.2.4 Variablenames oottt 130

[B.2.5 Emacs Settings . » .« o o o o e e e 131

B.3 Other best practices v v v v v e e e 132
[B.4 General changestothecodd v i 132
IC_Some specific initial conditions 133
IC.1 Random velocity or magneticfieldd 133
IC.2 Turbulent initial with given spectrum 133

‘ i i 0 o) [137

IC.5.4 The Rayleighnumber 137

IC.5.5 Entropy boundary conditiono 138

itionatthetop 138

C.6 Potential-field boundary condition 139
IC.7_Planet solution in the shearing box 140
D_I&Lum%} 141
D.1 Perfect-conductor boundary condition 141
ID.2 _Stress-free boundary condition 141
[D.3 Normal-field-radial boundary condition 142

- ic di ity L 149

E:% | %ﬁﬁizgigg hdf5-formatteddata. 150
ing unformatted fortran binary data using Python 150

[F.2.3 Remeshing unformatted fortran binary - original method 152

i ith different I/O strategyl 152

ing from a run with less physics 153

IF.5_Restarting with particles from a run without them 154

[.212 Double curl o o oo 177

J _Switchable modules 179

XV

[K_Startup and run-time parameters 181

¢ 181

188

aramete , 196

K.4 Paramete 0 deo D] . v 0 e 250
[K.,5 Parameters for ‘phiaver.inl o o oo oo 251
Paramete o1 ‘X Nl . . e e 253

ete or ‘xzaver.inl e e e e e e e e e e e 266

0 wer.inl L L e 268

0 wer.inl. L e 271

K.10 Paramete 0 aver.inl. e e e e e e e 273
[K11Boundary conditions o v o oo 277
iti ; 278

281

283

286

IL_bin seripts 289
IV_Indexes 293

xvi

Part 1
Using the PENCIL CODE

1 System requirements

To use the code, you will need the following:
1. Absolutely needed:
¢ F95 compiler
¢ C compiler

2. Used heavily (if you don’t have one of these, you will need to adjust many things
manually):

¢ a Unix/Linux-type system with make and csh
® Perl (remember: if it doesn’t run Perl, it’s not a computer)
3. The following are dispensable, but enhance functionality in one way or the other:
¢ an MPI implementation (for parallelization on multiprocessor systems)
¢ DX alias OpenDX or data explorer (for 3-D visualization of results)

¢ IDL (for visualization of results; the 7-minute demo license will do for many
applications)

2 THE PENCIL CODE

2 Obtaining the code

The code is now distributed via https://github.com/pencil-code/pencil-code, where
you can either download a tarball, or, preferably, download it via svn or git. In Iran and
some other countries, GitHub is not currently available. To alleviate this problem, we
have made a recent copy available on http://www.nordita.org/software/pencil-code/.
If you want us to update this tarball, please contact us.

To ensure at least some level of stability of the svn/git versions, a set of test problems
(listed in ‘$PENCIL_HOME/bin/auto-test’) are routinely tested. This includes all problems
in ‘$6PENCIL_HOME/samples’. See Sect. 10| for details.

2.1 Obtaining the code via git or svn

1. Many machines have svn installed (try svn -v or which svn). On Ubuntu, for ex-
ample, svn comes under the package name subversion.

2. The code is now saved under Github, git can be obtained in Linux by typing sudo
apt-get install git

3. Unless you are a privileged users with write access, you can download the code
with the command

git clone https://github.com/pencil-code/pencil-code.git

or

svn checkout https://github.com/pencil-code/pencil-code/trunk/ ...\\
pencil-code --username MY_GITHUB_USERNAME

In order to push your changes to the repository, you have to ask the maintainer of
pencil code for push access (to become a contributor), or put a pull request to the
maintainer of the code.

Be sure to run auto-test before you check anything back in again. It can be very
annoying for someone else to figure out what’s wrong, especially if you are just up
to something else. At the very least, you should do

pc_auto-test --level=0 --no-pencil-check -C

This allows you to run just 2 of the most essential tests starting with all the no-
modules and then most-modules.

2.2 Updating via svn or git

Independent of how you installed the code in the first place (from tarball or via svn/git),
you can update your version using svn/git. If you have done nontrivial alterations to
your version of the code, you ought to be careful about upgrading: although svn/git is an
excellent tool for distributed programming, conflicts are quite possible, since many of us
are going to touch many parts of the code while we develop it further. Thus, despite the
fact that the code is under svn/git, you should probably back up your important changes
before upgrading.

Here is the upgrading procedure for git:

https://github.com/pencil-code/pencil-code
http://www.nordita.org/software/pencil-code/

2.3 Getting the last validated version 3

1. Perform a git update of the tree:
unix> git pull

2. Fix any conflicts you encounter and make sure the examples in the directory
‘samples/’ are still working.

Here is the upgrading procedure for svn:
1. Perform a svn update of the tree:
unix> pc_svnup

2. Fix any conflicts you encounter and make sure the examples in the directory
‘samples/’ are still working.

If you have made useful changes, please contact one of the (currently) 10 “Contributors”
(listed under https://github.com/pencil-code/pencil-code) who can give you push or
check-in permission. Be sure to have sufficient comments in the code and please follow
our standard coding conventions explained in Section [9.1l There is also a script to check
and fix the most common style breaks, pc_codingstyle.

2.3 Getting the last validated version

The script pc_svnup accepts arguments -val or -validated, which means that the current
changes on a user’s machine will be merged into the last working version. This way
every user can be sure that any problems with the code must be due to the current
changes done by this user since the last check-in.

Examples:
unix> pc_svnup -src -s -validated

brings all files in ‘$PENCIL_HOME/src’ to the last validated status, and merges all your
changes into this version. This allows you to work with this, but in order to check in
your changes you have to update everything to the most recent status first, i.e.

unix> pc_svnup -src
Your own changes will be merged into this latest version as before.

NOTE: The functionality of the head of the trunk should be preserved at all times. How-
ever, accidents do happen. For the benefit of all other developers, any errors should
be corrected within 1-2 hours. This is the reason why the code comes with a file
‘pencil-code/license/developers.txt’, which should contain contact details of all de-

velopers. The pc_svnup -val option allows all other people to stay away from any trou-
ble.

2.4 Getting older versions

You may find that the latest svn version of the code produces errors. If you have reasons
to believe that this is due to changes introduced on 27 November 2008 (to give an ex-
ample), you can check out the version prior to this by specifying a revision number with
svn update -r #####. One reason why one cannot always reproduce exactly the same
situation too far back in time is connected with the fact that processor architecture and
the compiler were different, resulting, e.g., in different rounding errors.

https://github.com/pencil-code/pencil-code

4 THE PENCIL CODE

3 Getting started

To get yourself started, you should run one or several examples which are provided in
one of the ‘samples/’ subdirectories. Note that you will only be able to fully assess the
numerical solutions if you visualize them with IDL, DX or other tools (see Sect. [5.19).

3.1 Setup
3.1.1 Environment settings

The functionality of helper scripts and IDL routines relies on a few environment vari-
ables being set correctly. The simplest way to achieve this is to go to the top directory of
the code and source one of the two scripts ‘sourceme. csh’ or ‘sourceme.sh’ (depending on
the type of shell you are using):

csh> cd pencil-code
csh> source ./sourceme.csh

for tesh or csh users; or

sh> cd pencil-code
sh> . ./sourceme.sh

for users of bash, Bourne shell, or similar shells. You should get output similar to

PENCIL_HOME = </home/dobler/f90/pencil-code>
Adding /home/dobler/f90/pencil-code/bin to PATH

Apart from the PATH variable, the environment variable IDL_PATH is set to something
like ./idl:../id1:+$PENCIL_HOME/idl:./data:<IDL_DEFAULT> .

Note 1 The <IDL_DEFAULT> mechanism does not work for IDL versions 5.2 or older. In
this case, you will have to edit the path manually, or adapt the ‘sourceme’ scripts.

Note 2 Ifyou don’t want to rely on the ‘sourceme’ scripts’ (quite heuristic) ability to cor-
rectly identify the code’s main directory, you can set the environment variable PENCIL_-
HOME explicitly before you run the source command.

Note 3 Do not just source the ‘sourceme’ script from your shell startup file (‘"/.cshrc’
or ©/.bashrc’, because it outputs a few lines of diagnostics for each sub-shell, which will
break many applications. To suppress all output, follow the instructions given in the
header documentation of ‘sourceme.csh’ and ‘sourceme.sh’. Likewise, output from other
files invoked by source should also be suppressed.

Note 4 The second time you source ‘sourceme’, it will not add anything to your PATH
variable. This is on purpose to avoid cluttering of your environment: you can source the
file as often as you like (in your shell startup script, then manually and in addition in
some script you have written), without thinking twice. If, however, at the first sourcing,
the setting of PENCIL_HOME was wrong, this mechanism would keep you from ever adding
the right directory to your PATH. In this case, you need to first undefine the environment
variable PENCIL_HOME:

csh> unsetenv PENCIL_HOME
csh> source ./sourceme.csh

3.1 Setup 5

or
sh> unset PENCIL_HOME
sh> . ./sourceme.sh

Note 5 Ifyou want to be able to easily handle multiple versions/branches of Pencil, you
can use the ‘modulefile’ mechanism that is used on most clusters to load libraries and
programs. Create a file at, say, ‘SHOME/ .modulefiles/pencil-local’ with the following
contents:

#Moduled . GH##H####H I

proc ModulesHelp {} {
global version prefix

puts stderr "\tmodules - loads the modules software"
puts stderr "& application environment"

puts stderr "\n\tThis adds $prefix/* to several of the"
puts stderr "\tenvironment variables."

puts stderr "\n\tVersion $version\n"

module-whatis "Environment setup for the Pencil code"

#change the following line according to the location of your local copy of Pencil

setenv PENCIL_HOME $env (HOME) / . software/pencil-code
setenv _sourceme_quiet 1

source-sh bash $env (PENCIL_HOME) /sourceme.sh
unsetenv _sourceme_quiet

To your ¢ /.bashrc’, add
MODULEPATH=$HOME/ .modulefiles: $MODULEPATH

If you now open a new shell and run module avail, you will find the pencil-local mod-
ule created above listed as an option. This requires version 4.6 of the modules program.

3.1.2 Linking scripts and source files

With your environment set up correctly, you can now go to the directory you want to
work in and set up subdirectories and links. This is accomplished by the script ‘pc_-
setupsrc’, which is located in ‘6PENCIL_HOME/bin’ and is thus now in your executable
path.

For concreteness, let us assume you want to use ‘samples/conv-slab’ as your run direc-
tory, i.e. you want to run a three-layer slab model of solar convection. You then do the
following:

unix> cd samples/conv-slab
unix> pc_setupsrc
src already exists
2 files already exist in src

6 THE PENCIL CODE

The script has linked a number of scripts from ‘$PENCIL_HOME/bin’, generated a directory
‘src’ for the source code and linked the Fortran source files (plus a few more files) from
‘$PENCIL_HOME/src’ to that directory:

unix> 1s -F

reference.out src/

start.csh@ run.csh@ getconf.csh@
start.in run.in print.in

3.1.3 Adapting ‘Makefile.src’

This step requires some input from you, but you only have to do this once for each
machine you want to run the code on. See Sect. for a description of the steps you
need to take here.

Note: If you are lucky and use compilers similar to the ones we have, you may be able
to skip this step; but blame yourself if things don’t compile, then. If not, you can run
make with explicit flags, see Sect. 5.2l and in particular Table[1l

3.1.4 Running make

Next, you run make in the ‘src’ subdirectory of your run directory. Since you are
using one of the predefined test problems, the settings in ‘src/Makefile.local’ and
‘src/cparam.local’ are all reasonable, and you just do

unix> make

If you have set up the compiler flags correctly, compilation should complete successfully.

3.1.5 Choosing a data directory

The code will by default write data like snapshot files to the subdirectory ‘data’ of the
run directory. Since this will involve a large volume of IO-operations (at least for large
grid sizes), one will normally try to avoid writing the data via NFS. The recommended
way to set up a ‘data’ data directory is to generate a corresponding directory on the local
disc of the computer you are running on and (soft-)link it to ‘. /data’. Even if the link is
part of an NFS directory, all the IO operations will be local. For example, if you have a
local disc ‘/scratch’, you can do the following:

unix> mkdir -p /scratch/$USER/pencil-data/samples/conv-slab
unix> 1n -s /scratch/$USER/pencil-data/samples/conv-slab ./data

This is done automatically by the pc_mkdatadir command which, in turn, is invoked
when making a new run directory with the pc_newrun command, for example.

Even if you don’t have an NFS-mounted directory (say, on your notebook computer), it
is probably still a good idea to have code and data well separated by a scheme like the
one described above.

An alternative to symbolic links, is to provide a file called ‘datadir.in’ in the root of
the run directory. This file should contain one line of text specifying the absolute or
relative data directory path to use. This facility is useful if one wishes to switch one run
directory between different data directories. It is suggested that in such cases symbolic
links are again made in the run directory to the various locations, then the ‘datadir.in’
need contain only a short relative path.

3.1 Setup 7

3.1.6 Running the code
You are now ready to start the code:

unix> start.csh
Linux cincinnatus 2.4.18-4GB #1 Wed Mar 27 13:57:05 UTC 2002 i686 unknown
Non-MPI version
datadir = data
Fri Aug 8 21:36:43 CEST 2003
src/start.x

CVS: io_dist.f90 v. 1.61 (brandenb) 2003/08/03 09:26:55
[...]

CVS: start.in v. 1.4 (dobler) 2002/10/02 20:11:14
nxgrid,nygrid,nzgrid= 32 32 32

thermodynamics: assume cp=1

uu: up-down

piecewise polytropic vertical stratification (lnrho)
init_lnrho: cs2bot,cs2top= 1.450000 0.3333330
e.g., for ionization runs: cs2bot,cs2top not yet set
piecewise polytropic vertical stratification (ss)

start.x has completed successfully
0.070u 0.020s 0:00.14 64.2% 0+0k 0+0io 180pf+0w

Fri Aug 8 21:36:43 CEST 2003

This runs ‘src/start.x’ to construct an initial condition based on the parameters
set in ‘start.in’. This initial condition is stored in ‘data/proc0/var.dat’ (and in
‘data/procl/var.dat’, etc. if you run the multiprocessor version). It is fair to say that
this is now a rather primitive routine; see ‘pencil-code/idl/read’ for various reading
routines. You can then visualize the data using standard idl language.

If you visualize the profiles using IDL (see below), the result should bear some resem-
blance to Fig. 3], but with different values in the ghost zones (the correct values are set
at run-time only) and a simpler velocity profile.

Now we run the code:
unix> run.csh

This executes ‘src/run.x’ and carries out nt time steps, where nt and other run-time
parameters are specified in ‘run.in’. On a decent PC (1.7 GHz), 50 time steps take about
10 seconds.

The relevant part of the code’s output looks like

-—it-—-—-t-—————- dt------- urms----umax----rhom------ ssm—-—--- dtc----dtu---dtnu---dtchi-
0 0.34 6.792E-03 0.0060 0.0452 14.4708 -0.4478 0.978 0.013 0.207 0.346
10 0.41 6.787E-03 0.0062 0.0440 14.4707 -0.4480 0.978 0.013 0.207 0.345
20 0.48 6.781E-03 0.0064 0.0429 14.4705 -0.4481 0.977 0.012 0.207 0.345
30 0.54 6.777E-03 0.0067 0.0408 14.4703 -0.4482 0.977 0.012 0.207 0.345
40 0.61 6.776E-03 0.0069 0.0381 14.4702 -0.4482 0.977 0.011 0.207 0.346

and lists

8 THE PENCIL CODE
1. the number it of the current time step;
2. the time, t;
3. the time step, dt;
4. the rms velocity, urms = /(u?);
5. the maximum velocity, umax = max |u|;
6. the mean density, rhom = (p);
7. the mean entropy, ssm = (s) /c,;
8. the time step in units of the acoustic Courant step, dtc = 6t ¢5q/02min;
9. the time step in units of the advective time step, dtu = §t/(cs; dz/ max |ul);
10. the time step in units of viscous time step, dtnu = 6t/(cst.y 02%/Vinax);
11. the time step in units of the conductive time step, dtchi = 6t/ (cs; v 022/ Xmax)-

The entries in this list can be added, removed or reformatted in the file ‘print.in’, see
Sects and [K.3l The output is also saved in ‘data/time_series.dat’ and should be

identical to the content of ‘reference.out’.

Inp

-0.02 0.00 0.02 0.04

1.5

Entropy s
A R R LA

-0.6-0.4-0.20.0 0.2

Temperature T

Figure 3: Stratification of the three-layer convection model in ‘samples/conv-slab’ after 50 timesteps
(t = 0.428). Shown are (from left to right) density p, vertical velocity u., entropy s/c, and temperature
T as functions of the vertical coordinate z for about ten different vertical lines in the computational box.
The dashed lines denote domain boundaries: z < —0.68 is the lower ghost zone (points have no physical
significance); —0.68 < z < 0 is a stably stratified layer (ds/dz > 0); 0 < z < 1 is the unstable layer
(ds/dz < 0); 1 < z < 1.32 is the isothermal top layer; z > 1.32 is the upper ghost zone (points have no
physical significance).

If you have IDL, you can visualize the stratification with (see Sect. [5.19.4] for details)

unix > idl

IDL >
IDL >

pc_read_var,obj=var,/trimall
tvscl,var,uu(*,*,0,0)

3.2 Further tests 9

which shows u, in the zy plane through the first meshpoint in the 2 direction. There
have been some now outdates specific routines that produce results like that shown in

Fig.[3l
The same can be achieved using Python (see Sect.[5.19.5 for details) with

unix > ipython3 # (or ’ipython’, or just ’python’)

python > import pencil as pc

python > from matplotlib import pylab as plt

python > var = pc.read.var(trimall=True)

python > plt.imshow(var.uu[O, O, :, :].T, origin=’lower’)

where we also make sure that the axis are shown in a natural way.

Note: If you want to run the code with MPI, you will probably need to adapt
‘getconf.csh’, which defines the commands and flags used to run MPI jobs (and which
is sourced by the scripts ‘start.csh’ and ‘run.csh’). Try

csh -v getconf.csh
or
csh -x getconf.csh

to see how ‘getconf . csh’ makes its decisions. You would add a section for the host name
of your machine with the particular settings. Since ‘getconf . csh’ is linked from the cen-
tral directory ‘pencil-code/bin’, your changes will be useful for all your other runs too.

3.2 Further tests

There is a number of other tests in the ‘samples/’ directory. You can use the script
‘bin/auto-test’ to automatically run these tests and have the output compared to refer-
ence results.

10 THE PENCIL CODE

4 Code structure

4.1 Directory tree

pencil-code

Makefile.local

. : / /
timestep, deriv cparam.local

hydro | nohydro
density | nodensity
entropy | noentropy
grav_z | grav_r | nograv
magnetic | nomagnetic

Figure 4: The basic structure of the code

The overall directory structure of the code is shown in Fig. 4l Under ‘pencil-code’, there
are currently the following files and directories:

bin/ config/ doc/ 1idl/ 1license/ perl/ samples/ sourceme.sh utils/
bugs/ dx/ 1lib/ misc/ README sourceme.csh src/ www/

Almost all of the source code is contained in the directory ‘src/’, but in order to encap-
sulate individual applications, the code is compiled separately for each run in a local
directory ‘src’ below the individual run directory, like e. g. ‘samples/conv-slab/src’.

It may be a good idea to keep your own runs also under svn or cvs (which is older than
but similar to svn), but this would normally be a different repository. On the machine
where you are running the code, you may want to check them out into a subdirectory of
‘pencil-code/’. For example, we have our own runs in a repository called ‘pencil-runs’,
so we do

4.2 Basic concepts 11

unix> cd $PENCIL_HOME
unix> svn co runs pencil-runs

In this case, ‘runs’ contains individual run directories, grouped in classes (like ‘spher’ for
spherical calculations, or ‘kinematic’ for kinematic dynamo simulations). The current
list of classes in our own ‘pencil-runs’ repository is

1d-tests/ disc/ kinematic/ rings/
2d-tests/ discont/ Misc/ slab_conv/
3d-tests/ discussion/ 0LD/ test/
buoy_tube/ forced/ pass_only/

convstar/ interstellar/ radiation/

The directory ‘forced/’ contains some forced turbulence runs (both magnetic and non-
magnetic); ‘gravz/’ contains runs with vertical gravity; ‘rings/’ contains decaying MHD
problems (interlocked flux rings as initial condition, for example); and ‘kinematic/’ con-
tains kinematic dynamo problems where the hydrodynamics is turned off entirely. The
file ‘samples/README’ should contain an up-to-date list and short description of the indi-
vidual classes!]

The subdirectory ‘src’ of each run directory contains a few local configuration files (cur-
rently these are ‘Makefile.local’ and ‘cparam.local’) and possibly ‘ctimeavg.local’. To
compile the samples, links the files ‘. £90°, ‘. ¢’ and ‘Makefile.src’ need to be linked from
the top file[src/]src directory to the local directory . /src’. These links are set up by the
script pc_setupsrc) when used in the root of a run directory.

General-purpose visualization routines for IDL or DX are in the directories ‘id1’ and ‘dx’,
respectively. There are additional and more specialized IDL directories in the different
branches under ‘pencil-runs’.

The directory ‘doc’ contains this manual; ‘bin’ contains a number of utility scripts
(mostly written in csh and Perl), and in particular the ‘start.csh’, ‘run.csh’, and
‘getconf.csh’ scripts. The . svn’ directory is used (you guessed it) by .svn, and is not
normally directly accessed by the user; ‘bugs’, finally is used by us for internal purposes.

The files ‘sourceme.csh’ and ‘sourceme.sh’ will set up some environment variables — in
particular PATH — and aliases/shell functions for your convenience. If you do not want
to source one of these files, you need to make sure your IDL path is set appropriately
(provided you want to use IDL) and you will need to address the scripts from ‘bin’ with
their explicit path name, or adjust your PATH manually.

4.2 Basic concepts
4.2.1 Data access in pencils

Unlike the CRAY computers that dominated supercomputing in the 80s and early 90s,
all modern computers have a cache that constitutes a significant bottleneck for many
codes. This is the case if large three-dimensional arrays are constantly used within each
time step, which has the obvious advantage of working on long arrays and allows vector-
ization of elementary machine operations. This approach also implies conceptual sim-
plicity of the code and allows extensive use of the intuitive F90 array syntax. However,

1Our ‘pencil-runs’ directory also contains runs that were done some time ago. Occasionally, we try to
update these, especially if we have changed names or other input conventions.

12 THE PENCIL CODE

a more cache-efficient way of coding is to calculate an entire time step (or substep of a
multi-stage time-stepping scheme) only along a one-dimensional pencil of data within
the numerical grid. This technique is more efficient for modern RISC processors: on
Linux PCs and SGI workstations, for example, we have found a speed-up by about 60%
in some cases. An additional advantage is a drastic reduction in temporary storage for
auxiliary variables within each time step.

4.2.2 Modularity

Each run directory has a file ‘src/Makefile.local’ in which you choose certain modules?,
which tell the code whether or not entropy, magnetic fields, hydrodynamics, forcing, etc.
should be invoked. For example, the settings for forced turbulent MHD simulations are

HYDRO = hydro

DENSITY = density
ENTROPY = noentropy
MAGNETIC = magnetic
GRAVITY = nogravity
FORCING = forcing
MPICOMM = nompicomm
GLOBAL = noglobal

I0 = do_dist
FOURIER = nofourier

This file will be processed by make and the settings are thus assignments of make
variables. Apart from the physics modules (equation of motion: yes, density [pressure]:
yes, entropy equation: no, magnetic fields: yes, gravity: no, forcing: yes), a few technical
modules can also be used or deactivated; in the example above, these are MPI (switched
off), additional global variables (none), input/output (distributed), and FFT (not used).
The table in Sect. J]in the Appendix lists all currently available modules.

Note that most of these make variables must be set, but they will normally obtain rea-
sonable default values in ‘Makefile’ (so you only need to set the non-standard ones in
‘Makefile.local’). It is by using this switching mechanism through make that we achieve
high flexibility without resorting to excessive amounts of cryptic preprocessor directives
or other switches within the code.

Many possible combinations of modules have already been tested and examples are part
of the distribution, but you may be interested in a combination which was never tried
before and which may not work yet, since the modules are not fully orthogonal. In such
cases, we depend on user feedback for fixing problems and documenting the changes for
others.

4.3 Files in the run directories

4.3.1 ‘start.in’, ‘run.in’, ‘print.in’

These files specify the startup and runtime parameters (see Sects.5.121land [K.2), and the
list of diagnostic variables to print (see[5.5). They specify the setup of a given simulation

2We stress once more that we are not talking about F90 modules here, although there is some connec-
tion, as most of our modules define F90 modules: For example each of the modules gravity_simple, grav_r
and nogravity defines a Fortran module Gravity.

4.3 Files in the run directories 13

and are kept under svn in the individual ‘samples’ directories.

You may want to check for the correctness of these configuration files by issuing the
command pc_configtest.

4.3.2 ‘datadir.in’

If this file exists, it must contain the name of an existing directory, which will be used as
data directory, i.e. the directory where all results are written. If ‘datadir.in’ does not
exist, the data directory is ‘data/’.

4.3.3 ‘sn_series.in’

Formatted file containing the times and locations at which future supernova events
will occur, using same format as ‘sn_series.dat’ when 1SN _list. (Only needed by the
interstellar module.)

4.3.4 ‘reference.out’

If present, ‘reference.out’ contains the output you should obtain in the given run direc-
tory, provided you have not changed any parameters. To see whether the results of your
run are OK, compare ‘time_series.dat’ to ‘reference.out’:

unix> diff data/time_series.dat reference.out

4.3.5 ‘start.csh, ‘run.csh’, ‘getconf.csh’ [obsolete; see Sect. 5. I

These are links to ‘$PENCIL_HOME/bin’. You will be constantly using the scripts
‘start.csh’ and ‘run.csh’ to initialize the code. Things that are needed by both (like the
name of the mpirun executable, MPI options, or the number of processors) are located in
‘getconf . csh’, which is never directly invoked.

4.3.6 ‘src/’

The ‘src’ directory contains two local files, ‘src/Makefile.local’ and ‘src/cparam.local’,
which allow the user to choose individual modules (see [4.2.2) and to set parameters like
the grid size and the number of processors for each direction. These two files are part
of the setup of a given simulation and are kept under svn in the individual ‘samples’
directories.

The file ‘src/cparam. inc’ is automatically generated by the script ‘mkcparam’ and contains
the number of fundamental variables for a given setup.

All other files in ‘src/’ are either links to source files (and ‘Makefile.src’) in the

‘$PENCIL_HOME/src’ directory, or object and module files generated by the compiler.

4.3.7 ‘data/ "’

This directory (the name of which will actually be overwritten by the first line of
‘datadir.in’, if that file is present; see §4.3.2) contains the output from the code:

‘data/dim.dat’ The global array dimensions.

14 THE PENCIL CODE

‘data/legend.dat’ The header line specifying the names of the diagnostic variables in
‘time_series.dat’.

‘data/time_series.dat’ Time series of diagnostic variables (also printed to stdout). You
can use this file directly for plotting with Gnuplot, IDL, Xmgrace or similar tools (see

also §5.19).

‘data/tsnap.dat’, ‘data/tvid.dat’ Time when the next snapshot ‘VARN’ or animation
slice should be taken.

‘data/params.log’ Keeps a log of all your parameters: ‘start.x’ writes the startup pa-
rameters to this file, ‘run.x’ appends the runtime parameters and appends them anew,
each time you use the ‘RELOAD’ mechanism (see §5.10).

‘data/param.nml’ Complete set of startup parameters, printed as Fortran namelist.
This file is read in by ‘run.x’ (this is how values of startup parameters are propagated
to ‘run.x’) and by IDL (if you use it).

‘data/param2.nml’ Complete set of runtime parameters, printed as Fortran namelist.
This file is read by IDL (if you use it).

‘data/index.pro’ Can be used as include file in IDL and contains the column in which
certain variables appear in the diagnostics file (‘time_series.dat’). It also contains the
positions of variables in the ‘VARN’ files. These positions depend on whether entropy or
noentropy, etc, are invoked. This is a temporary solution and the file may disappear in
future releases.

‘data/sn_series.dat’ Time series of SN explosions locations and diagnostics. Can be
plotted using same machinery as for ‘time_series.dat’ and stored as ‘sn_series.in’ to
replicate series in subsequent experiments. (Only needed by the interstellar module.)

‘data/proc0’, ‘data/procl’, ... These are the directories containing data from the in-
dividual processors. So after running an MPI job on two processors, you will have the
two directories ‘data/proc0’ and ‘data/proci1’. Each of the directories can contain the
following files:

‘var.dat’ binary file containing the latest snapshot;
‘“VARN’ binary file containing individual snapshot number N;
‘dim.dat’ ASCII file containing the array dimensions as seen by the given processor;

‘time.dat’ ASCII file containing the time corresponding to ‘var.dat’ (not actually used
by the code, unless you use the io_mpiodist.f90 module);

‘erid.dat’ binary file containing the part of the grid seen by the given processor;

‘seed.dat’ the random seed for the next time step (saved for reasons of reproducibility).
For multi-processor runs with velocity forcing, the files ‘procN/seed.dat’ must all
contain the same numbers, because globally coherent waves of given wavenumber
are used,;

4.3 Files in the run directories 15

‘X.xy, ‘X.x2, ‘X .yz’ two-dimensional sections of variable X, where X stands for the
corresponding variable. The current list includes

bx.xy bx.xz by.xy by.xz bz.xy bz.xz divu.xy Ilnrho.xz
SS.XZ UX.Xy UX.XZ UZ.Xy UZ.XZ

Each processor writes its own slice, so these need to be reassembled if one wants
to plot a full slice.

16 THE PENCIL CODE

5 Using the code

5.1 Configuring the code to compile and run on your computer

Note: We recommend to use the procedure described here, rather than the old method
described in Sects. 6.2l and

Quick instructions: You may compile with a default compiler-specific configuration:
1. Single-processor using the GNU compiler collection:
unix> pc_build -f GNU-GCC
2. Multi-processor using GNU with MPI support:
unix> pc_build -f GNU-GCC_MPI

Many compilers are supported already, please refer to the available config files in
‘$PENCIL_HOME/config/compilers/*.conf’, e.g., ‘Intel.conf’ and ‘Intel_MPI.conf’.

If you have to set up some compiler options specific to a certain host system you work on,
or if you like to create a host-specific configuration file so that you can simply execute
pc_build without any options, you can clone an existing host-file, just include an exist-
ing compiler configuration, and simply only add the options you need. A good example of
a host-file is ‘6PENCIL_HOME/config/hosts/IWF/host-andromeda-GNU_Linux-Linux.conf’.
You may save a clone under ‘$PENCIL_HOME/config/hosts/<ID>.conf’, where ‘<ID>’ is to
be replaced by the output of pc_build -i. This will be the new default for pc_build.
Another way to specify the default is setting the environment variable PENCIL_CON-
FIG_FILES appropriately.

If you don’t know what this was all about, read on.

In essence, configuration, compiling and running the code work like this:
1. Create a configuration file for your computer’s host ID.
2. Compile the code using pc_build.
3. Run the code using pc_run

In the following, we will discuss the essentials of this scheme. Exhaustive documen-
tation is available with the commands perldoc Pencil::ConfigFinder and perldoc
PENCIL: :ConfigParser.

5.1.1 Locating the configuration file

Commands like pc_build and pc_run use the Perl module ‘Pencil::ConfigFinder’ to lo-
cate an appropriate configuration file and ‘Pencil::ConfigParser’ to read and interpret
it. When you use ‘ConfigFinder’ on a given computer, it constructs a host ID for the sys-
tem it is running on, and looks for a file ‘host_ID.conf’ in any subdirectory of ‘$PENCIL_-
HOME/config/hosts’.

v 4

E.g., if the host ID is “workhorse.pencil.org”, ‘ConfigFinder’ would consider the file
‘$PENCIL_HOME/config/hosts/pencil.org/workhorse.pencil.org.conf’.

Note 1: The location in the tree under ‘hosts/’ is irrelevant, which allows you to group
related hosts by institution, owner, hardware, etc.

5.1 Configuring the code to compile and run on your computer 17

Note 2: ‘ConfigFinder’ actually uses the following search path:
1. “./config’
2. ‘$PENCIL_HOME/config-local’
3. ‘$HOME/ .pencil/config
4. ‘$PENCIL_HOME/config

This allows you to override part of the ‘config/’ tree globally on the given file system,
or locally for a particular run directory, or for one given copy of the PENCIL CODE. This
search path is used both, for locating the configuration file for your host ID, and for
locating included files (see below).

The host ID is constructed based on information that is easily available for your system.
The algorithm is as follows:

1. Most commands using ‘ConfigFinder’ have a ‘--host-id’ (sometimes abbreviated
as ‘-H’) option to explicitly set the host ID.

2. If the environment variable PENCIL_HOST_ID is set, its value is used.

3.Ifargrofthefﬂes‘./host-IDﬁ‘$PENCIL_HOME/host-IDZ‘$HOME/.pencil/host—IDﬁex-
ists, its first line is used.

4. If ‘ConfigFinder’ can get hold of a fully qualified host name, that is used as host
ID.

5. Else, a combination of host name, operating system name and possibly some other
information characterizing the system is used.

6. If no config file for the host ID is found, the current operating system name is tried
as fallback host ID.

To see which host IDs are tried (up to the first one for which a configuration file is found),
run

unix> pc_build --debug-config
This command will tell you the host-ID of the system that you are using:

unix> pc_build -i

5.1.2 Structure of configuration files

It is strongly recommended to include in a users configuration file one of the preset
compiler suite configuration files. Then, only minor options need to be set by a user, e.g.,
the optimization flags. One of those user configuration files looks rather simple:

Simple config file. Most files don’t need more.
%hinclude compilers/GNU-GCC

or if you prefer a different compiler:

Simple Intel compiler suite config file.
%hinclude compilers/Intel

A more complex file (using MPI with additional options) would look like this:

18 THE PENCIL CODE

More complex config file.
%hinclude compilers/GNU-GCC_MPI

hsection Makefile

MAKE_VAR1 = -j4 # joined compilation with four threads

FFLAGS += -03 -Wall -fbacktrace # don’t redefine, but append with ’+=’
hendsection Makefile

%section runtime
mpiexec = mpirun # some MPI backends need a redefinition of mpiexec
hendsection runtime

Y%section environment
SCRATCH_DIR=/var/tmp/$USER
%endsection environment

Adding ”_ MPI” to a compiler suite’s name is usually sufficient to use MPI.

Note 3: We strongly advise not to mix Fortran- and C-compilers from different manu-
facturers or versions by manually including multiple separate compiler configurations.

Note 4: We strongly advise to use at maximum the optimization levels -O2’ for the
Intel compiler and ’-O3’ for all other compilers. Higher optimization levels implicate an
inadequate loss of precision.

The ‘. conf’ files consist of the following elements:
Comments: A # sign and any text following it on the same line are ignored.
Sections: There are three sections:

Makefile for setting make parameters

runtime for adding compiler flags used by pc_run

environment shell environment variables for compilation and running

Include statements: An %include ... statement is recursively replaced by the con-
tents of the files it points to]

The included path gets a .conf suffix appended. Included paths are typically “ab-
solute”, e.g.,

%include os/Unix

will include the file ‘os/Unix.conf’ in the search path listed above (typically from
‘$PENCIL_HOME/config’). However, if the included path starts with a dot, it is a rel-
ative path, so

%include ./Unix
will only search in the directory where the including file is located.

Assignments: Statements like FFLAGS += -03 or mpiexec=mpirun are assignments and
will set parameters that are used by pc_build/make or pc_run.

3However, if the include statement is inside a section, only the file’s contents inside that section are
inserted.

5.1 Configuring the code to compile and run on your computer 19

Lines ending with a backslash ‘\’ are continuation lines.

If possible, one should always use incremental assignments, indicated by using a
+= sign instead of =, instead of redefining certain flags.

Thus,

CFLAGS +=
CFLAGS +=

-03
-I../include -Wall

is the same as

CFLAGS = $(CFLAGS) -03 -I../include -Wall

5.1.3 Compiling the code

Use the pc_build command to compile the code:

unix>
unix>
unix>
unix>
unix>
unix>

pc_build
pc_build -f Intel_MPI

pc_build -f os/GNU_Linux,mpi/open-mpi
pc_build -1
pc_build VAR=something

pc_build --cleanall

use default compiler suite

specify a compiler suite

explicitly specify config files

use same config files as in last cal
set variables for the makefile
remove generated files

H H H H HH

The third example circumvents the whole host ID mechanism by explicitly instructing
pc_build which configuration files to use. In the fourth example, pc_build will apply the
same configuration files as in its last invocation. They are stored in ‘src/.config-files’,
which is automatically written, but can also be manually modified. The fifth example
shows how to define extra variables (VAR=something) for the execution of the Makefile.

See pc_build --help for a complete list of options.

5.1.4 Running the code

Use the pc_run command to run the code:

unix>
unix>
unix>

unix>
unix>
unix>

pc_run
pc_run
pc_run

pc_run
pc_run
pc_run

start
start
run
start run”3 # start
start run run run # start
"3 # start

if necessary, then run

, then run 3 times
, then run 3 times
if necessary, then run 3 times

See pc_run --help for a complete list of options.

5.1.5 Testing the code

The pc_auto-test command uses pc_build for compiling and pc_run for running the
tests. Here are a few useful options:

unix>
unix>
unix>
unix>

pc_auto-test

pc_auto-test —-—no-pencil-check
pc_auto-test --max-level=1
pc_auto-test —--time-1limit=2m

suppress pencil consistency check
run only tests in level O and 1
kill each test after 2 minutes

20 THE PENCIL CODE

See pc_auto-test --help for a complete list of options.

The pencil-test script will use pc_auto-test if given the ‘~-use-pc_auto-test’ or -b’
option:

unix> pencil-test --use-pc_auto-test
unix> pencil-test -b # ditto
unix> pencil-test -b -Wa,--max-level=1,--no-pencil-check # quick pencil

See pencil-test --help for a complete list of options, and section [10 for more details.

5.2 Adapting ‘Makefile.src’ [obsolete; see Sect.5.1]

By default, one should use the above described configuration mechanism for compila-
tion. If for whatever reason one needs to work with a modified ‘Makefile’, there is a
mechanism for picking the right set of compiler flags based on the hostname.

To give you an idea of how to add your own machines, let us assume you have several
Linux boxes running a compiler £95 that needs the options ‘-02 -u’, while one of them,
Janus, runs a compiler £90 which needs the flags ‘-03’ and requires the additional op-
tions ‘~1mpi -1lam’ for MPI.

The ‘Makefile.src’ you need will have the following section:

Begin machine dependent

IRIX64:

[...] (leave as it is in the original Makefile)
OSF1:

[...] (leave as it is in the original Makefile)

Linux:

[...] (leave everything from original Makefile and add:)
#FC=£95

#FFLAGS=-02 -u

#FC=£90 #(Janus)

#FFLAGS=-03 #(Janus)

#LDMPI=-1mpi -1lam #(Janus)

Sun0S:

[...] (leave as it is in the original Makefile)
UNICOS/mk:

[...]1 (leave as it is in the original Makefile)
HI-UX/MPP:

[...] (leave as it is in the original Makefile)
AIX:

[...] (leave as it is in the original Makefile)

End machine dependent

Note 1 There is a script for adapting the Makefile: ‘adapt-mkfile’. In the example
above, #(Janus) is not a comment, but marks this line to be activated (uncommented) by
adapt-mkfile if your hostname (‘uname -n‘) matches ‘Janus’ or janus’ (capitalization

5.3 Changing the resolution 21

Table 1: Compiler flags for common compilers. Note that some combinations of OS and compiler require
much more elaborate settings; also, if you use MPI, you will have to set LDMPI.

Compiler FC FFLAGS cC CFLAGS
Unix/POSIX:

GNU gfortran -03 gcc -03 -DFUNDERSC=1
Intel ifort -02 icc -03 -DFUNDERSC=1
PGI pgf95 -03 pgcc -03 -DFUNDERSC=1
G95 g95 -03 -fno-second-underscore gcc -03 -DFUNDERSC=1
Absoft £95 -03 -N15 gcc -03 -DFUNDERSC=1
IBM XL x1£f95 -gqsuffix=£f=£f90 -03 xlc -03 -DFUNDERSC=1
outdated:

IRIX Mips £90 -64 -03 -mipsé cc -03 -64 -DFUNDERSC=1
Compaq £90 -fast -03 cc -03 -DFUNDERSC=1

is irrelevant). You can combine machine names with a vertical bar: a line containing
#(onsager| Janus) will be activated on both, Janus and Onsager.

Note 2 If you want to experiment with compiler flags, or if you want to get things
running without setting up the machine-dependent section of the ‘Makefile’, you can set
make variables at the command line in the usual manner:

src> make FC=f90 FFLAGS=’-fast -u’

will use the compiler £90 and the flags ‘~fast -u’ for both compilation and linking. Ta-
ble Il summarizes flags we use for common compilers.

5.3 Changing the resolution

It is advisable to produce a new run directory each time you run a new case. (This does
not include restarts from an old run, of course.) If you have a 32° run in some directory
‘runA_32a’, then go to its parent directory, i.e.

runA_32a> cd ..

forced> pc_newrun runA_32a runA_64a
forced> cd runA_64a/src

forced> vi cparam.local

and edit the ‘cparam.local’ for the new resolution.

If you have ever wondered why we don’t do dynamic allocation of the main variable (f)
array, the main reason it that with static allocation the compiler can check whether we
are out of bounds.

5.4 Using a non-equidistant grid

We introduce a non-equidistant grid z; (by now, this is also implemented for the other
directions) as a function z({) of an equidistant grid (; with grid spacing A = 1.

The way the parameters are handled, the box size and position are not changed when
you switch to a non-equidistant grid, i.e., they are still determined by xyz0 and Lxyz.

22 THE PENCIL CODE

The first and second derivatives can be calculated by

df dfd¢ 1, cf 1, 2,
a—d—ca—zf(@? g2 n (€) gf(@: (1)

which can be written somewhat more compactly using the inverse function ((z):

3—]; =) (0, fl—]; = (2(2) () + C"(2)¢' () Q) - 2)

Internally, the code uses the quantities dz.1 = 1/’ = (/(z) and dz_tilde = —2"/2"” =
¢"/{’, and stores them in ‘data/proc/N/grid.dat’.

The parameters lequidist (a 3-element logical array), grid_func, coeffgrid (a
> 2-element real array) are used to choose a non-equidistant grid and define
the function z(¢). So far, one can choose between grid_function=’sinh’, grid_-
function=’linear’ (which produces an equidistant grid for testing purposes), and
grid_function=’step-linear’.

The sinh profile: For grid_function=’sinh’, the function z(() is given by

sinh a((—¢,) + sinh a((.—¢1)
Zsinh G(CQ—C*) + sinh a(C*_Cl) 7

where z; and 2o+ L. are the lowest and uppermost levels, (;, (; are the (values represent-
ing those levels (normally (; = 0,(, = N, — 1 for a grid of N, vertical layers [excluding
ghost layers]), and (, is the (value of the inflection point of the sinh function. The =
coordinate and (value of the inflection point are related via

sinh a(¢.—¢1)

2(() =2+ L (3)

Zx :ZO+LZSinha,(C2—C*)—|—Sinha((*—cl)) (4)
which can be inverted (“after some algebra”) to
_GtG 1 =% =G
(= 5 + - artanh {(2 I 1) tanh a 5] . (5)
General profile: For a general monotonic function () instead of sinh we get,
Yla(¢—=G)] + Pla(G—E1)]
2(() =2+ L. : (6)
(= 20+ b GG+ dlale =)
and the reference point ¢, is found by inverting
2= 29 + Lz 1#[@(@—(1)} (7)

w[a(@—c*)] + w[G/(C*_Cl)] ’

numerically.

Duct flow: The profile function grid_function=’duct’ generates a grid profile for tur-
bulent flow in ducts. For a duct flow, most gradients are steepest close to the walls, and
hence very fine resolution is required near the walls. Here we follow the method of [27]]
and use a Chebyshev-type grid with a cosine distribution of the grid points such that in
the y direction they are located at

y; = h coséb; , (8)

5.5 Diagnostic output 23

where
J=12,...,N, 9)
and h = L, /2 is the duct half-width.

Currently this method is only adapted for ducts where x is the stream-wise direction, z
is in the span-wise direction and the walls are at y = yo and y = yo + L,,.

In order to have fine enough resolution, the first grid point should be a distance § =

0.051,, from the wall, where
o=~ u=) (10)
Ur p

and 7, is the shear wall stress. This is accomplished by using at least

y 7
N, > N; = 3 +1 (11)

arccos(l—ﬁ>
[h r [26 5\ 2

grid points in the y-direction. After rounding up to the next integer value, we find that

the truncated condition
h
Ny > {m/ﬁ}ﬂ (13)

(where [z] denotes the ceiling function, i.e. the smallest integer equal to, or larger than,
x) gives practically identical results.

Example: To apply the sinh profile, you can set the following in ‘start.in’ (this exam-
ple is from ‘samples/sound-spherical-noequi’):

&init_pars

[...]
xyz0 = -2., -2., -2. I first corner of box
Lxyz = 4., 4., 4 I box size
lperi = F, F, F | periodic direction?
lequidist = F, F, T ! non-equidistant grid in z
xyz_star =, , -2. ! position of inflection point
grid_func =, , ’sinh’ ! sinh function: linear for small, but
! exponential for large z
coeff_grid =, , 0.5
/

The parameter array coeff grid represents z, and a; the bottom height z; and the total
box height L. are taken from xyz0 and Lxyz as in the equidistant case. The inflection
point of the sinh profile (the part where it is linear) is not in the middle of the box,
because we have set xyz_star(3) (i.e. z,) to —2.

5.5 Diagnostic output

Every it1 time steps (itl is a runtime parameter, see Sect. [K.2), the code writes moni-
toring output to stdout and, parallel to this, to the file ‘data/time_series.dat’. The vari-
ables that appear in this listing and the output format are defined in the file ‘print.in’

24 THE PENCIL CODE

and can be changed without touching the code (even while the code is running). A simple
example of ‘print.in’ may look like this:

t(F10.3)
urms (E13.4)
rhom(F10.5)
oum

which means that the output table will contain time t in the first column formatted as
(F10.3), followed by the mean squared velocity, urms (i.e. (u2>1/ ®) in the second column
with format (E13.4), the average density rhom ({p), which allows to monitor mass con-
servation) formatted (F10.5) and the kinetic helicity oum (that is (w - u)) in the last
column with the default format (£10.2) [The corresponding diagnostic output will look
like

.000 4.9643E-03 14.42457 -8.62E-06
.032 3.9423E-03 14.42446 -5.25E-06
6.8399E-03 14.42449 -3.50E-06
.095 1.1437E-02 14.42455 -2.58E-06
.126 1.6980E-02 14.42457 -1.93E-06

O O O O O t
o
(o)}
w

5.6 Data files
5.6.1 Snapshot files

Snapshot files contain the values of all evolving variables and are sufficient to restart a
run. In the case of an MHD simulation with entropy equation, for example, the snapshot
files will contain the values of velocity, logarithmic density, entropy and the magnetic
vector potential.

There are two kinds of snapshot files: the current snapshot and permanent snapshots,
both of which reside in the directory ‘data/proc N/’. The parameter isav determines the
frequency at which the current snapshot ‘data/procN/var.dat’ is written. If you keep
this frequency too high, the code will spend a lot of time on I/O, in particular for large
jobs; too low a frequency makes it difficult to follow the evolution interactively during
test runs. There is also the ialive parameter. Setting this to 1 or 10 gives an updated
timestep in the files ‘data/proc*/alive.info’. You can put ialive=0 to turn this off to
limit the I/O on your machine.

The permanent snapshots ‘data/procx/VARN’ are written every dsnap time units. These
files are numbered consecutively from N = 1 upward and for long runs they can occupy
quite some disk space. On the other hand, if after a run you realize that some addi-
tional quantity ¢ would have been important to print out, these files are the only way to
reconstruct the time evolution of ¢ without re-running the code.

File structure Snapshot files consist of the following Fortran recordsb:

1. variable vector f [mxxmyxmzx nvar]

“The format specifiers are like in Fortran, apart from the fact that the E format will use standard
scientific format, corresponding to the Fortran 1pE syntax. Seasoned Fortran IV programmers may use
formats like (0pE13.4) to enjoy nostalgic feelings, or (1pF10.5) if they depend on getting wrong numbers.

5A Fortran record is marked by the 4-byte integer byte count of the data in the record at the beginning
and the end, i.e. has the form (Nyyes, raw_data, Npytes)

5.7 Video files and slices 25

2. time t [1], coordinate vectors x [mx], y [my], z [mz], grid spacings 6z [1], dy [1], 6z
[1], shearing-box shift Ay [1]

All numbers (apart from the record markers) are single precision (4-byte) floating point
numbers, unless you use double precision (see §5.21] in which case all numbers are 8-
byte floating point numbers, while the record markers remain 4-byte integers.

The script pc_tsnap allows you to determine the time ¢ of a snapshot file:

unix> pc_tsnap data/procO/var.dat

data/proc0/var.dat: t = 8.32456
unix> pc_tsnap data/proc0/VAR2
data/proc0/VAR2: t = 2.00603

5.7 Video files and slices

We use the terms video files and slice files interchangeably. These files contain a time
series of values of one variable in a given plane. The output frequency of these video
snapshots is set by the parameter dvid (in code time units).

When output to video files is activated by some settings in ‘run.in’ (see example below)
and the existence of ‘video.in’, slices are written for four planes:

1. z-z plane (y index iy; file suffix .xz)

2. y-z plane (y index ix; suffix .yz)

3. x-y plane (y index iz; suffix .xy)

4. another slice parallel to the x-y plane (y index iz2; suffix .xy?2)

You can specify the position of the slice planes by setting the parameters ix, iy, iz and
iz2 in the namelist run_pars in ‘run.in’. Alternatively, you can set the input parameter
slice_position to one of ’p’ (periphery of box) or ’m’ (middle of box). Or you can also
specify the z—position in terms of z using the tags zbot_slice and ztop_slice. In this case,
the zbot _slice slice will have the suffix .xy and the ztop_slice the suffix .xy2

In the file ‘video.in’ of your run directory, you can choose for which variables you want
to get video files; valid choices are listed in §[K.4l

The slice files are written in each processor directory ‘data/proc*/’ and have a file name
indicating the individual variable (e.g. ‘slice_uul.yz for a slice of u, in the y-z plane).
Before visualizing slices one normally wants to combine the sub-slices written by each
processor into one global slice (for each plane and variable). This is done by running
‘src/read_videofiles.x’, which will prompt for the variable name, read the individual
sub-slices and write global slices to ‘data/’ Once all global slices have been assembled
you may want to remove the local slices ‘data/proc*/slicex*’.

To read all sub-slices demanded in ‘video.in’ at once use ‘src/read_all_videofiles.x’.
This program doesn’t expect any user input and can thus be submitted in computing
queues.

For visualization of slices, you can use the IDL routines ‘rvid_box.pro’, ‘rvid_-
plane.pro’, or ‘rvid_line.pro’ which allows the flag ‘/png’ for writing PNG images that
can then be combined into an MPEG movie using mpeg_encode. Based on ‘rvid_box’,
you can write your own video routines in IDL.

26 THE PENCIL CODE

An example Suppose you have set up a run using entropy.f90 and magnetic.f90 (most
probably together with hydro.f90 and other modules). In order to animate slices of en-
tropy s and the z-component B, of the magnetic field, in planes passing through the
center of the box, do the following:

1. Write the following lines to ‘video.in’ in your run directory:

ss
bb
divu

2. Edit the namelist run_pars in the file ‘run. in’. Request slices by setting write_slices
and set dvid and slice_position to reasonable values, say

'lwrite_slices=T !(no longer works; write requested slices into video.in)
dvid=0.05
slice_position="m’

3. Run the PENCIL CODE:

unix> start.csh
unix> run.csh

4. Say ‘make read_videofiles’ to compile the routine and then run ‘src/read_-
videofiles.x to assemble global slice files from those scattered across

‘data/proc*/’:
unix> src/read_videofiles.x
enter name of variable (lnrho, uul, ..., bb3): ss
unix> src/read_videofiles.x
enter name of variable (lnrho, uul, ..., bb3): bb3

5. Start IDL and run ‘rvid_box’:

unix> idl
IDL> rvid_box, ’bb3’
IDL> rvid_box,’ss’,min=-0.3,max=2.

etc.

Another example Suppose you have set up a run using magnetic.f90 and some other
modules. This run studies some process in a “surface” layer inside the box. This “surface”
can represent a sharp change in density or turbulence. So you defined your box setting
the z = 0 point at the surface. Therefore, your ‘start.in’ file will look something similar
to:

&init_pars
lperi=T,T,F
bcz = ’s’,’s’,’a’,’hs’,’s’,’s’,’a’
xyz0 = -3.14159, -3.14159, -3.14159
Lxyz = 6.28319, 6.28319, 9.42478

A smarter way of specifying the box size in units of 7 is to write

&init_pars
xyz_units = ’pi’, ’pi’, ’pi’

5.7 Video files and slices 27

xyz0 = -1., -1., -1.
Lxyz

I
N
N
N

Now you can analyze quickly the surface of interest and some other zy slice setting
zbot_slice and ztop_slice in the ‘run.in’ file:

&run_pars
slice_position=’c’
zbot_slice=0.
ztop_slice=0.2

In this case, the slices with the suffix .xy will be at the “surface” and the ones with the
suffix .xy2 will be at the position z = 0.2 above the surface. And you can visualize this
slices by:

1. Write the following lines to ‘video.in’ in your run directory:

bb
2. Edit the namelist run_pars in the file ‘run.in’ to include zbot_slice and ztop_slice.
3. Run the PENCIL CODE:

unix> start.csh
unix> run.csh

4. Run ‘src/read_videofiles.x” to assemble global slice files from those scattered
across ‘data/proc*/’:

unix> src/read_videofiles.x
enter name of variable (lnrho, uul, ..., bb3): bb3

5. Start IDL, load the slices with ‘pc_read_video’ and plot them at some time:

unix> idl

IDL> pc_read_video, field=’bb3’,ob=bb3,nt=ntv
IDL> tvscl,bb3.xy(*,*,100)

IDL> tvscl,bb3.xy2(*,*,100)

etc.

File structure Slice files consist of one Fortran record (see footnote on page for
each slice, which contains the data of the variable (without ghost zones), the time ¢ of
the snapshot and the position of the sliced variable (e. g. the x position for a y-z slice):

1. data; [nxxnyxnz], time ¢, [1], position; [1]
2. data, [nxxnyxnz], time ¢, [1], position, [1]
3. data; [nxxnyxnz], time t3 [1], positions [1]

etc.

28 THE PENCIL CODE

5.8 Averages
5.8.1 One-dimensional output averaged in two dimensions

In the file ‘xyaver. in’, z-dependent (horizontal) averages are listed. They are written to
the file ‘data/xyaverages.dat’. A new line of averages is written every it1th time steps.

There is the possibility to output two-dimensional averages. The result then de-
pends on the remaining dimension. The averages are listed in the files ‘xyaver.in’,
‘xzaver.in’, and ‘yzaver.in’ where the first letters indicate the averaging directions.
The output is then stored to the files ‘data/xyaverages.dat’, ‘data/xzaverages.dat’, and
‘data/yzaverages.dat’. The output is written every it1dth time steps.

The rms values of the so defined mean magnetic fields are referred to as bmz, bmy and
bmx, respectively, and the rms values of the so defined mean velocity fields are referred
to as umz, umy, and umx. (The last letter indicates the direction on which the averaged
quantity still depends.)

See Sect. 9.2l on how to add new averages.

In id1 such zy-averages can be read using the procedure ‘pc_read_xyaver’.

5.8.2 Two-dimensional output averaged in one dimension

There is the possibility to output one-dimensional averages. The result then depends
on the remaining two dimensions. The averages are listed in the files ‘yaver.in’,
‘zaver.in’, and ‘phiaver.in’ where the first letter indicates the averaging direction.
The output is then stored to the files ‘data/yaverages.dat’, ‘data/zaverages.dat’, and
‘data/phiaverages.dat’.

See Sect. on how to add new averages.

Disadvantage: The output files, e.g., ‘data/zaverages.dat’, can be rather big because
each average is just appended to the file.

5.8.3 Azimuthal averages

Azimuthal averages are controlled by the file ‘phiaver.in’, which currently supports the
quantities listed in Sect. [K.5 In addition, one needs to set Iwrite_phiaverages, lwrite_-
yaverages, or lwrite_zaverages to .true.. For example, if ‘phiaver.in’ contains the single
line

b2mphi
then you will get azimuthal averages of the squared magnetic field B2

Azimuthal averages are written every d2davg time units to the files
‘data/averages/PHIAVGN’. The file format of azimuthal-average files consists of the
following Fortran records:

1. number of radial points NV, 4_.., [1], number of vertical points NV, ;_.y, [1], number
of variables Ny, s—ave[1], number of processors in z direction [1]

2. time t [1], positions of cylindrical radius ry [NV, ¢—ave] and z [N, 4_..] for the grid,
radial spacing 0.y [1], vertical spacing 6z [1]

3. averaged data [NV, 4_ave X V. 4—avel

5.8 Averages 29

4. label length [1], labels of averaged variables [Nya ¢—avel

All numbers are 4-byte numbers (floating-point numbers or integers), unless you use
double precision (see §5.21).

To read and visualize azimuthal averages in IDL, use ‘$PENCIL_HOME/idl/files/pc_-
read_phiavg.pro’

IDL> avg = pc_read_phiavg(’data/averages/PHIAVG1’)
IDL> contour, avg.b2mphi, avg.rcyl, avg.z, TITLE=’!17B!U2!N!X’

or have a look at ‘$PENCIL_HOME/idl/phiavg.pro’ for a more sophisticated example.

5.8.4 Time averages

Time averages need to be prepared in the file ‘src/ctimeavg.local’, since they use extra
memory. They are controlled by the averaging time 7,,, (set by the parameter tavg in
‘run.in’), and by the indices idx_tavg of variables to average.

Currently, averaging is implemented as exponential (memory-less) averageﬁ

ot
(Fess = e+ ——fE+3t) = {f)] (16)
avg
which is equivalent to
t
(f), = / e U= mve () dt’ (17)

to

Here ¢, is the time of the snapshot the calculation started with, i.e. the snapshot read by
the last run.x command. Note that the implementation will approximate Eq. (17)
only to first-order accuracy in ¢t. In practice, however, ¢t is small enough to make this
accuracy suffice.

In ‘src/ctimeavg.local’, you need to set the number of slots used for time averages.
Each of these slots uses mx x my x mz floating-point numbers, i.e. half as much memory
as each fundamental variable.

For example, if you want to get time averages of all variables, set
integer, parameter :: mtavg=mvar
in ‘src/ctimeavg.local’, and don’t set idx_tavg in ‘run.in’.

If you are only interested in averages of variables 1-3 and 6-8 (say, the velocity vector
and the magnetic vector potential in a run with ‘hydro.£90’, ‘density.f90’, ‘entropy.f90’
and ‘magnetic.£90’), then set

6At some point we may also implement the more straight-forward average

ot
<f>t+§t =+ t—to+ot

[f(t468) = (f)i] (14)

which is equivalent to

o p— / @yt (15)

but we do not expect large differences.

30 THE PENCIL CODE

integer, parameter :: mtavg=6
in ‘src/ctimeavg.local’, and set
idx_tavg = 1,2,3,6,7,8 ! time-average velocity and vector potential

in ‘run.in’.

Permanent snapshots of time averages are written every tavg time units to
the files ‘data/proc*/TAVN’. The current time averages are saved periodically in
‘data/proc*/timeavg.dat’ whenever ‘data/proc*/var.dat’ is written. The file format for
time averages is equivalent to that of the snapshots; see §[5.6.1] above.

5.9 Helper scripts

The ‘bin’ directory contains a collection of utility scripts, some of which are discussed
elsewhere, Here is a list of the more important ones.

adapt-mkfile Activate the settings in a ‘Makefile’ that apply to the given computer,
see §/5.21

auto-test Verify that the code compiles and runs in a set of run directories and compare
the results to the reference output. These tests are carried out routinely to ensure
that the svn version of the code is in a usable state.

cleanf95 Can be use to clean up the output from the Intel x86 Fortran 95 compiler
(ifc).

copy-proc-to-proc Used for restarting in a different directory. Example
copy-proc-to-proc seed.dat ../hydro256e.

copy-snapshots Copy snapshots from a processor-local directory to the global direc-
tory. To be started in the background before ‘run.x’ is invoked. Used by ‘start.csh’
and ‘run.csh’ on network connected processors.

pc_copyvar varl var2 source dest Copies snapshot files from one directory (source)
to another (dest). See documentation in file.

pc_copyvar v v dir Copies all ‘var.dat’ files from current directory to ‘var.dat’ in 'dir’
run directory. Used for restarting in a different directory.

pc_copyvar Nv Used to restart a run from a particular snapshot ‘VARN’. Copies a
specified snapshot ‘VARN’ to ‘var.dat’ where N and (optionally) the target run di-
rectory are given on the command line.

cvs-add-rundir Add the current run directory to the svn repository.

K

cvsci_run Similar to cvs-add-rundir, but it also checks in the ‘*.in’ and ‘src/*.1local
files. It also checks in the files ‘data/time_series.dat’, ‘data/dim.dat’ and
‘data/index.pro’ for subsequent processing in IDL on another machine. This is
particularly useful if collaborators want to check each others’ runs.

dx * These script perform several data collection or reformatting exercises required to
read particular files into DX. They are called internally by some of the DX macros
in the ‘dx/macros/’ directory.

getconf.csh See §[4.3.5]

5.9 Helper scripts 31

gpgrowth Plot simple time evolution with Gnuplot’s ASCII graphics for fast orienta-
tion via a slow modem line.

local Materialize a symbolic link

mkcparam Based on ‘Makefile’ and ‘Makefile.local’, generate ‘src/cparam.inc’,
which specifies the number mvar of fundamental variables, and maux of auxiliary
variables. Called by the ‘Makefile’.

pc_mkdatadir Creates a link to a data directory in a suitable workspace. By default
this is on ‘/var/tmp/’, but different locations are specified for different machines.

mkdotin Generate minimal ‘start.in’, ‘run.in’ files based on ‘Makefile’ and
‘Makefile.local’.

mkinpars Wrapper around ‘mkdotin’ — needs proper documentation.

mkproc-tree Generates a multi-processor(‘procN’/), directory structure. Useful when
copying data files in a processor tree, such as slice files.

mkwww Generates a template HTML file for describing a run of the code, showing
input parameters and results.

move-slice Moves all the slice files from a processor tree structure, ‘procN/’, to a new
target tree creating directories where necessary.

nl2idl Transform a Fortran namelist (normally the files ‘param.nml’, ‘param2.nml’ writ-
ten by the code) into an IDL structure. Generates an IDL file that can be sourced
from ‘start.pro’ or ‘run.pro’.

pacx-adapt-makefile Version of adapt-makefile for highly distributed runs using
PACX MPL.

pcnewrun Generates a new run directory from an old one. The new one contains a
copy of the old ‘*.1local’ files, runs pc_setupsrc, and makes also a copy of the old
“¢.in’ and ‘k.dat’ files.

pc.newscan Generates a new scan directory from an old one. The new one contains
a copy of the old, e.g., the one given under ‘samples/parameter_scan’. Look in the
‘README’ file for details.

pc_inspectrun Check the execution of the current run: prints legend and the last few
lines of the ‘time_series.dat’ file. It also appends this result to a file called ‘SPEED’,
which contains also the current wall clock time, so you can work out the speed of
the code (without being affected by i/o time).

read_videofiles.csh The script for running read_videofiles.x.

remote-top Create a file ‘top.log in the relevant ‘proc/ N/’ directory containing the
output of top for the appropriate processor. Used in batch scripts for multi-
Processor runs.

run.csh The script for producing restart files with the initial condition; see § [4.3.5]

scpdatadir Make a tarball of data directory, ‘data/’ and use scp to secure copy to copy
it to the specified destination.

pc_setupsrc Link ‘start.csh’, ‘run.csh’ and ‘getconf.csh’ from ‘$PENCIL_HOME/bin’.
Generate ‘src/’ if necessary and link the source code files from ‘$PENCIL_HOME/src’

32 THE PENCIL CODE

to that directory.
start.csh The script for initializing the code; see §[4.3.5]
summarize-history Evaluate ‘params.log’ and print a history of changes.

timestr Generate a unique time string that can be appended to file names from shell
scripts through the backtick mechanism.

pc_tsnap Extract time information from a snapshot file, ‘VARNV’.

There are several additional scripts on ‘pencil-code/utils’. Some are located in sepa-
rate folders according to users. There could be redundancies, but it is often just as easy
to write your own new script than figuring out how something else works.

5.10 RELOAD, STOP and SAVE files

The code periodically (every it time steps) checks for the existence of two files, ‘RELOAD’
and ‘STOP’, which can be used to trigger certain behavior.

Reloading run parameters In the directory where you started the code, create the file
‘RELOAD’ with

unix> touch RELOAD

to force the code to re-read the runtime parameters from ‘run.in’. This will happen the
next time the code is writing monitoring output (the frequency of this happening is
controlled by the input parameter it, see Sect. [5.12).

Each time the parameters are reloaded, the new set of parameters is appended (in the
form of namelists) to the file ‘data/params.log’ together with the time ¢, so you have a
full record of your changes. If ‘RELOAD’ contains any text, its first line will be written to
‘data/params.log’ as well, which allows you to annotate changes:

unix> echo "Reduced eta to get fields growing" > RELOAD
Use the command summarize-history to print a history of changes.
Stopping the code In the directory where you started the code, create the file ‘STOP’
with

unix> touch STOP

to stop the code in a controlled manner (it will write the latest snapshot). Again, the
action will happen the next time the code is writing monitoring output.

5.11 RERUN and NEWDIR files 33

Saving a snapshot In the directory where you started the code, create the file ‘SAVE’
with

unix> touch SAVE

to save the current state of the simulation in the file var.dat. See Stopping the code
for when this action is taken.

5.11 RERUN and NEWDIR files

After the code finishes (e.g., when the final timestep number is reached or when a ‘STOP’
file is found), the ‘run.csh’ script checks whether there is a ‘RERUN’ file. If so, the code will
simply run again, perhaps even after you have recompiled the code. This is useful in the
development phase when you changed something in the code, so you don’t need to wait
for a new slot in the queue!

Even more naughty, as Tony says, is the ‘NEWDIR’ file, where you can enter a new direc-
tory path (relative path is ok, e.g., ../conv-slab). If nothing is written in this file (e.g.,
via touch NEWDIR) it stays in the same directory. On distributed machines, the ‘NEWDIR’
method will copy all the ‘VAR#” and ‘var.dat’ files back to and from the sever. This can be
useful if you want to run with new data files, but you better do it in a separate directory,
because with ‘NEWDIR’ the latest data from the code are written back to the server before
running again.

Oh, by the way, if you want to be sure that you haven’t messed up the content of the pair
of ‘NEWDIR’ files, you may want to try out the pc_jobtransfer command. It writes the
decisive ‘STOP’ file only after the script has checked that the content of the two ‘NEWDIR’
files points to existing run directory paths, so if the new run crashes, the code returns
safely to the old run directory. I'm not sure what Tony would say now, but this is now
obviously extremely naughty.

5.12 Start and run parameters

All input parameters in ‘start.in’ and ‘run.in’ are grouped in Fortran namelists. This
allows arbitrary order of the parameters (within the given namelist; the namelists need
no longer be in the correct order), as well as enhanced readability through inserted For-
tran comments and whitespace. One namelist (init_pars / run_pars) contains general
parameters for initialization/running and is always read in. All other namelists are spe-
cific to individual modules and will only be read if the corresponding module is used.

The syntax of a namelist (in an input file like ‘start.in’) is

&init_pars
ip=5, Lxyz=2,4,2
/

— in this example, the name of the namelist is init_pars, and we read just two variables
(all other variables in the namelist retain their previous value): ip, which is set to 5, and
Lxyz, which is a vector of length three and is set to (2,4, 2).

While all parameters from the namelists can be set, in most cases reasonable default
values are preset. Thus, the typical file ‘start.in’ will only contain a minimum set of
variables or (if you are very minimalistic) none at all. If you want to run a particular
problem, it is best to start by modifying an existing example that is close to your appli-
cation.

34 THE PENCIL CODE

Before starting a simulation run, you may want to execute the command pc_configtest
in order to test the correctness of your changes to these configuration files.

As an example, we give here the start parameters for ‘samples/helical-MHDturb’

&init_pars
cvsid="$I1d:$’, ! identify version of start.in

xyz0 = -3.1416, -3.1416, -3.1416, ! first corner of box
Lxyz = 6.2832, 6.2832, 6.2832, ! box size
lperi = T , T , T , ! periodic in x, y, z
random_gen="nr_£90’

/

&hydro_init_pars

/

&density_init_pars
gamma=1.

/

&magnetic_init_pars
initaa=’gaussian-noise’, amplaa=le-4

/

The three entries specifying the location, size and periodicity of the box are just given
for demonstration purposes here — in fact a periodic box from —7 to —7 in all three
directions is the default. In this run, for reproducibility, we use a random number gen-
erator from the Numerical Recipes [37], rather than the compiler’s built-in generator.
The adiabatic index v is set explicitly to 1 (the default would have been 5/3) to achieve
an isothermal equation of state. The magnetic vector potential is initialized with uncor-
related, normally distributed random noise of amplitude 10~%.

The run parameters for ‘samples/helical-MHDturb’ are

&run_pars
cvsid="$Id:$’, ! identify version of start.in
nt=10, it1=2, cdt=0.4, cdtv=0.80, isave=10, itorder=3
dsnap=50, dvid=0.5
random_gen=’"nr_£90°

/

&hydro_run_pars

/

&density_run_pars

/

&forcing_run_pars
iforce=’helical’, force=0.07, relhel=1.

/

&magnetic_run_pars
eta=be-3

/

&viscosity_run_pars
nu=5e-3

/

Here we run for nt= 10 timesteps, every second step, we write a line of diagnostic output;
we require the time step to keep the advective Courant number < 0.4 and the diffusive

5.13 Physical units 35

Courant number < 0.8, save ‘var.dat’ every 20 time steps, and use the 3-step time-
stepping scheme described in Appendix (the Euler scheme itorder= 1 is only useful
for tests). We write permanent snapshot file ‘VARN’ every dsnap= 50 time units and 2d
slices for animation every dvid= 0.5 time units. Again, we use a deterministic random
number generator. Viscosity ¥ and magnetic diffusivity n are set to 5 x 1073 (so the mesh
Reynolds number based on the rms velocity is about u,,s0x/v = 0.3x (27/32)/5x1073 ~ 12,
which is in fact rather a bit to high). The parameters in forcing run_pars specify fully
helical forcing of a certain amplitude.

A full list of input parameters is given in Appendix Kl

5.13 Physical units

Many calculations are unit-agnostic, in the sense that all results remain the same in-
dependent of the unit system in which you interpret the numbers. E. g. if you simulate
a simple hydrodynamical flow in a box of length L = 1. and get a maximum velocity of
umax = 0.5 after t = 3 time units, then you may interpret this as L = 1m, uy. = 0.5m/s,
t =3s,oras L = 1pc, Unax = 0.5 pc/Myr, t = 3Myr, depending on the physical system you
have in mind. The units you are using must of course be consistent, thus in the second
example above, the units for diffusivities would be pc?/Myr, ete.

The units of magnetic field and temperature are determined by the values o = 1 and
¢, = 1 used internally by the codd’. This means that if your units for density and velocity
are [p| and [v], then magnetic fields will be in

[B] = /1o [p] [v]?, (18)

and temperatures are in
2 o 2
m=tE 2t (19)

Table 2: Units of magnetic field and temperature for some choices of [p] and [v] according to Eqs. and
(TI9D. Values are for a monatomic gas (y = 5/3) of mean atomic weight i, = ji/1g in grams.

(] [v] [B] [T

1kg/m® 1m/s 1.12mT = 11.2G (E) x 280 x 107K
lg/em? lem/s 3.54x1074T = 3.54G (%) x 2.89nK
lg/em® 1km/s 354T = 354kG (%) x 289K
lg/em® 10km/s 354T = 3.54 MG (%) x 2890 K

For some choices of density and velocity units, Table 2] shows the resulting units of
magnetic field and temperature.

On the other hand, as soon as material equations are used (e.g., one of the popular
parameterizations for radiative losses, Kramers opacity, Spitzer conductivities or ion-
ization, which implies well-defined ionization energies), the corresponding routines in

"Note that ¢, = 1 is only assumed if you use the module noionization.f90. If you work with ioniza-
tion.f90, temperature units are specified by unit_temperature as described below.

36 THE PENCIL CODE

the code need to know the units you are using. This information is specified in ‘start.in’
or ‘run. in’ through the parameters unit_system, unit_length, unit_velocity, unit_density
and unit,temperature@ like e. g.

unit_system=’SI’,
unit_length=3.09e16, unit_velocity=978. ! [l]l=1pc, [v]=1pc/Myr

Note: The default unit system is unit_system=’cgs’ which is a synonym for unit_-
system=’Babylonian cubits’.

5.14 Minimum amount of viscosity

We emphasize that, by default, the code works with constant diffusion coefficients (vis-
cosity v, thermal diffusivity y, magnetic diffusivity », or passive scalar diffusivity D).
If any of these numbers is too small, you would need to have more meshpoints to get
consistent numerical solutions; otherwise the code develops wiggles (‘ringing’) and will
eventually crash. A useful criterion is given by the mesh Reynolds number based on the
maximum velocity,

Renesn = max(|u|) max(dz, dy, 02) /v, (20)

which should not exceed a certain value which can be problem-dependent. Often the
largest possible value of Re,,., is around 5. Similarly there exist mesh Péclet and mesh
magnetic Reynolds numbers that should not be too large.

Note that in some cases, ‘wiggles’ in In p will develop despite sufficiently large diffusion
coefficients, essentially because the continuity equation contains no dissipative term.
For convection runs (but not only for these), we have found that this can often be pre-
vented by upwinding, see Sect.

If the Mach number of the code approaches unity, i.e. if the rms velocity becomes com-
parable with the speed of sound, shocks may form. In such a case the mesh Reynolds
number should be smaller. In order to avoid excessive viscosity in the unshocked regions,
one can use the so-called shock viscosity (Sect. [6.6.1) to concentrate the effects of a low
mesh Reynolds number to only those areas where it is necessary.

5.15 The time step
5.15.1 The usual RK-2N time step

RK-2N refers to the third order Runge-Kutta scheme by Williamson (1980) with a mem-
ory consumption of two chunks. Therefore the 2N in the name.

The time step is normally specified as Courant time step through the coefficients cdt
(csr), cdtv (cs:) and cdts (cs: s). The resulting Courant step is given by

, 0% min oz, 1
5t = min (C5t Umax 7C5t,v Dmax 9 C(St,s Hmax) 9 (21)
where
0T min = min(dz, 0y, 02) ; (22)

Uppax = Max (|u! + \/cg—i-vi) , (23)

8Note: the parameter unit_temperature is currently only used in connection with ionization.f90. If you
are working with noionization.f90, the temperature unit is completely determined by Eq. (I9 above.

5.16 Boundary conditions 37

¢s and v, denoting sound speed and Alfvén speed, respectively;
Diax = max(v,yx,n, D), (24)

where v denotes kinematic viscosity, x = K/(c,p) thermal diffusivity and n the magnetic
diffusivity; and

(25)

208% + Cshock(V . u)2 + ...
coT ’

where dots indicate the presence of other terms on the rhs of the entropy equation.

Hax = max (

To fix the time step dt to a value independent of velocities and diffusivities, explicitly set
the run parameter dt, rather than cdt or cdtv (see p.[189).

If the time step exceeds the viscous time step the simulation may actually run ok for
quite some time. Inspection of images usually helps to recognize the problem. An exam-
ple is shown in Fig. Bl

Figure 5: Example of a velocity slice from a run where the time step is too long. Note the spurious
checkerboard modulation in places, for example near x = —0.5 and —2.5 < y < —1.5. This is an example
of a hyperviscous turbulence simulations with 5123 meshpoints and a third order hyperviscosity of v3 =
5 x 10~!2, Hyperviscosity is explained in the Appendix [El

Timestepping is accomplished using the Runge-Kutta 2N scheme. Regarding details of
this scheme see Sect. [H.4]
5.15.2 The Runge-Kutta-Fehlberg time step

A fifth order Runge-Kutta-Fehlberg time stepping procedure is available. It is used
mostly for chemistry application, often together with the double precision option. In
order to make this work, you need to compile with

TIMESTEP = timestep_rkf

in ‘src/Makefile.local’. In addition, you must put itorder=5 in ‘run.in’. An example
application is ‘samples/1d-tests/H2_flamespeed’. This procedure is still experimental.
5.16 Boundary conditions

5.16.1 Where to specify boundary conditions

In most tests that come with the PENCIL CODE, boundary conditions are set in ‘run.in’,
which is a natural choice. However, this may lead to unexpected initial data written by
‘start.x’, since when you start the code (via ‘start.csh’), the boundary conditions are

38 THE PENCIL CODE

unknown and ‘start.x’ will then fill the ghost zones assuming periodicity (the default
boundary condition) in all three directions. These ghost data will never be used in a
calculation, as ‘run.x’ will apply the boundary conditions before using any ghost-zone
values.

To avoid these periodic conditions in the initial snapshot, you can set the boundary
conditions in ‘start.in’ already. In this case, they will be inherited by ‘run.x’, unless you
also explicitly set boundary conditions in ‘run.in’.

5.16.2 How to specify boundary conditions

Boundary conditions are implemented through three layers of ghost points on either
boundary, which is quite a natural choice for an MPI code that uses ghost zones for
representing values located on the neighboring processors anyway. The desired type of
boundary condition is set through the parameters bc{x,y,z} in ‘run. in’; the nomenclature
used is as follows. Set be{x,y;z} to a sequence of letters like

bCX =)p)’)p)’)p),)p)’)p)
for periodic boundaries, or
bcz = ’s’,’s’,’a’,’a2’,’cl:c2’

for non-periodic ones. Each element corresponds to one of the variables, which are those
of the variables w,, u,, u, Inp, s/c,, A;, Ay, A, Inc that are actually used in this order.
The following conditions are available:

‘©> periodic boundary condition

‘a’> antisymmetric condition w.r.t. the boundary, i. e. vanishing value

‘s> symmetric condition w.r.t. the boundary, i. e. vanishing first derivative
‘a2’ antisymmetry w.r.t. the arbitrary value on the boundary, i.e. vanishing second
derivative

‘c1’ special boundary condition for In p and s: constant heat flux through the boundary

‘c2’ special boundary condition for s: constant temperature at the boundary — requires
boundary condition a2 for In p

‘cT” special boundary condition for s or In 7": constant temperature at the boundary (for
arbitrarily set In p)

ce’ special boundary condition for s: set temperature in ghost points to value on bound-
ary (for arbitrarily set In p)

‘db’> low-order one-sided derivatives (“no boundary condition”) for density

3 9

she’ shearing-sheet boundary condition (default when the module Shear is used)

‘g’ force the value of the corresponding field on vertical boundaries (should be used
in combination with the force_lower_bound and force_upper_bound flags set in the
namelist init_pars)

‘hs’ special boundary condition for In p and s which enforces hydrostatic equilibrium on
vertical boundaries

5.17 Restarting a simulation 39

The extended syntax a:b (e. g. ‘c1:c2’) means: use boundary condition a at the left/lower
boundary, but b at the right/upper one.

If you build a new ‘run.in’ file from another one with a different number of variables
(noentropy vs. entropy, for example), you need to remember to adjust the length of the
arrays bcx to bcz. The advantage of the present approach is that it is very easy to ex-
change all boundary conditions by a new set of conditions in a particular direction (for
example, make everything periodic, or switch off shearing sheet boundary conditions
and have stress-free instead).

5.17 Restarting a simulation

When a run stops at the end of a simulation, you can just resubmit the job again, and
it will start from the latest snapshot saved in ‘data/proc*/var.dat’. The value of the
latest time is saved in a separate file, ‘data/proc*/time.dat’. On parallel machines it is
possible that some (or just one) of the ‘var.dat’ are corrupt; for example after a system
crash. Check for file size and date, and restart from a good ‘VAR'NV file instead.

If you want to run on a different machine, you just need to copy the ‘data/proc*/var.dat’
(and, just to be sure) ‘data/proc*/time.dat’) files into a new directory tree. You may also
need the ‘data/proc*/seed.dat’ files for the random number generator. The easiest way
to get all these other files is to run start.csh again on the new machine (or in a new
directory) and then to overwrite the ‘data/proc*/var.dat’ files with the correct ones.

For restarting from runs that didn’t have magnetic fields, passive scalar fields, or test

fields, see Sect.

5.18 One- and two-dimensional runs

If you want to run two-dimensional problems, set the number of mesh points in one di-
rection to unity, e.g., nygrid=1 or nzgrid=1 in ‘cparam.local’. Remember that the num-
ber of mesh points is still divisible by the number of processors. For 2D-runs, it is also
possible to write only 2D-snapshots (i.e. VAR files written only in the considered (z,y)
or (z,z) plane, with a size seven times smaller as we do not write the third unused di-
rection). To do that, please add the logical flag ‘lwrite_2d=T" in the namelist init_pars in
‘start.in’.

Similarly, for one-dimensional problems, set, for example, nygrid=1 and nzgrid=1 in
‘cparam.local’. You can even do a zero-dimensional run, but then you better set dt
(rather than cdt), because there is no Courant condition for the time step.

See 0d, 1d, 2d, and 3d tests with examples.

5.19 Visualization
5.19.1 Gnuplot

Simple visualization can easily be done using Gnuplot (http://www.gnuplot.info), an
open-source plotting program suitable for two-dimensional plots.

For example, suppose you have the variables

in ‘time_series.dat’ and want to plot u,,s(t). Just start gnuplot and type

http://www.gnuplot.info

40 THE PENCIL CODE

gnuplot> plot "data/time_series.dat" using 2:4 with lines
If you work over a slow line and want to see both u,,s(t) and wu,.x(t), use ASCII graphics:

gnuplot> set term dump

gnuplot> set logscale y

gnuplot> plot "data/time_series.dat" using 2:4 title "urms", \
gnuplot> "data/time_series.dat" using 2:5 title "umax"

5.19.2 Data explorer

DX (data explorer; http://www.opendx.org) is an open-source tool for visualization of
three-dimensional data.

The PENCIL CODE provides a few networks for DX. It is quite easy to read in a snapshot
file from DX (the only tricky thing is the four extra bytes at the beginning of the file,
representing a Fortran record marker), and whenever you run ‘start.x’, the code writes
a file ‘var.general’ that tells DX all it needs to know about the data structure.

As a starting point for developing your own DX programs or networks, you can use a
few generic DX scripts provided in the directory ‘dx/basic/’. From the run directory,
start DX with

unix> dx -edit $PENCIL_HOME/dx/basic/lnrho

to load the file ‘dx/basic/lnrho.net’, and execute it with or Execute — Execute
Once. You will see a set of iso-surfaces of logarithmic density. If the viewport does not
fit to your data, you can reset it with (Ctl-fl. To rotate the object, drag the mouse over
the Image window with the left or right mouse button pressed. Similar networks are
provided for entropy (‘ss.net’), velocity (‘uu.net’) and magnetic field (‘ob.net’).

When you expand these simple networks to much more elaborate ones, it is probably
a good idea to separate the different tasks (like Importing and Selecting, visualizing
velocity, visualizing entropy, and Rendering) onto separate pages through Edit — Page.

Note Currently, DX can only read in data files written by one single processor, so from
a multi-processor run, you can only visualize one subregion at a time.

5.19.3 GDL

GDL, also known as Gnu Data Language is a free visualization package that can be
found at http://gnudatalanguage.sourceforge.net/. It aims at replacing the very ex-
pensive IDL package (see S.[5.19.4). For the way we use IDL for the Pencil Code, com-
patibility is currently not completely sufficient, but you can use GDL for many of the
visualization tasks. If you get spurious “Error opening file” messages, you can normally
simply ignore them.

This section tells you how to get started with using GDL for visualization.
Setup As of GDL 0.9 — at least the version packed with Ubuntu Jaunty (9.10) — you

will need to add GDL’s ‘examples/pro/’ directory to your /PATH variable. So the first call
after starting GDL should be

GDL> .run setup_gdl

http://www.opendx.org
http://gnudatalanguage.sourceforge.net/

5.19 Visualization 41

Starting visualization There are mainly two possibilities for visualization: using a sim-
ple GUI or loading the data with pc_read and work with it interactively. Please note that
the GUI was written and tested only with IDL, see §5.19.4

Here, the pc_read family of IDL routines to read the data is described. Try
GDL> pc_read

to get an overview.

To plot a time series, use

GDL> pc_read_ts, OBJECT=ts

GDL> help, ts, /STRUCT ;; (to see which slots are available)
GDL> plot, ts.t, ts.umax

GDL> oplot, ts.t, ts.urms

Alternatively, you could simply use the ‘ts.pro’ script:
GDL> .run ts

To work with data from ‘var.dat’ and similar snapshot files, you can e.g., use the follow-
ing routines:

GDL> pc_read_dim, OBJECT=dim

GDL> $$PENCIL_HOME/bin/nl2idl -d ./data/param.nml> ./param.pro
GDL> pc_read_param, OBJECT=par

GDL> pc_read_grid, OBJECT=grid

GDL> pc_read_var, OBJECT=var

Having thus read the data structures, we can have a look at them to see what informa-
tion is available:

GDL> help, dim, /STRUCT
GDL> help, par, /STRUCT
GDL> help, grid, /STRUCT
GDL> help, var, /STRUCT

To visualize data, we can e.g., do?
GDL> plot, grid.x, var.ss[x, dim.ny/2, dim.nz/2]

GDL> contourfill, var.ss[*, *, dim.nz/2], grid.x, grid.y

GDL> ux_slice = var.uul*, *, dim.nz/2, O]
GDL> wuy_slice = var.uul*, *, dim.nz/2, 1]
GDL> wdvelovect, ux_slice, uy_slice, grid.x, grid.y

GDL> surface, var.lnrho[*, *, dim.nz/2, 0]

See also Sect.[5.19.4l

5.19.4 IDL

IDL is a commercial visualization program for two-dimensional and simple three-
dimensional graphics. It allows to access and manipulate numerical data in a fashion

91f contourfill produces just contour lines instead of a color-coded plot, your version of GDL is too old.
E.g. the version shipped with Ubuntu 9.10 is based on GDL 0.9rc1 and has this problem.

42 THE PENCIL CODE

quite similar to how Fortran handles them.

In ‘$PENCIL_HOME/id1’, we provide a number of general-purpose IDL scripts that we are
using all the time in connection with the PENCIL CODE. While IDL is quite an expensive
software package, it is quite useful for visualizing results from numerical simulations.
In fact, for many applications, the 7-minute demo version of IDL is sufficient.

Visualization in IDL The Pencil Code GUI is a data post-processing tool for the usage
on a day-to-day basis. It allows fast inspection of many physical quantities, as well as ad-
vanced features like horizontal averages, streamline tracing, freely orientable 2D-slices,
and extraction of cut images and movies. To use the Pencil Code GUI, it is sufficient to
run:

unix> idl
IDL> .r pc_gui

If you like to load only some subvolume of the data, like any 2D-slices from the given
data snapshots, or 3D-subvolumes, it is possible to choose the corresponding options in
the file selector dialog. The Pencil Code GUI offers also some options to be set on the
command-line, please refer to their description in the source code.

There are also other small GUIs available, e.g., the file ‘time-series.dat’ can easily be
analyzed with the command:

unix> idl
IDL> pc_show_ts

The easiest way to derive physical quantities at the command-line is to use one of the
many pc_read_var-variants (pc_read_var_raw is recommended for large datasets be-
cause of its high efficiency regarding computation and memory usage) for reading the
data. With that, one can make use of pc_get_quantity to derive any implemented physi-
cal quantity. Packed in a script, this is the recommended way to get reproducible results,
without any chance for accidental errors on the interactive IDL command-line.

Alternatively, by using the command-line to see the time evolution of e.g., velocity and
magnetic field (if they are present in you run), start IDL ['} and run ‘ts.pro”

unix> idl
IDL> .Tun ts

01f you run IDL from the command line, you will highly appreciate the following tip: IDL's command
line editing is broken beyond hope. But you can fix it, by running IDL under rlwrap, a wrapper for the
excellent GNU readline library.
Download and install rlwrap from http://utopia.knoware.nl/~hlub/uck/rlwrap/ (on some systems
you just need to run ‘emerge rlwrap’, or ‘apt-get install rlwrap’), and alias your idl command:
csh> alias idl ’rlwrap -a -c idl’
bash> alias idl=’rlwrap -a -c idl’
From now on, you can

¢ use long command lines that correctly wrap around,;

¢ type the first letters of a command and then to recall commands starting with these letters;
* capitalize, uppercase or lowercase a word with ([Esc)-C, (Escl-U, (Esc)-L;

¢ use command line history across IDL sessions (you might need to create ‘"/.id1_history’ for this);
¢ complete file names with (works to some extent);

¢ ...use all the other readline features that you are using in bash, octave, bc, gnuplot, ftp, etc.

5.19 Visualization 43

The IDL script ‘ts.pro’ reads the time series data from ‘data/time_series.dat’ and sorts
the column into the structure ts, with the slot names corresponding to the name of the
variables (taken from the header line of ‘data/time_series.dat’). Thus, you can refer to
time as ts.t, to the rms velocity as ts.urms, and in order to plot the mean density as a
function of time, you would simply type

IDL> plot, ts.t, ts.rhom

The basic command sequence for working with a snapshot is:

unix> idl

IDL> .run start

IDL> .run r

IDL> [specific commands]

You run ‘start.pro’ once to initialize (or reinitialize, if the mesh size has changed, for
example) the fields and read in the startup parameters from the code. To read in a new
snapshot, run ‘r.pro’ (or ‘rall.pro’, see below).

If you are running in parallel on several processors, the data are scattered over different
directories. To reassemble everything in IDL, use

IDL> .r rall

instead of .r r (here, .r is a shorthand for .run). The procedure ‘rall.pro’ reads (and
assembles) the data from all processors and correspondingly requires large amounts of
memory for very large runs. If you want to look at just the data from one processor, use
‘r.pro’ instead.

If you need the magnetic field or the current density, you can calculate them in IDL by

IDL> bb=curl(aa)
IDL> jj=curl2(aa)

By default one is reading always the current snapshot ‘data/proc/N/var.dat’; if you want
to read one of the permanent snapshots, use (for example)

IDL> varfile=’VAR2’
IDL> .r r (or .r rall)

See Sect. [5.6.1] for details on permanent snapshots.
With ‘r.pro’, you can switch the part of the domain by changing the variable datadir:

IDL> datadir=’data/proc3’
IDL> .rr

will read the data written by processor 3.

Reading data into IDL arrays or structures As an alternative to the method described
above, there is also the possibility to read the data into structures. This makes some
more operations possible, e.g., reading data from an IDL program where the command
.r is not allowed.

HKeep in mind that jj=curl(bb) would use iterated first derivatives instead of the second derivatives
and thus be numerically less accurate than jj=curl2(aa), particularly at small scales.

44 THE PENCIL CODE

An efficient and still scriptable way would look like the following:

IDL> pc_read_var_raw, obj=var, tags=tags
IDL> bb = pc_get_quantity (’B’, var, tags)
IDL> jj = pc_get_quantity (’j’, var, tags)

This reads the data into an array ‘var’, as well as the array indices of the contained phys-
ical variables into a separate structure ‘tags’. To use a caching mechanism within pc_-
get_quantity, please refer to the documentation and the examples contained in ‘pencil-
code/idl/pc_get_quantity.pro’, where you can also start adding not yet implemented phys-
ical quantities.

To read a snapshot *VAR10’ into the IDL structure ff, type the following command
IDL> pc_read_var, obj=ff, varfile=’VAR10’, /trimall

The option /trimall removes ghost zones from the data. A number of other options are
documented in the source code of pc_read_var. You can see what data the structure
contains by using the command tag_names

IDL> print, tag_names(ff)
T XY Z DX DY DZ UU LNRHO AA

One can access the individual variables by typing ff.varname, e.g.,

IDL> help, ff.aa
<Expression> FLOAT = Array[32, 32, 32, 3]

There are a number of files that read different data into structures. They are placed
in the directory \$PENCIL_HOME/idl/files. Here is a list of files (including suggested
options to call them with)

® pc_read_var_raw, obj=var, tags=tags
Efficiently read a snapshot into an array.

®* pc_read_var, obj=ff, /trimall
Read a snapshot into a structure.

® pc_read_ts, obj=ts
Read the time series into a structure.

® pc_read_xyaver, obj=xya
pc_read_xzaver, obj=xza
pc_read_yzaver, obj=yza
Read 1-D time series into a structure.

® pc_read_const, obj=cst
Read code constants into a structure.

® pc_read_pvar, obj=fp
Read particle data into a structure.

® pc_read_param, obj=par
Read startup parameters into a structure.

® pc_read_param, obj=par2, /param2
Read runtime parameters into a structure.

Other options are documented in the source code of the files.

5.19 Visualization 45

For some examples on how to use these routines, see Sect.[5.19.3

5.19.5 Python

The Pencil Code supports reading, processing and the visualization of data using
python. A number of scripts are placed in the subfolder ‘$PENCIL_HOME/python’. A
README file placed under that subfolder contains the information needed to read Pen-
cil output data into python.

Installation For modern operating systems, Python is generally installed together with
the system. If not, it can be installed via your preferred package manager or downloaded
from the website https://www.python.org/. For convenience, it is strongly recommend
to also install IPython, which is a more convenient console for Python. You will also need
the Python packages NumPy, matplotlib, h5py, Tk and often Dill.

Perhaps the easiest way to obtain all the required software mentioned above is to install
either Continuum’s Anaconda or Enthought’s Canopy. These Python distributions also
provide (or indeed are) integrated graphical development environments.

Another way of installing libraries, particularly on a cluster without root privileges, is
to use pip or pip3: pip install h5py or pip3 install hb5py.

In order for Python to find the Pencil Code commands, you will have to set the environ-
ment variable PYTHONPATH:

export PYTHONPATH=${PENCIL_HOME}/python
or
export PYTHONPATH=${PENCIL_HOME}/python:${PYTHONPATH}

Normally, you will add one of these lines to your .bashrc file.
In addition, you have to import the pencil module each time you start a Python shell:
import pencil as pc

The next two paragraphs show how you can include this and some other imports into
your Python interpreter setup, so they are automatically run when you start IPython or
the Python REPL.

ipythonrc When using IPython, some Pencil Code users add the following line to their
.ipython/ipythonrc (create the file if it doesn’t exist):

import_all pencil

and in addition add to their .ipython/profile_default/startup/init.py the lines
import pencil as pc

import numpy as np

import pylab as plt

import matplotlib
from matplotlib import rc

plt.ion()
matplotlib.rcParams[’savefig.directory’] = ’’

https://www.python.org/

46 THE PENCIL CODE

.pythonrc If you don’t have IPython and cannot install it (e.g., on some cluster), you
can instead edit your .pythonrc:

#!/usr/bin/python
import numpy as np
import pylab as plt
import pencil as pc
import atexit
#import readline
import rlcompleter

enables search with Ctrl+r in the history

try:
import readline

except ImportError:
print "Module readline not available."

else:
import rlcompleter
readline.parse_and_bind("tab: complete")

enables command history

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)

del os, atexit, readline, rlcompleter, save_history, historyPath

plt.ion()

and create the file .pythonhistory and add to your .bashrc:
export PYTHONSTARTUP="/.pythonrc

However, none of this is required to use the Pencil Code Python modules.

Pencil Code Commands in General For a list of all Pencil Code commands start
IPython and type pc. <TAB> (as with auto completion). To access the help of any com-
mand just type the command followed by a *?’ (no spaces), e.g.,

In [1]: pc.math.dot?

Signature: pc.math.dot(a, b)

Docstring:

Take dot product of two pencil-code vectors a and b.
call signature:

dot(a, b):

Keyword arguments:

5.19 Visualization 47

*ax, *xb*:

Pencil-code vectors with shape [3, mz, my, mx].
File: ~/pencil-code/python/pencil/math/vector_multiplication.py
Type: function

You can also use help(pc.dot) for a more complete documentation of the command.

There are various reading routines for the Pencil Code data. All of them return an object
with the data. To store the data into a user defined variable type, e.g.,

In [1]: ts = pc.read.ts()
Most commands take some arguments. For most of them there is a default value, e.g.,

In [1]: pc.read.ts(file_name=’time_series.dat’, datadir=’data’)

Reading and Plotting Time Series Reading the time series file is very easy. Simply
type
In [1]: ts = pc.read.ts()

and Python stores the data in the variable ts. The physical quantities are members of
the object ts and can be accessed accordingly, e.g., ts.t, ts.emag. To check which other
variables are stored simply do the tab auto completion ts. <TAB>.

Plot the data with the matplotlib commands:
In [1]: plt.plot(ts.t, ts.emag)

The standard plots are not perfect and need a little polishing. See
the online wiki for a few examples on how to make pretty plots
(https://github.com/pencil-code/pencil-code/wiki/PythonForPencil). = You can
save the plot into a file using the GUI or with

In [1]: plt.savefig(’plot.eps’)

Reading and Plotting VAR files and slice files Read var files:

In [1]: var = pc.read.var()

Read slice files:

In [1]: slices = pc.read.slices(field=’bbl’, extension=’xy’)

This returns the object slices with indices slices[nTimes, my, mx] and the time array
t.

If you want to plot, e.g., the x-component of the magnetic field at the central plane simply
type:

In [1]: plt.imshow(var.bb[0, 128, :, :].T, origin=’lower’, extent=[-4, 4, -4, 4])
For a complete list of arguments of plt.imshow refer to its documentation.

For a more interactive plot use:

In [1]: pc.visu.animate_interactive(slices.xy.bbl, t)

Be aware: arrays from the reading routines are ordered f [nvar, mz, my, mx], i.e. re-
versed to IDL. This affects reading var files and slice files.

https://github.com/pencil-code/pencil-code/wiki/PythonForPencil

48 THE PENCIL CODE

5.20 Running on multi-processor computers

The code is parallelized using MPI (message passing interface) for a simple domain
decomposition (data-parallelism), which is a straight-forward and very efficient way of
parallelizing finite-difference codes. The current version has a few restrictions, which
need to be kept in mind when using the MPI features.

The global number of grid points (but excluding the ghost zones) in a given direction
must be an exact multiple of the number of processors you use in that direction. For
example if you have nprocy=8 processors for the y direction, you can run a job with
nygrid=64 points in that direction, but if you try to run a problem with nygrid=65 or
nygrid=94, the code will complain about an inconsistency and stop. (So far, this has not
been a serious restriction for us.)

5.20.1 How to run a sample problem in parallel

To run the sample problem in the directory ‘samples/conv-slab’ on 16 CPUs, you need
to do the following (in that directory):

1. Edit ‘src/Makefile.local’ and replace

MPICOMM = nompicomm
by
MPICOMM = mpicomm

2. Edit ‘src/cparam.local’ and replace

integer, parameter :: ncpus=1, nprocy=1, nprocz=ncpus/nprocy, nprocx=1
integer, parameter :: nxgrid=32, nygrid=nxgrid, nzgrid=nxgrid

by
integer, parameter :: ncpus=16, nprocy=4, nprocz=ncpus/nprocy, nprocx=1
integer, parameter :: nxgrid=128, nygrid=nxgrid, nzgrid=nxgrid

The first line specifies a 4x4 layout of the data in the y and z direction. The second
line increases the resolution of the run because running a problem as small as 323
on 16 CPUs would be wasteful. Even 128 may still be quite small in that respect.
For performance timings, one should try and keep the size of the problem per CPU
the same, so for example 2562 on 16 CPUs should be compared with 1283 on 2 CPUs.

3. Recompile the code

unix> (cd src; make)

4. Run it

unix> start.csh
unix> run.csh

Make sure that all CPUs see the same ‘data/’ directory; otherwise things will go wrong.

Remember that in order to visualize the full domain with IDL (rather than just the
domain processed and written by one processor), you need to use ‘rall.pro’ instead of
‘r.pro’.

5.20 Running on multi-processor computers 49

5.20.2 Hierarchical networks (e.g., on Beowulf clusters)

On big Beowulf clusters, a group of nodes is often connected with a switch of modest
speed, and all these groups are connected via a n times faster uplink switch. When
bandwidth-limited, it is important to make sure that consecutive processors are mapped
onto the mesh such that the load on the uplink is < n times larger than the load on the
slower switch within each group. On a 512 node cluster, where groups of 24 processors
are linked via fast ethernet switches, which in turn are connected via a Gigabit uplink
(~ 10 times faster), we found that nprocy=4 is optimal. For 128 processors, for example
we find that nprocy x nprocz = 4 x 32 is the optimal layout, while. For comparison, 8 x 16
is 3 times slower, and 16 x 8 is 17 (!) times slower. These results can be understood from
the structure of the network, but the basic message is to watch out for such effects and
to try varying nprocy and nprocz.

In cases where nygrid>nzgrid it may be advantageous to swap the ordering of processor
numbers. This can be done by setting Iprocz_slowest=F.

5.20.3 Extra workload caused by the ghost zones

Normally, the workload caused by the ghost zones is negligible. However, if one increases
the number of processors, a significant fraction of work is done in the ghost zones. In
other words, the effective mesh size becomes much larger than the actual mesh size.

Consider a mesh of size N, = N, x N, x N, and distribute the task over P, = P, x P, x
P, processors. If no communication were required, the number of points per processor
would be
&:NxxNnyzl (26)
P, P, x P, x P,
However, for finite difference codes some communication is required, and the amount of
communication depends on spatial order of the scheme,). The PENCIL CODE works by
default with sixth order finite differences, so () = 6, i.e. one needs 6 ghost zones, 3 on

each end of the mesh. With @ # 0 the number of points per processor is

NED /N, N, N,
There is efficient scaling only when
. (N, N, N,
min (E, Fy, E) > Q. (28)

In the special case were N, = N, = N, = N = NJ/?’, with P, =1land P,=P, =P = Pi/2,
we have

N’L(UEH) N 2
a _(N+Q)><<F+Q) | (29)
For N = 128 and () = 6 the effective mesh size exceeds the actual mesh size by a factor
N N 2 p,
- x (F4Q) x5 (30)

These factors are listed in Table 3]

Ideally, one wants to keep the work in the ghost zones at a minimum. If one accepts
that 20—25% of work are done in the ghost zones, one should use 4 processors for 1283
mesh points, 16 processors for 256 mesh points, 64 processors for 512° mesh points, 256
processors for 1024® mesh points, and 512 processors for 1536 mesh points.

50 THE PENCIL CODE

Table 3: N&eﬁ)/Nw versus N and P.

P\N 128 256 512 1024 2048
1 1.15 1.07 1.04 1.02 1.01

2 119 1.09 105 1.02 1.01

4 125 112 1.06 1.03 1.01

8 134 116 1.08 1.04 1.02
16 148 122 1.11 1.05 1.03
32 168 131 1.15 1.07 1.04
64 198 144 121 1.10 1.05
128 2.45 164 130 1.14 1.07
256 3.21 193 143 1.20 1.10
512 4.45 240 162 129 1.14

5.21 Running in double-precision

With many compilers, you can easily switch to double precision (8-byte floating point
numbers) as follows.

Add the lines

Use double precision
REAL_PRECISION = double

to ‘src/Makefile.local’ and (re-)run pc_setupsrc.

If REAL_PRECISION is set to ‘double’, the flag FFLAGS_DOUBLE is appended to
the Fortran compile flags. The default for FFLAGS_DOUBLE is -r8, which works for
g95 or ifort; for gfortran, you need to make sure that FFLAGS_DOUBLE is set to
-fdefault-real-8.

You can see the flags in ‘src/Makefile.inc’, which is the first place to check if you have
problems compiling for double precision.

Using double precision might be important in turbulence runs where the resolution
is 256% meshpoints and above (although such runs often seem to work fine at single
precision). To continue working in double precision, you just say lread_from_other_-
prec=T in run_pars; see Sect.

5.22 Power spectrum

Given a real variable u, its Fourier transform « is given by

N;C—l Ny_]- Nz—l

ﬂ(kHC?ky?kZ) = f(u(ma%z)) = m Z Z Z U(Zﬁp,yq,ZT)

p=0 ¢q=0 r=0

x exp(—ik,x,) exp(—ikyy,) exp(—ik.z.), (31)
where
7N, 7N, 7N
k z k Y k z
bl<TEE 0 WI<TEE RI< T

5.22 Power spectrum 51

when L is the size of the simulation box. The three-dimensional power spectrum P(k) is
defined as

Pk) = %uu (32)

k= k2 +E2+ k2 (33)

Note that we can only reasonably calculate P(k) for k < 7N, /L,.

where

To get power spectra from the code, edit ‘run. in’ and add for example the following lines

dspec=5., ou_spec=T, ab_spec=T !(for energy spectra)
oned=T

under run_pars. The kinetic (vel_spec) and magnetic (mag_spec) power spectra will
now be calculated every 5.0 (dspec) time units. The Fourier spectra is calculated using
fftpack. In addition to calculating the three-dimensional power spectra also the one-
dimensional power spectra will be calculated (oned).

In addition one must edit ‘src/Makefile.local’ and add the lines

FOURIER = fourier_fftpack
POWER = power_spectrum

Running the code will now create the files ‘powerhel_mag.dat’ and ‘power_kin.dat’
containing the three-dimensional magnetic and kinetic power spectra respectively. In
addition to these three-dimensional files we will also find the one-dimensional files
‘powerbx_x.dat’, ‘powerby_x.dat’, ‘powerbz_x.dat’, ‘powerux_x.dat’, ‘poweruy_x.dat’ and
‘poweruz_x.dat’. In these files the data are stored such that the first line contains the
time of the snapshot, the following nxgrid /2 numbers represent the power at each
wavenumber, from the smallest to the largest. If several snapshots have been saved,
they are being stored immediately following the preceding snapshot.

You can read the results with the idl procure ‘power’, like this:

power,’_kin’,’_mag’,k=k,specl=specl,spec2=spec2,i=n,tt=t,/noplot
power,’hel_kin’,’hel_mag’,k=k,specl=speclh,spec2=spec2h,i=n,tt=t,/noplot

If powerhel is invoked, krms is written during the first computation. The relevant out-
put file is ‘power_krms.dat’. This is needed for a correct calculation of £ used in the
realizability conditions.

A caveat of the implementation of Fourier transforms in the PENCIL CODE is that, due
to the parallelization, the permitted resolution is limited to the case when one direction
is an integer multiple of the other. So, it can be done for

Nx = nxNy

Unfortunately, for some applications one wants Nx < Ny. Wlad experimented with ar-
bitrary resolution by interpolating = to the same resolution of y prior to transposing,
then transform the interpolated array and then interpolating it back (check ‘fourier_-
transform_y’ in ‘fourier_fftpack.f90’).

A feature of our current implementation with z parallelization is that fft_xyz_-
parallel_3D requires nygrid to be an integer multiple of nprocy*nprocz. Examples of
good mesh layouts are listed in Table 4]

52 THE PENCIL CODE

Table 4: Examples of mesh layouts for which Fourier transforms with = parallelization is possible.

Ny | nprocXx nprocy nNprocz | ncpus
256 1 16 16 256
256 2 16 16 512
256 4 16 16 | 1024
256 8 16 16 | 2048
288 2 16 18 576
512 2 16 32| 1024
512 4 16 16 | 1024
512 4 16 32 | 2048
576 4 18 32| 2304
576 8 18 32| 4608
576 16 18 32| 9216

1024 4 32 32 | 4096
1024 4 16 64 | 4096
1024 8 16 32| 4096
1152 4 36 32| 4608
1152 4 32 36 | 4608
2304 2 32 72 | 4608
2304 4 36 64 | 9216
2304 4 32 72| 9216

To visualize with IDL just type power and you get the last snapshot of the three-
dimensional power spectrum. See head of ‘6PENCIL_HOME/idl/power.pro’ for options to
power.

By default, the spectra for the initial times time is not outputted, but it can sometimes
be useful to have it. In that case, one can put 1spec_start=T.

5.23 Other power spectra

Over the years, many more spectra have been outputted and not everything is immedi-
ately documented. Here some examples:

data/powerhel_mag.dat
data/powerhel_kin.dat
data/power_saffman_ub.dat
data/power_saffman_mag.dat
data/power_mag.dat
data/power_krms.dat
data/power_kin.dat

Here, the first two are helicity spectra that come “for free” (in addition to those with _-
kin and _mag) when one invokes ou_spec=T and ab_spec=T. The ones with _saffman refer
to the spectra related to Saffman-like invariants such as the Hosking integral (which
refers to power_mag.dat) and the cross-helicity Saffman-like invariant (power_saffman_-
ub.dat). Their slopes for & — 0 are the invariants divided by 272; see the papers by
Hosking & Schekochihin (2021) as well as Zhou et al. (2022).

5.24 Structure functions 53

5.24 Structure functions

We define the p-th order longitudinal structure function of v as

Shng(l) = ([ue(z+l,y, 2) — (2,9, 2)[) (34)
while the transverse is

Edit ‘run.in’ and add for example the following lines

dspec=2.3,
1sfu=T, 1sfb=T, 1sfzl=T, 1lsfz2=T

under run_pars. The velocity (1sfu), magnetic (1sfb) and Elsasser (1sfz1 and 1sfz2)
structure functions will now be calculated every 2.3 (dspec) time unit.

In addition one must edit ‘src/Makefile.local’ and add the line

STRUCT_FUNC = struct_func

In ‘src/cparam.local’, define Ib_nxgrid and make sure that

nxgrid = nygrid = nzgrid = 2*x1b_nxgrid

E.g.
integer, parameter :: lb_nxgrid=b5
integer, parameter :: nxgrid=2**1lb_nxgrid,nygrid=nxgrid,nzgrid=nxgrid

Running the code will now create the files:

‘sfu-1.dat’, ‘sfu-2.dat’, ‘sfu-3.dat’ (velocity),

‘sfb-1.dat’, ‘sfb-2.dat’, ‘sfb-3.dat’ (magnetic field),

‘sfz1-1.dat’, ‘sfz1-2.dat’, ‘sfz1-3.dat’ (first Elsasser variable),

‘sfz2-1.dat’, ‘sfz2-2.dat’, ‘sfz2-3.dat’ (second Elsasser variable),

which contains the data of interest. The first line in each file contains the time ¢ and
the number gmax, such that the largest moment calculated is gmax — 1. The next imax
numbers represent the first moment structure function for the first snapshot, here

In(nxgrid)
In2

The next imax numbers contain the second moment structure function, and so on until
gmax — 1. The following imax numbers then contain the data of the signed third order
structure function i.e. S, (1) = ([u.(z+1, y, 2) — us(z,y, 2)]*).

imax = 2 — 2. (36)

The following imax x gmax x 2 numbers are zero if nr_directions = 1 (default), otherwise
they are the same data as above but for the structure functions calculated in the y and
z directions.

If the code has been run long enough as to calculate several snapshots, these snapshots
will now follow, being stored in the same way as the first snapshot.

To visualize with IDL just type structure and you get the time-average of the first order
longitudinal structure function (be sure that ‘pencil-runs/forced/id1l/’ is in IDL_PATH).
See head of ‘pencil-runs/forced/idl/structure.pro’ for options to structure.

54 THE PENCIL CODE

5.25 Particles

The PENCIL CODE has modules for tracer particles and for dust particles (see Sect.[6.17).
The particle modules are chosen by setting the value of the variable PARTICLES in
Makefile.local to either particles_dust or particles_tracers. For the former case
each particle has six degrees of freedom, three positions and three velocities. For the
latter it suffices to have only three position variables as the velocity of the particles are
equal to the instantaneous fluid velocity at that point. In addition one can choose to have
several additional internal degrees of freedoms for the particles. For example one can
temporally evolve the particles radius by setting PARTICLES_RADIUS to particles_radius
in Makefile.local.

All particle infrastructure is controlled and organized by the Particles_main module.
This module is automatically selected by Makefile.src if PARTICLES is different from
noparticles. Particle modules are compiled as a separate library. This way the main
part of the Pencil Code only needs to know about the particles_main.a library, but not
of the individual particle modules.

For a simulation with particles one must in addition define a few parameters in
cparam.local. Here is a sample of cparam.local for a parallel run with 2,000,000 parti-
cles:

integer, parameter :: ncpus=16, nprocy=4, nprocz=4, nprocx=1
integer, parameter :: nxgrid=128, nygrid=256, nzgrid=128

integer, parameter :: npar=2000000, mpar_loc=400000, npar_mig=1000
integer, parameter :: npar_species=2

The parameter npar is the number of particles in the simulation, mpar_loc is the number
of particles that is allowed on each processor and npar_mig is the number of particles
that are allowed to migrate from one processor to another in any time-step. For a non-
parallel run it is enough to specify npar. The number of particle species is set through
npar_species (assumed to be one if not set). The particle input parameters are given in
start.in and run.in. Here is a sample of the particle part of start . in for dust particles:

/

&particles_init_pars
initxxp=’gaussian-z’, initvvp=’random’
zp0=0.02, delta_vp0=0.01, eps_dtog=0.01, tausp=0.1
lparticlemesh_tsc=T

/

The initial positions and velocities of the dust particles are set in initxxp and initvvp.
The next four input parameters are further specifications of the initial condition. In-
teraction between the particles and the mesh, e.g., through drag force or self-gravity,
require a mapping of the particles on the mesh. The PENCIL CODE currently sup-
ports NGP (Nearest Grid Point, default), CIC (Cloud in Cell, set 1particlemesh_cic=T)
and TSC (Triangular Shaped Cloud, set 1particlemesh_tsc=T). See Youdin & Johansen
(2007) for details.

Here is a sample of the particle part of run.in (also for dust particles):

/

&particles_run_pars
ldragforce_gas_par=T
cdtp=0.2

5.25 Particles 55

/

The logical 1dragforce_gas_par determines whether the dust particles influence the gas
with a drag force. cdtp tells the code how many friction times should be resolved in a
minimum time-step.

The sample run ‘samples/sedimentation/’ contains the latest setup for dust particles.

5.25.1 Particles in parallel

The particle variables (e.g., ; and v;) are kept in the arrays fp and dfp. For parallel
runs, particles must be able to move from processor to processor as they pass out of the
(x,y, z)-interval of the local processor. Since not all particles are present at the same
processor at the same time (hopefully), there is some memory optimization in making
fp not big enough to contain all the particles at once. This is achieved by setting the code
variable mpar_loc less than npar in cparam.local for parallel runs. When running with
millions of particles, this trick is necessary to keep the memory need of the code down.

The communication of migrating particles between the processors happens as follows
(see the subroutine redist_particles_procs in particles_sub.f90):

1. In the beginning of each time-step all processors check if any of their particles have
crossed the local (z,y, z)-interval. These particles are called migrating particles. A
run can have a maximum of npar_mig migrating particles in each time-step. The
value of npar_mig must be set in cparam.local. The number should (of course) be
slightly larger than the maximum number of migrating particles at any time-step
during the run. The diagnostic variable nmigmax can be used to output the maxi-
mum number of migrating particles at a given time-step. One can set lmigration_-
redo=T in &particles_run_pars to force the code to redo the migration step if more
than npar_mig want to migrate. This does slow the code down somewhat, but has
the benefit that the code does not stop when more than npar_mig particles want to
migrate.

2. The index number of the receiving processor is then calculated. This requires some
assumption about the grid on other processors and will currently not work for
nonequidistant grids. Particles do not always pass to neighboring processors as the
global boundary conditions may send them to the other side of the global domains
(periodic or shear periodic boundary conditions).

3. The migrating particle information is copied to the end of fp, and the empty spot
left behind is filled up with the particle of the highest index number currently
present at the processor.

4. Once the number of migrating particles is known, this information is shared with
neighboring processors (including neighbors over periodic boundaries) so that they
all know how many particles they have to receive and from which processors.

5. The communication happens as directed MPI communication. That means that
processors 0 and 1 can share migrating particles at the same time as processors 2
and 3 do it. The communication happens from a chunk at the end of fp (migrating
particles) to a chunk that is present just after the particle of the highest index
number that is currently at the receiving processor. Thus the particles are put
directly at their final destination, and the migrating particle information at the
source processor is simply overwritten by other migrating particles at the next

56

THE PENCIL CODE

time-step.

. Each processor keeps track of the number of particles that it is responsible for. This

number is stored in the variable npar_loc. It must never be larger than mpar_loc
(see above). When a particle leaves a processor, npar_loc is reduced by one, and
then increased by one at the processor that receives that particle. The maximum
number of particles at any processor is stored in the diagnostic variable nparmax. If
this value is not close to npar/ncpus, the particles have piled up in such a way that
computations are not evenly shared between the processors. One can then try to
change the parallelization architecture (nprocy and nprocz) to avoid this problem.

In simulations with many particles (comparable to or more than the number of grid
cells), it is crucial that particles are shared relatively evenly among the processors. One
can as a first approach attempt to not parallelize directions with strong particle density
variations. However, this is often not enough, especially if particles clump locally.

Alternatively one can use Particle Block Domain Decomposition (PBDD, see Johansen
et al. 2011). The steps in Particle Block Domain Decomposition scheme are as follows:

1.

The fixed mesh points are domain-decomposed in the usual way (with
NCPUS=NProCX XNProcy Xnprocz).

Particles on each processor are counted in bricks of size nbxxnbyxnbz (typically
nbx= nby=nbz=4).

Bricks are distributed among the processors so that each processor has approxi-
mately the same number of particles

. Adopted bricks are referred to as blocks.

The Pencil Code uses a third order Runge-Kutta time-stepping scheme. In the be-
ginning of each sub-time-step particles are counted in blocks and the block counts
communicated to the bricks on the parent processors. The particle density assigned
to ghost cells is folded across the grid, and the final particle density (defined on the
bricks) is communicated back to the adopted blocks. This step is necessary because
the drag force time-step depends on the particle density, and each particle assigns
density not just to the nearest grid point, but also to the neighboring grid points.

In the beginning of each sub-time-step the gas density and gas velocity field is
communicated from the main grid to the adopted particle blocks.

Drag forces are added to particles and back to the gas grid points in the adopted
blocks. This partition aims at load balancing the calculation of drag forces.

. At the end of each sub-time-step the drag force contribution to the gas velocity field

is communicated from the adopted blocks back to the main grid.

Particle Block Domain Decomposition is activated by setting PARTICLES = particles_-
dust_blocks and PARTICLES_MAP = particles_map_blocks in Makefile.local. A sam-
ple of cparam.local for Particle Block Domain Decomposition can be found in
samples/sedimentation/blocks:

integer, parameter :: ncpus=4, nprocx=2, nprocy=2, nprocz=l1
integer, parameter :: nxgrid=32, nygrid=32, nzgrid=32

integer, parameter :: npar=10000, mpar_loc=5000, npar_mig=100
integer, parameter :: npar_species=4

integer, parameter :: nbrickx=4, nbricky=4, nbrickz=4, nblockmax=32

5.25 Particles 57

The last line defines the number of bricks in the total domain — here we divide the grid
into 4 x 4 x 4 bricks each of size 8 x 8 x 8 grid points. The parameter nblockmax tells the
code the maximum number of blocks any processor may adopt. This should not be so low
that there is not room for all the bricks with particles, nor so high that the code runs out
of memory.

5.25.2 Large number of particles

When dealing with large number of particles, one needs to make sure that the number
of particles npar is less than the maximum integer that the compiler can handle with.
The maximum integer can be checked by the Fortran intrinsic function huge,

program huge_integers
print *, huge(0_4) ! for default Fortran integer (32 Bit)
print *, huge(0_8) ! for 64 Bit integer in Fortran

end program huge_integers

If the number of particles npar is larger than default maximum integer, one can promote
the maximum integer to 64 Bit by setting

integer(kind=8), parameter :: npar=4294967296

in the cparam.local file. This works because the data type of npar is only set here. It is
worth noting that one should not use the flag

FFLAGS += -integer-size 64

to promote all the integers to 64 Bit. This will break the Fortran-C interface. One
should also make sure that npar_mig<=npar/ncpus. It is also beneficial to set mpar_-
loc=2*npar/ncpus. Sometimes one may encounter the following error, “additional relo-
cation overflows omitted from the output” due to the 2G memory limit (caused by large
static array). It is mpar_loc that determines the usage of memory instead of npar. There
are two ways to resolve this issue:

¢ Use a specific memory model to generate code and store data by setting the follow-
ing for Intel compiler in your configuration file,

FFLAGS += -shared-intel -mcmodel=medium

This will, however, affect the performance of the code [42] This method can handle
at least the following setup,

integer, parameter :: ncpus=256,nprocx=4,nprocy=8,nprocz=ncpus/(nprocx*nprocy.
integer, parameter :: nxgrid=1024,nygrid=nxgrid,nzgrid=nxgrid

integer (kind=ikind8), parameter :: npar=124999680

integer, parameter :: npar_stalk=100000, npar_mig=npar/10

integer, parameter :: mpar_loc=npar/5

* Increase ncpu and decrease mpar_loc. For npar=124999680, ncpu=1024 is needed.

integer, parameter :: ncpus=1024,nprocx=8,nprocy=8,nprocz=ncpus/(nprocx*nprocy)
integer, parameter :: nxgrid=1024,nygrid=nxgrid,nzgrid=nxgrid

integer (kind=ikind8), parameter :: npar=124999680

integer, parameter :: mpar_loc=5*npar/ncpus

58 THE PENCIL CODE

integer, parameter :: npar_stalk=100000, npar_mig=npar/ncpus

It is worth noting that even without particles, a simulation with 1024% resolution re-
quires at least 512 CPUs to be compiled.

5.25.3 Random number generator

There are several methods to generate random number in the code. It is worth noting
that when simulating coagulation with the super-particle approach, one should use the
intrinsic random number generator of FORTRAN instead of the one implemented in the
code. When invoking random_number_wrapper, there will be back-reaction to the gas flow.
This unexpected back-reaction can be tracked by inspecting the power spectra, which
exhibits the oscillation at the tail. To avoid this, one should set luser_random_number_-
wrapper=F under the module particles_coag_run_pars in run.in.

5.26 Non-cartesian coordinate systems
Spherical coordinates are invoked by adding the following line in the file ‘start.in’

4init_pars
coord_system=’spherical_coords’

One can also invoke cylindrical coordinates by saying cylindrical_coords instead. In
practice, the names (z, y, z) are still used, but they refer then to (7,6, ¢) or (r, ¢, 2) instead.

When working with curvilinear coordinates it is convenient to use differential operators
in the non-coordinate basis, so the derivatives are taken with respect to length, and
not in a mixed fashion with respect to length for 0/0r and with respect to angle for
0/00 and 0/0¢. The components in the non-coordinate basis are denoted by hats, see,
e.g., [32], p. 213; see also Appendix B of [33]. For spherical polar coordinates the only
nonvanishing Christoffel symbols (or connection coefficients) are

=—Tg=-T"55=1/r, (37)

ré

9¢:—Féq;q;:cot6’/r. (38)

The Christoffel symbols enter as correction terms for the various differential opera-
tors in addition to a term calculated straightforwardly in the non-coordinate basis. The
derivatives of some relevant Christoffel symbols are

0 _1pd . _17o.. . _
P06 =T%45=T%4=0 (39)
Féfé,f = Féf&f = —r? (40)
Fqgé&é = —r2gin"20 41)

Further details are given in Appendix [Il

6. The equations 59

6 The equations

The equations solved by the PENCIL CODE are basically the standard compressible
MHD equations. However, the modular structure allows some variations of the MHD
equations, as well as switching off some of the equations or individual terms of the
equation (nomagnetic, noentropy, etc.).

In this section the equations are presented in their most complete form. It may be ex-
pected that the code can evolve most subsets or simplifications of these equations.

6.1 Continuity equation

In the code the continuity equation, 0p/0t + V - pu = 0, is written in terms of In p,

Dlnp
Dt

-V -u. (42)

Here p denotes density, u the fluid velocity, ¢ is time and D/Dt = 9/0t + u - V is the
advective derivative.

6.2 Equation of motion
In the equation of motion, using a perfect gas, the pressure term, can be expressed as

—p~'Vp=—c2(Vs/c, + Vinp), where the squared sound speed is given by

= 7% = %, exp {vs/cp + (v—-1) lnpﬁ , (43)
0

and v = ¢,/c, is the ratio of specific heats, or adiabatic index. Note that 2 is proportional
to the temperature with ¢ = (y — 1)¢,T.

The equation of motion is accordingly

Du 9 5 jx B
, — —Cy4 - 1 - (brav
D va(cp+ np> Vo, + P
1
+V<V2u+§VV-u+2S-Vlnp)+C(VV-'U,); (44)

Here ®,,,, is the gravity potential, j the electric current density, B the magnetic flux
density, v is kinematic viscosity, (describes a bulk viscosity, and, in Cartesian coordi-
nates

is the rate-of-shear tensor that is traceless, because it can be written as the generic rate-
of-strain tensor minus its trace. In curvilinear coordinates, we have to replace partial
differentiation by covariant differentiation (indicated by semicolons), so we write S;; =
3 (wisg + uj) — 505V - .

The interpretation of the two viscosity terms varies greatly depending upon the Viscos-
ity module used, and indeed on the parameters given to the module. See §6.6l

For isothermal hydrodynamics, see §6.4] below.

60 THE PENCIL CODE

6.3 Induction equation

0A .

E:U’XB_UMOJ' (46)
Here A is the magnetic vector potential, B = V x A the magnetic flux density, n =
1/(poo) is the magnetic diffusivity (0 denoting the electrical conductivity), and , the
magnetic vacuum permeability. This form of the induction equation corresponds to the
Weyl gauge ® = 0, where ® denotes the scalar potential.

6.4 Entropy equation

The current thermodynamics module entropy formulates the thermal part of the physics
in terms of entropy s, rather than thermal energy e, which you may be more famil-
iar with. Thus the two fundamental thermodynamical variables are Inp and s. The
reason for this choice of variables is that entropy is the natural physical variable for
(at least) convection processes: the sign of the entropy gradient determines convective
(in)stability, the Rayleigh number is proportional to the entropy gradient of the associ-
ated hydrostatic reference solution, etc. The equation solved is
Ds

pTD—t:H—C+V-(KVT)+nuoj2+2puS®S+Cp(V-u)2 . (47)

Here, T is temperature, c, the specific heat at constant pressure, 4 and C are explicit
heating and cooling terms, K is the radiative (thermal) conductivity, (describes a bulk
viscosity, and S is the rate-of-shear tensor that is traceless.

In the entropy module we solve for the specific entropy, s. The heat conduction term on
the right hand side can be written in the form

V. (KVT)

T (48)

= oX[VEIWT + VInT - V(In T+ x+1np) (49)
= ¢x [7V?s/c, + (v=1)V?Inp]

+cp,x [YVs/c, + (v=1)V1np] - [y (Vs/c,+ Vinp) + Viny] , (50)

where x = K/(pc,) is the thermal diffusivity. The latter equation shows that the diffu-
sivity for s is vy, which is what we have used in Eq. (24).

In an alternative formulation for a constant K, the heat conduction term on the right
hand side can also be written in the form

V. (KVT) Ko,)
p—T_?[v T+ (VnT)?| (51)

which is the form used when constant K is chosen.

Note that by setting v+ = 1 and initially s = 0, one obtains an isothermal equation of
state (albeit at some unnecessary expense of memory). Similarly, by switching off the
evolution terms of entropy, one immediately gets polytropic behavior (if s was initially
constant) or generalized polytropic behavior (where s is not uniform, but ds/0t = 0).

A better way to achieve isothermality is to use the noentropy module.

6.5 Transport equation for a passive scalar 61

6.4.1 Viscous heating

We can write the viscosity as the divergence of a tensor 7;; ;,

du;
P 81; = ... +Tz‘j’j, (52)

where 7,; = 2vpS;; is the stress tensor. The viscous power density P is

P = Ui Tij 4 (53)
0
= o (uiTij) — ui i (54)

The term under the divergence is the viscous energy flux and the other term is the
kinetic energy loss due to heating. The heating term +u; ;7;; is positive definite, because
7,; 1s a symmetric tensor and the term only gives a contribution from the symmetric part
of u; j, which is $(u; ; + u;;), so

1
ui,jTij = §Vp(ui7j -+ U],Z)(QSU) . (55)
But, because S;; is traceless, we can add anything proportional to J,; and, in particular,
we can write

1
uigTyy = 5y 0 (2vpSy) (56)
1 1
= §(ui,j + Uj,i — g(swv . u) (21/p5w) (57)
= 2upS?, (58)

which is positive definite.

6.4.2 Alternative description

By setting pretend_1nTT=T in init_pars or run_pars (i.e. the general part of the name
list) the logarithmic temperature is used instead of the entropy. This has computational
advantages when heat conduction (proportional to XK' VT) is important. Another alterna-
tive is to use another module, i.e. set ENTROPY=temperature_idealgas in ‘Makefile.local’.

When pretend_1nTT=T is set, the entropy equation

ds 1
Y . ~ RH
5 u-Vs+ pTR S (59)
is replaced by
oML VT4 RHS— (- 1)V -u (60)
ot pc, T 7 ’

where RHS is the right hand side of equation (47).

6.5 Transport equation for a passive scalar

In conservative form, the equation for a passive scalar is

%(pc} + V - [pcu — pDV¢] = 0. (61)

62 THE PENCIL CODE

Here c denotes the concentration (per unit mass) of the passive scalar and D its diffusion
constant (assumed constant). In the code this equation is solved in terms of In ¢,

D1
Dr;C:D[V21n0+(Vlnp+V1n0)-Vlnc}. (62)

Using In ¢ instead of ¢ has the advantage that it enforces ¢ > 0 for all times. However,
the disadvantage is that one cannot have ¢ = 0. For this reason we ended up using the
non-logarithmic version by invoking PSCALAR=pscalar_nolog.

6.6 Bulk viscosity

For a monatomic gas it can be shown that the bulk viscosity vanishes. We therefore don’t
use it in most of our runs. However, for supersonic flows, or even otherwise, one might
want to add a shock viscosity which, in its simplest formulation, take the form of a bulk
viscosity.

6.6.1 Shock viscosity

Shock viscosity, as it is used here and also in the Stagger Code of Ake Nordlund, is
proportional to positive flow convergence, maximum over five zones, and smoothed to
second order,

Cshock = Cshock <m5ax[(—V . u)+]> (min(dz, 8y, 62))?, (63)

where ¢, 1S a constant defining the strength of the shock viscosity. In the code this
dimensionless coefficient is called nu_shock, and it is usually chosen to be around unity.
Assume that the shock viscosity only enters as a bulk viscosity, so the whole stress
tensor is then

Tij = 2pVS;j + plshocklij V - . (64)

Assume v = const, but ¢ # const, so

1
P F e = v (V2u + gVV -u+2S-Vin p) + Ghook [VV -u+ (Vinp+ Vin Grow) V - 1.

(65)
and
p_lrvisc = 27/52 + Cshock(v : ’LL)2. (66)

In the special case with periodic boundary conditions, we have 2(S%) = (w?) + 3((V - u)?).

6.7 Equation of state

In its present configuration only hydrogen ionization is explicitly included. Other con-
stituents (currently He and H,) can have fixed values. The pressure is proportional to
the total number of particles, i.e.

p = (nm1 + nan + np, + Ne + Npe + -2 kT (67)

It is convenient to normalize to the total number of H both in atomic and in molecular
hydrogen, nyiot = nu + 2np,, where ny; + nun = npy, and define z. = ne/Nueot, THe =
NHe/NHtot, AN Ty, = N1, /Npter- Substituting ny = Ny — 2n4,, we have

p=(1—2n, + Te + Tge + ...)NHtotk T (68)

6.8 Ionization 63

This can be written in the more familiar form
R
=T, (69)

where R = kg/m, and m, is the atomic mass unit (which is for all practical purposes the
same as Mmiyor) and

_ng+2ng, +ne +4npe 1+ 4ry.e
ny + NH, + Ne + NHe 1 —2n, +2c + THe

(70)

is the mean molecular weight (which is here dimensionless; see Kippenhahn & Weigert
1990, p. 102). The factor 4 is really to be substituted for 3.97153. Some of the familiar
relations take still the usual form, in particular e = ¢, 7" and h = ¢, with ¢, = %R /pand
¢p = 2R/ .

The number ratio, zp., is more commonly expressed as the mass ratio, ¥ =
MueNHe/ (MHENHor + MHNHe), OF Y = 4wy./(1 + 4wg.), or 4ry, = (1/Y — 1)~'. For exam-
ple, Y = 0.27 corresponds to zy, = 0.092 and Y = 0.25 to zy. = 0.083. Note also that for
100% H, abundance, zy, = 1/2.

In the following, the ionization fraction is given as y = n./ny, which can be different
from z, if there is H,. Substituting for ny in terms of ny, yields y = x./(1 — 2xy,).

6.8 lonization

This part of the code can be invoked by setting EO0S=eos_ionization (or E0S=eos_-
temperature_ionization) in the ‘Makefile.local’ file. The equation of state described
below works for variable ionization, and the entropy offset is different from that used
in Eq. (43), which is now no longer applicable. As a replacement, one can use E0S=eos_-
fixed_ionization, where the degree of ionization can be given by hand. Here the nor-
malization of the entropy is the same as for EOS=eos_ionization. This case is described
in more detail below['

We treat the gas as being composed of partially ionized hydrogen and neutral helium.
These are four different particle species, each of which regarded as a perfect gas.

The ionization fraction y, which gives the ratio of ionized hydrogen to the total amount
of hydrogen ny, is obtained from the Saha equation which, in this case, may be written

as 32
2
Y 1 [mekgT XH
= — _ AR 71
1—y nH(onh?) eXp(k;BT) (71)
The temperature 7' cannot be obtained directly from the PENCIL CODE’s independent

variables In p and s, but is itself dependent on y. Hence, the calculation of y essentially
becomes a root finding problem.

The entropy of a perfect gas consisting of particles of type ¢ is known from the Sackur-
Tetrode equation
1 (miksT*?| 5
S;i =kgN; [1 —| . 72
B (n [ntot (27Th2) + 2 ()

Here N, is the number of particles of a single species and 7, is the total number density
of all particle species.

12We omit here the contribution of Hs.

64 THE PENCIL CODE

In addition to the individual entropies we also have to take the entropy of mixing,
Smix = —Niotks) ; pi Inp;, into account. Summing up everything, we can get a closed ex-
pression for the specific entropy s in terms of y, Inp and 7, which may be solved for
T.

1 cm3
p=1g/ 0-6 10-12 10-18 jg-24

105
=
— 104
&~

103

102

0.0

[km2 s‘2 K-1

Figure 6: Dependence of temperature on entropy for different values of the density.

For given In p and s we are then able to calculate the ionization fraction y by finding the
root of

1=y 1 (meksT(y)*? i

In the ionized case, several thermodynamic quantities of the gas become dependent on
the ionization fraction y such as its pressure, P = (1+ y + xny.)nuksT, and its internal
energy, F = 3(1+y+ xue)nuksT + yxu, where zy. gives the ratio of neutral helium to the
total amount of hydrogen. The dependence of temperature on entropy is shown in Fig.
for different values of the density.

Note that for an ideal gas, InT = s/c¢, + (v — 1) In p, and that ¢, is larger when y = 1, and
smaller when y = 0. But this is a large effect when p is small.

For further details regarding the procedure of solving for the entropy see Sect. [H.6 in
the appendix. The full set of ionization equations is presented in [5].

6.8.1 Ambipolar diffusion

Another way of dealing with ionization in the PENCIL CODE is through use of the neu-
trals module. That module solves the coupled equations of neutral and ionized gas, in a
two-fluid model

6.9 Combustion 65

Ipi _
5 V.- (piw;) +G (74)
opn
d(piu;) _) B?
It = V. (pz'u,z . ’U,Z) Vv (pz —l—pe + 2_,u0 + F (76)
W = -V -(pou,:u,)—Vp,—F (77)
0A

where the subscripts n and i are for neutral and ionized, respectively. The terms G and
F, through which the two fluids exchange mass and momentum, are given by

G = Con—op; (79)
F = (pattn — apiu; + ypipn(tn — ;) - (80)

In the above equations, (is the ionization coefficient, « is the recombination coefficient,
and ~ the collisional drag strength. By the time of writing (spring 2009), these three
quantities are supposed constant. The electron pressure p, is also assumed equal to the
ion pressure. Only isothermal neutrals are supported so far.

In the code, Eq. (74) and Eq. (76) are solved in ‘density.f90’ and ‘hydro.f90’ respectively.
Equation[75]is solved in ‘neutraldensity.f90’ and Eq. (77) in ‘neutralvelocity.£90’. The
sample ‘1d-test/ambipolar-diffusion’ has the current setup for a two-fluid simulation
with ions and neutrals.

6.9 Combustion

The easiest entry into the subject of simulating combustion is through samples/
Od-tests/chemistry_H2_ignition_rkf or samples/1d-tests/H2_flamespeed. The former
case is studying H2 ignition delay, while the second one is focusing on H2 flame-
speed. If you want to study turbulent premixed flames, the recommended cases are
samples/2d-tests/2d_methane_flame and samples/turbulent_flame. Here, the first of
these examples is not really realistic since its only 2D, but this does of course make
it faster to try out. Also, this case is easier to set up. The most realistic test case is
samples/turbulent_flame, which studies a full 3D hydrogen flame. This test case re-
quires that a set of smaller pre-runs are finalized before the main simulation can be run
(see the associated README file for more details).

The chemistry_H2_ignition_rkf directory, for example, has the file ‘tran.dat’, which
contains the parameters characterizing the transport properties, and ‘chem. inp’, which
contains the NASA polynomials; see Eq. (18) of Ref. [2].

6.10 Radiative transfer

Here we only state the basic equations. A full description about the implementation is
given in Sect.[H.7] and in the original paper by Heinemann et al. (2006).

66 THE PENCIL CODE

The basic equation for radiative transfer is

I
CZ_:_[+S7 (81)
dr

where

T

/ x(s") ds' (82)
0

is the optical depth (s is the geometrical coordinate along the ray).

Note that radiative transfer is called also in ‘start.csh’, and again each time a snapshot
is being written, provided the output of auxiliary variables is being requested Iwrite._-
aux=T. (Also, of course, the pencil check runs radiative transfer 7 times, unless you put
pencil_check_small=F.)

6.11 Self-gravity

The PENCIL CODE can consider the self-gravity of the fluid in the simulation box by
adding the term

ou

ot
to the equation of motion. The self-potential ¢, (or just ¢ for simplicity) satisfies Pois-
son’s equation

e T VQbself (83)

V3¢ = 4nGp. (84)
The solution for a single Fourier component at scale k is

4’/Tka,
_ 12 .

Pr = (85)
Here we have assumed periodic boundary conditions. The potential is obtained by
Fourier-transforming the density, then finding the corresponding potential at that scale,
and finally Fourier-transforming back to real space.

The z-direction in the shearing sheet is not strictly periodic, but is rather shear periodic
with two connected points at the inner and outer boundary separated by the distance
Ay(t) = mod[(3/2)§20L,t, L,] in the y-direction. We follow here the method from [22]
to allow for shear-periodic boundaries in the Fourier method for self-gravity. First we
take the Fourier transform along the periodic y-direction. We then shift the entire y-
direction by the amount dy(z) = Ay(t)x/L, to make the z-direction periodic. Then we
proceed with Fourier transforms along » and then z. After solving the Poisson equation
in Fourier space, we transform back to real space in the opposite order. We differ here
from the method by [22] in that we shift in Fourier space rather than in real spac.
The Fourier interpolation formula has the advantage over polynomial interpolation in
that it is continuous and smooth in all its derivatives.

6.12 Incompressible and anelastic equations

This part has not yet been documented and is still under development.

13We were kindly made aware of the possibility of interpolating in Fourier space by C. McNally on his
website.

6.13 Dust equations 67

6.13 Dust equations

The code treats gas and dust as two separate fluidd"d. The dust and the gas interact
through a drag force. This force can most generally be written as an additional term to

the equation of motion as
D'u,d 1
—_— == — —u) . 86
Dt Ts (wa —) (86)
Here 7, is the so-called stopping time of the considered dust species. This measures the
coupling strength between dust and gas. In the Epstein drag regime

T = 4Ps (87)
Csp

where a4 is the radius of the dust grain and p; is the solid density of the dust grain.

Two other important effects work on the dust. The first is coagulation controlled
by the discrete coagulation equation

At 2 & :
i+j=k i

=1

In the code N discrete dust species are considered. Also the bins are logarithmically
spaced in order to give better mass resolution. It is also possible to keep track of both
number density and mass density of each bin, corresponding to having a variable grain
mass in each bin.

Dust condensation is controlled by the equation

aN 1

E B Tcond

NT . (89)
Here N is the number of monomers in the dust grain (such as water molecules) and d is

the physical dimension of the dust grain. The condensation time 7,4 is calculated from

1

Tcond

== Alvthanmon {1 - Sl } s (90)

where A; is the surface area of a monomer, « is the condensation efficiency, n,,., is the
number density of monomers in the gas and S,,,, is the saturation level of the monomer
given by

P,

Srnon = —= . 91

Psat ()
Here P, is the saturated vapor pressure of the monomer. Currently only water ice has
been implemented in the code.

All dust species fulfill the continuity equation

0
g + V- (pauq) = 0. (92)

14See master’s thesis of A. Johansen (can be downloaded from
http://www.mpia.de/homes/johansen/research_en.php)

http://www.mpia.de/homes/johansen/research_en.php

68 THE PENCIL CODE

6.14 Cosmic ray pressure in diffusion approximation

Cosmic rays are treated in the diffusion approximation. The equation of state is p. =
(7c)e. where the value of 4. is usually somewhere between 14/9 and 4/3. In the momen-
tum equation (44) the cosmic ray pressure force, —p~'Vp, is added on the right hand
side, and ¢, satisfies the evolution equation

de.
ot

+ V. <€CU) + pCV U = 81»(Kij8jec) + Qm (93)
where (). is a source term and
Kij = K6+ (K| — K.)B:B; (94)

is an anisotropic diffusivity tensor.

In the non-conservative formulation of this code it is advantageous to expand the diffu-
sion term using the product rule, i.e.

81-(Kij8jec) = —[jC . V@C -+ Kijaiajec. (95)

where U.; = —0K;;/0z; acts like an extra velocity trying to straighten magnetic field
lines. We can write this term also as U, = —(K; — K,)V - (BB), where the last term
is a divergence of the dyadic product of unit vectors[However, near magnetic nulls,
this term can becomes infinite. In order to avoid this problem we are forced to limit
V - (BB), and hence |U,|, to the maximum possible value that can be resolved at a given
resolution.

A physically appealing way of limiting the maximum propagation speed is to restore
an explicit time dependence in the equation for the cosmic ray flux, and to replace the
diffusion term in Eq. by a divergence of a flux that in turn obeys the equation

OFi
ot

= —f(ijvjec _Fa (non-Fickian diffusion), (96)
T

where K;; = K ;; would be the original diffusion tensor of Eq. (94), if the time derivative
were negligible. Further details are described in Snodin et al. (2006).

6.15 Chiral MHD

At high energies, kgT 2 10 MeV, a quantum effect called the chiral magnetic effect (CME)
can modify the MHD equations. The CME occurs in magnetized relativistic plasmas, in
which the number density of left-handed fermions, n,, differs from the one of right-
handed fermions, n, (see e.g., Kharzeev et al. (2013) for a review). This asymmetry is
described by the chiral chemical potential us = 6 (n, — n,) (hc)®/(ksgT)?, where T is the
temperature, kp is the Boltzmann constant, c is the speed of light, and # is the reduced
Planck constant. In the presence of a magnetic field, u5 leads to the occurrence of the
current

aem

7h

Jome = s B, 97)

where ., ~ 1/137 is the fine structure constant.

151n practice, we calculate 9;(B; B;) = (3;; — 2B, By,) B; By ; /| B|, where derivatives of B are calculated as
B j = €ik1 Al jk-

6.16 Electromagnetism with displacement current 69

The chiral current adds to the classical Ohmic current, leading to a modification of
the Maxwell equations. As a result, the induction equation is extended by one additional
term:
A
%—t:UxB—n(VxB—uB), (98)

where the chiral chemical potential p; is normalized such that y = (4aem/hc)us. The
latter is determined by the evolution equation

Dy 2

E:D5Au+>\n [B-(V x B) — uB*] — Tip, (99)
where Ds is a chiral diffusion coefficient, A the chiral feedback parameter, and I; the
rate of chiral flipping reactions. All remaining evolution equations are the same as in
classical MHD. Details on the derivation of the chiral MHD equations can be found in
Boyarsky et al. (2015) and Rogachevskii et al. (2017).

In the Pencil Code, the chiral MHD equations can be solved by adding the line
SPECIAL = special/chiral_mhd
to src/Makefile.local. Further, for running the chiral MHD module, one needs to add

&special_init_pars
initspecial=’const’, mub_const=10.

to start.in and

&special_run_pars
diffmub=1e-4, lambdab=1e3, cdtchiral=1.0

to run.in, where we have chosen exemplary values for the chiral parameters.

Caution should be taken when solving the chiral MHD equations numerically, since
the evolution of the plasma can be strongly affected by the CME. In particular, the
initial value of p is related to a small-scale dynamo instability. In order to resolve this
instability in a domain of size (27)3, the minimum number of grid points is given as:

Ho) 1/2 21
o> (=2 -
Ngrld ~ ()‘ VRemesh,Crit ' (100)

Also the value of A\ should not be chosen too small, since it scales inversely with the
saturation magnetic helicity produced by a chiral dynamo. Hence, for a very small A
parameter, the Alfvén time step becomes extremely small in the non-linear stage which
can lead to a code crash. More details on the numerical modeling of chiral MHD can be
found in Schober et al. (2018).

6.16 Electromagnetism with displacement current

In electromagnetism, the displacement current is not neglected, and so we solve the

equation
1 0FE

A ot
in addition to the induction equation 0B/Jt = —V x E, or its uncurled version 0A /0t =
—E. Solving this equation is invoked by putting SPECIAL=special/disp_current.

IVXB—ILL()J, (101)

70 THE PENCIL CODE

In the code, there is the line df(11:12,m,n,iex:iez)=df(11:12,m,n,iex:iez)+c_-
light2* (pY%curlb-muO*p%jj_ohm) where c_light2 is the speed of light squared as input
parameter, so it is usually not computed self-consistently from the actual speed of light,
which would be known once we use physical dimensions. Furthermore, p%curlb is the
curl of B (which is now not the electric current, while p%jj_ohm is the Ohmic current,
obtained by solving J = ¢(E + u x B), and o is the conductivity (which can be time-
dependent). The vacuum permeability is mu0.

The electric field obtained in this way, which we now call the pseudo-electric field, E,
does in general not obey the equation for the charge density, p.,

V - E = p./¢. (102)
The actual electric field E can be obtained from E as
E=E - Vo, (103)
where ¢ is obtained by solving a Poisson-like equation,
Vip=V-E —p/e, (104)

where p, is obtained through time-integration of the charge continuity equation,

ope
= V-J, (105)

which, in turn, follows from Eq. (105) by taking its divergence.

6.17 Particles

Particles are entities that each have a space coordinate and a velocity vector, where
a fluid only has a velocity vector field (the continuity equation of a fluid in some way
corresponds to the space coordinate of particles). In the code particles are present either
as tracer particles or as dust particles

6.17.1 Tracer particles

Tracer particles always have the local velocity of the gas. The dynamical equations are
thus
8wi
ot

where the index i runs over all particles. Here u is the gas velocity at the position of
the particle. One can choose between a first order (default) and a second order spline
interpolation scheme (set 1quadratic_interpolation=T in &particles_init_pars) to cal-
culate the gas velocity at the position of a tracer particle.

=u, (106)

The sample run ‘samples/dust-vortex’ contains the latest setup for tracer particles.

6.17.2 Dust particles

Dust particles are allowed to have a velocity that is not similar to the gas,

dmi

—v;. 1
q v (107)

6.18 N-body solver 71

The particle velocity follows an equation of motion similar to a fluid, only there is no
advection term. Dust particles also experience a drag force from the gas (proportional to
the velocity difference between a particle and the gas).

d’Ui 1
% —...—T—S(fvi—u). (108)

Here 7, is the stopping time of the dust particle. The interpolation of the gas velocity to
the position of a particle is done using one of three possible particle-mesh schemes,

¢ NGP (Nearest Grid Point, default)
The gas velocity at the nearest grid point is used.

¢ CIC (Cloud in Cell, set 1particlemesh_cic=T)
A first order interpolation is used to obtain the gas velocity field at the position of
a particle. Affects 8 grid points.

¢ TSC (Triangular Shaped Cloud, set 1particlemesh_tsc=T)
A second order spline interpolation is used to obtain the gas velocity field at the
position of a particle. Affects 27 grid points.

The particle description is the proper description of dust grains, since they do not feel
any pressure forces (too low number density). Thus there is no guarantee that the grains
present within a given volume will be equilibrated with each other, although drag force
may work for small grains to achieve that. Larger grains (meter-sized in protoplanetary
discs) must be treated as individual particles.

To conserve momentum the dust particles must affect the gas with a friction force as
well. The strength of this force depends on the dust-to-gas ratio ¢4, and it can be safely
ignored when there is much more gas than there is dust, e.g., when ¢4 = 0.01. The friction
force on the gas appears in the equation of motion as

ou_ <a”(i)> (109)
drag

ot p ot

Here p§f> is the dust density that particle i represents. This can be set through the pa-
rameter eps_todt in &particle_init_pars. The drag force is assigned from the particles
onto the mesh using either NGP, CIC or TSC assignment. The same scheme is used both
for interpolation and for assignment to avoid any risk of a particle accelerating itself (see
Hockney & Eastwood 1981).

6.18 N-body solver

The N-body code takes advantage of the existing Particles module, which was coded with
the initial intent of treating solid particles whose radius a, is comparable to the mean
free path)\ of the gas, for which a fluid description is not valid. A N-body implementation
based on that module only needed to include mass as extra state for the particles, solve
for the N? gravitational pair interactions and distinguish between the N-body and the
small bodies that are mapped into the grid as a p, density field.

The particles of the N-body ensemble evolve due to their mutual gravity and by inter-
acting with the gas and the swarm of small bodies. The equation of motion for particle i
1S

72 THE PENCIL CODE

dv,, el Vo
gAY

where R,; = |r,, —7,,| is the distance between particles i and j, and R,; is the unit vector
pointing from particle j to particle i. The first term of the R.H.S. is the combined gravity
of the gas and of the dust particles onto the particle i, solved via

[0g(1) + pp(T)| R
F, = —G/V (RT+ b2)ir2 dv, (111)
where the integration is carried out over the whole disk. The smoothing distance b; is
taken to be as small as possible (a few grid cells). For few particles (<10), calculating the
integral for every particle is practical. For larger ensembles one would prefer to solve
the Poisson equation to calculate their combined gravitational potential.

The evolution of the particles is done with the same third-order Runge-Kutta time-
stepping routine used for the gas. The particles define the timestep also by the Courant
condition that they should not move more than one cell at a time. For pure particle runs,
where the grid is absent, one can adopt a fixed time-step ¢, < 2%9@1 where (2, is the
angular frequency of the fastest particle.

By now (spring 2009), no inertial accelerations are included in the N-body module, so
only the inertial frame - with origin at the barycenter of the N-body ensemble - is avail-
able. For a simulation of the circular restricted three-body problem with mass ratio
q=1073, the Jacobi constant of a test particle initially placed at position (z,y)=(2,0) was
found to be conserved up to one part in 10° within the time span of 100 orbits.

We stress that the level of conservation is poor when compared to integrators designed
to specifically deal with long-term N-body problems. These integrators are usually sym-
plectic, unlike the Runge-Kutta scheme of the PENCIL CODE. As such, PENCIL should
not be used to deal with evolution over millions of years. But for the time-span typical
of astrophysical hydrodynamical simulations, this degree of conservation of the Jacobi
constant can be deemed acceptable.

As an extension of the particle’s module, the N-body is fully compatible with the par-
allel optimization of PENCIL, which further speeds up the calculations. Parallelization,
however, is not yet possible for pure particle runs, since it relies on splitting the grid
between the processors. At the time of writing (spring 2009), the N-body code does not
allow the particles to have a time-evolving mass.

The module ‘pointmasses.f90’ is also an N-body solver.

6.19 Cosmological expansion and scale factor

Superconformal coordinates are defined through dt = dt,ys/a”, where n = 3/2 [3] or
n = 2 [31]] and ¢,y is the physical (or cosmic) time. To obtain a(¢), we assume a standard
ACDM universe and integrate dIna/dt,ns = H(a), where

H(a) = Hor/Qhaa/a* + Qunat/a® + Qp (112)

is the prescribed dependence of the Hubble parameter on a(t). We work with conformal
time ¢, use d/dt,nys = a~"d/dt, and integrate to obtain ¢,,(?) and a(t), i.e.,

dtphys n dlna

T - a” and o

=a"H(a). (113)

6.20 Test-field equations 73

100~ T T T T = FT T T T T T ol
100_ ! 100- (b) i 10

| | a0y g 107y
o ! S . & =

5 107°F ! e 1071 /7 i1 2107
& | & - ' 1] &g

-~ 10-3 . -~ 10 6 | ! ' -~ 10 -

| | |
10™ | 10 | & 107}
0 10 20 30 40 50 0 50 100 150 200 250 0O 2 4 6 8 10
t t t/1000

Figure 7: Qua = 1074, Qx = 0.73, with Qg = 1074, Quatr = 0.31, and Hy = 0.0692Gyr ! =~
0.71kms ' kpc™'. In the last panel, the dashed-dotted lines denote z = 1100 at tohys = 370,000yr and
z =0 at tynys = 13.8 Gyr.

To obtain the initial conditions for early times, we consider the limit « — 0, so Eq. (112)
becomes H(a) = Hy2'/2/a*. We then integrate t s = [da/(aH), which yields t,. =

rad

a?/(2HoQ2), ie., a = (2Ho 2t,nys) /2. This relation is independent of n, but assumes
that we start at a redshift that is well in the radiation-dominated era. Here we consider
the initial redshifts z, = 4500, the value also considered by [?], and z, = 10°. Thus, we

solve Eq. (113) with the initial conditions

a=a,=1/(1+2), tohys = thps = az/(QHOQiﬁ). (114)

In Fig.[7, we compare the dependence of ¢, (t) for n = 2, 3/2, and 1 using z,. = 4500 and
10° and a constant time step. The range 10® > a(t) > 1, corresponding to the time interval
from recombination to the present time, is marked by dashed-dotted lines. We see that
the dependence t,,s(t) is concave for n = 2 and convex for n = 1, but approximately
linear for n = 3/2. This indicates that the exponent n = 3/2 distributes the local change
in t,nys(t) approximately uniformly over the interval from recombination to the present
time.

We recall that in all cases, our initial conformal time is always zero. However, when com-
paring t,,s(t) for different initial redshifts, we can make the curves overlap by adding a
suitable offset t, to t — t + ty for the runs with the smaller initial redshift. We see that
the curves for z, = 4500 and 10° overlap well, although there is a very small difference
at the very beginning of the runs with z, = 4500 relative to those with 2, = 106.

6.20 Test-field equations

The test-field method is used to calculate turbulent transport coefficients for magneto-
hydrodynamics. This is a rapidly evolving field and we refer the interested reader to
recent papers in this field, e.g., by Sur et al. (2008) or Brandenburg et al. (2008). For
technical details; see also Sect.

6.21 Gravitational wave equations

The expansion of the universe with time is described by the scale factor a(7), where
is the physical time. Using conformal time, t(7) = [d7’/a(7’), and dependent variables
that are appropriately scaled with powers of a, the hydromagnetic equations can be
expressed completely without scale factor [14, 21]. This is not true, however, for the
gravitational wave (GW) equations, where a dependence on a remains [21]. The time

74 THE PENCIL CODE

Table 5: Scale factor and conformal Hubble parameter for different values of n.

n a H H
0 1 0 0
/2 n/2 1/n 1/n
2/3 w*/3 2/n 6/n?

dependence of ¢ can be modeled as a power law, a & 7", where n = 1/2 applies to the
radiation-dominated era; see Table [5 the general relationship. To compare with cases
where the expansion is ignored, we put n = 0.

In the transverse traceless (T'T) gauge, the six components of the spatial part of the
symmetric tensor characterizing the linearized evolution of the metric perturbations
h;j, reduce to two components which, in the linear polarization basis, are the + and
x polarizations. However, the projection onto that basis is computationally intensive,
because it requires nonlocal operations involving Fourier transformations. It is therefore
advantageous to evolve instead the perturbation of the metric tensor, %;;, in an arbitrary
gauge, compute then hiTjT in the TT gauge, and perform then the decomposition into the
linear polarization basis whenever we compute diagnostic quantities such as averages
or spectra. Thus, we solve the linearized GW equation in the form [21]

82hij
= —2H
ot? ot
for the six components 1 < i < j < 3, where ¢ is comoving time, a is the scale factor,
H = a/a is the comoving Hubble parameter, 7;; is the source term, c is the speed of light,
and G is Newton’s constant. For n = 0, when the cosmic expansion is ignored, we have
a =1and ‘H = 0. In practice, we solve the GW equation for the scaled variable h;; = ah

Ohi; 167G
L AV + — o T (115)
a=c

R
02hi;

ot?
For the numerical treatment of Eq. (115) or Eq. (116) and equations (118)—(120).

The source term is chosen to be the traceless part of the stress tensor,

167G

ac?

= V2 + T;;. (116)

Tij(z,t) = puju; — BB; — £0;;(pu® — B?). (117)

The removal of the trace is in principle not necessary, but it helps preventing a contin-
uous build-up of a large trace, which would be numerically disadvantageous. We have
ignored here the viscous stress, which is usually small.

We compute 7;; by solving the energy, momentum, and induction equations for an ultra-
relativistic gas in the form [14, [16]

1 4 1
Oy LG wtu-Vinp)+ L u (I x B) 0] (118)
ot 3 p
Du u u
o = g(V-u+u-Vlnp)—;[u~(J><B)—|—77J2}
1 2
—ZVInp—l—%J XB—l—;V‘(pVS)—l-f, (119)
B
9B _ G (ux B—nd), (120)

ot

6.21 Gravitational wave equations 75

where B = V x A is the magnetic field expressed in terms of the magnetic vector poten-
tial to ensure that V- B = 0, J V x B is the current density, D/Dt = /0t + u- V is
the advective derivative, S;; = 5 iy +uj,) — édijum is the trace-free rate of strain tensor,

and p = pc? is the pressure, where ¢, = ¢/1/3 is the sound speed for an ultra-relativistic
gas. Lorentz-Heaviside units for the magnetic field are used.

We are interested in the rms value of the metric tensor perturbations and the GW energy
density in the linear polarization basis. To compute hTT from h;;, we Fourier transform

the six components of &;; and h,;,
hij(k,t) = /hij(az,t) e RVPr for1<i<j<3 (121)

and compute the components in the TT gauge as
I " (ko t) = (PaPim = §P; Pon) hum (K. 1), (122)

where P,; = 0;; — k;k; is the projection operator, and k = k/k is the unit vector of k, with
k = |k| being the modulus. Next, we compute the linear polarization bases

+_ 1,1 22 _ 2 1
€ e j€j —eiej, e =e; e +eje;, (123)

where ¢! and ¢? are unit vectors perpendicular to k. Thus

hy(k,t) = Lef(k)hij(k,t), (124)
hy(k,t) = Les(k) hij(k,t). (125)

We then return into real space and compute
by (@) = / Fe (s 1) R 1 (2m) (126)

Analogous calculations are performed for /., /x(2,t), which are used to compute the GW
energy via

62

12 12
Caw(t) = 55—~ (<h+> + <hx>) , (127)
where angle brackets denote volume averages.

Analogously to kinetic and magnetic energy and helicity spectra, it is convenient to
compute the GW energy and polarization spectra integrated over concentric shells of
surface [, k*dQy, in k space, defined by

S, (k) :/ (12 + 1) K202, (128)
A7

A (k) = / 2Tm (EJLX*) k2dQy,, (129)
4

and normalized such that [°S; (k) dk = (h%) + (h%) is proportional to the energy density
and [A;(k)dk is proport10nal to the polarized energy density. The A; (k) spectra are
not to be confused with the magnetic vector potential A(x,t). The corresponding GW
energy spectra are noted by

Eaqw(k) = (/32rG) S; (k), (130)
Haw(k) = (2/327G) Aj (k). (131)

76 THE PENCIL CODE

= — -

10 C 4 Run B4 n

- (6h)rms/h'rms - Run B7 . -

- Run B10 .- -

7] B —

£ L R
=
<

N - .
n
£
S
<

S 107 (8B)ms/ Brms E

C ~6t° 7

T L m
=

= L _

. L _
£

S — —
Q
%

/\E 107% = —

Q C .

< -]

I
0.1 1.0

6 t/d tCourant

Figure 8: Scalings of the relative error in the magnetic field, (6 B),ms/Brms, and the gravitational strain
(0h)rms/hrms for GWs generated by the chiral magnetic effect, which leads to an exponentially increasing
magnetic field. Low resolution (323) versions of the Runs B4, B7, and B10 of [11].

We also define spectra for the metric tensor perturbation,

(k) :/ (1952 + 1 [?) Koy, (132)
47

An(k) = / 2Im <h~+h~x*> K20y, (133)
4

which are normalized such that [S, (k) dk = hZ, is the mean squared metric tensor
perturbation.

By assuming the GW source to be constant between two time steps, one arrives at an ac-
curacy of the GW solution that scales linearly with the time step, §¢, while the magnetic
field, related to the magnetic stress, scales cubically with §t. Since 7', /x are being stored
in the f-array, it is easy to extract for each wavevector the increment of the stress, 67", /55
and to use it in an improved update of the GW field through

fLJr/X = ..+ 5T+/X (1 — sin wét/wdt) Jw? (134)
Ny = o+ 0Ty (1 — coswdt) fw?dt (135)

This more accurate solver is invoked by setting itorder_GW=2, which now results in a
quadratic scaling of the error of the GW field; see Fig.[8l

7. Troubleshooting / Frequently Asked Questions 77

7 Troubleshooting / Frequently Asked Questions

7.1 Download and setup
7.1.1 Download forbidden

A: Both GitHub and SourceForge are banned from countries on the United
States Office of Foreign Assets Control sanction list, including Cuba, Iran, Libya,
North Korea, Sudan and Syria; see http://de.wikipedia.org/wiki/GitHub and
http://en.wikipedia.org/wiki/SourceForge. As a remedy, you might download a tar-
ball from http://pencil-code.nordita.org/; see also Section [2

7.1.2 When sourcing the ‘sourceme. sh’/ ‘sourceme. csh’ file or running pc_setupsrc, I get
error messages from the shell, like ‘if: Expression Syntax.” or ‘set: Variable name
must begin with a letter.’

A: This sounds like a buggy shell setup, either by yourself or your system administrator
— or a shell that is even more idiosyncratic than the ones we have been working with.

To better diagnose the problem, collect the following information before filing a bug
report to us:

1. uname -a
/bin/csh -v
echo $version
echo $SHELL

ps -p $3

A o

If you have problems while sourcing the ‘sourceme’ script,
(a) unset the PENCIL_HOME variable:
for csh and similar: unsetenv PENCIL_HOME
for bash and similar: unexport PENCIL_HOME; unset PENCIL_HOME
(b) switch your shell in verbose mode,
for csh and similar: set verbose; set echo
for bash and similar: set -v; set -x
then source again.
7. If you have problems with pc_setupsrc, run it with csh in verbose mode:

/bin/csh -v -x $PENCIL_HOME/bin/pc_setupsrc

7.2 Compilation
7.2.1 Error: ‘relocation truncated to fit’

If you get errors while compiling and linking that are similar to:

http://de.wikipedia.org/wiki/GitHub
http://en.wikipedia.org/wiki/SourceForge
http://pencil-code.nordita.org/

78 THE PENCIL CODE

density.f90: (.text+0x5e0): relocation truncated to fit: R_X86_64_PC32
against symbol ‘cdata_mp_m_’ defined in COMMON section in cdata.o
density.f90: (.text+0x644): additional relocation overflows omitted from the
output

make [2] : *** [start.x] Error 1

A: Your setup is probably too large to fit a ‘normal’ memory model. Please choose a
‘medium’ or ‘large’ memory model by adding one of these compiler options to your con-
figuration: ‘-mcmodel=medium’ or ‘-mcmodel=large’. See Sect.[5.1lfor configuration details.
Alternatively, if you use pc_build, you may simply add the respective extension:

pc_build -f GNU-GCC_MPI,GNU-GCC_medium
or for the Intel compiler and a ‘large’ memory model you would use:

pc_build -f Intel_MPI,Intel_large

7.2.2 Linker can’t find the syscalls functions:

1d: 0711-317 ERROR: Undefined symbol: .is_nan_c

1d: 0711-317 ERROR: Undefined symbol: .sizeof_real_c
1d: 0711-317 ERROR: Undefined symbol: .system_c

1d: 0711-317 ERROR: Undefined symbol: .get_env_var_c
1d: 0711-317 ERROR: Undefined symbol: .get_pid_c

1d: 0711-317 ERROR: Undefined symbol: .file_size_c

A: The Pencil Code needs a working combination of a Fortran- and a C-compiler. If this
is not correctly set up, usually the linker won’t find the functions inside the syscalls
module. If that happens, either the combination of C- and Fortran-compiler is inappro-
priate (e.g., ifort needs icc), or the compiler needs additional flags, like 295 might need
the option ‘-~fno-second-underscore’ and xIf might need the option ‘-gextname’. Please
refer to Sect.[5.2] Table [l

7.2.3 Make gives the following error now:
PGF90-S-0017-Unable to open include file: chemistry.h (nochemistry.f90: 43)

O inform, 0 warnings, 1 severes, 0 fatal for chemistry

Line 43 of the nochemistry routine, only has ’contains’.

A: This is because somebody added a new module (together with a corresponding nomod-
ule.f90 and a module.h file (chemistry in this case). These files didn’t exist before, so you
need to say:

pc_setupsrc

If this does not help, say first make clean and then pc_setupsrc.

7.2.4 How do I compile the PENCIL CODE with the Intel (ifc) compiler under Linux?

A: The PENCIL CODE should compile successfully with ifc 6.x, ifc 7.0, sufficiently recent
versions of ifc 7.1 (you should get the latest version; if yours is too old, you will typically
get an ‘internal compiler error’ during compilation of ‘src/hydro.£90’), as well as with
recent versions of ifort 8.1 (8.0 may also work).

7.2 Compilation 79

You can find the ifort compiler at ftp://download. intel.com/software/products/compilers/dowr

On many current (as of November 2003) Linux systems, there is a mismatch between
the glibc versions used by the compiler and the linker. To work around this, use the
following flag for compiling

FC=ifc -i_dynamic
and set the environment variable
LD_ASSUME_KERNEL=2.4.1; export LD_ASSUME_KERNEL
or
setenv LD_ASSUME_KERNEL 2.4.1
This has solved the problems e.g., on a system with glibc-2.3.2 and kernel 2.4.22.

Thanks to Leonardo J. Milano (http://udel.edu/~1milano/) for part of this info.

7.2.5 I keep getting segmentation faults with ‘start.z’ when compiling with ifort 8.0
A: There was/is a number of issues with ifort 8.0. Make sure you have the latest patches
applied to the compiler. A number of things to consider or try are:

1. Compile with the the ‘-static -nothreads’ flags.

2. Set your stacksize to a large value (but a far too large value may be problematic,
too), e. g.

limit stacksize 256m
ulimit -s 256000

3. Set the environment variable KMP_STACKSIZE to a large value (like 100M)

See alsohttp://softwareforums.intel.com/ids/board/message?board.id=11&message.id=1375

7.2.6 When compiling with MPI on a Linux system, the linker complains:

mpicomm.o: In function ‘mpicomm_mpicomm_init_’:
mpicomm.o(.text+0x36): undefined reference to ‘mpi_init_’
mpicomm.o(.text+0x55): undefined reference to ‘mpi_comm_size_’
mpicomm.o(.text+0x6f): undefined reference to ‘mpi_comm_rank_’

[...]

A: This is the infamous underscore problem. Your MPI libraries have been compiled
with G77 without the option ‘~fno-second-underscore’, which makes the MPI symbol
names incompatible with other Fortran compilers.

As a workaround, use
MPICOMM = mpicomm_

in ‘Makefile.local’. Or, even better, you can set this globally (for the given computer)
by inserting that line into the file “*/.adapt-mkfile.inc’ (see perldoc adapt-mkfile for
more details).

ftp://download.intel.com/software/products/compilers/downloads
http://udel.edu/~lmilano/
http://softwareforums.intel.com/ids/board/message?board.id=11&message.id=1375

80 THE PENCIL CODE

7.2.7 Compilation stops with the cryptic error message:

f95 -03 -u -c .£90.£90

Error : Could not open sourcefile .£90.£90
compilation aborted for .£f90.f90 (code 1)
make[1]: ***x [.£f90.0] Error 1

What is the problem?

A: There are two possibilities:

1. One of the variables for make has not been set, so make expands it to the empty
string. Most probably you forgot to specify a module in ‘src/Makefile.local’. One
possibility is that you have upgraded from an older version of the code that did not
have some of the modules the new version has.

Compare your ‘src/Makefile.local’ to one of the examples that work.
2. One of the variables for make has a space appended to it, e.g., if you use the line
MPICOMM = mpicomm_._

(see § with a trailing blank, you will encounter this error message. Remove
the blank. This problem can also occur if you added a new module (and have an
empty space after the module name in ‘src/Makefile.src’,i.e. CHIRAL=nochiral.),
in which case the compiler will talk about “circular dependence” for the file
‘nochiral’.

7.2.8 The code doesn’t compile,
..there is a problem with mvar:

make start.x run.x

f95 -03 -u -c cdata.f90

Error: cdata.f90, line 71: Implicit type for MVAR
detected at MVARQ)

[f95 terminated - errors found by pass 1]

make[1]: *** [cdata.o] Error 2

A: Check and make sure that ‘mkcparam’ (directory ‘$PENCIL_HOME/bin’) is in your path. If
this doesn’t help, there may be an empty ‘cparam. inc’ file in your ‘src’ directory. Remove
‘cparam.inc’ and try again (Note that ‘cparam.inc’ is automatically generated from the
‘Makefile’).

7.2.9 Some samples don’t even compile,
as you can see on the web, http://www.nordita.org/software/pencil-code/tests.html.

samples/helical-MHDturb:
Compiling. . not ok:
make start.x run.x read_videofiles.x
make[1] : Entering directory ‘/home/dobler/f90/pencil-code/samples/helical-MHDturb/src’
/usr/lib/lam/bin/mpif95 -03 -c initcond.f90
/usr/lib/lam/bin/mpif95 -03 -c density.f90
use Gravity, only: gravz, nu_epicycle

~

http://www.nordita.org/software/pencil-code/tests.html

7.2 Compilation 81

Error 208 at (467:density.f90) : No such entity in the module

Error 355 : In procedure INIT_LNRHO variable NU_EPICYCLE has not been given a type
Error 355 : In procedure POLYTROPIC_LNRHO_DISC variable NU_EPICYCLE has not been given
3 Errors

compilation aborted for density.f90 (code 1)

make[1]: **x [density.o] Error 1

make[1]: Leaving directory ‘/home/dobler/f90/pencil-code/samples/helical-MHDturb/src’
make: *** [code] Error 2

A: Somebody may have checked in something without having run auto-test beforehand.
The problem here is that something has been added in one module, but not in the corre-
sponding no-module. You can of course check with svn who it was. ..

7.2.10 Internal compiler error with Compaq /[Dec F90

The Dec Fortran optimizer has occasional problems with ‘nompicomm.f90’:

make start.x run.x read_videofiles.x
f90 -fast -03 -tune ev6 -arch ev6 -c cparam.f90

[...]

f90 -fast -03 -tune ev6 -arch ev6 -c nompicomm.f90

otal vm 2755568 otal vm 2765296 otal vm 2775024
otal vm 2784752 otal...

Assertion failure: Compiler internal error - please submit problem r...
GEM ASSERTION, Compiler internal error - please submit problem report

Fatal error in: /usr/lib/cmplrs/fort90_540/decfort90 Terminated

*xx Exit 3

Stop.

*kx Exit 1

Stop.

A: The occurrence of this problem depends upon the grid size; and the problem never
seems to occur with ‘mpicomm.f90’, except when ncpus=1. The problem can be avoided by
switching off the loop transformation optimization (part of the ‘-03’ optimization), via:

#OPTFLAGS=-fast -03 -notransform_loops

This is currently the default compiler setting in ‘Makefile’, although it has a measurable
performance impact (some 8% slowdown).

7.2.11 Assertion failure under SunOS
Under SunOS, I get an error message like

user@sun> £f90 -c param_io.f90

Assertion failed: at_handle_table[at_idx].tag == VAR_TAG,
file ../srcfw/FWcvrt.c, line 4018

£90: Fatal error in f90comp: Abort

A: This is a compiler bug that we find at least with Sun’s WorkShop Compiler version ‘5.0
00/05/17 FORTRAN 90 2.0 Patch 107356-05’. Upgrade the compiler version (and possi-
bly also the operating system): we find that the code compiles and works with version
‘Sun WorkShop 6 update 2 Fortran 95 6.2 Patch 111690-05 2002/01/17’ under SunOS
version ‘5.8 Generic_108528-11".

82 THE PENCIL CODE

7.2.12 After some dirty tricks I got pencil code to compile with MPI, ...

> Before that i installed lam-7.1.4 from source.

Goodness gracious me, you shouldn’t have to compile your own MPI library.

A: Then don’t use the old LAM-MPI. It is long superseded by open-mpi now. Open-mpi
doesn’t need a daemon to be running. I am using the version that ships with Ubuntu
(e.g., 9.04):

frenesi:”> aptitude -w 210 search openmpi | grep ’~i’

i libopenmpi-dev - high performance message passing library -- header files

i A libopenmpil - high performance message passing library -- shared library
i openmpi-bin - high performance message passing library -- binaries

i A openmpi-common - high performance message passing library -- common files

i openmpi-doc - high performance message passing library —-- man pages

Install that and keep your configuration (Makefile.src and getconf.csh) close to that for
‘frenesi’ or ‘norlx50’. That should work.

7.2.13 Error: Symbol ‘'mpi_comm _world’ at (1) has no IMPLICIT type

I installed the pencil code on Ubuntu system and tested "run.csh"
in ...\samples\conv-slab. Here the code worked pretty well.
Nevertheless, running (auto-test), I found there are some errors.

The messages are,

Error: Symbol ’mpi_comm_world’ at (1) has no IMPLICIT type

Fatal Error: Error count reached limit of 25.

make [2] : *** [mpicomm_double.o] Error 1

make [2] : Leaving directory
‘/home/pkiwan/Desktop/pencil-code/samples/2d-tests/selfgravitating-shearwave/src’
make[1] : **x [code] Error 2

make[1]: Leaving directory
‘/home/pkiwan/Desktop/pencil-code/samples/2d-tests/selfgravitating-shearwave/src’
make: *** [default] Error 2

Finally, ### auto-test failed ###

Will it be 0OK? Or, how can I fix this?

A: Thanks for letting me know about the status, and congratulations on your progress!
Those tests that fail are those that use MPI. If your machine is a dual or multi core
machine, you could run faster by running under MPI. But this is probably not crucial
for you at this point. (I just noticed that there is a ToDo listed in the auto-test command
to implement the option not to run the MPI tests, but this hasn’t been done yet. So I
guess you can start with the science next.

7.2.14 Error: Can’t open included file ‘'mpif.h’

It always worked, but now, after some systems upgrade, I get

7.3 Pencil check 83

gfortran -03 -o mpicomm.o -c mpicomm.f90
Error: Can’t open included file ’mpif.h’

When I say locate mpif.h I only get things like
/scratch/ntest/1.2.7pl-intel/include/mpif.h

But since I use FC=mpif90 I thought I don’t need to worry.

A: Since you use FC=mpif90 there must definitely be something wrong with their setup.

Try mpif90 -showme or mpif90 -show; the I’ option should say where it looks for 'mpif.h’.

If those directories don’t exist, it’s no wonder that it doesn’t work, and it is time to
complain.

7.2.15 Compilation fails on MacOS Sonoma or Monterey

I am getting an error which hasn’t been resolved yet. It has something to do with my
Mac setup and no one has been able to figure out how to fix it. Maybe you’ve seen this
before (at the pc_build stage):

'make -j FFLAGS_DOUBLE=-fdefault-real-8 -fdefault-double-8
CFLAGS_DOUBLE=-DDOUBLE_PRECISION LD_MPI= CFLAGS_FFTW3= FFLAGS_FFTW3=
LD_FFTW3= CFLAGS_FFTW2= FFLAGS_FFTW2= LD_FFTW2= FC=gfortran F77=$(FC)
FFLAGS=-0 LDFLAGS_HELPER=-dynamic OMPFFLAGS=-fopenmp OMPLFLAGS=-1lgomp
PPFLAGS=-cpp FSTD_95=-std=f95 FSTD_2003=-std=£2003 CC=gcc
CFLAGS=-DFUNDERSC=1 default_to_be’ failed: <Inappropriate ioctl for device>

A: You have to use gcc-14. Default (plain gee) does not work; it is wrongly set up.

7.2.16 Compilation fails on Tanmay’s MacOS

In my case the gcc compiler was renamed gcc-14. Once this was fixed, all was good.
Could it be that when Mac updates its OS it changes the name of the compiler? I don’t
know the backend of the Mac so well.

7.2.17 Missing ld _classic on MacOS

While running pc_build, I get an error message saying that -1d_classic is not found.

A: Note that 1d_classic is not specifying a library called 1ibd_classic, but is rather an
option passed to Apple’s 1d binary. type 1d should say /usr/bin/1d. This error has been
noticed on systems where people tried to install gfortran using anaconda, which pulls
in a wrongly configured 1d binary. Run conda remove 1d64 and use another method, like
homebrew, to install gfortran.

7.2.18 Further MacOS tips

For further MacOS tips, see also the “Instructions for MacOS installation” on
http://pencil-code.nordita.org/doc.php.

7.3 Pencil check

7.3.1 The pencil check complains for no reason.

A: The pencil check only complains for a reason.

http://pencil-code.nordita.org/doc.php

84 THE PENCIL CODE

7.3.2 The pencil check reports MISSING PENCILS and quits

A: This could point to a serious problem in the code. Check where the missing pencil
is used in the code. Request the right pencils, likely based on input parameters, by
adapting one or more of the pencil_criteria_MODULE subroutines.

7.3.83 The pencil check reports unnecessary pencils

The pencil check reports possible overcalculation... pencil rho (43) is
requested, but does not appear to be required!

A: Such warnings show that your simulation is possibly running too slowly because it is
calculating pencils that are not actually needed. Check in the code where the unneces-
sary pencils are used and adapt one or more of the pencil_criteria_MODULE subroutines
to request pencils only when they are actually needed.

7.3.4 The pencil check reports that most or all pencils are missing

A: This is typically a thing that can happen when testing new code development for the
first time. It is usually an indication that the reference df changes every time you call
pde. Check whether any newly implemented subroutines or functionality has a “mem-
ory”, i.e. if calling the subroutine twice with the same f gives different output df.

7.3.5 Running the pencil check triggers mathematical errors in the code

A: The pencil check puts random numbers in f before checking the dependence of df on
the chosen set of pencils. Sometimes these random numbers are inconsistent with the
physics and cause errors. In that case you can set lrandom_f_pencil_check=F in &run_-
pars in ‘run.in’. The initial condition may contain many idealized states (zeros or ones)
which then do not trigger pencil check errors when lrandom_f_pencil_check=F, even if
pencils are missing. But it does prevent mathematical inconsistencies.

7.3.6 The pencil check still complains

A: Then you need to look into the how the code and the pencil check operate. Reduce the
problem in size and dimensions to find the smallest problem that makes the pencil check
fail (e.g., 1x1x8 grid points). At the line of ‘pencil_check.f90’ when a difference is found
between df _ref and df, add some debug lines telling you which variable is inconsistent
and in what place. Often you will be surprised that the pencil check has correctly found
a problem in the simulation.

7.3.7 The pencil check is annoying so I turned it off

A: Then you are taking a major risk. If one or more pencils are not calculated properly,
then the results will be wrong.

7.4 Running

7.4.1 Why does ‘start.x’ | ‘start.csh’ write data with periodic boundary conditions?

A: Because you are setting the boundary conditions in ‘run.in’, not in ‘start.in’; see
Sect. 5.16.1l There is nothing wrong with the initial data — the ghost-zone values will

7.4 Running 85

be re-calculated during the very first time step.

7.4.2 csh problem?

Q: On some rare occasions we have problems with csh not being supported on other
machines. (We hope to fix this by contacting the responsible person, but may not be that
trivial today!) Oliver says this is a well known bug of some years ago, etc. But maybe in
the long run it would be good to avoid csh.

A: These occasions will become increasingly frequent, and eventually for some architec-
tures, there may not even be a csh variant that can be installed.

We never pushed people to use pc_run and friends (and to report corresponding bugs
and get them fixed), but if we don’t spend a bit of effort (or annoy users) now, we create
a future emergency, where someone needs to run on some machine, but there is no csh
and he or she just gets stuck.

We don’t have that many csh files, and for years now it should be possible to compile
run without csh (using bin/pc_run) — except that people still fall back on the old way of
doing things. This is both cause and consequence of the ‘new’ way not being tested that
much, at least for the corner cases like ‘RERUN’, ‘NEWDIR’, ‘SCRATCH_DIR .

7.4.3 ‘run.csh’doesn’t work:

Invalid character ’’’ in NAMELIST input
Program terminated by fatal I/0 error
Abort

A: The string array for the boundary condition, e.g., bex or bez is too long. Make sure it
has exactly as many elements as nvar is big.
7.4.4 Code crashes after restarting

> removing mu_r from the namelist just ‘like that’ makes the code
> backwards incompatible.

That means that we can never get rid of a parameter in start.in once we
have introduced it, right?

V V V V V

A: In the current implementation, without a corresponding cleaning procedure, unfor-
tunately yes.

Of course, this does not affect users’ private changes outside the central svn tree.

7.4.5 auto-test gone mad...?
Q: Have you ever seen this before:

gigall:/home/pg/n7026413/cvs-src/pencil-code/samples/conv-slab> auto-test

/home/pg/n7026413/cvs-src/pencil-code/samples/conv-slab:
Compiling.. ok
No data directory; generating data -> /var/tmp/pencil-tmp-25318
Starting. . ok

86 THE PENCIL CODE

Running. . ok

Validating results..Malformed UTF-8 character (unexpected continuation
byte 0x80, with no preceding start byte) in split at
/home/pg/n7026413/cvs-src/pencil-code/bin/auto-test line 263.
Malformed UTF-8 character (unexpected continuation byte 0x80, with no
preceding start byte) in split at
/home/pg/n7026413/cvs-src/pencil-code/bin/auto-test line 263.

A: You are running on a RedHat 8 or 9 system, right?

Set LANG=POSIX in your shell’s startup script and life will be much better.

7.4.6 Can I restart with a different number of cpus?

Q: I am running a simulation of nonhelical turbulence on the cluster using MPI. Suppose
if I am running a 128% simulation on 32 cpus/cores i.e.

integer, parameter :: ncpus=32,nprocy=2,nprocz=ncpus/nprocy,nprocx=1
integer, parameter :: nxgrid=128,nygrid=nxgrid,nzgrid=nxgrid

And I stop the run after a bit. Is there a way to resume this run with different number
of cpus like this :

integer, parameter :: ncpus=16,nprocy=2,nprocz=ncpus/nprocy,nprocx=1
integer, parameter :: nxgrid=128,nygrid=nxgrid,nzgrid=nxgrid

I understand it has to be so in a new directory but making sure that the run starts from
where I left it off in the previous directory.

A: The answer is no, if you use the standard distributed io. There is also parallel io, but
I never used it. That would write the data in a single file, and then you could use the
data for restart in another processor layout.

7.4.7 Can I restart with a different number of cpus?

Q: Is it right that once the simulation is resumed, pencil-code takes the last data from
var.dat (which is the current snapshot of the fields)? If that is true, then, is it not possible
to give that as the initial condition for the run in the second directory (with changed
“ncpus”)? Is there a mechanism already in place for that?

A: Yes, the code restarts from the last var.dat. It is written after a successful completion
of the run, but it crashes or you hit a time-out, there will be a var.dat that is overwritten
every isave timesteps. If the system stops during writing, some var.dat files may be
corrupt or have the wrong time. In that case you could restart from a good VAR file, if
you have one, using, e.g.,

restart-new-dir-VAR . 46

where 46 is the number of your VAR file, i.e., VAR46 im this case. To restart in another
directory, you say, from the old run directory,

restart-new-dir ../another_directory

Hope this helps. Look into pencil-code/bin/restart-new-dir to see what it is doing.

7.4 Running 87

7.4.8 fft xyz_parallel 3D: nygrid needs to be an integer multiple...
Q: I just got an:
fft_xyz_parallel_3D: nygrid needs to be an integer multiple of nprocy*nprocz

In my case, nygrid=2048, nprocy=32, and nprocz=128, so nprocy*nprocz=4096. In other
words, 2048 needs to be a multiple of 4096. But isn’t this the case then?

A: No, because 2048 = 0.5 * 4096 and 0.5 is not an integer. Maybe try either setting
nprocz=64 or nprocy=64. You could compensate the change of ncpus with the z-direction.
For 20483 simulations, nprocy=32 and nprocz=64 would be good. A list of good meshes is
given in Table [4l

7.4.9 Unit-agnostic calculations?

Q: The manual speaks about unit-agnostic calculations, stating that one may choose to
interpret the results in any (consistent) units, depending on the problem that is solved
at hand. So, for example, if I chose to run the 2d-tests/battery_term’ simulation for an
arbitrary number of time-steps and then choose to examine the diagnostics, am I correct
in assuming the following:

1) [Brms] = Gauss (as output by unit_magnetic, before the run begins)

2) [t] = s (since the default unit system is left as CGS)

3) [urms] = cm/s (again, as output by unit_velocity, before the run begins)
4) and etc. for the units of the other diagnostics

A: Detailed correspondence on this item can be found on:
https://groups.google.com/forum/?fromgroups#!topic/pencil-code-discuss/zek-uYNbgXI
There is also working material on unit systems under

http://www.nordita.org/~brandenb/teach/PencilCode/MixedTopics.html with a link to
http://www.nordita.org/~brandenb/teach/PencilCode/material/AlfvenWave_SIunits/
Below is a pedagogical response from Wlad Lyra:

In the sample battery-term, the sound speed csO=1 sets the unit of
velocity. Together with the unit of length, that sets your unit of
time. The unit of magnetic field follows from the unit of velocity,
density, and your choice of magnetic permittivity, according to the
definition of the Alfven velocity.

If you are assuming cgs, you are saying that your sound speed csO=1
actually means [U]=1 cm/s. Your unit of length is equivalently 1 cm,
and therefore the unit of time is [t] = [L]/[U]=1 s. The unit of
density is [rho] = 1 g/cm”3. Since in cgs vA=B/sqrt(4*pi * rho), your
unit of magnetic field is [B] = [U] * sqrt([rho] * 4xpi) "= 3.5
sqrt(g/cm) / s = 3.5 Gauss.

If instead you are assuming SI, you have csO=1 assuming that means
[Ul=1 m/s and rho0=1 assuming that to mean [rho]l=1 kg/m~3. Using [L]=1
m, you have still [t]=1 s, but now what appears as B=1 in your output
is actually [B] = [U] * sqrt (mu * [rho]l) = 1 m/s * sqrt(4xpi * le-7
N*xA-2 1 kg/m~3) = 0.0011210 kg/(s"2*A) ~ 11 Gauss.

You can make it more interesting and use units relevant to the
problem. Say you are at the photosphere of the Sun. You may want to

https://groups.google.com/forum/?fromgroups#!topic/pencil-code-discuss/zek-uYNbgXI
http://www.nordita.org/~brandenb/teach/PencilCode/MixedTopics.html
http://www.nordita.org/~brandenb/teach/PencilCode/material/AlfvenWave_SIunits/

88 THE PENCIL CODE

use dimensionless cs0=1 meaning a sound speed of 10 km/s. Your
appropriate length can be a megameter. Now your time unit is
[t]1=[L]/[U] = 1e3 km/ 10 km/s = 10”2 s, i.e., roughly 1.5 minute. For
density, assume rho=2x10-4 kg/m~3, typical of the solar photosphere.
Your unit of magnetic field is therefore [B] = [U] * sqrt([rho] *
4xpi) = le6 cm/s * sqrt(4*xpi * 2e-7 g/cm~3) ~ 1585.33 Gauss.

Notice that for muO=1 and rho0O=1 you simply have vA=B. Then you can
conveniently set the field strength by your choice of plasma beta (=
2xcs”2/vA~2). There’s a reason why we like dimensionless quantities!

7.5 Visualization
7.5.1 ‘start.pro’ doesn’t work:

Reading grid.dat..

Reading param.nml..

\% Expression must be a structure in this context: PAR.

\% Execution halted at: \$MAIN\$ 104
/home/brandenb/pencil-code/runs/forced/hell/../../../idl/start.pro

A: You don’t have the subdirectory ‘data’ in your IDL variable !path. Make sure you
source ‘sourceme.csh’/'sourceme.sh’ or set a sufficient IDL path otherwise.

7.5.2 ‘start.pro’ doesn’t work:

Isn’t there some clever (or even trivial) way that one can avoid the annoying error mes-
sages that one gets, when running e.g., ”.r rall” after a new variable has been introduced
in ”idl/varcontent.pro”? Ever so often there’s a new variable that can’t be found in my
param2.nml — this time it was IECR, IGG, and ILNTT that I had to circumvent...

A: The simplest solution is to invoke ‘NOERASE’, i.e. say

touch NOERASE
start.csh

or, alternatively, start_run.csh. What it does is that it reruns src/start.x with a new
version of the code; this then produces all the necessary auxiliary files, but it doesn’t
overwrite or erase the ‘var.dat’ and other ‘VAR’ and ‘slice’ files.

7.5.3 Something about tag name undefined:

Q: In one of my older run directories I can’t read the data with idl anymore. What should
I do? Is says something like

Reading param.nml..

% Tag name LEQUIDIST is undefined for structure <Anonymous>.

% Execution halted at: $MAIN$ 182
/people/disk2/brandenb/pencil-code/idl/start.pro

A: Go into ‘data/param.nml’ and add , LEQUIDIST=T anywhere in the file (but before the
last slash).

7.5 Visualization 89

7.5.4 Something INC in start.pro
Q: start doesn’t even work:

% Compiled module: $MAINS.

nname= 11

Reading grid.dat..

Reading param.nml..

Can’t locate Namelist.pm in INC (INC contains: /etc/perl /usr/local/lib/perl/5.8.4 /us
BEGIN failed--compilation aborted at /home/brandenb/pencil-code/bin/nl2idl line 49.

A: Go into ‘$PENCIL_HOME' and say svn up sourceme.csh and/or svn up sourceme.sh.
(They were just out of date.)

7.5.5 nl2idl problem when reading param2.nml

Q: Does anybody encounter a backward problem with nl2idl? The file param*.nml files
are checked in under ‘pencil-code/axel/couette/SStrat128a_mu0.20_g2’ and the prob-
lem is below.

at /people/disk2/brandenb/pencil-code/bin/nl2idl line 120
HCONDO= 0.0,HCOND1= 1.000000,HCOND2= 1.000000,WIDTHSS= 1.192093E-06,MPOLYO=
e HERE

at /people/disk2/brandenb/pencil-code/bin/nl12idl line 120
A: The problem is the stupid ifc compiler writing the following into the namelist file:

COOLING_PROFILE=’gaussian > ,COOLTYPE="Temp
’C00L= 0.0,C82C00L= 0.0,RCO0L= 1.000000,WCO0L= 0.1000000,FBOT= 0.0,CHI_T= 0.0

If you add a comma after the closing quote:

COOLING_PROFILE=’gaussian ?> ,COOLTYPE="Temp
’,C00L= 0.0,CS2C00L= 0.0,RCOOL= 1.000000,WCO0L= 0.1000000,FBOT= 0.0,CHI_T= 0.0

things will work.

Note that ifc cannot even itself read what it is writing here, so if this happened to occur
in param.nml, the code would require manual intervention after each start.csh.

7.5.6 Spurious dots in the time series file

Q: Wolfgang, you explained it to me once, but I forget. How can one remove spurious
dots after the timestep number if the time format overflows?

A: I don’t know whether it exists anywhere, but it’s easy. In Perl you'd say
perl -pe s/~ (\sx[-0-9]+)\. ([-0-9eEdD])/$1 $2/g’

and in sed (but that’s harder to read)
sed ’s/"\(*[-0-9]1\+\)\ .\ ([-0-9eEdDI\)/\1 \2/g’

7.5.7 Problems with pc_varcontent.pro

Q:

90 THE PENCIL CODE

% Subscript range values of the form low:high must be >= 0, < size, with low
<= high: VARCONTENT.

% Error occurred at: PC_VARCONTENT 391
/home/brandenb/pencil-code/idl/read/pc_varcontent.pro

A PC_READ_VAR 318
/home/brandenb/pencil-code/idl/read/pc_read_var.pro

b $MAINS

A: Make sure you don’t have any unused items in your src/cparam.local such as

! MAUX CONTRIBUTION 3
! COMMUNICATED AUXILIARIES 3

They would leave gaps in the counting of entries in your data/index.pro file.

7.6 Programming new slices

Q: I'm creating a new special module with a few new variables f(:,:,:,inewl),
f(:,:,:,inew2) etc. I'm wondering how to add new output of slices (i.e. video files) of
these new variables (say p/inewl) and their combinations (say p/%inewl**2+p),inew2**2)?
I tried to look into other modules to find an example but got confused. If someone could
clarify the calling tree it would be great!

A: Best you look into hydro.f90. For slices, which contain simply f-array variables, you
do something like

case (Puu’); call assign_slices_vec(slices,f,iuu)

in get_slices_hydro. For slices, which contain derived quantities like your
phinewlx*2+pjinew2**2 you have to declare slice buffers as for divu in hydro (divu xy
etc.), you have to allocate them like

if (ivid_divu/=0) call alloc_slice_buffers(divu_xy,divu_xz, &
divu_yz,divu_xy2,divu_xyB,divu_xy4,divu_sz,divu_r)

to fill them in calc_diagnostics_special like

if (ivid_divu/=0) call store_slices(p%divu,divu_xy,divu_xz, &
divu_yz,divu_xy2,divu_xy3,divu_xy4,divu_xz2,divu_r)

and finally to store them in get_slices_special like

call assign_slices_scal(slices,divu_xy,divu_xz,divu_yz, &
divu_xy2,divu_xy3,divu_xy4,divu_xz2,divu_r)

7.7 General questions
7.7.1 “Installation” procedure

Why don’t you use GNU autoconf’automake for installation of the PENCIL CODE?

A: What do you mean by “installation”? Unlike the applications that normally use auto-
conf, the Pencil Code is neither a binary executable, nor a library that you compile once
and then dump somewhere in the system tree. Autoconf is the right tool for these appli-
cations, but not for numerical codes, where the typical compilation and usage pattern is
very different:

7.7 General questions 91

You have different directories with different ‘Makefile.local’ settings, recompile after
introducing that shiny new term in your equations, etc. Moreover, you want to some-
times switch to a different compiler (but just for that run directory) or another MPI
implementation. Our adapt-mkfile approach gives you this flexibility in a reasonably
convenient way, while doing the same thing with autoconf would be using that system
against most of its design principles.

Besides, it would really get on my (WD’s) nerves if I had to wait two minutes for autoconf
to finish before I can start compiling (or maybe 5-10 minutes if I worked on a NEC
machine...).

Finally, if you have ever tried to figure out what a ‘configure’ script does, you will ap-
preciate a comprehensible configuration system.

7.7.2 Small numbers in the code
What is actually the difference between epsi, tini and tiny?

A:

F90 has two functions epsilon() and tiny(), with

epsilon(x) = 1.1920929e-07

tiny(x) 1.1754944e-38
(and then there is huge(x) = 3.4028235e+38)
for a single-precision number x.

epsilon(x) is the smallest number that satisfies

1+epsilon(l.) /=1 ,
while tiny(x) is the smallest number that can be represented without
precision loss.

In the code we have variants hereof,

epsi=b*epsilon(1.0)

tini=5*tiny(1.0)

huge1=0.2*huge(1.0)
that have added safety margins, so we don’t have to think about doing
things like 1/tini.

So in sub.f90,
- evr = evr / spread(r_mn+epsi,2,3)

did (minimally) affect the result for r_mn=0(1), while the correct version
+ evr = evr / spread(r_mn+tini,2,3)

only avoids overflow.

7.7.3 Why do we need a /lphysics/namelist in the first place?

(113

Wolfgang answered on 29 July 2010: “cdata.f90’ has the explanation”

! Constant ’parameters’ cannot occur in namelists, so in order to get the
! now constant module logicals into the lphysics name list...

! We have some proxies that are used to initialize private local variables
! called lhydro etc, in the lphysics namelist!

92 THE PENCIL CODE

So the situation is this: we want to write parameters like ldensity to param.nml so
IDL (and potentially octave, python, etc.) can know whether density was on or not. To
avoid confusion, we want them to have exactly their original names. But we cannot
assemble the original ldensity etc. constants in a namelist, so we have to define a local
ldensity variable. And to provide it with the value of the original cdata.ldensity, we need
to transfer the value via Idensity var. That’s pretty scary, although it seems to work
fine. I can track the code back to the big eos_merger commit, so it may originate from
that branch. One obvious problem is that you have to add code in a number of places
(the 1density — Idensity_var assignment and the local definition of ldensity) to really
get what you need. And when adding a new boolean of that sort to ‘cdata.f90’, you may
not even have a clue that you need all the other voodoo.

There may be a cleaner solution involving generated code. Maybe something like
logical :: ldensity ! INCLUDE_IN_LPHYSICS

could later generate code (in some param_io_extra.inc file) that looks like this:
write(unit, *) ’ldensity = ’, ldensity

i.e. we can manually write in namelist format. But maybe there are even simpler solu-

tions?

7.7.4 Can I run the code on a Mac?

A: Macs work well for Linux stuff, except that the file structure is slightly different.
Problems when following Linux installs can usually be traced to the PATH. For general
reference, if you need to set an environment variable for an entire OS-X login session,
google environment.plist. That won’t be needed here.

For a Mac install, the following should work:

a) Install Dev Tools (an optional install on the MacOS install disks). Unfortunately,
last time I checked the svn version that comes with DevTools is obsolete. So:

b) Install MacPorts (download from web). Note that MacPorts installs to a non-
standard location, and will need to be sourced. The installation normally drops
an appropriate line in .profile. If it does so, make sure that that line gets sourced.
Otherwise

export PATH=/opt/local/bin:/opt/local/sbin:$PATH
export MANPATH=/opt/local/share/man:$MANPATH

c¢) Install g95 (download from web). Make sure it is linked in /bin.

d) execute macports svn install

e) download the pencil-code and enjoy.
Note: the above way to get svn works. It takes a while however, so there are certainly
faster ways out there. If you already have a non-obsolete svn version, use that instead.
7.7.5 Wrong user-id in commit emails
Why does it say

From: ’Philippe Bourdin’ via pencil-code-commits
<pencil-code-commits@googlegroups.com>

7.7 General questions 93

when the committing author is not Philippe?

A: The associated email addresses in account.pencil-code.org should be the same as what
is registered in github as your primary email address.
7.7.6 Pencil Code discussion forum

Do I just need to send an email somewhere to subscribe or what?

A: The answer is yes; just go to:

http://groups.google.com/group/pencil-code-discuss

7.7.7 The manual

It would be a good idea to add this useful information in the manual, no?

A: When you have added new stuff to the code, don’t forget to mention this in the
‘pencil-code/doc/manual . tex’ file.

Again, the answer is yes; just go to:

cd pencil-code/doc/
vi manual.tex
svn ci -m "explanations about a new module in the code"

94

THE PENCIL CODE

95

Part 11
Programming the PENCIL CODE

All developers are supposed to have an up-to-date entry in the file
‘pencil-code/license/developers.txt’ so that they can be contacted in case a code
change breaks an auto-test or other code functionality.

Several PENCIL CODE committers have done several hundred check-ins, but many of
the currently 92 registered people on the repository have hardly done anything. To put
a number to this, one can define an / index, which gives the number of users, who have
done at least as many as that number of check-ins. This / index is currently 37, i.e., 37
users have done at least 37 check-ins; see Figure [9 from 2017, when the h index was
only 32.

100

80

(o)}
(@)

I
o

of check—ins

20

number of users

Figure 9: The h index of PENCIL CODE check-ins in 2017.

The PENCIL CODE has expanded approximately linearly in the number of lines of code
and the number of subroutines (Fig.[10). The increase in the functionality of the code is
documented by the rise in the number of sample problems (Fig. [11). It is important to
monitor the performance of the code as well. Figure [12 shows that for most of the runs
the run time has not changed much.

Before making changes to the code, it is important that you verify that you can run
the pc_auto-test successfully. Don’t do this when you have already modified the code,
because then you cannot be sure that any problems are caused by your changes, or
because it wouldn’t have worked anyway. Also, keep in mind that the code is public,
so your changes should make sense from a broader perspective and should not only
be intended for yourself. Regarding more general aspects about coding standards see
Sect.

In order to keep the development of the code going, it is important that the users are
able to understand and modify (program!) the code. In this section we explain first how

96 THE PENCIL CODE

goof T T T T T T T T T T 31.5x10°
0 [[0}
& =200 11.0x10° 3
o N 13)
= : -
8 [(o]
“ - o
(o] [a 4 o
- 100: 5.0x10 £
ot . . . Jo
2002 2004 2006 2008 2010
year

Figure 10: Number of lines of code and the number of subroutines since the end of 2001. The jump in the
Summer of 2005 was the moment when the developments on the side branch (eos branch) were merged
with the main trunk of the code. Note the approximately linear scaling with time.

to orient yourself in the code and to understand what is in it, and then to modify it
according to your needs.

The Pencil Code check-ins occur regularly all the time. By the Pencil Code User Meeting
2010 we have arrived at a revision number of 15,000. In February 2017, the number of
check-ins has risen to 26,804; see https://github.com/pencil-code/pencil-code. Ma-
jor code changes are nowadays being discussed by the Pencil Code Steering Committee
(https://www.nordita.org/~brandenb/pencil-code/PCSC/). The increase of the revision
number with time is depicted in Figure [13l The number of Pencil Code developers in-
creases too (Figure [14), but the really active ones are getting rare. This may indicate
that new users can produce new science with the code as it is, but it may also indicate
that it is getting harder to understand the code. How to understand the code will be
discussed in the next section.

25F .

20 F .

of auto tests

10F .

0 : 1 L L 1 L L 1

2002 2004 2006
year

2008 2010

Figure 11: Number of tests in the sample directory that are used in the nightly auto tests. Note again the
approximately linear scaling with time.

https://github.com/pencil-code/pencil-code
https://www.nordita.org/~brandenb/pencil-code/PCSC/

97

chirol—diffusion cosmicray helical—MHDturb testfield_z
6 T T T T T T 6 T T T T T T 150 T T T T T T 200 T T T T T
5 WMI‘AJM
150 1
4 4t 100}
3 100
2 2f| 501
50
1
ol T Ol Ol 0 et
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 S50 100 150 200 250 300 0 50 100 150 200 250
rondom_uu_porticles kin—dynamo meissner cony-slob—noequi
400 T T T T T T 100 T T T T T T 120 T T T T T T 150 T T T T T T
sof 100 I 1
300 1
80 100
60
200f 60
401
40[50
100
20} 20
[} 0) 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
conv—slab mdwarf dust—vortex MRI-turbulence_hyper
150 300 T T T T T T 120 T T T T T T 600 T T T T T T
W i M
100} 200f 80[400
sol
50 100f 40f 200
20
0 Ob Ol Ol
0 100 200 300 400 500 600 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
dust_turb_globaldisk interstellor geodynamo interlocked—fluxring
1200 T T T T T y 600 T T T T T T 1200 T T T T T T 3000 T T T T T T
1000}] 500 M 1000 2500]
80O 400 800 2000 1
600 300 600 1500 1
400 200 400 1000 1
200 100 200 500 1
0 T O Ol 0 ATV T
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 12: Run time of the daily auto-tests since August 17, 2008. For most of the runs the run time has
not changed much. The occasional spikes are the results of additional load on the machine.

98 THE PENCIL CODE

20)(104 T
-

1.5%x10*

1.0x10*

revision

5.0x10°

LI N B I L I L R B L B B L B B B B B
lllllllllllllllllll

O " " 1 " " " 1 " " " 1 " " " 1 " " " 1 "
2002 2004 2006 2008 2010 2012
year

Figure 13: Number of check-ins since 2002. Note again the linear increase with time, although in the last
part of the time series there is a notable speed-up.

B0 o '
ﬁﬂ '_ L A "
o | pedbys o
g 40F ..., s
= " dobler o retsssaut]
20 _- :l*.:..:.t" gt B “r'-u__' - =
: i f :. e 23]
D B s ey e G RS S > s
2002 2004 2006 2008 2010

year

Figure 14: Check-ins since 2002 per user. Users with more than 100 check-ins are color coded.

8. Understanding the code 99

8 Understanding the code

Understanding the code means looking through the code. This is not normally done by
just printing out the entire code, but by searching your way through the code in order to
address your questions. The general concept will be illustrated here with an example.

8.1 Example: how is the continuity equation being solved?

All the physics modules are solved in the routine pde, which is located in the file and
module ‘Equ’. Somewhere in the pde subroutine you find the line

call dlnrho_dt(f,df,p)

This means that here the part belonging to d1n p/0t is being assembled. Using the grep
command you will find that this routine is located in the module density, so look in
there and try to understand the pieces in this routine. We quickly arrive at the following
crucial part of code,

!
! Continuity equation.
!
if (lcontinuity_gas) then
if (ldensity_nolog) then

df(11:12,m,n,irho) = df (11:12,m,n,irho) - plhugrho - plirhoxplkdivu
else
df(11:12,m,n,ilnrho) = df(11:12,m,n,ilnrho) - pluglnrho - pidivu
endif
endif

where, depending on some logicals that tell you whether the continuity equation should
indeed be solved and whether we do want to solve for the logarithmic density and not
the actual density, the correct right hand side is being assembled. Note that all these
routines always only add to the existing df (11:12,m,n,ilnrho) array and never reset
it. Resetting df is only done by the timestepping routine. Next, the pieces p%uglnrho
and p%divu are being subtracted. These are pencils that are organized in the structure
with the name p. The meaning of their names is obvious: uglnrho refers to u - Vinp
and divu refers to V - u. In the subroutine pencil_criteria_density you find under
which conditions these pencils are requested. Using grep, you also find where they are
calculated. For example p%uglnrho is calculated in ‘density.f£90’; see

call u_dot_grad(f,ilnrho,plglnrho,plkuu,prkuglnrho,UPWIND=1lupw_lnrho)

So this is a call to a subroutine that calculates the u-V operator, where there is the possi-
bility of upwinding, but this is not the default. The piece divu is calculated in ‘hydro.£90’
in the line

!
I Calculate uij and divu, if requested.
!
if (lpencil(i_uij)) call gij(f,iuu,p%uij,1)
if (lpencil(i_divu)) call div_mn(p%uij,p%hdivu,puun)

Note that the divergence calculation uses the velocity gradient matrix as input, so no
new derivatives are recalculated. Again, using grep, you will find that this calculation

100 THE PENCIL CODE

and many other ones happen in the module and file ‘sub.f90’. The various derivatives
that enter here have been calculated using the gij routine, which calls the der routine,
e.g., like so

ki1=k-1
do i=1,3
do j=1,3
if (nder==1) then
call der(f,kl1+i,tmp,j)

For all further details you just have to follow the trail. So if you want to know how the
derivatives are calculated, you have to look in deriv.£90, and only here is it where the
indices of the f array are being addressed.

If you are interested in magnetic fields, you have to look in the file ‘magnetic.f90’. The
right hand side of the equation is assembled in the routine

1 skosk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s ok sk ok ok s s sk ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok k ok
subroutine daa_dt(f,df,p)

Magnetic field evolution.

!
!
!
I Calculate dA/dt=uxB+3/2 Omega_0 A_y x_dir -eta mu_0 J.

! For mean field calculations one can also add dA/dt=...+alpha*bb+delta*WXJ.
! Add jxb/rho to momentum equation.

! Add eta mu_O j2/rho to entropy equation.

!

where the header tells you already a little bit of what comes below. It is also here where
ohmic heating effects and other possible effects on other equations are included, e.g.,

!
! Add Ohmic heat to entropy or temperature equation.
!
if (lentropy .and. lohmic_heat) then
df(11:12,m,n,iss) = df(11:12,m,n,iss) &

+ etatotal*muO*p}j2*plkrhol*p)TT1
endif

We leave it at this and encourage the user to do similar inspection work on
a number of other examples. If you think you find an error, file a ticket at
http://code.google.com/p/pencil-code/issues/1list. You can of course also repair it!

http://code.google.com/p/pencil-code/issues/list

9. Adapting the code 101

9 Adapting the code

9.1 The PENCIL CODE coding standard

As with any code longer than a few lines the appearance and layout of the source code
is of the utmost importance. Well laid out code is more easy to read and understand and
as such is less prone to errors.

A consistent coding style has evolved in the PENCIL CODE and we ask that those con-
tributing try to be consistent for everybody’s benefit. In particular, it would be appreci-
ated if those committing changes of existing code via svn follow the given coding style.

There are not terribly many rules and using existing code as a template is usually the
easiest way to proceed. In short the most important rules are:

* tab characters do not occur anywhere in the code (in fact the use of tab character
is an extension to the Fortran standard).

* Code in any delimited block, e.g., if statements, do loops, subroutines etc., is in-
dented be precisely 2 spaces. E.g.

if (lcylindrical) then
call fatal_error(’del2fjv’,’del2fjv not implemented’)
endif

* continuation lines (i.e. the continuation part of a logical line that is split using
the & sign) are indented by 4 spaces. E.g. (note the difference from the previous
example)

if (lcylindrical) &
call fatal_error(’del2fjv’,’del2fjv not implemented’)
[...]

* There is always one space separation between ’if’ and the criterion following in
parenthesis:

if (ldensity_nolog) then
rho=f(11:12,m,n,irho)
endif

This is wrong:

if (1density_nolog) then ! WRONG
rho=f(11:12,m,n,irho)
endif

* In general, try to follow common practice used elsewhere in the code. For example,
in the code fragment above there are no empty spaces within the mathematical
expressions programmed in the code. A unique convention helps in finding certain
expressions and patterns in the code. However, empty spaces are often used after
commas and semicolons, for examples in name lists.

* Relational operators are written with symbols (==, / =, <, <=, >, >=), not with
characters (.eq., .ne., .1t., .1le., .gt., .ge.).

¢ In general all comments are placed on their own lines with the ’!’ appearing in the
first column. It can be omitted in empty lines, but is yet recommended to be set in
empty lines surrounding comments.

102 THE PENCIL CODE

¢ All subroutine/functions begin with a standard comment block describing what
they do, when and by whom they were created and when and by whom any non-
trivial modifications were made.

¢ Lines longer that ~ 100 characters should be explicitly wrapped using the & char-
acter, unless there is a block of longer lines that can only be read easily when they
are not wrapped. Always add one whitespace before the & character.

These and other issues are discussed in more depth and with examples in Appendix [Bl,
and in particular in Sect.

9.2 Adding new output diagnostics

With the implementation of new physics and the development of new procedures it will
become necessary to monitor new diagnostic quantities that have not yet been imple-
mented in the code. In the following, we describe the steps necessary to set up a new
diagnostic variable.

This is nontrivial as, in order to keep latency effects low on multi-processor machines,
the code minimizes the number of global reduction operations by assembling all quan-
tities that need the maximum taken in fmax, and those that need to be summed up
over all processors (mostly for calculating mean quantities) in fsum (see subroutine
diagnostic in file ‘src/equ.£90).

As a sample variable, let us consider jbm (the volume average < R B>). Only the mod-
ule magnetic will be affected, as you can see (the diagnostic quantity jbm is already
implemented) with

unix> grep -i jbm src/*.£90

If we pretend for the sake of the exercise that no trace of jbm was in the code, and we
were only now adding it, we would need to do the following

1. add the variable idiag jbm to the module variables of Magnetic in both
‘magnetic.f90’ and ‘nomagnetic.f90:

integer :: idiag_jbm=0

The variable idiag jbm is needed for matching the position of jbm with the list of
diagnostic variables specified in ‘print.in’.

2. in the subroutine daa_dt in ‘magnetic.f90’, declare and calculate the quantity jb
(the average of which will be jbm), and call sum_mn_name

real, dimension (nx) :: jb !jj- BB

[...]
if (ldiagnos) then !'only calculate if diagnostics is required
if (idiag_jbm/=0) then ! anybody asked for jbm?

call dot_mn(jj,bb,jb) !assuming jj and bb are known
call sum_mn_name(jb,i_jbm)
endif
endif

3. in the subroutine rprint_magnetic in both ‘magnetic.£90’, add the following:

9.2 Adding new output diagnostics 103

!

! reset everything in case of RELOAD

! (this needs to be consistent with what is defined above!)
1

if (lreset) then ! need to reset list of diagnostic variables?
[...]
idiag_jbm=0
[...]
endif
!
I check for those quantities that we want to evaluate online
!
do iname=1,nname

[...]

call parse_name(iname,cname(iname),cform(iname),’jbm’,idiag_jbm)

[...]

enddo

.|

[

!

' write column, i_XYZ, where our variable XYZ is stored
|

[

.|
write(3,*) ’i_jbm=’,idiag_jbm
[...]

4. in the subroutine rprint_magnetic in ‘nomagnetic.f90’, add the following (newer
versions of the code may not require this any more):

write column, i_jbm, where our variable jbm is stored
idl needs this even if everything is zero

I
[
[
|
[...]

write(3,*) ’i_jbm=’,idiag_jbm
[...]

5. and don’t forget to add your new variable to ‘print.in’:

jbm(£10.5)

If, instead of a mean value, you want a new maximum quantity, you need to replace
sum_mn_name () by max_mn_name ().

Sect. 5.8.1] describes how to output horizontal averages of the magnetic and velocity
fields. New such averages can be added to the code by using the existing averaging
procedures calc_bmz() or calc_jmz() as examples.

104 THE PENCIL CODE

9.3 Output at one point in space

Various variables at one point can be printed on the command line. This is often impor-
tant when you want to check for oscillations where the sign changes. You would not see
it in the rms or max values. The extensions pt and p2 refer to variables that are taken
from two particular points in space.

Note: this would need to be reworked if one later makes the output positions processor-
dependent. At the moment, those positions are in that part of the mesh that is on the
root processor.

The file ‘pt_positions.dat’ lists the coordinate positions where the data is taken from.

9.4 The f-array

The ‘f” array is the largest array in the PENCIL CODE and its primary role is to store
the current state of the timestepped PDE variables. The f-array and its slightly smaller
counter part (the df-array; see below) are the only full size 3D arrays in the code. The
f-array is of type real but PDEs for a complex variable may be solved by using two
slots in the f-array. The actual size of the f-array is mx x my x mz x mfarray. Here,
mfarray = mvar 4+ maux + mglobal + mscratch where mvar refers to the number of real PDE
variables.

As an example, we describe here how to put the time-integrated velocity, uut, into the
f-array (see ‘hydro.f90’). If this is to be invoked, there must be the following call some-
where in the code:

call farray_register_auxiliary(’uut’,iuut,vector=3)

Here, iuut is the index of the variable uut in the f-array. Of course, this requires that
maux is increased by 3, but in order to do this for a particular run only one must write
a corresponding entry in the ‘cparam.local’ file,

—*=f90—*- (for Emacs)
cparam.local

*x% AUTOMATIC CPARAM.INC GENERATION sskokskokokokskokokkkokskokokok sk okokkkok sk o okok o skok o kok sk o okok o skok
Declare (for generation of cparam.inc) the number of f array
variables and auxiliary variables added by this module

MAUX CONTRIBUTION 3

!
!
!
!
!
!
!
!
!
1 skeofeokokskskeokok ok sk ok ok o ook ok sk sksksk sk sk ok ok sk ok ok sk sk sksksk sk ok sk s ke ok ok sk sksksk sk sk sk sk ko ok sk sksksk sk sk ok sk ok ok ok sk sk sk sk sk ok ok sk ok
' Local settings concerning grid size and number of CPUs.

I This file is included by cparam.f90

!

integer, parameter :: ncpus=1,nprocy=1,nprocz=ncpus/nprocy,nprocx=1

integer, parameter :: nxgrid=16,nygrid=nxgrid,nzgrid=nxgrid

This way such a change does not affect the memory usage for other applications where
this addition to ‘cparam.local’ is not made. In order to output this part of the f-array,
one must write Iwrite_.aux=T in the init_pars of ‘start.in’. (Technically, [lwrite_-
aux]lwrite_aux=T can also be invoked in run_pars of ‘run.in’, but this does not work
at the moment.)

9.5 The df-array 105

9.5 The df-array

The ‘df” array is the second largest chunk of data in the PENCIL CODE. By using a 2N
storage scheme (see after Williamson [39] the code only needs one more storage
area for each timestepped variable on top of the current state stored in the f-array. As
such, and in contrast to the f-array, the df-array is of size mx x my x mz x mvar. Like the
df-array it is of type real. In fact the ghost zones of df are not required or calculated but
having f- and df-arrays of the same size make the coding more transparent. For mx, my
and mz large the wasted storage becomes negligible.

9.6 The fp-array

Similar to the ‘f” array the code also has a ’fp’ array which contains current states of all
the particles. Like the f-array the fp-array also has a time derivative part, the dfp-array.
The dimension of the fp-array is mpar_local x mpvar where mpar_local is the number
of particles in the local processor (for serial runs this is the total number of particles)
and mpvar depends on the problem at hand. For example if we are solving for only
tracer particles then mpuvar = 3, for dust particles mpvar = 6 The sequence in which the
slots in the fp-array are filled up depends on the sequence in which different particle
modules are called from the particles_main.f90. The following are the relevant lines
from particles_main.f90.

1 skosk sk ok ok ok ok ok o ok ok K ok o ok ok K ok o oK ok oK ok o oK o oK ok o ok o K ok ook oK ok o ok oK ok o ok oK ok ook oK ok o ok ok ok ok ok ok K ok ok o K o
subroutine particles_register_modules()
Register particle modules.

07-jan-05/anders: coded

call register_particles O
call register_particles_radius O
call register_particles_spin O
call register_particles_number QO
call register_particles_mass O
call register_particles_selfgrav O
call register_particles_nbody O
call register_particles_viscosity O
call register_pars_diagnos_state O

endsubroutine particles_register_modules
| skeskeok ok sk sk sk sk ok ok ok ok o ok ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk ok ok o sk ok sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk ok

The subroutine register_particles can mean either the tracer particles or dust parti-
cles. For the former the first three slots of the fp-array are the three spatial coordinates.
For the latter the first six slots of the fp-array are the three spatial coordinates followed
by the three velocity components. The seventh slot (or the fourth if we are use tracer
particles) is the radius of the particle which can also change as a function of time as
particles collide and fuse together to form bigger particles.

106 THE PENCIL CODE

9.7 The pencil case

Variables that are derived from the basic physical variables of the code are stored in
one-dimensional pencils of length nx. All the pencils that are defined for a given set
of physics modules are in turn bundled up in a Fortran structure called p (or, more
illustrative, the pencil case). Access to individual pencils happens through the variable
p/name, where name is the name of a pencil, e.g., rho that is a derived variable of the
logarithmic density 1nrho.

The pencils provided by a given physics module are declared in the header of the file,
e.g., in the Density module:

! PENCILS PROVIDED lnrho; rho; rhol; glnrho(3); grho(3); uglnrho; ugrho

Notice that the pencil names are separated with a semi-colon and that vector pencils
are declared with “(3)” after the name, and “(3,3)” for a 3 x 3 matrix. Before compil-
ing the code, the script ‘mkcparam’ collects the names of all pencils that are provided
by the chosen physics modules. It then defines the structure p with slots for every sin-
gle of these pencils. The definition of the pencil case p is written in the include file
‘cparam_pencils.inc’. When the code is run, the actual pencils that are needed for the
run are chosen based on the input parameters. This is done in the subroutines pencil_-
criteria_modulename that are present in each physics module. They are all called once
before entering the time loop. In the pencil_criteria subroutines the logical arrays
lpenc_requested, lpenc_diagnos, 1lpenc_diagnos2d, and lpenc_video are set according
to the pencils that are needed for the given run. Some pencils depend on each other, e.g.,
uglnrho depends on uu and glnrho. Such interdependencies are sorted out in the subrou-
tines pencil_interdep_modulename that are called after pencil_criteria_modulename.

In each time-step the values of the pencil logicals lpenc_requested, lpenc_diagnos,
lpenc_diagnos2d, and lpenc_video are combined to one single pencil array lpencil
which is different from time-step to time-step depending on, e.g., whether diagnostics
or video output are done in that time-step. The pencils are then calculated in the sub-
routines calc_pencils_modulename. This is done before calculating the time evolution of
the physical variables, as this depends very often on derived variables in pencils.

The centralized pencil calculation scheme is a guarantee that
¢ All pencils are only calculated once, and only once.
* Pencils are always calculated by the proper physics module.

Since the PENCIL CODE is a multipurpose code that has many different physics mod-
ules, it can lead to big problems if a module tries to calculate a derived variable that
actually belongs to another module, because different input parameters can influence
how the derived variables are calculated. One example is that the Density module can
consider both logarithmic and non-logarithmic density, so if the Magnetic module calcu-
lates

rho = exp(£f(11:12,m,n,ilnrho)

it is wrong if the Density module works with non-logarithmic density! The proper way
for the Magnetic module to get to know the density is to request the pencil rho in
pencil_criteria_magnetic.

9.8 Adding new physics: the Special module 107

9.7.1 Pencil check

To check that the correct pencils have been requested for a given run, one can run a
pencil consistency check in the beginning of a run by setting the logical 1pencil_check
in &run_pars. The check is meant to see if

¢ All needed pencils have been requested
¢ All requested pencils are needed

The consistency check first calculates the value of df with all the requested pencils. Then
the pencil requests are flipped one at a time — requested to not requested, not requested
to requested. The following combination of events can occur:

* not requested — requested, df not changed
The pencil is not requested and is not needed.

* not requested — requested, df changed
The pencil is not requested, but is needed. The code stops.

* requested — not requested, df not changed
The pencil is requested, but is not needed. The code gives a warning.

* requested — not requested, df changed
The pencil is requested and is needed.

9.7.2 Adding new pencils
Adding a new pencil to the pencil case is trivial but requires a few steps.

* Declare the name of the pencil in the header of the proper physics module. Pencils

names must appear come in a ”;” separated list, with dimensions in parenthesis
after the name [(3) for vector, (3,3) for matrix, etc.].

¢ Set interdependency of the new pencil (i.e. what other pencils does it depend on) in
the subroutine pencil_interdep_modulename

* Make rule for calculating the pencil in calc_pencils_modulename

* Request the new pencil based on the input parameters in any relevant physics
module

Remember that the centralized pencilation scheme is partially there to force the users
of the code to think in general terms when implementing new physics. Any derived
variable can be useful for a number of different physics problems, and it is important
that a pencil is accessible in a transparent way to all modules.

9.8 Adding new physics: the Special module

If you want to add new physics to the code, you will in many cases want to add a new
Special module. Doing so is relatively straightforward and there is even a special direc-
tory for such additions.

To create your own special module, copy ‘nospecial.f90’ from the src/ directory to a new
name in the src/special/ directory. In many cases, users may want to put all new bits of
physics, needed for the specific problem at hand, into a single special module. The name
chosen for it should then relate to that problem. It is also possible to employ several (at
present up to five) different special modules at a time in a single setup which allows to

108 THE PENCIL CODE

let naming follow the specific physics being implemented (for technicalities in this case,
see the end of this section).

The first thing to do in your new module is to change the lspecial=.false. header to say
Ispecial=.true.

The file is heavily commented though all such comments can be removed as you go. You
may implement any of the subroutines/function that exist in nospecial.f90 and those
routines must have the names and parameters as in nospecial.f90. You do not how-
ever need to implement all routines, and you may either leave the dummy routines
copied from nospecial.f90 or delete them all together (provided the “include ’special -
dummy.inc” is kept intact at the end of the file. Beyond that, and data and subroutines
can be added to a special module as required, though only for use within that module.

There are routines in the special interface to allow you to add new equations, modify the
existing equation, add diagnostics, add slices, and many more things. If you feel there is
something missing extra hooks can easily be added - please contact the PENCIL CODE
team for assistance.

You are encouraged to submit/commit your special modules to the Pencil Code source.
When you have added new stuff to the code, don’t forget to mention this in the
‘pencil-code/doc/manual . tex’ file.

Using more than one special module at a time requires that the environment vari-
ables $MODULE_PREFIX, $MODULE_INFIX and $MODULE_SUFFIX are set properly at runtime.
They can be derived from the qualified names of module functions which have in general
the form (prefix)(module name)(infix)(function name)(suffix) with its details depending
on the Fortran compiler used. These can be learned by employing the nm command, say,
by

unix> nm src/general.o | more .

The environment variables are most conveniently set in the user’s .bashrc, .cshrc
or a proper configuration file of the PENCIL CODE (section environment). In the
Makefile.local file, the requested special modules are simply specified as a list of
names: SPECIAL = special/(module 1) special/{module 2).... In contrast to the case
with only a single special module, where the namelists’ names are

special_init_pars and special_run_pars, these are individualized for multiple special
modules, viz. (module name)_init_pars etc. As explicit linking at runtime is employed
for multiple special modules, code errors, which normally would break the build, show
possibly up only at runtime and are hence hard to debug. Therefore in case of unclear
runtime failure, it is useful to perform tests with only one of the special modules at a
time, thus guaranteeing full linking at build time.

For example, when
SPECIAL = special/gravitational_waves_hTXk special/chiral_mhd
is used, the namelist that is usually referenced as

&special_run_pars

/
needs to be replaced by:

&gravitational_waves_hTXk_run_pars

9.9 Adding switchable modules 109

/

&chiral_mhd_run_pars

/

Internally, a number of automatic replacements occur in the code. Code that is automat-
ically modified in this way is also automatically unmodified while checking in changes to
the repository. But to facility comparison with the original code, one can do the unmodi-
fication also oneself using the pencil-code/utils/axel/pc_mkspecial.sh command.

9.9 Adding switchable modules

In some cases where a piece of physics is thought to be more fundamental, useful in
many situations or simply more flexibility is required it may be necessary to add a new
module newphysics together with the corresponding nonewphysics module. The special
modules follow the same structure as the rest of the switchable modules and so using a
special module to prototype new ideas can make writing a new switchable module much
easier.

For an example of module involving a new variable (and PDE), the pscalar module is a
good prototype. The grep command

unix> grep -i pscalar src/*

gives you a good overview of which files you need to edit or add.

9.10 Adding your initial conditions: the InitialCondition module

Although the code has many initial conditions implemented, we now discourage such
practice. We aim to eventually removed most of them. The recommended course of action
is to make use of the InitialCondition module.

InitialCondition works pretty much like the Special module. To implement your own
custom initial conditions, copy the file ‘noinitial_condition.f90’ from the src/ to src/
initial_condition, with a new, descriptive, name.

The first thing to do in your new module is to change the linitialcondition=.false. header
to say linitialcondition=.true. Also, don’t forget to add ../ in front of the file names in
include statements.

This file has hooks to implement a custom initial condition to most vari-
ables. After implementing your initial condition, add the line INITIAL_-
CONDITION=initial_condition/myinitialcondition to your ‘src/Makefile.local’
file. Here, myinitialcondition is the name you gave to your initial condition file. Add
also initial_condition_pars to the ‘start.in’ file, just below init_pars. This is a
namelist, which you can use to add whichever quantity your initial condition needs
defined, or passed. You must also un-comment the relevant lines in the subroutines
for reading and writing the namelists. For compiling reasons, these subroutines in
‘noinitial_condition.f90” are dummies. The lines are easily identifiable in the code.

Check, e.g., the samples “2d-tests/baroclinic’, ‘2d-tests/spherical_viscous_ring’, or
‘interlocked-fluxrings’, for examples of how the module is used.

110 THE PENCIL CODE

10 Testing the code

To maintain reproducibility despite sometimes quite rapid development, the PENCIL
CODE is tested nightly on various architectures. The front end for testing are the scripts
pc_auto-test and (possibly) pencil-test.

To see which samples would be tested, run
unix> pc_auto-test -1

, to actually run the tests, use
unix> pc_auto-test

or
unix> pc_auto-test --clean

. The latter compiles every test sample from scratch and currently (September 2009)
takes about 2 hours on a mid-end Linux PC.

The pencil-test script is useful for cron jobs and allows the actual test to run on a
remote computer. See Sect. [10.1l below.

For a complete list of options, run pc_auto-test --help and/or pencil-test --help.

10.1 How to set up periodic tests (auto-tests)
To set up a nightly test of the PENCIL CODE, carry out the following steps.

1. Identify a host for running the actual tests (the work host) and one to initiate
the tests and collect the results (the scheduling host). On the scheduling host, you
should be able to

(a) run cron jobs,

(b) ssh to the work host without password,

(c) publish HTML files (optional, but recommended),
(d) send e-mail (optional, but recommended).

Work host and scheduling host can be the same (in this case, use pencil-test’s -1’
option, see below), but often they will be two different computers.

2. [Recommended, but optional:] On the work host, check out a separate copy of the
PENCIL CODE to reduce the risk that you start coding in the auto-test tree. In the
following, we will assume that you checked out the code as “*/pencil-auto-test’.

3. On the work host, make sure that the code finds the correct configuration file for
the tests you want to carry out. [Elaborate on that: PENCIL_HOME/local_config and
‘~f’ option; give explicit example]

Remember that you can set up a custom host ID file for your auto-test tree under
‘${PENCIL_HOME}/config-local/hosts/’.
4. On the scheduling host, use crontab -e to set up a cron job similar to the following:

30 02 * * x $HOME/pencil-auto-test/bin/pencil-test \
-D $HOME/pencil-auto-test \
--use-pc_auto-test \

10.2 Auto-tests with systemd 111

-N15 -Uc -rs \

-T $HOME/public_html/pencil-code/tests/timings.txt \

-t 15m

-m <emaill@inter.net,email2@inter.net,...> \
<work-host.inter.net> \

-H > $HOME/public_html/pencil-code/tests/nightly-tests.html

Note 1: This has to be one long line. The backslash characters are written only
for formatting purposes for this manual you cannot use them in a crontabd file.

Note 2: You will have to adapt some parameters listed here and may want to
modify a few more:

‘-D <dir>’: Sets the directory (on the work host) to run in.

‘T <file>’: If this option is given, append a timing statistics line for each test to
the given file.

‘~—use-pc”’: You want this option (and at some point, it will be the default).
‘-t 15m’: Limit the time for ‘start.x’ and ‘run.x’ to 15 minutes.

‘-N 15’z Run the tests at nice level 15 (may not have an effect for MPI tests).
‘~-Uc’s Do svn update and pc_build --cleanall before compiling.

‘m <email-1list>’: If this option is given, send e-mails to everybody in the
(comma-separated) list of e-mail addresses if any test fails. As soon as this
option is set, the maintainers (as specified in the ‘README’ file) of failed tests
will also receive an e-mail.

work-host.inter.net|-1: Replace this with the remote host that is to run the
tests. If you want to run locally, write -1 instead.

‘~H’: Output HTML.

> $HOME/public_html/pencil-code/tests/nightly-tests.html: Write output to
the given file.

If you want to run fewer or more tests, you can use the ‘-Wa,--max-level’ option:
-Wa,-—max-level=3

will run all tests up to (and including) level 3. The default corresponds to
‘~Wa,--max-level=2".

For a complete listing of pencil-test options, run

unix> pencil-test --help

10.2 Auto-tests with systemd

On modern Linux systems, you can use systemd (instead of cron) to run periodic auto-
tests. You need to create a couple of files in ‘*/.config/systemd/user/”:

‘pencil_test. serviceld

16Options and filepaths may need to be modified; note that %h is used to denote the user’s home directory.

112 THE PENCIL CODE

[Unit]
Description=Pencil-code test

[Service]
Type=simple
Environment="PENCIL_HOME=%h/.software/pencil-code-for-tests"
ExecStart=}h/.software/pencil-code-for-tests/bin/pencil-test \
-N 15 --update --html --clean --local --use-pc_auto-test \
-—auto-test-options="--max-level=3 --script-tests=python --time-limit=bm"
StandardOutput=truncate:%h/public_html/pencil_tests/master_full.html

(the backslashes can be left as-is) and ‘pencil_test.timer’
[Unit]
Description=Run pencil test daily at 10pm

[Timer]
OnCalendar=*-*-x 22:00:00
Persistent=True

[Install]
WantedBy=timers.target
After creating these files, run

systemctl --user enable pencil_test.timer
systemctl --user start pencil_test.timer

10.3 Testing the postprocessing modules

Some of the samples contain additional scripts that test the Python and IDL postpro-
cessing modules. The are not checked by pc_auto-test by default; to include these tests,
use the --script-tests option, e.g.

pc_auto-test --max-level=3 --script-tests=python

The Python postprocessing modules contain an additional set of quick tests that can be
invoked as described in ‘PENCIL_HOME/python/tests/README.md .

11. Useful internals 113

11 Useful internals

11.1 Global variables

The following variables are defined in ‘cdata.f90’ and are available in any routine that
uses the module Cdata.

Variable Meaning

real

t simulated time ¢.

integer

n[xyzjgrid global number of grid points (excluding ghost cells)
in z, y and z direction.

nx, ny, nz number of grid points (excluding ghost cells) as seen
by the current processor, i. e. ny=nygrid/nprocy, etc.

mx, my, mz number of grid points seen by the current processor,
but including ghost cells. Thus, the total box for the
ivarth variable (on the given processor) is given by
f(1:mx,1:my,1:mz,ivar).

11,12 smallest and largest z-index for the physical domain
(i. e. excluding ghost cells) on the given processor.

ml, m2 smallest and largest y-index for physical domain.

nl, n2 smallest and largest z-index for physical domain,

i. e. the physical part of the ivarth variable is given
by £(11:12,m1:m2,n1:n2,ivar)

m,n pencil indexing variables: During each time-substep
the box is traversed in z-pencils of length mx such
that the current pencil of the ivarth variable is
£f(11:12,m,n,ivar).

logical
Iroot true only for MPI root processor.
Ifirst true only during first time-substep of each time step.
headt true only for very first full time step (comprising 3

substeps for the 3rd-order Runge—Kutta scheme) on
root processor.

headtt = (1first .and. lroot): true only during very first
time-substep on root processor.

Ifirstpoint true only when the very first pencil for a given time-
substep is processed, i.e. for the first set of (m,n),
which is probably (3, 3) .

lout true when diagnostic output is about to be written.

11.2 Subroutines and functions

output(file,a,nv) (module IO): Write (in each ‘procN’ directory) the content of the
global array a to a file called file, where a has dimensions mxxmyxmzxnv, or
mxxmyxmz if nv=1.

114 THE PENCIL CODE

output_pencil(file,a,nv) (module IO): Same as output(), but for a pencil variable,
i.e. an auxiliary variable that only ever exists on a pencil (e.g. the magnetic field
strength bb in ‘magnetic.f90’, or the squared sound speed cs2 in ‘entropy.f90’).
The file has the same structure as those written by output (), because the values
of a on the different pencils are accumulated in the file. This involves a quite non-
trivial access pattern to the file and has thus been coded in C (‘src/debug_c.c’).

cross(a,b,c) (module Sub): Calculate the cross product of two vectors a and b and
store in c. The vectors must either all be of size mxxmy xmz x3 (global arrays), or
of size nxx3 (pencil arrays).

dot(a,b,c) (module Sub): Calculate the dot product of two vectors a and b and store
in c. The vectors must either be of size mxxmyxmzx3 (a and b) and mxxmy xmz
(c), or of size nxx3 (a and b) and nx (c).

dot2(a,c) (module Sub): Same as dot(a,a,c).

115

Part 111
Appendix

APPENDIX

Date, Revision
A Timings

In the following table we list the results of timings of the code on different machines.
Shown is (among other quantities) the wall clock time per mesh point (excluding the
ghost zones) and per full 3-stage time step, a quantity that is printed by the code at the
end of a run/'7

As these results were assembled during the development phase of the code (that hasn’t
really finished yet,...), you may not get the same numbers, but they should give some
orientation of what to expect for your specific application on your specific hardware.

The code will output the timing (in microseconds per grid point per time-step) at the
end of a run. You can also specify walltime in print.in to have the code continuously
output the physical time it took to reach the time-steps where diagnostics is done. The
time-dependent code speed can then be calculated by differentiating, e.g., in IDL with
IDL> pc_read_ts, obj=ts

IDL> plot, ts.it, 1/nwxderiv(ts.it,ts.walltime/1.0e-6), psym=2

where nw=nx*ny*nz.

proc machine o resol. what mem/proc when who
pt step
1 NI3 19 64> kinematic 10 MB 20-may-02 AB
1 NI3 30 64> magn/noentro 20 MB 20-may-02 AB
1 Nql 10 64> magn/noentro 30-may-02 AB
1 Ukaff 9.2 64> magn/noentro 20-may-02 AB
1 NIl6 6.8 64> magn/noentro 10-mar-03 AB
1 Nil6 36.3 64x128x64 mnomag/entro/dust 19-sep-03 AB
1 Nil6 42.7 162x256 nomag/entro/rad6/ion 22-oct-03 AB
1 Nil6 37.6 162x256 nomag/entro/rad2/ion 22-oct-03 AB
1 NiI6 19.6 162x256 nomag/entro/ion 22-o0ct-03 AB
1 Nil6 8.7 162x256 nomag/entro 22-oct-03 AB
1 Nilén 9.8 322 magn/noentro/pscalar 17-mar-06 AB
1 Mhd 7.8 64 magn/noentro 20-may-02 AB
1 Ng4 14.4 1283 magn/noentro 8-oct-02 AB
1 Ngb 6.7 1283 magn/noentro 8-oct-02 AB
1 fel 5.1 1282 magn/noentro 9-oct-02 AB
1 Kabul 4.4 1283 magn/noentro 130 MB 20-jun-02 WD
1 Hwwsxb 3.4 2563 convstar 7.8 GB 29-jan-03 WD
1 Mac/g95 7.7 322 magn/noentro 14-jan-07 BD
1 Mac/ife 4.5 322 magn/noentro 14-jan-07 BD
2 Kabul 2.5 1283 magn/noentro 80 MB 20-jun-02 WD
2 Nqg3+4 7.4 1282 magn/noentro 8-oct-02 AB
2 Nqg4+4 8.9 1283 magn/noentro 8-oct-02 AB
2 Ng445 7.3 1283 magn/noentro 8-oct-02 AB
2 Ng545 3.7 1283 magn/noentro 8-oct-02 AB
2 fel 3.45 1283 magn/noentro 9-oct-02 AB

1"Note that when using ‘nompicomm.f90’, the timer currently used will overflow on some machines, so
you should not blindly trust the timings given by the code.

116

THE PENCIL CODE

© O © 0000 000000000000 OOV BRBRRBRARRMRAMAEAMAMAERMARAMAAERMMAEBANDNDDN

Nq2
Nql+2
Hwwsxb
Nql+2
Nql1235
Nq0-3
Mhd
fel
Rasm.
Mhd
fel

fel

fel

fel

fel

Luci
Lenn
Lenn
Kabul
Hwwsxb
Nqall
fel

fel
Ukaff
Kabul
fel

fel

fel
Kabul
Gridur
Kabul
fel

fel
cetus
cetus
Neolith
Mhd
Hwwsx5
Neolith
Ferlin
Ferlin
Ferlin
nor52
hydra(2)
charybdis
scylla
scylla
janus
fel
copson
fel

fel
workq
giga
giga2
giga
giga
Mhd
Mhd
fel

9.3
8.3
1.8
5.4
4.1
6.8
2.76
3.39
2.02
8.2
6.35
2.09
1.45
7.55
5.48
1.77
0.65
1.21
1.5
1.8
3.0
3.15
2.36
1.24
1.25
1.68
1.50
1.44
0.83
1.46
0.87
0.99
0.98
0.58
0.73
0.82
1.46
0.50
0.444
0.450
0.269
0.245
2.00
0.317
0.169
0.150
0.151
6.02
1.77
0.596
0.94
0.75
0.88
0.76
0.39
0.47
0.43
2.03
0.64
0.56

642

643
2563
64°
1283
2563
643

323

643
642x16
64x128x64
1283
1283
162x512
162x512
643

642

643
1283
2563
1283
642

643

643
642x128
1283
1283
1283
1283
1283
2563
2563
2563
643
2563
643
1602x40
2563
1283
643

643
1283
323

723

723

723

723
722 x 22
643
1283
1283
1283
1283
1283
1283
1283
1283
1283
2563
2563

magn/noentro
magn/noentro
convstar
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
nomag/entro

nomag/entro/dust

magn/noentro
magn/noentro

nomag/entro/rad2/ion
nomag/entro/rad2/ion

magn/noentro
nomag/noentro
magn/noentro
magn/noentro
convstar
magn/noentro
magn/noentro
magn/noentro
magn/noentro
nomag/entro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
nomag/entro
convstar
magn/noentro
1test/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
coag/noentro
convstar

geodynamo/ks95

magn/noentro
magn/noentro
magn/noentro
magn/noentro
magn/noentro
chiral
nomag/noentro
magn/noentro
magn/noentro
magn/noentro

7.9 GB

294 MB

2x2

giga
4x1
1x4

47 MB
8.2 GB

1x8
2x4

1x8
2x4
4x2
28 MB

160 MB
2x4
4x2
4x2

4x2,156M
4x2

46 MB
8.6 GB

1x3x3
1x3x3
1x3x3
1x4x3

4x4
4x4/ifc6
4x4/ifc6
4x4/ifc6
4x4/ifc6
4x4/ifc6
4x4/ifc6

60 MB
4x4

11-sep-02
11-sep-02
29-jan-03
11-sep-02
11-sep-02
10-jun-02
30-may-02
16-aug-02
8-sep-02
23-jul-02
19-sep-03
9-oct-02
9-oct-02
1-nov-03
1-nov-03
27-feb-07
13-jan-07
7-nov-06
20-jun-02
29-jan-03
8-oct-02
8-sep-02
8-sep-02
20-may-02
11-jul-02
8-sep-02
8-sep-02
8-sep-02
20-jun-02
19-aug-02
20-jun-02
8-sep-02
8-sep-02
19-aug-07
19-aug-07
5-dec-07
T-oct-02
29-jan-03
6-dec-07
21-jun-09
2-apr-10
2-feb-11
2-dec-09
8-may-16
8-may-16
8-may-16
8-may-16
17-dec-15
9-feb-03
21-nov-03
8-sep-02
9-may-03
21-aug-04
21-aug-04
20-aug-04
29-may-04
28-apr-03
26-nov-02
22-may-02
16-aug-02

AB
AB
WD
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
WD
WD
AB
AB
AB
AB
WD
AB
AB
AB
WD
NE
WD
AB
AB
SS
SS
AB
AB
WD
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
DM
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB

A. Timings 117
16 fel 6.30 128x256x128 nomag/entro/dust 19-sep-03
16 fel 1.31 1282x512 nomag/entro/rad2/ion 4x4 1-nov-03
16 Ukaff 0.61 1283 magn/noentro 22-may-02
16 Ukaff 0.64 2563 magn/noentro 20-may-02
16 Kabul 0.80 1283 magn/noentro 16 MB 20-jun-02
16 Kabul 0.51 2563 magn/noentro 9MB 20-jun-02
16 Gridur 0.81 1283 magn/noentro 19-aug-02
16 Gridur 0.66 2563 magn/noentro 19-aug-02
16 Sander 0.53 2563 magn/noentro 8-sep-02
16 Luci 0.375 1283 magn/noentro 28-o0ct-06
16 Lenn 0.284 1283 magn/noentro 8-nov-06
16 Neolith 0.180 2562 magn/noentro 6-dec-07
16 Triolith 0.075 128% magn/noentro 2x2x4 1-mar-14
16 Triolith 0.065 1283 magn/noentro 1x4x4 1-mar-14
16 Triolith 0.054 2562 magn/noentro 1x4x4 1-mar-14
16 Coma 0.603 1283 GWo/magn/noentro 1x4x4 27-jul-17
24 Gardar 0.44 1282 x 48 magn/noentro 6-nov-13
24 Summit 0.041 144> magn/noentro 28-jul-17
32 giga? 0.32 2562 magn/noentro 13-sep-03
32 Ukaff 0.34 2563 magn/noentro 20-may-02
32 Ukaff 0.32 5123 magn/noentro 20-may-02
32 Hermit 0.200 256x512x256 spherical conv/magn 1x8x4 22-aug-13
32 fel 0.168 5122 nomag/noentro 9-oct-02
32 Dardel 0.038 1283 nomag/noentro 21-oct-21
32 fel 1.26 642x256 nomag/entro/rad/ion 7-sep-03
32 DarCOO0 0.120 322 magn/noentro 22-oct-21
32 Lenn 0.147 2563 nomag/entro/cool/fo 4x8 8-nov-06
32 Steno 0.076 2562 nomag/entro/cool/fo 4x8 20-jun-06
32 Steno 0.081 2562 nomag/entro/cool 4x8 20-jun-06
32 Steno 0.085 2562 nomag/entro/cool/sh 4x8 20-jun-06
32 Steno 0.235 5122256 mag/entro 4x8 9-jul-06
32 Sanss 0.273 128x2562 nomag 4x8 3-jul-07
32 Neolith 0.275 1283 testfield4 24-o0ct-08
32 Ferlin 0.556 1283 testscalar 7-jan-09
36 Kraken 0.177 192x384x64 magn/noentro 3x6x2 12-jan-12
36 scylla 0.096 723 magn/noentro 1x6x6 8-may-16
48 janus 0.028 722 ¥ 216 magn/noentro 4x12 28-mar-16
64 Coma 0.573 128% GWo/magn/noentro 1x8x8 7-aug-17
64 fel 0.24 2562 magn/noentro 8x8 2-sep-02
64 giga 0.11 2563 nomag/noentro 4x16 29-apr-03
64 giga 0.23 2562 nomag/noentro/hyp 4x16 8-dec-03
64 fel 0.164 5123 nomag/noentro/hyp 4x16 17-dec-03
64 giga 0.091 5123 nomag/noentro/hyp 4x16 17-dec-03
64 giga 0.150 2562 magn/noentro 4x16 1-jul-03
64 giga 0.166 5123 magn/noentro 64*173MB 10-jul-03
64 Gridur 0.25 2562 magn/noentro 19-aug-02
64 Ukaff 0.17 5123 magn/noentro 21-may-02
64 Steno 0.075 5123 magn/noentro 8x16 19-oct-06
64 Neolith 0.0695 2562 magn/noentro 6-dec-07
64 Ferlin 8.51 150x1282 Li mechanism 8x8 21-jun-09
64 Ferlin 0.156 2562 magn/noentro 8x8 14-jun-09
64 Akka 0.038 2562512 magn/noentro 8x8 27-dec-12
64 Triolith 0.0146 2563 magn/noentro 1x8x8 1-mar-14
64 Triolith 0.0164 2563 magn/noentro 2x4x8 1-mar-14
64 Hermit 0.101 256x512x256 spherical conv/magn 1x8x8 22-aug-13
64 Sisu 0.00205 256x512x256 spherical conv/magn 1x8x8 22-aug-13
72 Kraken 0.093 192x384x64 magn/noentro 3x12x2 12-jan-12
72 Kraken 0.151 96x192x16 magn/noentro 6x12 17-jan-12
72 Kraken 0.091 192x384x32 magn/noentro 6x12 17-jan-12
72 Kraken 0.071 384x768x64 magn/noentro 6x12 17-jan-12

AB
AB
AB
AB
WD
WD
NE
NE
AB
AB
AB
AB
AB
AB
AB
SM
AB
AB
AB
AB
AB
PJK
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
WL
AB
AB
SM
AB
AB
AB
AB
AB
AB
AB
NE
AB
AB
AB
AB
AB
AB
AB
AB
PJK
PJK
WL
WL
WL
WL

118 THE PENCIL CODE

72 Summit 0.0128 5762 magn/noentro 7-aug-17
128 fel 0.44 2563 nomag/entro/rad8/ion 4x32 10-mar-04
128 fel 2.8 5122 magn/noentro 16x8 5-sep-02
128 fel 0.51 5123 magn/noentro 8x16 5-sep-02
128 fel 0.27 5123 magn/noentro 4x32 5-sep-02
128 fel 0.108 5123 magn/noentro 4x32/ifc6 5-jan-02
64+64 giga2 0.0600 5123 magn/noentro 4x32/ifc6 21-aug-04
1281 giga2 0.0605 5123 magn/noentro 4x32/ifc6 21-aug-04
128 fel 0.35 5123 magn/noentro 2x64 9-sep-02
128 fel 0.094 7863 magn/noentro 4x32/ifc6 9-sep-02
128 DarCOO0 0.019 1283 magn/noentro 4x4x8 22-oct-21
128 Hermit 0.0532 256x512x256 spherical conv/magn 1x16x8 22-aug-13
128 Hermit 0.0493 256x512x256 spherical conv/magn 2x8x8 22-aug-13
128 Sisu 0.00108 256x512x256 spherical conv/magn 1x16x8 22-aug-13
144 Kraken 0.080 96x192x32 magn/noentro 6x12x2 13-jan-12
144 Kraken 0.058 192x384x64 magn/noentro 6x12x2 17-jan-12
144 Kraken 0.044 384x768x128 magn/noentro 6x12x2 18-jan-12
144 Gardar 2.19 288x1x288 coag43 8x1x18 13-sep-15
144 Summit 0.0064 5763 magn/noentro 7-aug-17
192 Janus 0.0123 144x288x72 magn/noentro/sph 1x24x32 24-jul-16
256 Hermit 0.0328 512x1024x512 spherical conv/magn 1x16x16 22-aug-13
256 Hermit 0.0285 256x512x256 spherical conv/magn 1x16x16 22-aug-13
256 giga2 0.028 1024> magn/noentro 4x64/ifc6 20-aug-04
256 Hermit 0.0262 256x512x256 spherical conv/magn 2x16x8 22-aug-13
256 Hermit 0.0254 512x1024x512 spherical conv/magn 2x16x8 22-aug-13
256 Hermit 0.0226 512x1024x512 spherical conv/magn 4x8x8 22-aug-13
256 Akka 0.0113 5123 magn/noentro 16x16 12-jun-11
256 Beskow 0.0045 1283 magn/noentro 4x8x8 22-jul-20
256 Sisu 0.00618 256x512x256 spherical conv/magn 1x16x16 22-aug-13
256 Sisu 0.00500 512x1024x512 spherical conv/magn 1x16x16 22-aug-13
256 Triolith 0.030 2562 x 512 magn/rad 1x16x16 17-mar-14
256 Triolith 0.0049 2563 magn/noentro 1x16x16 1-mar-14
256 DarCOOth 0.00103 1283 magn/noentro 1x16x16 21-oct-21
256 Beskow 3.36 1x1x1024 coag43 1x1x256 3-mar-15
256 Beskow Te-3 2563 coag4d3 1x16x16 9-jan-20
288 Gardar 0.042 5762x288 magn/rad 1x18x16 17-mar-14
288 Kraken 0.0432 192x384x64 magn/noentro 6x12x4 12-jan-12
288 Kraken 0.0447 96x192x64 magn/noentro 6x12x4 13-jan-12
288 Kraken 0.0201 384x768x256 magn/noentro 6x12x4 18-jan-12
288 Janus 0.0360 2882 magn/entro/rad 1x16x18 22-feb-16
288 Summit 0.0033 5763 magn/noentro 1x16x18 7-aug-17
512 Hermit 0.01717 512x1024x512 spherical conv/magn 1x32x16 22-aug-13
512 Hermit 0.0166 256x512x256 spherical conv/magn 1x32x16 22-aug-13
512 Hermit 0.0142 256x512x256 spherical conv/magn 2x16x16 22-aug-13
512 Hermit 0.01340 512x1024x512 spherical conv/magn 2x16x16 22-aug-13
512 Hermit 0.01189 512x1024x512 spherical conv/magn 8x8x8 22-aug-13
512 Hermit 0.01165 512x1024x512 spherical conv/magn 4x16x8 22-aug-13
512 Akka 0.0081 5123 magn/noentro 16x32 10-sep-11
512 Neolith 0.0073 256 magn/noentro 20-nov-09
512 Gardar 0.0035 5123 magn/noentro 14-jan-13
512 Lindgren 0.0040 5122x1024 magn/noentro 16x32 8-jul-12
512 Beskow 0.0019 5123 magn/noentro 1x8x16 24-jul-20
512 Beskow 0.0015 5123 magn/noentro 1x8x16 21-oct-21
512 DarCOO0 0.00061 1283 magn/noentro 8x8x8 22-oct-21
512 DarCOO0 0.00042 256 magn/noentro 8x8x8 22-oct-21
512 DarCO1 0.00014 2562 magn/noentro 8x8x8 22-oct-21
512 DarCO2 0.00012 2562 magn/noentro 8x8x8 22-oct-21
512 Sisu 0.00446 256x512x256 spherical conv/magn 4x16x8 22-aug-13
512 Sisu 0.00435 1024x2048x1024 spherical conv/magn 22-aug-13
512 Sisu 0.00268 512x1024x512 spherical conv/magn 1x32x16 22-aug-13

AB
TH
AB
AB
AB
AB
AB
AB
AB
AB
AB
PJK
PJK
PJK
WL
WL
WL
AB
AB
AB
PJK
PJK
AB
PJK
PJK
PJK
AB
AB
PJK
PJK
AB
AB
AB
AB
AB
AB
WL
WL
WL
AB
AB
PJK
PJK
PJK
PJK
PJK
PJK
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB
PJK
PJK
PJK

A. Timings 119

576 Kraken 0.0257 192x384x64 magn/noentro 6x24x4 12-jan-12 WL

576 Kraken 0.0317 192264 magn/noentro 122x4 13-jan-12 WL

576 Kraken 0.0116 7682x256 magn/noentro 122x4 18-jan-12 WL

576 Summit 0.00183 5763 magn/noentro 1x24x48 29-jul-17 AB

576 Beskow 0.00174 5763 magn/noentro 1x24x48 23-may-16 AB

768 Lindgren 0.0049 256x11522 magn/noentro/sph 1x24x32 17-oct-14 Sd
1024 Hermit 0.00943 512x1024x512 spherical conv/magn 1x32x32 22-aug-13 PJK
1024 Hermit 0.00707 512x1024x512 spherical conv/magn 2x32x16 22-aug-13 PJK
1024 Hermit 0.00698 1024x2048<1024 spherical conv/magn 4x16x16 22-aug-13 PJK
1024 Hermit 0.00630 512x1024x512 spherical conv/magn 4x16x16 22-aug-13 PJK
1024 Triolith 0.00236 2563 magn/noentro 4x16x16 1-mar-14 AB
1024 Triolith 0.00126 5122 magn/noentro 2x16x32 1-mar-14 AB
1024 Triolith 0.00129 5123 magn/noentro 4x16x16 1-mar-14 AB
1024 Sisu 0.00225 1024x2048x1024 spherical conv/magn 22-aug-13 PJK
1024 Sisu 0.00148 512x1024x512 spherical conv/magn 2x32x16 22-aug-13 PJK
1152 Kraken 0.0212 192x384x64 magn/noentro 12x24x4 13-jan-12 WL
1152 Kraken 0.00856 384x768x128 magn/noentro 12x24x4 17-jan-12 WL
1152 Kraken 0.00549 768x1536x256 magn/noentro 12x24x4 17-jan-12 WL
1152 Lindgren 0.016 5122512 magn/rad 1x36x32 17-mar-14 AB
1152 Lindgren 0.0066 11523 magn/noentro 1x32x36 25-nov-14 AB
1152 Beskow 0.0055 11522 GWo/magn/noentro 1x32x36 27-aug-17 AB
1152 Beskow 0.0024 11522 magn/noentro 1x32x36 20-jan-15 AB
1152 Beskow 0.00098 1152 magn/noentro 1x32x36 18-jan-16 AB-gnu
1152 Beskow 0.00090 11523 magn/noentro 1x32x36 30-mar-17 AB
1152 Beskow 0.0060 11523 GWo/magn/noentro 1x32x36 31-mar-18 AB
1152 Beskow 0.0063 5763 magn/entro/rad 1x32x36 17-feb-18 AB
1152 Beskow 0.0030 11522 GWn/nomagn/noentro 1x32x36 30-jul-20 AB
1152 Beskow 0.0017 11523 GWo/nomagn/noentro 1x32x36 30-jul-20 AB
1536 Lindgren 0.00171 5122x384 magn/noentro 2x32x24 15-jul-13 AB
2048 Hermit 0.00451 1024x2048x1024 spherical conv/magn 2x32x32 22-aug-13 PJK
2048 Hermit 0.00380 512x1024x512 spherical conv/magn 8x16x16 22-aug-13 PJK
2048 Hermit 0.00355 512x1024x512 spherical conv/magn 4x32x16 22-aug-13 PJK
2048 Hermit 0.00350 1024x2048x1024 spherical conv/magn 4x32x16 22-aug-13 PJK
2048 Beskow 0.0022 10242 GWn/nomagn/noentro 8x16x16 16-aug-20 AB
2048 Lindgren 0.00129 5122x1024 magn/noentro 32x64 20-apr-13 AB
2048 Lindgren 0.00129 102422048 magn/noentro 32x64 31-jul-12 AB
2048 Triolith 9.3x10~* 5123 magn/noentro 4x16x32 1-mar-14 AB
2048 Sisu 0.00120 1024x2048x1024 spherical conv/magn 22-aug-13 PJK
2048 Sisu 9.2x10~4 512x1024x512 spherical conv/magn 4x32x16 22-aug-13 PJK
2304 Triolith 1.07x1073 5763 magn/noentro 4x18x32 1-mar-14 AB
2304 Kraken 0.02267 192x384x64 magn/noentro 12x24x%8 13-jan-12 WL
2304 Kraken 0.01233 192x768x64 magn/noentro 12x48x4 13-jan-12 WL
2304 Kraken 0.00300 768x3072x256 magn/noentro 12x48x4 18-jan-12 WL
4096 Hermit 0.00193 1024x2048x1024 spherical conv/magn 4x32x32 22-aug-13 PJK
4096 Triolith 3.6x10~4 1024> magn/noentro 4x32x32 1-mar-14 AB
4096 Triolith 3.8x10~* 1024> magn/noentro 8x16x32 1-mar-14 AB
4096 Triolith 4.2x<1074 1024 magn/noentro 4x16x64 1-mar-14 AB
4096 Lindgren 4.6x10~* 20483 magn/noentro 4x16x64 26-mar-13 AB
4096 Sisu 6.7<107* 1024x2048x1024 spherical conv/magn 22-aug-13 PJK
4096 Dardel 1.06 ns 1024> magn/noentro/CME 16x16x16 24-sep-22 AB
4608 Triolith 7.4x107% 5763 magn/noentro 8x18x32 1-mar-14 AB
4608 Triolith 2.7x10~4 11523 magn/noentro 4x32x36 1-mar-14 AB
4608 Triolith 3.0x10~* 11522 magn/noentro 4x36x32 1-mar-14 AB
4608 Triolith 3.7x1074 11522 magn/noentro 4x18x64 1-mar-14 AB
4608 Triolith 2.36x10~% 2304% magn/noentro 2x32x72 l-mar-14 AB
4608 Kraken 0.00764 192x768x128 magn/noentro 12x48x8 13-jan-12 WL
4608 Kraken 0.00144 768x3072x512 magn/noentro 12x48x8 18-jan-12 WL
6144 Lindgren 4.2x10~* 10242 x 1536 magn/noentro 4x16x64 21-oct-13 AB
6144 Lindgren 8.9x10~* 2562 magn/noentro/sph 2x48x64 6-jan-15 Sd
8192 Hermit 0.00101 1024x2048x1024 spherical conv/magn 8x32x32 22-aug-13 PJK

120 THE PENCIL CODE
8192 Sisu 4.1x107* 1024x2048x1024 spherical conv/magn 22-aug-13
8192 Triolith 1.48<10~4 20483 magn/noentro 4x32x64 1-mar-14
9216 Kraken 0.00485 192x768x256 magn/noentro 24x48x8 13-jan-12
9216 Kraken 0.00158 768x1536x256 magn/noentro 24x48x8 17-jan-12
9216 Kraken 8.0x10~* 1536x3072x512 magn/noentro 24x48x8 18-jan-12
9216 Lindgren 2.36x10~% 2304 magn/noentro 4x48x48 15-feb-14
9216 Triolith 1.04x1073 5763 magn/noentro 16x18x32 1-mar-14
9216 Triolith 1.28x1074 2304% magn/noentro 4x36x64 1-mar-14
9216 Triolith 1.30x10~4 2304 magn/noentro 4x32x72 1-mar-14
16384 Hermit 6.4x107* 1024x2048x1024 spherical conv/magn 16x32x32 22-aug-13
16384 Dardel 1.37x10~* 16384x16384 2D-MHD-6th 128x128 6-feb-24
16384 Dardel 2.05x10~% 16384x16384 2D-MHD-10th 128x128 6-feb-24
18432 Kraken 0.00316 384x768x256 magn/noentro 24x48x16 13-jan-12
18432 Kraken 8.8x1074 768x1536x512 magn/noentro 24x48x16 17-jan-12
18432 Kraken 4.0x10~% 1536x3072x1024 magn/noentro 24x48x16 18-jan-12
32768 Dardel 171 ps 1024> magn/noentro/CME 32x32x32 24-sep-22
36864 Kraken 0.0020 384x768x512 magn/noentro 48°x16 14-jan-12
36864 Kraken 4.9x10~4 15362x512 magn/noentro 48%x16 17-jan-12
36864 Kraken 2.2x107* 1536x3072x2048 magn/noentro 24x48x32 18-jan-12
73728 Kraken 0.00121 7682x512 magn/noentro 482x32 19-jan-12
73728 Kraken 2.9x10~4 15362x1024 magn/noentro 48%x32 26-jan-12
73728 Kraken 1.2x10~4 30722x2048 magn/noentro 48°x32 26-jan-12

PJK
AB
WL
WL
WL
AB
AB
AB
AB
PJK
AB
AB
WL
WL
WL
AB
WL
WL
WL
WL
WL
WL

The machines we have used can be characterized as follows:
N13: 500 MHz Pentium III single CPU; RedHat Linux 6.2; 256 MB memory
Nq0: 931 MHz Pentium III single CPU; RedHat Linux 7.3; 0.5 GB memory

Nql[1-4]: 869 MHz Pentium III dual-CPU cluster; RedHat Linux 7.3; 0.77 GB memory
per (dual) node

Nq[5-6]: 1.2 GHz Athlon dual-CPU cluster; RedHat Linux 7.3; 1 GB memory per (dual)
node

Kabul: 1.9 GHz Athlon dual-CPU cluster; 1 GB memory per (dual) node; 256 kB cache
per CPU; Gigabit ethernet; SuSE Linux 8.0; LAM-MPI

Cincinnatus: 1.7 GHz Pentium 4 single CPU; 1 GB memory; 256 kB cache per CPU;
SuSE Linux 7.3

Horseshoe (fel, giga, and giga2): consists of different subclusters. The old one
(queue name: workq, referred to as fel) 2.0 GHz Pentium 512 single CPU; 25x 24-
port fast ethernet switches with gigabit ethernet uplink; 1 30-port gigabit ethernet
switch; 1 GB memory. The next generation has gigabit switches directly between
nodes, and 2.6 GHz processors. The third generation (giga2) has 3.2 GHz proces-
sors (most of which have 1 GB, some 2 GB), is organized in 2 blocks interconnected
with 2 Gb links, with 10 Gb uplinks within each block.

Ukaff: SGI Origin 3000; 400 MHz IP35 CPUs; IRIX 6.5; native MPI

Mhd: EV6 Compaq cluster with 4 CPUs per node; 4 GB memory per node (i.e. 1 GB per
CPU) OSF1 4.0; native MPI

Sander and Rasmussen: Origin 3000

A.1 Test case 121

Steno 118 node IBM cluster with dual node AMD Opteron processors with 10 Gb in-
finiband network, compiled with pgf90 -fastsse -tp k8-64e (Copenhagen).

Gridur: Origin 3000

Luci: (full name Lucidor) is an HP Itanium cluster, each of the 90 nodes has two 900
MHz Itanium 2 "McKinley” processors and 6 GB of main memory. The interconnect
is myrinet.

Lenn: (full name Lenngren) is a Dell Xeon cluster with 442 nodes. Each node has two
3.4GHz “Nocona” Xeon processors and 8 GB of main memory. A high performance
Infiniband network from Mellanox is used for MPI traffic.

Kraken: Cray Linux Environment (CLE) 3.1, with a peak performance of 1.17
PetaFLOP; the cluster has 112,896 cores, 147 TB of memory, in 9,408 nodes. Each
node has two 2.6 GHz six-core AMD Opteron processors (Istanbul), 12 cores, and
16 GB of memory. Connection via Cray SeaStar2+ router.

Hermit: Cray XE6 with 7104 2.3 GHz AMD Interlagos 16 core processors (113,664
cores in total), nodes with either 1 or 2 GB of memory per core.

Sisu: Cray XC30 with 1472 2.6 GHz Intel (Xeon) Sandy Bridge 8 core (E5-2670) pro-
cessors (11,776 cores in total), 2 GB of memory per core.

Beskow: Cray XC40 with 2.3 GHz Intel (Xeon) Haswell 16 core (E5-2698v3) processors
(67,456 cores in total), 2 GB of memory per core. Theoretical peak performance 2.43
pflops.

Table 8 shows a similar list, but for a few well-defined sample problems. The svn check-
in patterns are displayed graphically in Figs. [Tl and 2l

T T T T
10.00 ¢ +:---+ Origin3000 | 3
A—~A Horseshoe
G -0 KIS cluster
GigaBits
r A=A Eter_n})Le
o—0 nn
E 1,00 E *’ —* Pll'l&‘sburg 3
3 E 3
o
N
g
< 0.10¢ . =
g Tx
I BRI 1
0.01 5_ S A~ - _E
£ ~a 3
1 1 1 1
1 10 100 1000

of procs

Figure 15: Scaling results on three different machines. The thin straight line denotes perfectly linear
scaling.

A.1 Test case

In the following test samples, we run isothermal magnetohydrodynamics in a periodic
domainl¥. Power spectra are computed during the run, but our current parallelization
of the Fourier transform requires that the meshpoint number is an integer multiple of

18Run directories are available onhttp://nor1x51.nordita.org/~brandenb/pencil-code/timings/bforced/

http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/

122 THE PENCIL CODE

512° gas + 64x10° particles

E 0.100F 7

I=

o]

o

o

o

o

¥ 0.010 .

o []

o

(0]

£

|_
NGP+FFT

0.001 e
100 1000 10000

No. of cores

Figure 16: Scaling results of particle-mesh problem on Blue Gene/P on up to 4096 cores. The different
lines denote different particle-mesh schemes (NGP=Nearest Grid Point, TSC=Triangular Shaped Cloud)

and whether self-gravity is included (FF'T).

the product of processor numbers in the y and z directions and the product of processor
numbers in the = and y directions. In addition, the number of processors in one direction
should not be so large that the number of mesh points per processor becomes comparable

to or less than the number of ghost zones (which is 6).

Strong scaling — Problem size 192 x 384 x 64

< 010
c
©
[oX
3
2
[%]
[}
£
e
3

0.01F

PR | L L PR |
100 1000
proc #

Figure 17: Scaling results on Kraken at fixed problem size, for a magnetized disk model in cylindrical
coordinates. The black line shows ideal scaling from 32 cores. The blue line is the best second-order fit to
the data points. A load of 16° mesh points per processor marks the best strong scaling.

A.2 Running the code 123
Weak Scaling
il il URRRRM T URRRRM LA B LA B
P -~ [EEE
I p=0. _
0.10} x x x X x * x . 0'10005 xR 64°p=0.93 - ————--]
- * \,\x\A x‘\(\%‘
) € X \‘x.\ *
> o N, X .
2 £ 0.0100¢ Xy TN ;
GEJ % i X"\ i\)é N,
= i GE') ¥ ‘X\V
= * = \.\Ax _)g
g B \X\ .\\
* = 0.0010F g "
0.01 *] b N]
L * * 'x\]
x N J
x * 3 X
R ' T T —m— - N
el el el " 0.0001 Lot v v vt vt .
10? 10° 10* 10° 10? 10° 10* 10°
proc # proc #

Figure 18: Scaling results on Kraken at fixed load per processor, for a magnetized disk model in cylindrical
coordinates. The figure shows, after determining that 16 is the best load per processor for strong scaling,
how far one can push with weak scaling. The scaling index is found to be 0.7 for 162 and 0.93 for 643, up
to 73 728 processors.

A.2 Running the code

To run the code, get one of the sample run directories, e.g.,
http://norlxbl.nordita.org/~brandenb/pencil-code/timings/bforced/512_4x16x32.
The relevant file to be changed 1s src/cparam.local

ncpus=2048,nprocx=4,nprocy=16 ,nprocz=ncpus/ (nprocx*nprocy)
nxgrid=512,nygrid=nxgrid,nzgrid=nxgrid

in particular the values of ncpus, nprocx, nprocy, and nxgrid. Once they are chosen, say
make, and submit start_run.csh.

Table 8: Like previous table, but for the versions from the ‘samples’ directory.

S

proc(s) machine resol. mem.)proc when who
pt step
conv-slab
1 Mhd 6.45 322 4 MB 23-jul-02 wd
1 Cincinnatus 4.82 323 3 MB 23-jul-02 wd
1 Cincinnatus 11.6 64> 14 MB 23-jul-02 wd
1 Cincinnatus 20.8 1283 93 MB 23-jul-02 wd
1 Kabul 3.91 323 23-jul-02 wd
1 Kabul 3.88 643 23-jul-02 wd
1 Kabul 4.16 1282 93 MB 23-jul-02 wd
conv-slab-flat
1 Kabul 3.02 1282x32 29 MB 23-jul-02 wd
2 Kabul 1.81 128232 18 MB 23-jul-02 wd
4 Kabul 1.03 128°x32 11 MB 23-jul-02 wd
8 Kabul 0.87 1282x32 9 MB 23-jul-02 wd

http://norlx51.nordita.org/~brandenb/pencil-code/timings/bforced/512_4x16x32
src/cparam.local

124 THE PENCIL CODE

1.0000 ' R A g
_, 0.1000F | .
£ : - N
S i e 256 9216 T
< 0.0100 .
o g o 18432
o i 2567 . ©]
> 0.0010¢ .
3 : E
C o]
0.0001 F 2304° % -

1 10 100 1000 10000

of procs
Figure 19: Strong scaling on Triolith (2014).
A3 Triolith

On Triolith, strong scaling tests have been performed for three mesh sizes. The time per
time step and mesh point is given for different processor numbers and layouts. Gener-
ally, it is advantageous to keep the number of processors in the x direction small.

Comments. Although on Triolith the number of processors per node is 16, resolutions
with one or two powers of 3 (such as 576) still work well. Furthermore, the number
of processors above which the scaling becomes poor increases quadratically with the
number of mesh points. This implies that the RAM per processor increases linearly with
the problem size per direction. However, this will not be a limitation, because even for
2304 meshes, the required RAM is still below 100 MB.

In Stockholm there is now a new machine called Dardel. Strong scaling tests have been
performed for five mesh sizes; see Fig. 21l The time per time step and mesh point is
given for different processor numbers and layouts. Generally, as Jorn Warnecke pointed
out earlier, it is advantageous to minimize the processor surface area, and to keep the
number of processors in the x direction small.

Performancewise, Cray with O2 optimization is equivalent to gnu with O3. While
gnu-O3 is able to handle memory or whatever compiler problems much bet-
ter, it is otherwise not better than Cray-O2, and often some 10-20% slows,
but this is within the measurement accuracy. More details can be found on
https://github.com/pencil-code/pencil-code/tree/master/doc/timings.

A.4 Lindgren

On Lindgren, we have performed weak scaling tests and compare with weak scaling
results for Triolith. Triolith is about twice as fast as Lindgren.

https://github.com/pencil-code/pencil-code/tree/master/doc/timings

A.4 Lindgren

125

Table 9: Triolith timings

1S

proc resol. layout
pt step
16 0.075 1283 2x2x4
16 0.065 1283 1x4x4
16 0.0544 2563 1x4x4
64 0.0146 2563 1x8x8
64 0.0164 2563 2x4x8
256 0.0049 256 1x16x16
512 0.0035 256 2x16x16
1024 0.00236 2563 2x16x32
1024 0.00127 5123 2x16x32
1024 0.00129 5123 4x16x16
2048 9.34x107* 5123 4x16x32
2304 0.00107 5763 4x18x32
4096 3.6x107* 1024®> 4x32x32
4096 3.8x107* 1024®> 8x16x32
4096 4.2x107* 1024 4x16x64
4608 7.38x107* 576% 8x18x32
4608 2.66x107* 11523 4x32x36
4608 3.03x107* 1152® 4x36x32
4608 3.12x107* 1152% 4x18x64
4608 2.36x107*% 2304 2x32x72
8192 1.475x107* 2048% 4x32x64
9216 0.00104 5763 16x18x32
9216 1.276x10~* 2304 4x36x64
9216 1.30x107*% 2304®> 4x32x72
Table 10: Lindgren timings
1S
proc ot step resol. layout
1536 0.00171 5122x384 2x32x24
2048 0.00129 5122x1024 1x32x64
2048 0.00129 1024?2048 1x32x64
4096 4.6x10~* 20483 4x16x64
9216 2.36x10~* 23043 4x48x48

126 THE PENCIL CODE

i T T T]

107! = ‘ ‘ E

= o 512 16384 32384 1
g 107%E N E
IS) - S E
L B DY S -
a, i 3~ 8 . 1
8 1073k 256° “Sln.e i
” : AR ;
w - Te i
< ol 38 1
10 E_ i?"'\m\.' _E

: 2048° ®. @

o8| 40967 ~~_ 1

M | L L M SR | L L M SR | L L MR
100 1000 10000

of procs

Figure 20: Strong scaling on Dardel. The dotted and dashed lines corresponds to 1.02us/proc/step/point
and 0.70us/proc/step/point, respectively.

""I T T L i T R L T T T "

107" F E

- [512 16384 32384]
g 1072E >~ E
5 F e :
{" - \\..g"]
o, i RN . o]
L 108k 2563 \\:._.._ -
w - Tel i
3 _ \\‘ i
107 e, E

; 2048° *. g]

" 4096° - _
107° L N e L
100 1000 10000

of procs

Figure 21: Strong scaling on Dardel. The dotted and dashed lines corresponds to 1.02us/proc/step/point
and 0.70us/proc/step/point, respectively.

A.4 Lindgren 127

1.0000 f T T
0.1000 F .
-~ E N E
k= ;
(@]
£ 0.0100F il
o &
(]
-
7]
o 0.0010F £ il
3
0.0001 y
1 10 100 1000 10000

of procs

Figure 22: Comparison Triolith (black, plus signs) and Lindgren (red, triangles). Weak scaling (2014).

128 THE PENCIL CODE

B Coding standard

The numerous elements that make up the PENCIL CODE are written in a consistent
style that has evolved since it was first created. Many people have contributed their
knowledge and experience with in this and the result is what we believe is and extremely
readable and manageable code.

As well as improving the readability of the code, by having some naming conventions for
example aids greatly in understanding what the code does.

There is a standard for all aspects of the code, be it Fortran source, shell scripts, Perl
scripts, LaTeX source, Makefiles, or otherwise. Where nothing has been explicitly stated
it is recommended that similar existing examples found in the code are used as a tem-
plate.

B.1 File naming conventions
All files with the exception of the ‘Makefile’s are given lowercase filenames.

Fortran source files all have the ‘.f90’ extension. Files that contain ‘non-executable code’
i.e. declarations that are included into other files are given the extension ‘h’ and those
that are generated dynamically at compile time have an ‘.inc’ extension.

Fortran source code defining a module is placed in files whose names begin with the
Fortran module name in all lowercase. Where there exist multiple implementations of
a specific module, the filenames are extended using an underscore and a brief name
relating to what they do.

Text files containing parameters to be read by the code at run time are placed in files
with the extension ‘.in’

B.2 Fortran Code

The code should remain fully compatible with the Fortran90 standard. This ensures that
the code will run on all platforms. Indeed, an important aspect of PENCIL CODE philos-
ophy is to be maximally flexible. This also means that useful non-standard extensions
to the code should be hidden in and be made accessible through suitable non-default
modules.

Fortran is not case-sensitive but in almost all instances we prescribe some form of capi-
talization for readability.

In general all Fortran code including keywords, variable names etc. are written in low-
ercase. Some of the coding standard has already been discussed in Sect. [9.1l Here we
discuss and amplify some remaining matters.

B.2.1 Indenting and whitespace
Whitespace should be removed from the end of lines.

Blank lines are kept to a minimum, and when occurring in subroutines or functions are
replaced by a single !’ in the first column.

Tab characters are not used anywhere in the code. Tab characters are not in fact allowed
by the Fortran standard and compilers that accept them do so as an extension.

B.2 Fortran Code 129

All lines are kept to be not more than 80 characters long. Where lines are longer they
must be explicitly wrapped using the Fortran continuation character ‘&’. Longer lines
(up to 132 characters) and additional spaces are allowed in cases where the readability
of the code is enhanced, e.g., when one line is followed by a similar one with minor
differences in some places.

Code in syntactic blocks such as if—endif, do—enddo, subroutine—endsubroutine etc. is
always indented by precisely two spaces. The exception to this is that nested loops where
only the innermost loop contains executable code should be written with the do—enddo
pairs at the same level of indentation,

do n=n1,n2
do m=ml,m2
[...]
enddo
enddo

Alternatively nested loops may be written on a single line, i.e.

do n=n1,n2; do m=ml,m2
[...]

enddo; enddo

B.2.2 Comments

Descriptive comments are written on their own lines unless there is a strong reason to do
otherwise. Comments are never indented and the ‘!’ should appear in the first column
followed by two spaces and then the text of the comment. Extremely short comments
may follow at the end of a line of code, provided there is space.

Comments also must not exceed the 78 character line length and should be wrapped
onto more lines as needed.

Typically comments should appear with a blank commented line above and below the
wrapped text of the comment.

All subroutine/functions begin with a standard comment block describing what they do,
when and by whom they were created and when and by whom any non-trivial modifica-
tions were made.

Comments should be written in sentences using the usual capitalization and punctua-
tion of English, similar to how text is formatted in an e-mail or a journal article.

For example:

some fortran code
some more fortran code

A descriptive comment explaining what the following few lines
of code do.

the fortran code being described
the fortran code being described

130 THE PENCIL CODE

' A final detail described here.
!

the final fortran code

the final fortran code

Subroutines and functions are started with a comment block describing what they do,
when and by whom they were created and when and by whom any non-trivial modifica-
tions were made. The layout of this comment block is a standard, for example:

1 5k sk ok sk ok ok sk ok 3k ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok k

subroutine initialize_density(f,lstarting)

Perform any post-parameter-read initialization i.e. calculate derived
parameters.

!
!
!
!
! For compatibility with other applications, we keep the possibility

!' of giving diffrho units of dxmin*csO, but csO is not well defined general.
!

!

!

!

24-nov-02/tony: coded
1-aug-03/axel: normally, diffrho should be given in absolute units

where dates are written in dd-mmm-yy format as shown and names appearing after the
‘/ are either the users cvs login name or, where such exists amongst the PENCIL CODE
community, the accepted short form (= 4 characters) of the authors name.

B.2.3 Module names

The names of modules are written with initial letter capitalization of each word and the
multiple words written consecutively without any separator.

B.2.4 Variable names

Variable are given short but meaningful names and written in all lowercase. Single
character names are avoided except for commonly used loop indices and the two code
data structures of the PENCIL CODE: ‘f’ the main state array (see and ‘p’ the pencil
case structure (see[9.7).

Quantities commonly represented by a particular single character in mathematics are
typically given names formed by repeating the character (usually in lowercase), e.g., the
velocity u becomes ‘uu’, specific entropy s becomes ‘ss’ etc.

Temperature in variable names is denoted with a capital T so as not to be confused
with time as represented by a lowercase t. Note however the since Fortran is not case
sensitive the variables for example “T'T” and ‘tt’ are the same so distinct names must
be used. For this reason time is usually represented by a single t contrary to the above
guideline.

The natural log of a quantity is represented by using adding ‘In’ to its name, for example
log of temperature would be InTT".

There are some standard prefixes used to help identify the type and nature of variables
they are as follows:

B.2 Fortran Code 131

* i— Denotes integer variables typically used as array indices.
* i_— Denotes pencil case array indices.

* idiag_— Denotes diagnostic indices.

¢ 1 - Denotes logical/boolean flags

* cdt — Denotes timestep constraint parameters.

* unit_ — Denotes conversion code/physics unit conversion parameters.

B.2.5 Emacs settings
Here are some settings from wd’s */ . emacs’ file:

;55 ~/.£90.emacs

;5; Set up indentation and similar things for coding the {\sc Pencil Code}.
;55 Most of this can probably be set through Emacs’ Customize interface

;55 as well.

;55 To automatically load this file, put the lines

N (if (file-readable-p "~/.£90.emacs")

HH (load-file "7/.£90.emacs"))

;5 into your “/.emacs file.

;5 F90-mode indentation widths

(setq f90-beginning-ampersand nil) ; no 2nd ampersand at continuation line
(setq £90-do-indent 2)

(setq f90-if-indent 2)

(setq f90-type-indent 2)

(setq f90-continuation-indent 4)

;; Don’t use any tabs for indentation (with TAB key).
;5 This is actually already set for F90-mode.
(setq-default indent-tabs-mode nil)

;; Ensure Emacs uses F90-mode (and not Fortran-mode) for F90 files:
(setq auto-mode-alist

(append
2 (
("\\. [fF]90%$" . £90-mode)
("\\.inc$" . £90-mode)
)

auto-mode-alist))

;5 Make M-Backspace behave in Xemacs as it does in GNU Emacs. The default
;5 behavior is apparently a long-known bug the fix for which wasn’t
;5 propagated from fortran.el to £90.el.
;3 (http://list-archive.xemacs.org/xemacs-patches/200109/msg00026.html) :
(add-hook ’f90-mode-hook

(function (lambda ()

(define-key f90-mode-map [(meta backspace)] ’backward-kill-word)

)))

132 THE PENCIL CODE

B.3 Other best practices

When implementing IF or SELECT blocks always write code for all cases — including
the default or else case. This should be done even when that code is only a call to raise
an error that the case should not have been reached. If you see a missing case anywhere
then do add it. These failsafes are essential in a large multi-purpose multi-user code
like the PENCIL CODE.

If a case is supposed to do nothing and it may be unclear that the coder has recognized
this fact then make it explicit by adding the default case with a comment like
! Do Nothing. The compiler will clean away any such empty blocks.

B.4 General changes to the code

It is sometimes necessary to do major changes to the code. Since this may af-
fect many people and may even be controversial among the developers, such
changes are restricted to the time of the next Pencil Code User Meeting. Such
meetings are advertised on http://www.nordita.org/software/pencil-code/ under
the news section. Notes about previous such meetings can be found under
http://www.nordita.org/software/pencil-code/UserMeetings/.

Major changes can affect those developers who have not checked in their latest changes
for some time. Before doing such changes it is therefore useful to contact the people who
have contributed to the latest developments on that module. If it is not functional or oth-
erwise in bad shape, it should be moved to ‘experimental’, i.e. one says svn mv file.f90
experimental/file.f90. However, any such directory change constitutes a major change
in itself and should be performed in agreement with those involved in the development.
Otherwise any file that has been changed in the mean time will end up being outside
revision control, which is to be avoided at all cost.

http://www.nordita.org/software/pencil-code/
http://www.nordita.org/software/pencil-code/UserMeetings/

C. Some specific initial conditions 133

C Some specific initial conditions

C.1 Random velocity or magnetic fields

Obtained with inituu=’gaussian-noise’ (or initaa=’gaussian-noise’). The vector u (or
A) is set to normally distributed, uncorrelated random numbers in all meshpoints for
all three components. The power spectrum of u (A) increases then quadratically with
wavenumber £ (without cutoff) and the power spectrum of w (or B) increases like k*.

Note that a random initial condition contains significant power at the Nyquist
wavenumber ky, = 7/dx, where dz is the mesh spacing. In a decay calculation, because
of the discretization error, such power decays slower than it ought to; see Fig. 23] where
we show the evolution for a random initial velocity field for 64 meshpoints, v = 5 x 1072
(fairly large!), and nfilter=30.

It is clearly a good idea to filter the initial condition to prevent excess power at ky,. On
the other hand, such excess power is weak by comparison with the power at the energy
carrying scale, so one does not see it in visualizations in real space. Furthermore, as seen
from Fig.[23] for k£ < ky,/2 the power spectra for filtered and unfiltered initial conditions
is almost the same.

10-5F o ---="7]
t=0 |
10—10 '
S |
Eﬂ 10_15 =
i filtered
10-=0p unfiltered
1 10

Figure 23: Velocity power spectra at three different times with and without filtering of the initial condi-
tion.

C.2 Turbulent initial with given spectrum

The most general procedure for producing an initial condition with a turbulent spec-
trum is inituu=’power_randomphase_hel’, which allows one to set two different slopes,
together with an exponential cutoff as well as a Gaussian peak within the spectrum. By
default, the field is solenoidal unless one puts 1skip_projection=.true. and can have
fractional helicity by setting relhel_uu to a value between —1 and 1. By default it is 0,
which means it is nonhelical.

The spectral indices initpower and initpower2 refer to energy spectral indices. By de-
fault, initpower2=-5/3, corresponding to a Kolmogorov spectrum. For a delta-correlated

134 THE PENCIL CODE

spectrum, we have to put initpower=2, corresponding to a k? energy spectrum for ki-
netic energy. This would be suitable for the subinertial range from & = 1 to k = k,
(corresponding to the variable kpeak).

If cutoff=0, no cutoff will be imposed. Otherwise, the spectrum will be multiplied by an
exponential function with exp(—%*"), where n = ncutoff=1" by default.

Example, for ampluu=1e-1, initpower=4., and kpeak=3., we get urms=3.981E-01 when
relhel_uu=1 and urms=3.981E-01 when relhel_uu=0 and urms=5.560E-01 when relhel. -
uu=1. The urms values scale linearly with ampluu and for initpower=2 also approxi-
mately linearly with kpeak. For the magnetic field, we initialize the magnetic vector
potential, so to get a k* spectrum, we have to put initpower_aa=2. Everything else is
analogous; see, e.g.,

&hydro_init_pars
inituu=’power_randomphase_hel’, ampluu=le-1, initpower=4., kpeak=3.
relhel_uu=0., cutoff=30.

/

&magnetic_init_pars
initaa=’power_randomphase_hel’, amplaa=le-1, initpower_aa=2., kpeak_aa=3.
relhel_aa=0., cutoff_aa=30.

/

for which we get urms=3.981E-01 and brms=3.871E-01.

C.3 Beltrami fields

Obtained with inituu=’Beltrami-z’ or initaa=’Beltrami-z’.

A = (cosz, sinz, 0), or wu = (cosz, sinz, 0) (136)

C.4 Magnetic flux rings: initaa=’fluxrings’

This initial condition sets up two interlocked thin magnetic tori (i. e. thin, torus-shaped
magnetic flux tubes). One torus of radius R lying in the plane z = 0 can be described in
cylindrical coordinates, (r, ¢, z), by the vector potential

A=, 0 , (137)

resulting in a magnetic field
0
B=3o,|dr-R)>z)| . (138)
0
Here ®,, is the magnetic flux through the tube, 0(x) denotes the Heaviside function, and

§(x) =0 (x) (139)

is Dirac’s delta function.

C.5 Vertical stratification 135

Any smoothed versions of (x) and §(z) will do, as long as the consistency condition (139)
is satisfied. E. g. the pairs

1 x? 1 X
= 22 =—(1 f—— 14
de(x) \/ﬁe , O:(2) 5 (+er \/56) (140)
" 5u(z) = 9()—1(1+tnhf) (141)
5x_2€cosh2§’ =5 -

are quite popular. Another possibility is a constant or box-like profile with

5.(x) = %e(m _o), b(x) = %{1 + max|—1, min(z/2), 1]} (142)

Note, however, that the Gaussian profile (140) is the only one that yields a radially
symmetric (with respect to the distance from the central line of the torus) magnetic field

profile B, = By(+/(r—R)?+22) if ¢ is sufficiently small.

In Cartesian coordinates, the vector potential (137) takes the form

0

0
9 (JW—R) 5(2)

A=9, (143)

C.5 Vertical stratification

Gravity, g = —V ®, is specified in terms of a potential . In slab geometry, & = &(z), we
have g = (0,0,¢.) and g, = —d®/d=.

Use gravz_profile="const’ together with gravz= —1 to get
O =(z—25)(—9.), (—g.) >0. (144)
Use gravz_profile="linear’ to get

O =12 -2, g.=—viz (145)

g’

where v, is the vertical epicyclic frequency. For a Keplerian accretion disc, v, = {2. For
galactic discs, v, = 0.5(2 is representative of the solar neighborhood.

The value of 2, is determined such that p = py and ¢ = ¢, at z = z,.. This depends on
the values of v and the polytropic index m (see below).

C.5.1 Isothermal atmosphere

Here we want ¢, = ¢,y = const. Using initlnrho=’isothermal’ means

p P

= (146)
Po Cs0
The entropy is then initialized to
S P
— =(y=1)—. 147
- (v=1) = (147)

In order that p = py and ¢ = ¢, at z = 2., we have to choose 2o, = 2.

136 THE PENCIL CODE

C.5.2 Polytropic atmosphere

For a polytropic equation of state, p = Kp', where generally I" # ~, we can write

'K ~
—Vh+TVs = ——Vp =-V (F 1prl> = —Vh, (148)

where we have introduced a pseudo enthalpy & as

Y) S

Obviously, for I’ = ~, the pseudo enthalpy / is identical to & itself. Instead of specifying
[', one usually defines the polytropic index m = 1/(I'—1). Thus, I' =1 + 1/m, and

o = (me41) (1 - %) h (150)

This is consistent with a fixed entropy dependence, where s only depends on p like

r
s _ <__1) . (151)
Cp g Po
and implies that
03 p
In =~ = (I'=1)In— . (152)
Cs0 £o

For hydrostatic equilibrium we require / + ® = h, = const. For gravity potentials that
vanish at infinity, we can have h, # 0, i.e. a finite pseudo enthalpy at infinity. For g, = —1
or g, = —z, thisis not the case, so we put i = 0, and therefore h = —®. Using 2= (y=1)h
together W1th) we find

2=—" o (153)
m—+1

In order that p = py and 2 = ¢, at z = z., we have to choose (remember that g, is
normally negative!)

Zoo = Zref + (M4+1) for gravz_profile="const’, (154)

v(—9-)

and
2

Z2 = Zref + (m+1)

2 for gravz_profile="linear’. (155)
277/

Thus, when using initlnrho="polytropic_simple’ we calculate

In = {—(7—@2} (156)

2 N 2
m =mms i:(——1)mlnc—5. (157)
Po Cs0 Cp

C.5 Vertical stratification 137

C.5.3 Changing the stratification

Natural: measure length in units of ¢Z)/g.. Can increase stratification by moving 2.,
close to z,, or, better still, keeping z;,, = 0 and moving z,,, — —oc. Disadvantage: in the
limit of weak stratification, the box size will be very small (in nondimensional units).

Box units: measure length in units of d. Can increase stratification by increasing g. to
Jmax, Which can be obtained by putting z,, = 2z in (154), so

m+1l &

7 Ztop — Rref

(158)

Gmax =

For m =1, v =5/3, zi0p = 1, and 2z, = 0, for example, we have g,,.x = 6/5 = 1.2.

Gravitational box units: measure speed in units of \/¢.d. The limit of vanishing stratifi-
cation corresponds to ¢,y — oo. This seems optimal if we want to approach the Boussi-
nesq case.

In Hurlburt et al. (1984), 2 increased downward and the atmosphere always terminated
at z = 0. In order to reproduce their case most directly, we put z,, = 0 and consider only
negative values of z. To reproduce their case with a density stratification of 1:1.5, we
place the top of the model at = = —2 and the bottom at = —3. In addition, the reference
height, 2., is chosen to be at the top of the box, i.e. z,; = —2. From Eq. (154) we have
2 =v(—g.)(—2zwet)/(m + 1). Using (—g,) = 1 and m = 1 we find ¢, = v, 80 ¢yo = 1.291 (for
v = 5/3). Values for other combinations are listed in Table [11l

Table 11: Correspondence between density contrast, top and bottom values of z, and ¢y for (—g.) = 1,
m=1,and v = 5/3.

pbot/ptop Zbot Ztop Cs0
1.5 3 2 1.291
3 1.5 05 0.645
6 1.2 0.2 0.408

11 1.1 0.1 0.289
21 1.05 0.05 0.204

C.5.4 The Rayleigh number
In Ref. [15] the Rayleigh number is defined as

4
Ra= 9% <—d5—/cp> , (159)
vX dZ hydrostat

where the (negative) entropy gradient was evaluated in the middle of the box for the
associated hydrostatic reference solution, and ¥ = K/(pc,) and either 7 = v (if v was
assumed constant) or 7 = pu/p (if 4 was assumed constant). Note that p is the average
mass in the box per volume, which is conserved. For a polytrope we have

()b (D)t e
dZ hydrostat v Foo T Zm

where z,, = (21 + 22)/2. This factor was also present in the definition of Hurlburt et al.
[26], but their definition differs slightly from Eq. (I59), because they normalized the

138 THE PENCIL CODE

density not with respect to the average value (which is constant for all times), but with
respect to the value at the top of the initial hydrostatic solution. Since the Rayleigh
number is proportional to p?, their definition included the extra factor (2., — 2w)/d]*

Therefore o)
RaHTM = (ZOO ; Zm) (pt_op) Ra (161)
D

In the first model of Hurlburt et al. (1984), the Rayleigh number, Rayry, was chosen to
be 310 times supercritical, and the critical Rayleigh number was around 400, so Rayry =

1.25 x 10°. In their model the density contrast was 1:1.5 and m = 1. This turns out to
correspond to Ra = 4.9 x 10*, F.; = 0.0025, and K = 0.002.

Another model that was considered by Hurlburt & Toomre (1988) had Rayry = 10°,
a density contrast of 11, and had a vertical imposed magnetic field (Chandrasekhar
number () = 72). This corresponds to Ra = 3.6 x 10%, K = 0.0011, F,,; = 0.0014.

C.5.5 Entropy boundary condition

This discussion only applies to the case of convection in a slab. A commonly used lower
boundary condition is to prescribe the radiative flux at the bottom, i.e. F,,; = —Kd7'/dz=.
Assuming that the density in the ghost zones has already been updated, we can calculate
the entropy gradient from

K & dlnp ds/c
Fooo = ———= ((y -1 v 162
bot cp”y—l((’y) dz 7 dz)’ (162)
which gives
ds/c, ~v—1 Frot dlnp
- _ 163
dz v <CPKC§ * dz (163)

for the derivative of the entropy at the bottom. This is implemented as the ‘c1’ boundary
condition at the bottom.

C.5.6 Temperature boundary condition at the top

In earlier papers the temperature at the top was set in terms of the quantity &,, which
is the ratio of the pressure scale height relative to the depth of the unstable layer. Ex-
pressed in terms of the sound speed at the top we have

e top = Y€09d. (164)
, 1
Cs,bot = 60 + m4+ 1 ’Ygd (165)

Table 12: Correspondence between &, and cZ ,, in single layer polytropes.

50 Cz,bot
10.00 17.500
0.20 1.167
0.10 1.000
0.05 0.917

0.02 0.867

C.6 Potential-field boundary condition 139

C.6 Potential-field boundary condition

The ‘pot’ [or currently rather the ‘pwd’] boundary condition for the magnetic vector poten-
tial implements a potential-field boundary condition in z for the case of an z-y-periodic
box. In this section, we discuss the relevant formulas and their implementation in the
PENCIL CODE.

If the top boundary is at z = 0, the relevant potential field for 2 > 0 is given by

Ay(ky by, 2) = Culkyy)e™"™ (166)
Ay(kg by, 2) = Cylkay)e™ (167)
Ap(ba by, 2) = Cu(kyy)e ™, (168)
where
/L(kx,k:y,z) E/e_ikzy'wAi(x,y, z) dx dy (169)

is the horizontal Fourier transform with k,, = (k,, k,,0), and k = |k,,|. Note that this im-
plies a certain gauge and generally speaking the z dependence in Eq. (168) is completely
arbitrary, but the form used here works well in terms of numerical stability.

At the very boundary, the potential field (166)—(168) implies

A -
04 A -0, (170)
0z

and, due to natural continuity requirements on the vector potential, these conditions

also hold for the interior field at the boundary.

Robin boundary conditions and ghost points To implement a homogeneous Robin
boundary condition, i. e. a condition of the form

d
Yo rf=o (171)
dz
using ghost points, we first write it as
4 ey =0 (172)
dz N

and implement this as symmetry condition for the variable ¢(z) = f(z) e"*:

(bej = ¢N+]) j = 17273 (173)
(where zy is the position of the top boundary and zy ., ... are the boundary points). In
terms of f, this becomes

Fves = fyoje FENtmaN-g) (174)

Note that although the exponential term in Eq. (I74) looks very much like the exterior
potential field (166)—(168), our ghost-zone values do not represent the exterior field —
they are rather made-up values that allow us to implement a local boundary condition
at z = 0.

140 THE PENCIL CODE

C.7 Planet solution in the shearing box

In order to test the setup for accretion discs and the sliding periodic shearing sheet
boundary condition, a useful initial condition is the so-called planet solution of Good-
man, Narayan, & Goldreich [23].

Assume s = 0 (isentropy), so the equations in 2-D are

Up Uy z + (uéo) + Uy Uy y = 202uy, — h (175)
Ugly » + (uéo) + Uy, = —(2—q)2uy — hy (176)
where uéo) = —q2z. Express u in terms of a stream function, so u =V x (¢z), or
Uy = Uy, Uy = = 4. (177)
Ansatz for enthalpy
h = 10°2%(R* — 2* — y* — 2%/6%) (178)
Y =—200Q(R* —2* — &y?) — Lq022° (179)
This implies
u, = o€y, wu, = (q—0)x (180)
and u, , = u,, = 0. Inserting into Eqs (I75) and (176) yields
(—q+q—0)oe* =2(q — o) + §° (181)
o(qg—0)=—(2—q)o + & (182)

where we have already canceled common (2? factors in both equations and common ¢?
factors in the last equation. Simplifying both equations yields

—0*¢* =2(q—0) +6° (183)
—0% =20+ §* (184)
The second equation yields
P2 =(2-0) (185)
and subtracting the two yields
0? =2q/(1 —€%) (186)

Table 13: Dependence of € and § on .

€ o)

0.1 1.74 0.67
0.2 1.77 0.64
0.3 1.82 0.58
04 1.89 0.46
0.48 1.97 0.22
0.5 2 0

D. Some specific boundary conditions 141

D Some specific boundary conditions

In this section, we formulate and discuss the implementation of some common boundary
conditions in spherical and cylindrical coordinates.

D.1 Perfect-conductor boundary condition

This is a popular boundary condition for the magnetic field; it implies that
B,=0 (187)

and
E, =0 (188)

on the boundary, where the subscript n denotes the normal component, and E; denotes
the tangential components of the electric field.

In Cartesian geometry, and when the boundary is impenetrable, these conditions can be
implemented by employing the ’a’ condition for the two tangential components of the
vector potential A, which forces both their values and their second normal derivatives to
be zero on the boundary. In addition the normal derivative of the normal A component
must be zero, hence use ’s’ for it. It is easy to see that this also works in arbitrary
curvilinear coordinates.

In particular, for spherical coordinates on a radial boundary we must have
rsinf B, = Op(sinf Ay) — 0349 =0 . (189)
This can be achieved by setting
A, =A4=0 (190)

everywhere on the boundary. Note that this does not impose any condition on the radial
component of the vector potential.

Next, in spherical coordinates on a boundary with constant 6, we must have

1 1

Bg = 8¢Ar - ;6T(TA¢) =0. (191)

rsind

Again this can be achieved by A, = A, = 0.

D.2 Stress-free boundary condition

On an impenetrable, stress-free boundary, we have
U, =0, (192)

and the shear stress components S,; must vanish for any tangential direction ¢. At the
radial boundary, the relevant components of the strain tensor (required to vanish at the
boundary) are:

S = Lopu + 10, @) (193)
T T

Sy = ——Dyuy + 10, (%) (194)

rsind

142 THE PENCIL CODE

Both of them vanish if we require
u. =0, Or(ug/r) =0, Or(ugp/r) =0 (195)

We implement this by requiring «, to be antisymmetric and uy/r and u,/r to be symmet-
ric with respect to the boundary.

The more general condition

0 (ug /%) = Orug — %ue =0 (196)

(where « is a constant) can be implemented by requiring uy/r* to be symmetric.

At a boundary 6 = const, the stress-free boundary condition will take the form

1
S,p = =gy + 10, (@):o, (197)
r r
. 1 . U¢ .
Sos = ———Dttg +sin 0y <rsm9>_0' (198)

With uy = 0, the first condition gives dyu, = 0, i.e. we require u, to be symmetric with
respect to the boundary. The second condition requires

sin680< Ug) _0 (199)

T sin 6

and is implemented by requiring u,/ sin 6 to be symmetric.

D.3 Normal-field-radial boundary condition

While unphysical, this boundary condition is often used as a cheap replacement for a
potential-field condition for the magnetic field. It implies that the two tangential com-
ponents of the magnetic field are zero at the boundary, while the normal component is
left unconstrained.

At a radial boundary, this gives:

1 1
Bg = TSinQaqSAT - ;8T(TA¢) =0 s (200)
B¢ = %&«(T’AQ) — %8@Ar =0. (201)
Which are satisfied by setting
A, =0, O0r(rAg) =0, 0y (rAy) =0, (202)

and these are implemented by requiring A, to be antisymmetric, and r Ay and A4, to be
symmetric.

On a boundary 6 = const, we have

rsiné’Br = 39(sin9A¢) - 8¢A9 =0 s (203)
rBy = 0.(rAg) — A, =0 (204)

which can be achieved by setting
agAT =0 s Ag =0 s ag(SiHOA¢) =0. (205)

We thus require A, and sinf A, to be symmetric, and Ay to be antisymmetric.

E. High-frequency filters 143

E High-frequency filters

Being high order, PENCIL CODE has much reduced numerical dissipation. In order to
perform inviscid simulations, high-frequency filters can be used to provide extra dissi-
pation for modes approaching the Nyquist frequency. Usual Laplacian viscosity vV2u is
equivalent to a multiplication by %2 in Fourier space, where k is the wavenumber. An-
other tool is hyperviscosity, which replaces the k% dependency by a higher power-law, £,
n>2. The idea behind it is to provide large dissipation only where it is needed, at the grid
scale (high k), while minimizing it at the largest scales of the box (small £). In principle,
one can use as high n as desired, but in practice we are limited by the order of the code.
A multiplication by k" is equivalent to an operator V" in real space. As PENCIL CODE
is of sixth order, three ghost cells are available in each direction, thus the sixth-order
derivative is the highest we can compute. The hyperdissipation we use is therefore V5,
or k° is Fourier space. Figure 24l illustrates how such tool maximizes the inertial range
of a simulation.

Simplified hyperdiffusivity has been implemented for many dynamical variables and
can be found in the respective modules. A strict generalization of viscosity and resistivity
to higher order is implemented in the modules ‘hypervisc_strict_2nd’ and ‘hyperresi_-
strict_2nd’.

Hyperdiffusivity is meant purely as a numerical tool to dissipate energy at small scales
and comes with no guarantee that results are convergent with regular second order
dissipation. See Haugen & Brandenburg (2004) for a discussion. In fact, large-scale dy-
namo action is known to be seriously altered in simulations of closed systems where
magnetic helicity is conserved: this results in prolonged saturation times and enhanced
saturation amplitudes (Brandenburg & Sarson 2002).

E.1 Conservative hyperdissipation

It is desirable to have this high-frequency filter obeying the conservation laws. So, for
density we want a mass conserving term, for velocities we want a momentum conserving
term, for magnetic fields we want a term conserving magnetic flux, and for entropy we
want an energy conserving term. These enter as hyperdiffusion, hyperviscosity, hyper-
resistivity, and hyper heat conductivity terms in the evolution equations. To ensure con-
servation under transport, they must take the form of the divergence of the flux 7 of the
quantity 1, so that Gauss theorem applies and we have
oY

E+V‘J:0 (206)

For density, the flow due to mass diffusion is usually taken as the phenomenological
Fick’s Law
J =—-DVp (207)

i.e., proportional to the density gradient, in the opposite direction. This leads to the
usual Laplacian diffusion

9,
a—f — DV?p (208)
under the assumption that the diffusion coefficient D is isotropic. Higher order hyper-

diffusion of order 2n involves a generalization of Eq. (207), to

j(n) _ (_1)nD(n)V2n—1p . (209)

144 THE PENCIL CODE

Laplacian vs hyper dissipation

2.0
1.5

= 1.0

0.5
0.0

O IIII|IIII|IIII|IIII

0.5 1.0 1.5

n

DnDZHLIJ
TTT [T I T[Trr[rr1
N RN EEEE R

1 n=3 1 1
0.5 1.0 1.5

n |
o

X

1" D,|§|
=
TTTTTTTT T T

10 100
k

—

Figure 24: Dissipation acting on a scalar field ¢, for n=1 (Laplacian dissipation) and n=3 (third-order
hyperdissipation). The field is initially seeded with noise (upper panel). For n=3 the large scale is not
affected as much as in the n=1 case, which is seen by the larger wiggling of the latter in the middle panel.
In Fourier space (lower panel) we see that near the grid scale both formulations give strong dissipation.
It also illustrates that at the large scales (k~1), the effect of n=3 is indeed negligible.

In our case, we are interested in the case n = 3, so that the hyperdiffusion term is

% _ peIyo, (210)

The hyperdiffusion coefficient D® can be calculated from D assuming that at the
Nyquist frequency the two formulations and yield the same quenching. Con-
sidering a wave as a Fourier series in one dimension (x), one element of the series is
expressed as

@ijz _ Aei(ka:—i—wt) (211)

Plugging it into the second order diffusion equation (208) we have the dispersion con-
dition iw = —DE?. The sixth order version (210) yields iw = —D® LS. Equating both
we have D® = Dk~ This condition should hold at the grid scale, where k = 7/Axz,

E.2 Hyperviscosity 145

therefore A
3) Az
DY =D | — (212)

™

For the magnetic potential, resistivity has the same formulation as mass diffusion

0A

5 = —nV x B =nV?A, (213)

where we used the Coulomb gauge V - A = 0. The algebra is the same as above, also

yielding n® = n(Ax/7)*. For entropy, the heat conduction term is

oS 1
— = —V - (KVT 214
ot pTV (KVT), (214)

and requiring that K be constant, we substitute it by

K®)

also with K©® = K(Ax /7).

E.2 Hyperviscosity

Viscosity has some caveats where subtleties apply. The difference is that the momentum
flux due to viscosity is not proportional to the velocity gradient, but to the rate-of-strain
tensor

5 =5 <axj T a3 ") | o

which only allows the viscous acceleration to be reduced to the simple formulation vV?u
under the condition of incompressibility and constant dynamical viscosity ;1 = vp. Due
to this, the general expression for conservative hyperviscosity involves more terms. In
some cases, it is no great overhead, but for others, simpler formulations can be applied.

E.2.1 Conservative case

In the general case, the viscous acceleration is

fuise = p 'V - (2p1/S) 217)

So, for the hyperviscous force, we must replace the rate-of-strain tensor by a high order
version
f(hyper) — p—lv . (2anS(n)) (218)

visc

where the n'-order rate of strain tensor is

s = (—v?)1s. (219)

For the n = 3 case it is

1/ u. 4 ‘ 1 o

oz, Oz \ Oz

146 THE PENCIL CODE

Plugging it into Eq. (218), and assuming p3 = pr3 = const

isc

fiomer) = vy (VGu + %vw(v : u))) - (221)

For 13 = const, we have to take derivatives of density as well

isc

flaper) = (VGu + %V4(V(V ‘u)) +28¢ . Vin P) (222)

E.2.2 Non-conservative cases

Equations (221) and (222) explicitly conserve linear and angular momentum. Although
desirable properties, such expressions are cumbersome and numerically expensive, due
to the fourth order derivatives of V(V - u).

This term, however, is only important when high compressibility is present (since it

depends on the divergence of u). In practice we drop this term and use a simple hyper-
viscosity

{ v3Vou if ;1 = const

fvisc = (223)

Vs <V6u +28® . Vin p) if v = const

Notice that this can indeed be expressed as the divergence of a simple rate-of-strain
tensor
85ui

5
aﬂ,’j

so it does conserve linear momentum. It does not, however, conserve angular momen-
tum, since the symmetry of the rate-of-strain tensor was dropped. Thus, vorticity sinks
and sources may be spuriously generated at the grid scale.

S = (224)

A symmetric tensor can be computed, that conserves angular momentum and can be

easily implemented
1 (0%u; Ou;
Spi= = e 225
2 (aij 81'15) ()

This tensor, however, is not traceless, and therefore accurate only for weak compressibil-
ity. It should work well if the turbulence is subsonic. Major differences are not expected,
since the spectral range in which hyperviscosity operates is very limited: as a numerical
tool, only its performance as a high-frequency filter is needed. This also supports the
usage of the highest order terms only, since these are the ones that provide quenching
at high k. Momentum conservation is a cheap bonus. Angular momentum conservation
is perhaps playing it too safe, at great computational expense.

E.2.3 Choosing the coefficient

When changing the resolution, one wants to keep the grid Reynolds number, here de-
fined as
Regrid = Urms /(Vnklgjgl,il) (226)

approximately constant. Here, kny = 7/0z is the Nyquist wavenumber and oz is the
mesh spacing. Thus, when doubling the number of meshpoints, we can decrease the
viscosity by a factor of about 2° = 32 (Haugen & Brandenburg 2004). This shows that

E.3 Anisotropic hyperdissipation 147

hyperviscosity can allow a dramatic increase of the Reynolds number based on the scale
of the box.

By choosing idiff="hyper3_mesh’ in density_run_pars the hyperdiffusion for density is
being set automatically in a mesh-independent way. A hyper-mesh Reynolds number of
30 corresponds to a coefficient diffrho_hyper3_mesh=2 if maxadvec is about 1, but in
practice we need a bit more (5 is currently the default).

E.2.4 Turbulence with hyperviscosity

When comparing hyperviscous simulations with non-hyperviscous ones, it turns out that
the Reynolds number at half the Nyquist frequency is usually in the range 5-7, i.e.

Rehalf—grid = Urms / [Vn (k;Ny/2)2n71:| ~ 517 (227)

The following table gives some typical values used in simulations with forcing wavenum-
ber k; = 1.5 and a forcing amplitude of f, = 0.02. If hyperdiffusion D5 is used in the
continuity equation, the corresponding values are about 30 times smaller than those of
vs; see Table 141

Table 14: Empirical values of viscosity and hyperviscosity, as well as hyperdiffusion for density, at differ-
ent numerical resolution, for simulations with forcing wavenumber k; = 1.5 and a forcing amplitude of
fo = 0.02 in a 27 periodic domain. In all cases the half-mesh Reynolds number is about 5-7. For compar-
ison, estimates of the numerical 4th order hyperdiffusion resulting from a third order time step are give
for two values of the CFL parameter.

N v, Vs vy D KSFL:OA KSFL:O.S)
16 1x102 3x10* 2x10° 6x107 7x10* 1x10°%
32 5x10% 4x10° 6x1077 2x10® 1x10% 2x107°
64 2x107% 5x10°% 2x10% 6x107° 2x1077 3x10°¢

128 1x1073 6x1077 6x107 2x107"" 3x107® 4x1077
256 5x107* 8x10°% 2x107" 6x1078 4x10Y 5x10°%®
512 2x107* 1x10® 6x107¥ 2x107" 5x107°% 6x107?

1024 1x107% 1x107? 2x107" 6x107% 6x 1071 8x 10710

1x107° 1x107 6x107 6x107'% 6x107'1t 8x 1071

For comparison, we give in Table[14] estimates of the numerical 4th order hyperdiffusion
resulting from a third order time step, for which we have

1
HQCFL = ﬂurms (CYCFL&:C)3 (228)
where Ccr, is the CFL parameter which is either 0.4 in the conservative case or 0.9 in

the more progressive case.

Figure 25 shows the scaling of the diffusion velocity normalized by the rms velocity of
the turbulence. We see that (i) the value of k/ky, increases with the number of mesh
points and (ii) the diffusion speed decreases inversely linear with the wavenumber.

E.3 Anisotropic hyperdissipation

As we want quenching primarily at the Nyquist frequency, hyperdissipation depends
intrinsically on the resolution, according to Eq. (212). Because of this, isotropic hyper-
dissipation only gives equal quenching in all spatial directions if Az=Ay=Az, i.e., if the

148 THE PENCIL CODE

0.1 1.0
k/kNy

Figure 25: Scaling of the diffusion velocity normalized by the rms velocity of the turbulence.

cells are cubic. For non-cubic cells, anisotropic dissipation is required as different direc-
tions may be better/worse sampled, thus needing less/more numerical smoothing. Such
generalization is straightforward. For that, we replace Eq. (209) by

°p °p °p
J = (Dx o5 D ay5,Dz 825) : (229)

so that different diffusion operates in different directions. Since D,, D, and D, are con-
stants, the divergence of this vector is

aﬁp aGp 6p
V-J=D, +D +D,—. 230
J ox® Y 0yS 92° (250)
The formulation for resistivity and heat conductivity are strictly the same. For viscosity

it also assumes the same form if we consider the simple non-conservative rate-of-strain
tensor (224).

Mathematically, these operations can be written compactly by noticing that the coeffi-
cients in Eq. transform like diagonal tensors XS-) = X,(f)éijk, where ¢;;;, is the unit
diagonal third order tensor, y©® is the vector containing the dissipative coefficients (dif-
fusion, viscosity, resistivity, or heat conductivity) in z, y, and z, and summation over

repeated indices applies.

Therefore, for a scalar quantity ¢ (density, any of the three components of the velocity
or magnetic potential), we can write

O _ 3 gy — Rl 231)
o = X %000 =3 XD gt
q

E.4 Hyperviscosity in Burgers shock

Hyperviscosity has the unfortunate property of introducing (numerically stable) wiggles,
even if one just adds a little bit of hyperviscosity to a run with normal viscosity; see left
hand side of Fig. 26l Running with just hyperviscosity give strong wiggles.

E.5 Time-dependent viscosity and magnetic diffusivity 149

1.0 1.0
0.5 0.5
3 0.0 0.0
-0.5 -0.5
-1.0 -1.0
-6 -4 -2 0 2 4 86 -6 -4 -2 0 2 4 6
X x

Figure 26: Left: Burgers shock from teach/PencilCode/material/BurgersShock (in the teaching material)
with —20 < z < 20, n, = 64 mesh points, u, = F1 on the two ends, v = 0.4 and either 3 = 0 (solid line)
or v3 = 0.05 (dashed line). Right: similar to the left hand side, but with » = 0 and v5 = 0.05 (dashed line),
compared with the case v = 0.4 and 3 = 0 (solid line).

E.5 Time-dependent viscosity and magnetic diffusivity

In connection with decaying hydrodynamic and MHD turbulence studies, [36] noted that
the equations are invariant under rescaling of space and time coordinates, along with a
corresponding rescaling of the other dependent variables.

! 2q—1. 1

v=rY gn=721

n, (232)

t=r1t, =1

u=7""u', B=7""'B.

Inserting these variables into equation and (46), the resulting equation in the
primed quantities has the same form as the equations in their original formulation.
This requires that v « n « t" where r = 2¢ — 1. For ¢ < 1/2, r is negative so " becomes
singular for t — 0. Therefore, we use in such cases

v(t) = volmax(1,t/ty)]", n(t) = no[max(1,t/ty)]", (233)

where t is the time below which v and 7 are assumed fixed; see Ref. [10] for details. This
can be accomplished by putting

&viscosity_run_pars
ivisc=’nu-tdep’, nu=le-3, nu_tdep_t0=.1, nu_tdep_exponent=-.43
lvisc_nu_tdep_tO_norm=T

/
and

émagnetic_run_pars
iresistivity=’eta-tdep’, eta=le-3, eta_tdep_t0=.1, eta_tdep_exponent=-.43
lresi_eta_tdep_tO_norm=T

/

For backward compatibility, the default is 1lvisc_nu_tdep_tO_norm=F and likekwise
lresi_eta_tdep_tO_norm=F. This means that instead of Eq. (233), we use v(t) =
vo[max(t, to)]” and n(t) = no[max(t,)", which has the disadvantage that then 1, and
1o have funny dimensions.

150 THE PENCIL CODE

F Special techniques

F.1 After changing REAL_PRECISION

To continue working in double precision (REAL_PRECISION=double), you just say lread_-
from_other_prec=Tin run_pars. Afterwards, remember to put 1read_from_other_prec=F.
If continuation is done in a new run directory, first execute start.csh there and then copy
the files var.dat (and if present global.dat) from the old to the new directory, using pc_-

copyvar.

F.2 Remeshing (regridding)

Currently (29.07.19) two options are available for taking an existing run with a given
resolution and processor layout and continuing with a changed resolution or different
layout of processors. These apply for the original fortran binary data format used by
the Pencil Code. The original version is described in section[F:2.3] while a recent more
versatile option employing Python to perform the task is described in section[F.2.2

The parallel hdf5 format for storing Pencil Code data has now been implemented to
replace the less portable fortran unformatted data. As the hdf5 data is stored in a single
file, the processor layout can be revised at any time during a run, without the need
to change the data files at all. Changing resolution or grid dimensions is also more
convenient, using appropriate interpolation tools. When scripts to automatically resize
the grid and physical data for the full f-array become available, instructions on their use
shall be included in section[F.2.1]

F.2.1 Remeshing hdf5-formatted data

Instructions shall follow shortly ...

F.2.2 Remeshing unformatted fortran binary data using Python

Ensure that $PENCIL_HOME/python has been added to your $PYTHON_PATH. Let us assume
you have an existing run and you would like to continue an experiment from a mature
state, but with

* higher (or lower) resolution,

* changes to the size of the numerical domain,

* change to the processor layout to improve efficiency and/or speed of the calculation,
¢ added/reduced variables included in the model,

or any combination involving at least one of the first three options in the list. The follow-
ing procedure can be used to handle the first three options. The remeshed model with
the ‘var.dat’ files obtained from an existing run can then also be used to advance with
additional physics, following section[F.4. As part of the remeshing procedure reduced
physics could be obtained by omitting unwanted variables (not yet implemented).

1. First set up the new run. One option is to navigate to the path of the existing run
$path-to-old-run and apply the command

$path-to-old-run> pc_newrun $path-to-new-run

F.2 Remeshing (regridding) 151

$path-to-new-run is the full path of the new run or its relative path assuming it will
be prefixed by ‘. . /. Then navigate to $path-to-new-run. Revise as required the files
‘start.in’, ‘src/cparam.local’ and ‘src/Makefile.local’ to match the parameters
for the remeshed run. Note, any changes involving domain size will need to ensure
continuity across any periodic boundaries. Then compile and start the new run

$path-to-new-run> pc_build
$path-to-new-run> pc_run start

or otherwise submit a batch script containing the call to ‘start.csh’.

. Once the new run has been started successfully, create in the new run directory a
python script called ‘local_remesh.py’ or similar, as described in the notes at the
end of ‘$PENCIL_HOME/python/pencil/files/sim/remesh.py’. Add import pencil as
pc at the start of the file.

. To read the old data and then interpolate this onto the new grid as a complete
f-array object fnew, add to the ‘local_remesh.py’ the lines

fnew = pc.interp_var(
source_path=$path-to-old-run,
target_path=$path-to-new-run,
arrs=[‘uu’, ‘rho’, ‘lnrho’, ‘ss’, ‘aa’,
‘shock’, ‘netheat’, ‘cooling’],

By default this will read in the data from the old run ‘var.dat’ files. If another
source file is required add the line ‘o1dvar=$VAR,’ between the brackets, where $VAR
is one of the snapshots with prefix ‘VAR’. Replace the default list of variables arrs
with the variables used in the old run listed in f-array index order. For other options
inspect ‘$PENCIL_HOME/python/pencil/files/remesh.py’. Handling particles is not
yet implemented, but should be possible with minor edits.

. To write fnew to the new run ‘var.dat’ files add to ‘local_remesh.py’ the lines

pc.distribute_fort(
fnew,
$path-to-new-run,

)

. To execute the script run

$path-to-new-run> python local_remesh.py

To preserve long term the remeshed data

$path-to-new-run> pc_copyvar v 0 -e

. Once the remeshing is completed edit as required ‘run.in’ and execute

$path-to-new-run> pc_run run

152 THE PENCIL CODE

or submit batch script as appropriate.

F.2.3 Remeshing unformatted fortran binary - original method

[This should be written up in a better way and put somewhere else. But currently,
remeshing is only available for the Pencil developers anyway.]

Suppose you have a directory run_64 with a 64° run (running on N, =nyxnz=2x 1 CPUs)
that you want to continue from ‘VAR1’ at 128° (on nyxnz=4 x 4 CPUs).

1. The remeshing code is part of the PENCIL CODE repository.

2. Create another run directory with current ‘VAR1’ as ‘var.dat’ (remesh.csh so far
only works with ‘var.dat’):

unix> cd run_64

run_64> pc_newrun ../tmp_64 or new tmp_64

run_64> mkdir -p ../tmp_64/data or (cd ../tmp_64/; crtmp)
run_64> (cd ../tmp_64/data ; mkproc-tree Ny)

run_64> restart-new-dir-VAR ../tmp_64 1

3. Create the new run directory (linking the executables with -s):

run_64> cd ../tmp_64

tmp_64> pc_newrun -s ../run_128 or new run_128
tmp_64> vi ../run_128/src/cparam.local

set nxgrid=128, ncpus=16, nprocy=4

tmp_64> (cd ../run_128; crtmp; pc_setupsrc; make)

4. Setup and do remeshing

tmp_64> setup-remesh

tmp_64> vi remesh/common.local

set muly=2, mulz=4, remesh_par=2
tmp_64> (cd remesh; make)
tmp_64> vi remesh.in

Replace line by ../run_128

tmp_64> remesh.csh

Answer ‘yes’

F.3 Restarting with different I/O strategy

One might want to switch the I/O strategy for a run, ongoingly to be continued by
restarts, typically from one of the more traditional schemes, reading and writing FOR-
TRAN binary or formatted data, to using the HDF5 data format. For this, include a
definition for IO_IN in Makefile.local, say IO_IN=io_dist, change the definition of IO, say
into I0=io0_hdf5, and recompile. The restarted run will write all data with the new 1I/O
scheme and write an (empty) control file IO_LOCK which prevents the code from trying
to read the data at the next restart still with the old I/O scheme, specified by I0_IN.
A backswitch from HDF5 to binary format is also possible, but note that averages and
slices will be continued to be written in HDF5 unless you recompile the code once more
with IO_IN removed (to be improved).

F.4 Restarting from a run with less physics 153

F.4 Restarting from a run with less physics

First, prepare a new run directory with the new physics included. By new physics, we
mean that the new run wants to read in more fields (e.g., magnetic fields, if the old run
didn’t have magnetic fields).

Example for test fields:

1. Prepare ‘src/cparam.local’

Add the following 2 fragments into the ‘cparam.local’ file. The first piece comes in
the beginning and the second in the end of the file.

k% AUTOMATIC CPARAM.INC GENERATION skokokokokokokoksksksk sk ok sk sk s s o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko Kk

! Declare (for generation of cparam.inc) the number of f array

I variables and auxiliary variables added by this module

I Use MVAR to reserve the appropriate workspace for testfield_z.f90

I The MAUX number must be equally big and is used for uxb in the f-array.
! At the end of this file, njtest must be set such that 3*njtest=MVAR.
!

!

!

!

!

MVAR CONTRIBUTION 12
MAUX CONTRIBUTION 12

3k >k >k >k >k 5k 3k ok 5k 5k >k %k >k >k 3k 3k ok 5k ok 5k >k >k >k 5k >k >k 3k 5k 5k >k >k %k 5k >k 3k 3k 5k 5k 5k >k >k >k >k %k 3k >k 5k >k 5k >k >k >k 5k 5k >k 3k 5k 5k >k >k >k >k >k >k %k >k 5k >k >k >k *k %k >k >k %k

!
I note that MVAR=MAUX=3*njtest must be obeyed
!

integer, parameter :: njtest=4
!

. Prepare ‘src/Makefile.local’

Add the line TESTFIELD=test_methods/testfield_z to the file. Finally, compile the
code.

. Prepare restart data

Go into data directory of the new run and prepare the directory tree using, e.g., the
command pc_mkproctree 16. [In principle this could be automatized, but it isn’t

yet.]

Next, go into old run directory and say restart-new-dir ../32c, if ‘../32¢’ is the
name of the new run directory. This procedure copies all the files from the processor
tree, plus files like ‘param.nm1’, but this file may need some manual modification (or
you could just us one from another runs with the new physics included, which is
definitely the simplest!).

. Prepare ‘run.in’

Set 1read_oldsnap_notestfield=T in run_pars. This means (as the name says) that
one reads an old snapshot that did not have test fields in it.

Reset boundary conditions and add stuff for the newly added fields, e.g.,
bCZ=)aZS’,)a,,’aZS),’a2’,,a),,a’,7S,,’a,,)a’,’S’,’a’,’a,,’s,,)a,,’a,,)S’
in run_pars. If you don’t do this, you would effectively use periodic boundary

154 THE PENCIL CODE

conditions for the response to the test field, which is hardly correct once you set
non-periodic boundary conditions for the other variables.
Add something like the following text fragments in the right position (after grav. -
run_pars and magnetic_run_pars, but before shear run_pars and viscosity run_-
pars.
4&testfield_run_pars

Ilinit_aatest=T, daainit=100.

itestfield=’B11-B22’

etatest=1e-4

lsoca=F
/
Make sure that the data above are correct. You may want to change the values of
daainit or etatest.
If you now run, and if you didn’t fix the file ‘data/param.nml’ you might get some-
thing like the following error:
forrtl: severe (24): end-of-file during read, unit 1, file /wkspace/brandenb/pencil-
The reason for this is that it reads the old boundary data, but the correspond-
ing array is too short. This includes stuff like FBCX1 to FBCX2_2, but it is still
not enough. Therefore it is easiest to use the ‘data/param.nml’ file from another
run. You may well just use one from a single processor run with a different mesh.
But remember to fix the ‘start.in’ file by correcting the boundary conditions and
adding things like
&testfield_init_pars

luxb_as_aux=T
/

5. Prepare ‘print.in’, ‘xyaver.in’, and other obvious files such as ‘video.in’.
6. Once it works and is running, you must say explicitly

&run_pars

lread_oldsnap_notestfield=F
/

because otherwise you won’t read in your precious test field data next time you
restart the code! (If you instead just remove this line, it will remember 1read_-
oldsnap_notestfield=T from the previous run, which is of course wrong!)

Comments: For large magnetic Reynolds numbers the solutions to the test-field equa-
tions can show a linear instability, which can introduce large fluctuations. In that case
it is best to reset the dependent test-field variable to zero in regular intervals. This is
done by setting linit_aatest=T. Note that daainit=100 sets the reset interval to 100.

F.5

Restarting with particles from a run without them

If you want to restart from a run without particles to a run with them, you need to

(1) Compile a run with particles,

F.5 Restarting with particles from a run without them 155

RunWithParticles$ pc_build

(2) Copy a VARN or var.dat into this new run directory. Say the old run is at the directory
OldRun and you want to copy the var.dat of that run and restart with particles. You do

RunWithParticles$ pc_copyvar v v ../01dRun . -e
(3) In the start.in init_pars of the new run, add the lines

lread_oldsnap = T
ireset_tstart = 0

(4) Remove all calls to initial conditions (make all initlnrho, inituu, initss, initaa, etc
‘nothing’), and

5) Run pc_start.

The variable 1read_oldsnap makes the code on start time read from the f-array of the
snapshot, instead of the default, which is to initialize it with zeros. The necessity in step
(4) to remove all calls to initial conditions is because otherwise the code would rewrite
the content of the f-array with these initial conditions, or add them on top of the existing
values of the snapshot.

The variable ireset_tstart when set to zero makes it read the timestamp of the old
snapshot and restart from that time. The default is 2, which sets the timestamp back to
zero.

156 THE PENCIL CODE

G Runs and reference data

For reference purposes we document here some results obtained with various samples
of the code.

G.1 Shock tests
G.1.1 Sod shock tube problem

Table 15: Combinations of p, p, and s/c, that are relevant for the Sod shock tube problem with constant
temperature and different pressure ratios on the left and right hand sides of the shock.

P p s

1.0 1.0 0.3065
0.1 0.1 1.2275
0.01 0.01 2.1486

G.1.2 Temperature jump

Table 16: Combinations of ¢Z, p, and s/c, that are relevant for the temperature shock problem with
constant density, p = 1, and different temperature ratios on the left and right hand sides of the shock.

2

g s
1.0 0.0
0.1 -23
0.01 —4.6

1074 —9.2

G.2 Random forcing function

A solenoidal random forcing function f can be invoked by putting iforce=’helical’ in
the forcing_run_pars namelist. This produces the forcing function f of the form

flx,t) = Re{ka(t) explik(t) - & + ip(t)]}, (234)

where k(t) = (k;, ky, k.) is a random time dependent wave vector, x = (z,y, z) is position,
and ¢(t) with |¢| < 7 is a random phase. On dimensional grounds the normalization
factor is chosen to be N = fyc,(kcs/6t)'/?, where f, is a nondimensional factor, k = |k,
and 6t is the length of the timestep. The 6t~ /%> dependence ensures that the forcing,
which is delta-correlated in time, is properly normalized such that the correlator of the
forcing function is independent of the length of the time step, 6. We focus on the case
where |k| is around 5, and select at each timestep randomly one of the 350 possible
vectors in 4.5 < |k| < 5.5. We force the system with eigenfunctions of the curl operator,
fi = ick x (k x e) + |k|(k x e) | (235)
V1+ o2 k:Z\/l — (k-e)?/k?

where e is an arbitrary unit vector needed in order to generate a vector k x e that is
perpendicular to k. Note that [f|> = 1 and, for o0 = 1, ik x fj, = |k|f}, so the helicity
density of this forcing function satisfies

f-Vxf=Ik|f?>0 (foroc=1) (236)

G.3 Three-layered convection model 157

at each point in space. We note that since the forcing function is like a delta-function in
k-space, this means that all points of f are correlated at any instant in time, but are dif-
ferent at the next timestep. Thus, the forcing function is delta-correlated in time (but the
velocity is not). This is the forcing function used in Brandenburg (2001), Brandenburg
& Dobler (2001), and other papers in that series.

For o = 0, the forcing function is completely nonhelical and reduces to the simpler form

fr=(kxe)/\/E —(k-e)? (237)

For 0 < |o| < 1, the forcing function has fractional helicity, where o ~ (w - u) /(k; (u?));
see Sect. 4.5 of Ref. [13]]. In the code and the forcing_run_pars namelist, o is called relhel.

In the code, the possible wavevectors are pre-calculated and stored in ‘k.dat’, which
is being read in the beginning the code runs. To change the wavevectors (e.g.,
the typical value of k¢, you need to change the file. In the directory ‘$PENCIL_-
HOME/samples/helical-MHDturb/K_VECTORS/’ there are several such files prepared:

k10.dat kl.dat k2.dat k3.dat kb.dat
kib.dat k27.dat k30.dat k4.dat k8.dat

and more can be prepared in IDL with the procedure ‘$PENCIL_-
HOME/samples/helical-MHDturb/idl/generate_kvectors.pro’. There is also more
help in the ‘READVME’ file in ‘helical-MHDturb’.

In forcing_hel: if 1crosshel_forcing=T and if 1testfield_forcing=T.and.ltestflow_-
forcing=T, uu and aa (uu0 and aa0 for testfield*) are simultaneously forced, using the
same filek.dat. Relative scaling by forcel_scl for vector potentials and force2_scl for
velocities (default: 1). Simplified “cross helicity forcing” is now activated by lhydro_-
forcing.and.lmagnetic_forcing=.true. or by ltestfield_forcing.and.ltestflow_-
forcing=.true.; lcrosshel_forcing is now obsolete.

G.3 Three-layered convection model

Entropy s Temperature T’

Inp

-0.150.100.09.000.05 -0.6-0.4-0.20.0 0.2 0.4 05 1.0 15 20

Figure 27: Like in Fig.[3] but at time ¢ = 50.

In Sect. we have shown the early stages of the convection model located in
‘samples/conv-slab’. To arrive at fully developed convection, you will need to run the

158 THE PENCIL CODE

code for many more time steps. Figure 27 shows the vertical profiles of four basic quan-
tities at time ¢ = 50. Figure 28 shows the time evolution of rms and maximum velocity
for the model for 0 < ¢ < 50.

1.000F T T T T

0.100

T F T

0.010

0001 L v vy [P [[[
0 10 20 30 40 50

Figure 28: Time evolution of rms and maximum velocity for the model ‘samples/conv-slab’. Similar plots
can be produced by running the IDL script ‘ts.pro’.

Figures 29 and [30l show vertical and horizontal sections for time ¢ = 50.

u at z=—0.292903

u at z=0.352258 u at z=0.932903

il i

—————
.......

............
............................
..............

-0.4-0.20.0 0.2 0.4
x

-0.4-0.20.0 0.2 0.4

and p at 7=0.932903
2

-0.4-0.20.0 0.2 0.4

-0.4-0.20.0 0.2 0.4

X X X
Figure 29: Horizontal sections for ¢ = 50. Top: velocity field. Bottom: entropy (color coded) and density
(isocontours). Plots of this type can be produced by running the IDL script ‘hsections.pro’)

G.4 Magnetic helicity in the shearing sheet

To test magnetic helicity evolution in the shearing shear, we can choose as initial
condition initaa=’Beltrami-y’ with amplaa=1. in magnetic_init_pars together with
Sshear=-1. in shear_run_pars.

Thus, in ‘src/Makefile.local’ we just use

G.4 Magnetic helicity in the shearing sheet 159

1.0

-erttttrts
b= 221 HHEETT2 25NN
ke 2711111117 2258N
0.5 f=7 7111110t 00ann
crrrttttrteree e

trrrrecerrtrttotan

ttrrr v v sttt

..................

-04-02 00 02 04 -0.4-02 0.0 02 0.4 -04-02 0.0 02 04

X X X

s and p at y=—0.296875 s and p at y=0.0156250 s and p at y=0.296875

-0.4-02 00 02 04 -0.4-0.2 0.0 02 0.4 -0.4-02 0.0 02 0.4

X X X

Figure 30: Vertical section y = 0.516 at ¢ = 50. Top: velocity field. Bottom: entropy (color coded) and
density (isocontours). Plots of this type can be produced by running the IDL scripts ‘vsections.pro’) or
‘vsections2.pro’).

MAGNETIC=magnetic
HYDRO=nohydro
EO0S=noeos
DENSITY=nodensity
SHEAR=shear
VISCOSITY=noviscosity

and put

&init_pars
cvsid="Id’,
/
&magnetic_init_pars
initaa=’Beltrami-y’, amplaa=1.
/
&shear_init_pars

/

160 THE PENCIL CODE

1.0 === 3]

i T 256° 12871

wo 0.8 T 170 m=0]
Q [1.0000 << 1N]
Q : e]
> [0.9998 | S N —10° 4
< 0.6¢ 0.9996} : "\~;Z‘~-.Bm_10 1
& [0.9994 | -]
$ 0.4 y 0.99921 - N
0ok 0 1020304050 60 from™.
LT St rhs ST
0.0t]

0 10 20 30 40 20 60
St

Figure 31: Wind-up of the magnetic field leads to a linear increase in the rms magnetic field strength
until Ohmic diffusion begins to become important (top panel). During this time the magnetic helicity is
conserved. With Ohmic diffusion, the decay of (A- B) is well described by integrating —2n(J - B) (indicated
by “from rhs” in the second panel).

in ‘start.in’ and, for example,

&run_pars
cvsid=’Id’
nt=150000, it1=10, cdt=0.9, isave=50, itorder=3
dsnap=100. dvid=b., ialive=1
/
&magnetic_run_pars
eta=0.
/
&shear_run_pars
Sshear=-1.

/

in ‘run.in’. The output includes, among other things

arms (£10.7)
brms (£12.7)

G.4 Magnetic helicity in the shearing sheet 161

jrms (£14.7)
abm(f14.11)
jbm(£14.7)

The result is shown in Figure 31, where we show the wind-up of the magnetic field,
which leads to a linear increase in the rms magnetic field strength until Ohmic diffu-
sion begins to become important (top panel). During this time the magnetic helicity is
conserved. With Ohmic diffusion, the decay of (A - B) is well described by integrating
—2n(J - B) (indicated by “from rhs” in the second panel).

162 THE PENCIL CODE

H Numerical methods

H.1 Sixth-order spatial derivatives

Spectral methods are commonly used in almost all studies of ordinary (usually incom-
pressible) turbulence. The use of this method is justified mainly by the high numerical
accuracy of spectral schemes. Alternatively, one may use high order finite differences
that are faster to compute and that can possess almost spectral accuracy. Nordlund &
Stein [35] and Brandenburg et al. [18] use high order finite difference methods, for ex-
ample fourth and sixth order compact schemes 13011

The sixth order first and second derivative schemes are given by
fi=(—fics +9fi—o —45fi_1 + 45 fi1 — Yfivo + firs)/(600z), (238)
f = (2fics = 27fia + 270 fiiy — 490 f; 4 270 fi11 — 27 fiyo + 2fi13)/(1800z?), (239)

In Fig.[32we plot effective wavenumbers for different schemes. Apart from the different
explicit finite difference schemes given above, we also consider a compact scheme of 6th
order, which can be written in the form

shia i+ 5fia = (fio — 28fi1 + 28fi1 — fir2)/(3602), (240)
for the first derivative, and
2+ [+ RS = (3fima +48fim1 — 102f; 4+ 48f;11 + 3 fis0)/(4462°). (241)

for the second derivative. As we have already mentioned in the introduction, this scheme
involves obviously solving tridiagonal matrix equations and is therefore effectively non-
local.

In the second panel of Fig. [32] we have plotted effective wavenumbers for second deriva-
tives, which were calculated as

(coskz)! == —k% cos k. (242)
Of particular interest is the behavior of the second derivative at the Nyquist frequency,
because that is relevant for damping zig-zag modes. For a second-order finite difference
scheme £?%; is only 4, which is less than half the theoretical value of 72 = 9.87. For
fourth, sixth, and tenth order schemes this value is respectively 5.33, 6.04, 6.83. The
last value is almost the same as for the 6th order compact scheme, which is 6.86. Signif-
icantly stronger damping at the Nyquist frequency can be obtained by using hypervis-
cosity, which Nordlund & Galsgaard (1995) treat as a quenching factor that diminishes
the value of the second derivative for wavenumbers that are small compared with the
Nyquist frequency. Accurate high order second derivatives (with no quenching factors)
are important when calculating the current J in the Lorentz force J x B from a vector
potential A using —/oJ = V2A—-VV-A. This will be important in the MHD calculations
presented below.

9The fourth order compact scheme is really identical to calculating derivatives from a cubic spline,
as was done in Ref. [35]. In the book by Collatz [19] the compact methods are also referred to as Her-
mitian methods or as Mehrstellen-Verfahren, because the derivative in one point is calculated using the
derivatives in neighboring points.

H.2 Upwind derivatives to avoid ‘wiggles’ 163

2nd derivative

Ist derivative

].'O -' T T T T T T T T T 1.0 T T T T T T T T
A spectral spectral
0.8 . o ocompact (6th) 1 0.8F+ «compact (6th)]
I ioth [10th .
A o ot
Z 0.6 - —-6th : 2 0.6p-—-6h .
S I . 42 4th ‘.'/ /_/
S S
<045 O & 0.4 —-2nd “aE
SN ~ /' -
N gy
- SN g
0.2f N 0.2F / :
A o\
I \L
0,0 1 1 1 | I .\‘ 0,0 1 1 1 1

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
k/ky, k/ kxy

Figure 32: Effective wave numbers for first and second derivatives using different schemes. Note that
for the second derivatives the sixth order compact scheme is almost equivalent to the tenth order explicit
scheme. For the first derivative the sixth order compact scheme is still superior to the tenth order explicit
scheme.

H.2 Upwind derivatives to avoid ‘wiggles’

High-order centered-difference convection simulations often show “wiggles” (Nyquist
zigzag pattern) in In p, which are apparently caused by a velocity profile where the veloc-
ity approaches zero on the boundary or inside the box 29 This causes the density profile
to be squeezed into a boundary layer where eventually numerical resolution is insuffi-
cient and, for centered differences, a spurious Nyquist signal is generated that almost
instantaneously propagates into much of the whole box.

Even if the stagnation point is on the boundary (and enforced by the boundary con-
ditions), this behavior is hardly influenced by the boundary conditions on Inp at all.
A solution, however, is to apply upwinded derivative operators. The simplest upwind
derivative is a finite-difference derivative operator where the point furthest downwind
is excluded from the stencil. For « > 0, that means that instead of

—f3+9f 0 —45f 4 +45f1 —9fa+ f3 628 fD)

fo = 606z ~ Ty S P H0() (243

one takes

—2f3+15f5 =60/ + 200 +30/i =3 _ oz° f(©)

— up,5) 5
S S =D 0(027) . (244)

fo=
A fourth-order upwind scheme (excluding two downwind points) would be

_ _ 1 465)
fy = Lt 1128§x1 + 1000435 _ 55625 = DU L O (62%) . (245)

20A simple one-dimensional test profile would be u(z) = 1 — 2% on = € [~1, 1], which will accumulate
more and more mass near the right boundary = = 1.

In two- or three-dimensional settings, the presence of stagnation points of X-type leads to the same
configuration, this time with the possibility of a steady state (i.e. without accumulation of mass). Such
stagnation points occur, e.g., at the top of an upwelling, or at the bottom of a downdraft in convection
simulations, where locally u, « zx — z.

164 THE PENCIL CODE

The effect of upwinding is mostly to stop the Nyquist perturbations from spreading away
from the boundary or stagnation point. With the fourth-order formula they actually
hardly ever develop.

The difference between central and fifth-order upwind derivative is

(D) _ pleenso) p — fos+6f5—15 f16z;520 fo—15f1+6fa—f3 _ %5 9 (246)
T

In other words, 5th-order upwinding can be represented for any sign of u as hyperdiffu-
sion (Dobler et al. 2006):

|u| 6x®
_uf(/up,5th) = _uf(/centr,6th) + Tf(ﬁ) . (247)

The advantage over adopting constant hyperdiffusion is that in the upwinding scheme
hyperdiffusion is only applied where it is needed (i.e. where advection is happening,
hence the factor |u|).

The form (247) also suggests an easy way to get ‘stronger’ upwinding: Rather than ex-
cluding more points in the downwind direction, we can simply treat the weight of the
hyperdiffusion term as a free parameter «:

_uf(/upﬁthpc) = _uf(/centr,fith) +a |U’| 5x5f(6) : (248)

If v is large, this may affect the time step, but for a = 1/60, the stability requirement for
the hyperdiffusive term should always be weaker than the advective Courant criterion.

centered

upwind

0.6[
0.4

0.2
-0.0
-0.2

-0.4

_0.6| 1 1 1 1 1 1 1 1 1 1 1

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X x

z) after 5 revolutions

~—

c

Figure 33: Advection with centered (left) and upwinding (right) schemes with diffusivity x = 1074, n, =
128 mesh points, and an advection velocity of unity.

A standard advection experiment is shown in Fig. [33]for n, = 128 mesh points over a 27
domain with advection velocity U, = 1 and diffusivity x = 1074, so x/U,dz = 0.002. We
see that upwinding causes additional wiggles.

In Fig. 34, we compare turbulence simulations with 512% mesh points using v = 1074, a
forcing amplitude f; = 0.02, and a forcing wavenumber of 1.5. The resulting Mach num-
ber is then 0.13 and the Reynolds number is w,,,s/vk; = 900. We also show a comparison
with a run without regular diffusion, using just slope-limited diffusion (SLD) instead.
Below an excerpt from the ‘run.in’ file for one of the runs.

H.3 The bidiagonal scheme for cross-derivatives

165

centered, v=10"*
____ upwind, v=107*
—.—._._ SLD, v=107* s=0.9

,,,,,, SLD, v=2x107%, s=2.1
... SLD, v=0, nlf=3, s=2.6

1

Loooo;}yﬁt;i: hfﬁf?*é _&L
= ' -4 < 20[
£ 0.1000 - centered, v 17(2 1<
S upwind, v=10 ER 15F i/
3 ____SLD, v=10"* S Tp
= 0.0100F 3 02 P/ :
:\‘1\ E § 1.0 ! /
w o SLD, v=2x107° w Lo
00010§ _SLD. v=0 3 05F
0.0001 [1 1 ! 0.0 1
0.01 0.10 1.00 0.01
k/k,

0.10

k/(sk,)

1.00

Figure 34: Comparison of centered (solid lines) and upwinding (dashed lines) advection in a 5123 isother-
mal turbulence simulation forced with f, = 0.02. The computational domain is L3 with L = 27 and the
forcing wavenumber is k; = 1.5. The viscosity is v = 10~%. The dotted line gives a run without regular
diffusion, but with slope-limited diffusion (SLD) instead. In the right panel, the curves are plotted versus
k/(sk,), where k, = (ex/v>)/? is the nominal viscous cutoff wavenumber, and s is an empirical gain factor
that has been introduced to collapse the spectra in the inertial range. The maximum gain factor is 2.6,
but at the price of increasing the bottleneck.

&viscosity_run_pars
ivisc=’nu-slope-limited’,
h_sld_visc=1.0
nlf_sld_visc=3.0
nu=le-4

’nu-const’

H.3 The bidiagonal scheme for cross-derivatives

The old default scheme used for cross-derivatives of type 9%/(0z0y) used to read as fol-

lows:

df=facx(&
270.x(£(11+1
+f(11-1

- 27.x(£(11+2:

+f(11-2
+

)

2.%x(£(11+3:
+f(11-3:

:12+1 ,m+1,n,k)-f(11-1
:12-1,m-1,n,k)-f(11+1:
12+2,m+2,n,k)-f(11-2:
:12-2,m-2,n,k)-f(11+2:
12+3,m+3,n,k)-f(11-3:
12-3,m-3,n,k)-f(11+3:

:12-1,m+1,n,k)
12+1,m-1,n,k))
12-2,m+2,n,k)
12+2,m-2,n,k))
12-3,m+3,n,k)
12+3,m-3,n,k))

IR

and is “visualized” in the left part of Fig. [35l It is way more efficient than the straight-
forward approach of first taking the = and the y derivative consecutively. (shown in the

right part of Fig. [35).

-2 0 0 0 0 0 | +2 9 -27 135 | 0| -135 27 -9
0 | +27 0 0 0 2710 =27 81 -405 | 0 | 405 -81 27
0 0 2270 | 0| +270 | O 0 135 | -405 | 2025 | 0 | -2025 | 405 | -135
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 |+270 |0 | -270 0 0 -135 | 405 | -2025 | 0 | 2025 | -405 | 135
0 | -27 0 0 0 +27 1 0 27 -81 405 | 0 | -405 81 -27
+2] 0 0 0 0 0 -2 -9 27 -135 | 0| 135 -27 9

Figure 35: Weights of bidiagonal scheme (left) and consecutive scheme (right) for mixed derivatives
0?/0x0y. The numbers shown need to be divided by 720§z §y for the bidiagonal and by 3600 dx dy for

the consecutive scheme.

166 THE PENCIL CODE

Off-diagonal terms enter not only the diffusion terms through VV -« and VV - A terms,
but also through the J = V x V x A operator. The general formula is J; = A4;;; — A, j;,
so in 2-D in the zy-plane we have

Jz = Aa:,wz + Ay,zy - Az,:m: - Ax,yy = Ay,a:y - Aa:,yy 5 (249)
Jy = Ar,yw + Ay,yy - Ayﬁm - Ay,yy - Afr,yr - Ay,m (250)

0.0002 0.0002

0.0001 | 0.0001
0.0000 f 0.0000 f

~0.0001 1-0.0001

~0.0002F 1-0.0002F

Figure 36: Alfvén wave for By = (1,2,0) and k = (1, 2,0) after ¢t = 27. The wave travels in the direction of
k. Red symbols are for the bidiagonal scheme, black symbols show results obtained using the consecutive
scheme. Already for 162 mesh points there are no clear differences. For 82 mesh points both schemes are
equally imprecise regarding the phase error, but the amplitude error is still quite small (but this is mainly
a property of the time stepping scheme).

Figure [36] shows how the two schemes perform for the propagation of Alfvén waves,

i, = J,Boy— JyBos (251)
A, = —u.By,, (252)
A, = +u.B, . (253)

The initial condition (as implemented in subroutine alfven_xy) is

u, ~ cos(k,x + kyy —wt) (254)
A, ~ +Byysin(kyx + kyy — wt)/w , (255)
A, ~ —DBysin(k,z + kyy — wt)/w , (256)

where w = k - By. The figure shows that there is no clear advantage of either scheme, so
the code uses the more efficient bidiagonal one.
H.4 The 2N-scheme for time-stepping

For time stepping, higher-order schemes are necessary in order to reduce the amplitude
and phase errors of the scheme and, to some extent, to allow longer time steps. Usually

H.5 Diffusive error from the time-stepping 167

such schemes require large amounts of memory. However, we here use the memory-
effective 2/V-schemes that require only two sets of variables to be held in memory. Such
schemes work for arbitrarily high order, although not all Runge-Kutta schemes can be
written as 2N-schemes [39,[38]. Consider the ordinary differential equation (ODE)

= Flu,t), (257)

which can also be used as a prototype for a system of ODEs to be solved, like the ones
obtained by spatial discretization of PDEs. The 2 N-schemes construct an approximation
to the solution

ul™ = u(ty,) (258)

according to the iterative procedure
w; = Oo;W;—1 + 0t F(Ui_l, ti—l) N (259)
u = Ui+ Biw; . (260)

For a three-step (RK3-2N) scheme we have i = 1, ..., 3. In order to advance the variable
u from «™ at time t™ to «("*Y at time t"*tY) = t(™ 4 §t we set in Eq. (260)

uo = u'™ and, after the last step, u"*Y = us, (261)

with u; and u, being intermediate steps. In order to be able to calculate the first step,
i = 1, for which no w,_; = w, exists, we have to require a; = 0. Thus, we are left with 5
unknowns, as, a3, 51, F2, and f3. Three conditions follow from the fact that the scheme be
third order for linear equations, so we have to have two more conditions. One possibility
is to choose the fractional times at which the right hand side is evaluated, for example
(0,1/3,2/3) or even (0,1/2,1). Yet another possibility is to require that inhomogeneous
equations of the form u = t" with n = 1 and 2 are solved exactly. The corresponding
coefficients are listed in Table[17and compared with those given by Williamson [39]. In
practice all of them are about equally good when it comes to real applications, although
we found the first one in Table [17] (‘symmetric’) marginally better in some simple test
problems where an analytic solution was known. In Ref. [7] the accuracy of some non-
linear equations is tested.

Table 17: Coefficients for different 2/N-type third-order Runge-Kutta schemes. The coefficients ¢; (which
are determined by the «;, §;) give the time for each substep, t; = to + ¢;0t

scheme C1 Co C3 Qo a3 51 /82 ﬂg
symmetric 0 1/3 2/3 —2/3 —1 1/3 1 1/2
[predictor/corrector] 0 1/2 1 —1/4 —4/3 /2 2/3 1/2
inhomogeneous 0 15/32 4/9 —-17/32 -32/27 1/4 8/9 3/4
Williamson (1980) 0 4/9 15/32 —5/9 —153/128 1/3 15/16 8/15

H.5 Diffusive error from the time-stepping

In many cases we use centered first derivatives for the advection operator, so the result-
ing discretization errors are only of dispersive nature (proportional to odd derivatives). A
diffusive error can be obtained from the discretization error of the time-stepping scheme.
For the RK3-2N scheme we have

df df dn+1f
L = (= L0t 262
(dt)nth order (dt)exact e (dtn+1 * ()

168 THE PENCIL CODE

where a,, = 1/(n + 1)! = 0.5. In particular, for n = 1 we have a; = 1/2 = 0.2 and for
n = 3 we have a3 = 1/24 ~ 0.04. The advection operator leads to a diffusive error equal
to a;0t(u - V)% for n = 1 and a hyperdiffusive error equal to azdt*(u - V)* for n = 3.
Substituting 6t = coprdz/|u|, where ccpy, is Courant-Friedrich-Lewy constant, we have a
diffusive error vV? with negative v = —a;ccpr|u|dz for n = 1, and a hyperdiffusive error
—Uhyp V* With positive vy, = aszcdp|uldz® for n = 3. The fact that the hyperdiffusive
error has a positive effective hyperdiffusivity is an important factor in the choice of this
scheme.

To decide whether the effective hyperdiffusivity from the diffusive error is significant,
we can compare with the error that would occur had we used a third-order upwinding
scheme (Sect. [H.2). In that case we would have an effective hyperdiffusive coefficient
|u|dz/12 that is 1/(12a3cl ;) ~ 5.8 times larger than that from the time stepping scheme.
In this sense, the hyperdiffusive error can be regarded as small.

Since the hyperdiffusive error is proportional to —V*, we cannot directly compare with
the physical diffusion which is proportional to V2. Therefore we define an effective vis-
cosity as v = Vhypk;%y with kn, = 7/0z being the Nyquist wavenumber of the mesh
of the domain covered by N mesh points. We define Reynolds number based on the
Nyquist wavenumber as Rexy = |u|/vegkny, and find Re = —24/(weerr)? ~ 2.3 for our
favorite choice ccpr, = 0.7. Thus, at the scale of the mesh, the effective Reynolds number
is comparable to the value often obtained in simulations. However, in turbulence sim-
ulations the viscous cutoff wavenumber is usually 5-10 times smaller than kyy, so the
relevant Reynolds number at the viscous scale is then another 2—3 orders of magnitude
larger and does therefore not impose a constraint in view of the physical viscosity that
is applied in such calculations.

H.6 lonization

The specific entropy of each particle species (neutral hydrogen, electrons, protons and
neutral helium) may be written as

S; 1 Pi (T) 3/2 5
S |22 (2T 42 (263)
So (Ltot p \To 2
where
rn=1-vy, Te=2,=Y, Tiot=1+Y+The (264)
k
sp= B o= (265)
pmy kg
and 32
o mz‘XH> 266
pi = i (55 (266)
The specific entropy of mixing is
T N i (267)
So : Ttot
Summing up everything, we get the total specific entropy
s $; |, Smix Lo (TN?] 5
- 2 — A | =B (= — 268
S0 p SO_I— S0 Zx (n xT; p (To) +2 ()
; 1/T*?| 5
= ; Z; In —Z + Tiot (hl ; (TO) -+ 5 . (269)

H.7 Radiative transfer 169

Solving for T" gives

3. T s/so+ >, xilnz/p; 5

—In— = ! Inp——. 270

2 ' T, Trot ey (270)
Using this expression and the constants defined above, we may obtain the ionization

fraction y for given In p and s by finding the root of

3/2 .
F=In &<Z) Ly _ Lo (271)
p \To y? T

The derivative with respect to y for Newton-Raphson is

(9_F: §+% 8111T/T0_ 1 _2’ (279)

dy 2 T Ay l—y vy
where)

OT/Ty 5(npu/p,—F—Ty/T)—1 | 273)

dy N 1+ 9+ THe
In order to compute the pressure gradient in the momentum equation, the derivative of
y with respect to In p and s needs to be known:

dln P 1 dy oOlnT O0lnT 0y
= 1 274
dlnp 1+y+xHef)lnp+8lnp dy 81n,0+ ’ (274)
alnP: 1 @ OlnT 8lnT@‘ 275)
0s 14+ y+ xpe Os 0s dy 0Os
Since F' = 0 for all desired solutions (y, In p, s) we also have
OF OF OF
and thus 5 1 oF /o1
Y Y np
_ __9oF/omp 27
ey~ (aes) o OF/0y =70
and 0 d OF/0
Y Y S
Y_ (Y — . 2
Js (ds)d1 0 OF /0y (278)
H.7 Radiative transfer
H.7.1 Solving the radiative transfer equation
A formal solution of Eq. is given by
I(r) = I(ro)e” "™ + / e TS (Y dr' (279)
Using a generalization of the trapezoidal rule,
/6_(T_Tl)f(7'/) dr' =~ /6_(7—_7—,) |:f(7'0) + —f(:)_];_(TO) (" —719)| dr’ (280)
—To

0 70
1— —(7—70) 1 _
— [1_67(777'0)} f(T) . € (+ 7 TO)

T —T0

[f(7) = f(n0)] , (281)

170 THE PENCIL CODE

which is exact for linear functions S(7), we discretize this as

1—e97(1467)

Liyn = Lie " 4+ (1—e7") Sy — 5, (Sk+1 — Sk) (282)
—0T __ 1 5
— L+ (1—e)5 + %(sk+1 _S,). (283)
Here the simplest way to calculate J7 is
0T = % 0x ; (284)
more accurate alternatives are
0T = /XkXks1 0T (285)
or
Xk+1 — Xk
n Xk

H.7.2 Angular integration

Table 18: Sums 4r1Y;™(6;, ¢;) for special sets of directions. For all degrees and orders up to | = 8 not
mentioned in this table, the sums are 0. The label ‘Non-h. f-d.” stands for ‘non-horizontal face-diagonals’,
i.e. the eight face diagonals that are not in the horizontal plane.

Directions Y Yy v \ Y v v vt Yts
21 3 3 3 99 3 3
) = 2 °V13 —2V182 V1T /2618 —+/2431
Coord 6 0 5 V70 VI3 —oVIS V1T V218 V21310
21 3 39 39 891 27 27
Face diag. 12 = 2 ~22V13 22182 17 =V2618 ——/2431
ace Cuag 0 1 gv™ Gvis gpvis o560 V1T 25g V2018 g V24310
2 2 16 8 11 1 1
iag. S —V13 —2/182 —V1T —/2618 —+/2431
Space diag 8 0 3 3 70 9 3 5 8 9 7 o 618 £ 310
39 3 19 27 611 51 3
-h. £-d. 2 -2 2 —22V13 /182 17 ——V2618 ——/2431
Non-h.f-d. 8 V5 ; gv™ VI3 VIBZ o VIT g v20I8 pp V24310
9 4 5 3 35 3 3
) - S -Z —2V1 =2V 22618 —
Coord. z,y 4 25 5 gV VI3 ViR V1T V2018 V21310
Coord. z 2 2v/5 6 0 24/13 0 2¢/17 0 0
For angular integration over the full solid angle, we make the ansatz
dw N
/f(@,qb) e > wif(6;,6:) + Ry . (287)
P =1

Table [18 shows the sums v/47Y,"(0;, ¢;) over special sets of directions (6;, ¢;). Using these
numbers and requiring that angular integration is exact for [< [,,,,, we find the follow-
ing weights w; for different sets of directions (see also [1l], §25.4.65)

Cooling times have been determined numerically in [4]. Comparing with analytic ex-

pressions obtained in the Eddington approximation, the proposed suitable switches in
1-D and 2-D problems.

21

1. Axes
Coordinate axes: 1/6

H.7 Radiative transfer

171

lmax =3
. Face diagonals
Face diagonals: 1/12

lmax = 3

. Space diagonals
Space diagonals: 1/8
Imax = 3

. Axes + face diagonals

Coordinate axes: 1/30
Face diagonals: 1/15

lmax =3

. Axes + space diagonals

Coordinate axes: 1/15
Space diagonals: 3/40

lmax =5

. Face + space diagonals

Face diagonals: 2/15
Space diagonals: -3/40

lmax =5

. Axes, face + space diagonals

Coordinate axes: 1/21
Face diagonals: 4/105
Space diagonals: 9/280

Imax = 7

. Axes, non-horizontal face diagonals
Coordinate axes z, y: 1/10
Coordinate axes z: 1/30
Non-hor. face diagonals: 1/15
lmax =3

. Axes, non-horizontal face diagonals, space diagonals
Coordinate axes x, y: 12/215
Coordinate axes z: 10/129
Non-hor. face diagonals: -14/645
Space diagonals: 171/1720

lmax =5

172 THE PENCIL CODE

I Curvilinear coordinates

The use and implementation of non-cartesian coordinate systems is briefly explained in
Section All differential operators look like their cartesian counterparts, except that
all derivatives are now replaced by covariant derivatives. The relevant reference for the
PENCIL CODE is [33]; see their Appendix B. Here some details.

.1 Covariant derivatives

Ass = Aap — 174545, (288)

Aspy = Aapy = 1ax Asp — 17 g5 Ass (289)
Second derivative tensor

Aspy = A Moy Asp = T7g5 Ao

;84 apay T)) A)))
= Ad,éﬁ} - Faéé A&fy - FU&B,’y A& - Fod;y A&,é -+ FGOA/YFV&B A,; - FO-BA’AY Ad’& + FUB&FV(&& Az?-

Elements of the first derivative tensor

Ape = Avg, Agg=Agp+r A, Agp=Ag s+ A+ 17 cott Ay (290)
Aé;é = A(z},é B Aggdg = Aé#; —r~tcoth A¢3
Agg=Apg=r Ay Ag=Ag, (291)
o7 = Ais Apg = Asg =17 4

.2 Differential operators

All differential operators look like their cartesian counterparts, except that all deriva-
tives are now replaced by covariant derivatives.

1.2.1 Gradient

For the gradient operator the covariant and partial derivatives are the same, i.e.

oy
VU =U,=0T,= |0,V (292)
9, W
where
O = O (293)
9 = 170 (294)
9; w10, (295)
and @ = rsinf is the cylindrical radius. Thus,
VU = (V) (296)

where the superscript (0) indicated the straightforward calculation in the non-
coordinate basis. The coordinate and non-coordinate bases are related to each other

A\ /10 0
(VO)= [T 0+t 0 | (VE)rD, (297)
v,/ \o

0 wt

[.2 Differential operators 173

Here, the result in the coordinate basis is just what one would get by computing as if
one had cartesian coordinates. In the PENCIL CODE the output or the subroutine der is
now in this non-coordinate basis.
1.2.2 Divergence
For the divergence operator we have a ‘correction term’, i.e.
V- -A = A%, (298)
= A%, T4 A% (299)

where the only non-vanishing contributions to the last term are

4, A% = T% A7 4 T2 A" 4 79,540 (300)
= 2r A" 4ot A% (301)
Thus, .
vV-A= (V- A4 M4, (302)
where
. 2r—1
Mogdlv) = | rlcoth (303)
0
represents the correction term.
Alternatively:
Asa = Asa—T%aAs (304)
= Asa+ 2r L As + rteotl Ag. (305)
1.2.3 Curl
The curl operator is given by)
& _ 6apjy .
(V x B)* =e""B, 5. (306)
So
A0 = Aig
VxA=|A;— A4, (307)
é;f - f;é
VX A= Af,¢3 — Aq@,f — Fd)fqu(ﬁ (308)
Aé,f - Af,é + FeféAe
Thus,
VxA=(VxA)0+ MG, (309)
where
0 0 r'cotd
MGV =10 0 - (310)
0 r! 0

is the correction term. In the PENCIL CODE we use the subroutine curl_mn(aij,bb,aa),
which uses aij= 4, ; and aa= A4, as input pencils and produces bb= B; as output.

174 THE PENCIL CODE

1.2.4 Advection operator

[The usage of roman indices here is insignificant.]
u-Vu:wxu—l—%Vuz:—uxw—i—%Vuz

(u-Vu)i = —€jr€rmljlmg + uju;;
(=0i0jm + Oimj1)UjUmy + Ujuy;
—UjUj; + Uil + UsUj g
ujtty; + T jiugu
= uju;; + (—Fkij + iji)ujuk

Note that the terms with I, " ;;, and I s drop out. Thus, we have

(u . V'U,)f = uju,gj + (—AFkTﬁJ + Flfjf) ujuk

e _T0 2 pé 2
ujus g — IV us quqg

= wjup;—r " (uf + ui)

(w-Vu); = ujuy; + (Trkéj + ijé) UjUg

_ A ¢ 2 0 0
= ujuw—F 9¢uq;+1“f9uru9

-1 2 ~1
Uiy ; — T cotf ug + 1wy

k k
(’U,V'U,)q; = ujqu,j_’_(fr Q;j%—FjéA)ujuk
_ e b s D0y
= ujum.—i-l1 72qﬁuru(ﬁ—kf 85 gl
= ujug;+ r_lu,:uq; +r Lot ugug

Note that the formulation above is slightly misleading, because

k P 6 . . _
r 0 Uik = I ugus + 17 5 upuy =0

ijd;ujuk = F%qu&u; + Fd)fd;waqu + F%J)ud;ué + F‘bé@uéuq; =0

1.2.5 Mixed advection operator

uxXxB=uxVB= ujeijk€klmAm;l = uj(éuéjm — 5im6jl)Am;l = UJ‘AJ';Z‘ —

1.2.6 Shear term

ujAji = (ujAj)i — ujidy = (UA5)i — ujad;
uj A = uj;A; — F;“iukAj
So
ugedy = ugpdy —Tounds = ugAg

A T 0 A
uf;q;Af—ufﬁAr qu(bAr

(311)

(312)

(313)

(314)

(315)

(316)

(317)

(318)

(319)
(320)

(321)

(322)

[.2 Differential operators 175

1.2.7 Another mixed advection operator

UBA&§B = UJBAd’B — F&@B UBA&. (323)

Write out

(u-VA); =u;Ajs + uéAﬁé + uq;Af;q; upAs 7, —HLéAﬁé — ueA + u¢AT 3 — ! U$A¢3

(’u, . VA)é = u,:Aé;72 + UéAé;é + ud“)Aé;d; = u,zAéj + UéAéﬁA +r UGAT, +U¢A07¢ r 1COt(9 U({)Aqg

(’U, . VA)d‘) = UTAA(#A);72 + UéAqg;é + UQASA(Z;’({) = u,zA(Z)f + UéAdA)’é + U¢A¢¢ quAf —+ r~tcotd uggAé
Reorder

(u . VA)f = Uquﬁ’fﬁ + UGAAT:GA + UGBANZE — ! uéAé — ! U¢A¢3

(u-VA); = upAg s +ughy s +ughy g+ rt uyAi — r~tcotd ugAg

(u . VA)(;) = u,;Aq;f + UéA(z;’é + quAdg,dg + rt quA,s + r~teoth udgAé. (324)
1.2.8 Strain Matrix
The strain matrix takes the form 2s. The components of the covariant

derivative tensor were given in Eqs. (IﬁQ]I]) and @ﬁ]) so the final result reads

2u; 7 Up g+ U s — Up/T Up g+ UG — Uy /T
2s = | w;g+ug, —ug/r 2ug g + 2uz /T Up g+ usg— u¢C°t9 (325)

r

Up g+ g = UG/ g5 Ugg = ugSE 2ug g+ 2up /1 4 2up <.

The trace-less rate of strain matrix is given by

Sz’j = sij — %(5”V - Uu. (326)
1.2.9 Lambda effect
0 0 AyQ
Qij = 0 0 AyQ|, (327)
AvQ AgQ) 0

where (2 = u;/rsin 6. Next, compute Q;;;;.

Qapsy = Qaps — 1743 Qsp — 1735 Qoo (328)

Qors = Qo — F&éf Qs — T4 Qo5
= 0. (329)

Qaso = Qiog — 65 Qs — 65 Qoo
= %53 Qs5 — %35 Qs
= 0. (330)

Qips = Qusgs =05 Qag — 1734 Qoo

Qags — %5 Qas — T35 Qor — 1735 Qag
— 0. (331)

176 THE PENCIL CODE

¢ terms

ch;f;f

Q(z;ff - F&g@f Q&f - F&W Q({,&
= Qg

Qaso = Qgo5— 1735 Qo5 — 1700 Qs
= Qéé,é_rr(fé@w
= Qg+t Qg

Qose = Qags — 1738 @ — 1733 Qas
= 106 — 173 Qs

P 0 P 1)
1705 Qrg = 1755 Qag — 134 Qg — 1755 Qg

+2r P AVQ 4+ 2cot Ot A€
So, the ¢ component of the divergence of the Lambda tensor is then

Qiss = Qprs T Qpap + 3rt AvQ + 2cot Ot Apf.

1.2.10 Laplacian of a scalar
Let Ed = (V\If)@ = (9d\11 Then
2 cotd
AV = E&B = ((93\11)7[3 + ;\Ifﬂz + T\I}’é.

1.2.11 Hessian of a scalar

S.a = S,a
— G —
Sir = Sir — 1757 S.6,= S 37

R -1,
S.06 = S 06 I g5 5.0, = Sgg+ 1T S

S48 =546 F&¢3¢3 S6:= 544 — qu;q; 5., —F9¢;¢3 50,= 5 45 + 1 S 75 4t cot@s’é,

e L TO o -1
S.06 = S 7o FMS,G’_S,M TS

TP e — o el
856 =854 L3384 = 855 =T 84

— e, _T%. ¢. — <.
S.6p = S op Fefsm—s,w

or T

Sor = Sar ~ 1 g 860= 5 4
e TP g] .
So =750 1 0555 =58g5—7 COt987¢

e T e e
5.90 = 500 — L 49 5.60= 546

So,
0 —rts, —T_lsd;
—1. 1 .
505 = Sap T 0 +r sy Ar (:01;0(;97(7j
T'AA A — A A ~
0 0 1758 —1%558,

+r7 Qpg ot 01 Qag + 17 Qup + cot 017 Qup

(332)

(333)

(334)

(335)

(336)

(337)
(338)
(339)

(340)
(341)
(342)
(343)
(344)
(345)
(346)

(347)

1.2 Differential operators

177

1.2.12 Double curl

For the calculation of J = V x B we use the same curl routine, but with different argu-
ments, bij= B, ; and bb= B, as input pencils and jj= J; as output, i.e. curl-mn(bij,jj,bb),

so that o
J = Bf,ci;_BdAJf_F({)N;B? :(VXB) +M&B Bﬁ’
Bé,f - Bf,é + FeféBe
where

(& _ aBynp .
(V x B) =c 73%3

Expressing the components of (V x B)(O) in terms of A; we have

B&é:(Aéf_Are"f_PrgAe) Bygs=(Ars— Ags FA A)
Bﬁ({) = (A&é — A97¢ + e, A) Bi’f = (A AT, 0 + FGTOAO)
Bé,f = (Af,é - AqS,f —T? 7o A¢), Bf,é = (Aqs,e Ae Pl r 0¢A¢)
or
BQE,é = Aé,fé - A’r .00 + (P T9A9> Bé#]} = A;‘7¢¢ A¢ 7 (]-; 12)
Big=A345— Ao+ 5A%) 5 Bys=Agse — Aspe + ([5A%) 5
Bjs=As 50 — Agsr — (T é A¢), B ;= A4 — A9,¢9 + (T Ad))
Thus,
Bo},f} — (B)(0) + M 2cur12)A’y§ + M(lcurlQ)AW’
where
(Ba,é)(o) = €50545 55
with
\I[,ff‘ = \Il,rr
\11799 = Wy r2
U5 = Ugpr sin™?f
\Iffé \I/mg 7“_1
Uy = Ugpr =W,
U,y = U,erisin g
U = WUy rtsin ' — v rt
Vi = Voo r~?sin'0
and
Bci;,é: ...—l—FéféAé’é—l—FéfééAé Bé(z): _1"¢ A¢ _1"(25 A¢>
- b AP b Ad o Y 0 0
BMF““+FﬁM?¢+F%Mﬂ' Bw—“~+rrwir+rrwA

Note that some derivatives of Christoffel symbols vanish, so we are left with

B&é = ...+ rflAG:é B9¢ A¢

Bis=..+ r—t cotQAdA’qA5 Byi=..+ T*1A9 — 240
Bj.=..—rtA? 417249 B, ;= ...+ 71 coth A® ; — r=2sin"?0 A?

T,

(348)

(349)

(350)

(351)

(352)

(353)

(354)
(355)

(356)
(357)
(358)
(359)
(360)
(361)

(362)

(363)

178 THE PENCIL CODE

1.2.13 Gradient of a divergence

5 5
Asio Asey —Taa As s — T aasy As

7 component:

Asar Asar —T0sa Ass —Tasp As — Ta5 Aoa + T 61755 Ap
= Asar —1%sa Ass — 1Caa As
= Ajar +2r 1 App 17! cotfA; ; — 2r 2 Ay —r 2 cotfA,

6 component:

Avai = Asso—T%a A5 — 1700545 —T7 05 Asa+ 174156 As

&;60 &,60 &,
_ R -1 4 -1 o —2 204
= Aa,@e + 2r AM +r cotGAe’g r~osin “0A,

— T3 Asa + 17541755 Ap

—T%s5 Aae + T%551 a5 As.

— T Aas + 16T 56 As

(364)

- F&@é A + Fﬁdérﬂa& Ap

(365)

Note that the last four terms in the above expression canceled, because

—T° 5 Asa +T7 5T 56 As
= —rilAéf —l—r*lAM; —7’*2Aé —r

é component:

= A . —T9A . —T7 - A;—T°?

&b a,a@s 5.6+ aad ad
= A —F aaA&’dg—F d&,J)A&
= A — T4 A, 3
_ 7" T 0
= Aua 90 Ao~ F¢¢Ar¢> F¢¢A,¢
= A Py + r_lA s 4T A T4 cotHA

= Aa’o@ 4+ 2r- 1Ar’¢ +r- cotHA 0.é

Asa+ F&dqgrﬂ&a Ap

—T9 5 Aas +T7 5146 As
1 Aﬂé + rt Aé,f -+ r2 Aé =0

(366)

— Faa(j; Ad’& + F"dng”d& A

(367)

In the first line of the expression above, the last four terms vanish?d and the ¢ derivative

of any Christoffel symbol (term before that) also vanishes.

22The following four terms vanish because

s Asa+T°% 33 T%6 Ag —T% 5 Ao +T7,
- (Aaa+r aaAu*Ad,&+Fﬁd&Aﬁ)
<Z5 U R voA
= T W(A +F A — Af’¢+FAf¢AI,)
+ T (- A +r s A —Ag +T7;. Ar)
+ F(ﬁé(z)(A; 0+F ¢9 A +F f,)
é 1 l/
+ T A9¢+F9¢A — AT 55 Ay)
- rf%(—A — A, +1“"r)
+ FA$$(_AP,¢+F rqb qbr)
+ F%éq@(*A) A +F” Ap)
6 17
T Fjﬁ_Aé@*F 654 ¢9)
= T (7‘403,7‘ Aféﬁ’].—‘ T(bAﬁ)
T_l(_Af,q% AJ> Pt Fym“s Ap)
+ r1 COto(A&é—AQ@—#F‘A’é&AV)
— ! COt@(*Aé’q”5 At{’yé +Fuéqg AD) =0

a6 As

(368)

J. Switchable modules 179

J Switchable modules

The material in this section is being assembled from the file ‘inlinedoc-modules.tex’,
which is automatically assembled. However, it is currently incomplete and contains only
a small number of the available modules.

Module Description

hydro.f90 This module takes care of most of the things related to velocity.
Pressure, for example, is added in the energy (entropy) module.

chemistry.f90 This modules adds chemical species and reactions.
The units used in the chem.in files are cm3,mole,sec,kcal and K

geometrical types.f90 Collection of geometrical object types.
(Presently only rectangular toroid)

gpu_astaroth.f90 This module contains GPU related types and functions to be used
ASTAROTH nucleus.
hydro_potential.f90 This module takes care of most of the things related to velocity.
Pressure, for example, is added in the energy (entropy) module.
noentropy.f90 Calculates pressure gradient term for
polytropic equation of state p = constp'.
nogpu.f90 This module contains GPU related dummy types and functions.
nohydro.f90 no variable u: useful for kinematic dynamo runs.

nopower_spectrum.f90 reads in full snapshot and calculates power spetrum of u

noyinyang.f90 This module contains Yin-Yang related dummy types and functions.

noyinyang _mpi.f90 This module contains Yin-Yang related dummy types and functions.

particles_adsorbed.f90 This module takes care of the evolution of adsorbed
species on the particle surface for reactive particles

particles_chemistry.f90 This module implements reactive particles.

particles_surfspec.f90 immediate vicinity of reactive particles.

power_spectrum.f90 reads in full snapshot and calculates power spetrum of u

test_chemistry.f90 This modules adds chemical species and reactions.
The units used in the chem.in files are cm3,mole,sec,kcal and K

timestep.f90 Runge-Kutta time advance, accurate to order itorder.
At the moment, itorder can be 1, 2, or 3.

timestep_strang.f90 Runge-Kutta time advance, accurate to order itorder.
At the moment, itorder can be 1, 2, or 3.
Split one dt into two dt/2 steps with RK method.
Please add documentation on why this is beneficial...

timestep_subcycle.f90 This is a highly specified timestep module currently only working
together with the special module coronae.f90.

yinyang.f90 This module contains Yin-Yang related types and functions
which are incompatible with FORTRAN 95.

yinyang_mpi.f90 This module contains Yin-Yang related types and functions

180 THE PENCIL CODE

which are incompatible with FORTRAN 95.

K. Startup and run-time parameters 181

K Startup and run-time parameters

K.1 List of startup parameters for ‘start.in’

The following table lists all (at the time of writing, September 2002) namelists used
in ‘start.in’, with the corresponding parameters and their default values (in square
brackets). Any variable referred to as a flag can be set to any nonzero value to switch
the corresponding feature on. Not all parameters are used for a given scenario. This
list is not necessarily up to date; also, in many cases it can only give an idea of the
corresponding initial state; to get more insight and the latest set of parameters, you
need to look at the code.

The value ¢ corresponds to 5 times the smallest number larger than zero. For single
precision, this is typically about ¢ ~ 5 x 1.2x107" = 6x10~7; for double precision, ¢ ~

10712,
Variable [default value] Meaning
Namelist init_pars
cvsid [’ ’] the svn identification string, which allows you to
keep track of the version of ‘start.in’.
ip [14] (anti-)verbosity level: ip=1 produces lots of diagnos-

tic output, ip=14 virtually none.

xyz0 [(—7, —7, —7)],

Lxyz [(27, 27, 27)],

Iperi [(T,T,T)] determine the geometry of the box. All three are vec-
tors of the form (xz-comp., y-comp., z-comp.); xyz0 de-
scribes the left (lower) corner of the box, Lxyz the box
size. Iperi specifies whether a direction is considered
periodic (in which case the last point is omitted) or
not. In all cases, three ghost zones will be added.

Iprocz_slowest [T] if set to F, the ordering of processor numbers is
changed, so the z processors are now in the inner
loop. Since nprocy=4 is optimal (see Sect. [5.20.2),
you may want to put Iprocz_slowest=T when
nygrid>nzgrid.

Iwrite_ic [F] if set T, the initial data are written into the file ‘VARO’.
This is generally useful, but doing this all the time
uses up plenty of disk space.

Inowrite [F] if set T, all initialization files are written, including
the param.nml file, except ‘var.dat’. This option al-
lows you to use old filevar.dat files, but updates all
other initialization files. This could be useful after
having changed the code and, in particular, when the
‘var.dat’ files will be overwritten by ‘remesh.csh’.

Iwrite_aux [F] if set T, auxiliary variables (those calculated at each
step, but not evolved mathematically) to ‘var.dat’ af-
ter the evolved quantities.

Iwrite_2d [F] if set T, only 2D-snapshots are written into VAR files
in the case of 2D-runs with nygrid = 1 or nzgrid = 1.

182

THE PENCIL CODE

Iread_aux [F]

Iread_oldsnap [F]

Iread_oldsnap_nomag [F]

Iread_oldsnap_nopscalar [F]

Ishift_origin [F,F,F]

unit_system [’ cgs’]

unit_length [1]

unit_velocity [1]
unit_density [1]

unit_temperature [1]

This controls whether auxiliary variables are read
from snapshots. This is only required for configura-
tions in which the auxiliary variables are actually
not calculated at each timestep (e.g., when you set
kinematic_flow=’from-snap’ in hydro_run_pars).

if set T, the old snapshot will be read in by start.csh
before producing (overwriting) initial conditions. For
example, if you just want to add a perturbation to the
magnetic field, you'd give no initial condition for den-
sity and velocity (so you keep the data from a hope-
fully relaxed run), and just add whatever you need
for the magnetic field. In this connection you may
want to touch NOERASE, so as not to erase the previ-
ous data. Also, in filestart.in, put: ireset_tstart=0,
lread_oldsnap=T, lwrite_var_anyway=T

if set T, the old snapshot from a non-magnetic run
will be read in before producing (overwriting) ini-
tial conditions. This allows one to let a hydrody-
namic run relax before adding a magnetic field.
However, for this to work one has to modify manu-
ally ‘data/param.nml’ by adding an entry for MAG-
NETIC _INIT_PARS or PSCALAR_INIT PARS. In
addition, for idl to read correctly after the first
restarted run, you must adjust the value of mvar in
‘data/dim.dat’

if set T, the old snapshot from a run without passive
scalar will be read in before producing (overwriting)
initial conditions. This allows one to let a hydrody-
namic run relax before adding a passive scalar.

if set T for any or some of the three directions, the
mesh is shifted by 1/2 meshpoint in that or those di-
rections so that the mesh goes through the origin.
you can set this character string to ’SI’, which
means that you can give physical dimensions in SI
units. The default is cgs units.

allows you to set the unit length. Suppose you want
the unit length to be 1 kpc, then you would say unit_-
length=’3e21’. (Of course, politically correct would
be to say unit_system=’SI’ in which case you say
unit_length=’3e19’.)

Example: if you want km/s you say unit_-
length="1e5".

Example: if you want your unit density to be
107** g/cm? you say unit_density=’1e-24’.
Example: unit_temperature=’1e6’ if you want mega-
Kelvin.

K.1 Startup parameters for ‘start.in’ 183

random_gen [min_std] choose random number generator; currently valid
choices are
’system’ (your compiler’s generator),
'min_std’ (the ‘minimal standard’ generator ran0()
from ‘Numerical Recipes’),
'nr_f90° (the Parker-Miller-Marsaglia generator
ran() from ‘Numerical Recipes for F90’).

bex [Cp?, ’p?, ...)],

bey [(Cp’, ’p’, ...)],

bez [(’p?, ’p’, ...)] boundary conditions. See Sect. for a discussion
of where and how to set these.

pretend_InTT [F] selects InT" as fundamental thermodynamic variable
in the entropy module

Namelist hydro_init_pars

inituu [’ zero’] initialization of velocity. Currently valid choices are

‘zero’ (u=20),

‘gaussian-noise’ (random, normally-distributed
UgyU),

‘gaussian-noise-x’ (random, normally-distributed
Ug),

‘sound-wave’ (sound wave in x direction),

‘shock-tube’ (polytropic standing shock),

‘bullets’ (blob-like velocity perturbations),

‘Alfven-circ-x’ (circularly polarized Alfven wave
in x direction),

‘const-ux’ (constant x-velocity),

‘const-uy’ (constant y-velocity),

‘tang-discont-z’ (tangential discontinuity: veloc-
ity is directed along z, jump is at z = 0),

‘Fourier-trunc’ (truncated Fourier series),

‘up-down’ (flow upward in one spot, downward in
another; not solenoidal).

ampluu [0.] amplitude for some types of initial velocities.

widthuu [0.1] width for some types of initial velocities.

urand [0.] additional random perturbation of u. If urand>0, the
perturbation is additive, u; — u; + wanalfjo505); if
urand<0, it is multiplicative, u; — u; X Uranaldjo.5,0.5; iD
both cases, U 5.5 is a uniformly distributed random
variable on the interval [—0.5,0.5].

uu_left [0.],

uu_right [0.] needed for inituu=’shock-tube’.

Namelist density_init_pars

184

THE PENCIL CODE

initlnrho [’ zero’]

gamma [5./3]
csO [1.]

rhoO [1.]

amplinrho [0.],
widthlnrho [0.1]

rho_left [1.],
rho_right [1.]

initialization of density. Currently valid choices are

‘zero’ (Inp=0),

‘isothermal’ (isothermal stratification),

‘polytropic_simple’ (polytropic stratification),

‘hydrostatic-z-2’ (hydrostatic vertical stratifica-
tion for isentropic atmosphere),

‘xjump’ (density jump in x of width widthlnrho),

‘rho-jump-z’ (density jump in =z of width
widthlnrho),

‘piecew-poly’ (piecewise polytropic vertical strati-
fication for solar convection),

‘polytropic’ (polytropic vertical stratification),

‘sound-wave’ (sound wave),

‘shock-tube’ (polytropic standing shock),

‘gaussian-noise’ (Gaussian-distributed, uncorre-
lated noise),

‘gaussian-noise’ (Gaussian-distributed, uncorre-
lated noise in z, but uniform in y and z),

‘hydrostatic-r’ (hydrostatic radial density strati-
fication for isentropic or isothermal sphere),

‘sin-xy’ (sine profile in x and y),

‘sin-xy-rho’ (sine profile in x and y, but in p, not
In p),

‘linear’ (linear profile in k - x),

‘planet’ (planet solution; see §C.7).

adiabatic index v = ¢, /c,.

can be used to set the dimension of velocity; larger
values can be used to decrease stratification
reference values of sound speed and density, i. e. val-
ues at height zref.

amplitude and width for some types of initial densi-
ties.

needed for initlnrho=’shock-tube’.

cs2bot [1.],

cs2top [1.] sound speed at bottom and top. Needed for some
types of stratification.

Namelist grav_init_pars

zref [0.] reference height where in the initial stratification
2 =c% and Inp = In pyo.

gravz [—1.] vertical gravity component g..

gravz_profile

[’const’] constant gravity g, = gravz (gravz_profile=’const’)

z1 [0.],

gravity or linear profile g, = gravz - z (gravz_-
profile=’linear’, for accretion discs and similar).

K.1 Startup parameters for ‘start.in’ 185

z2 [1.] specific to the solar convection case
initlnrho="piecew-poly’. The stable layer is
20 < z < z1, the unstable layer z; < 2z < 29, and the
top (isothermal) layer is 25 < z < zigp.

nu_epicycle [1.] vertical epicyclic frequency; for accretion discs it
should be equal to Omega, but not for galactic discs;
see Eq. in Sect.[C.5]

grav_amp [0.], grav_tilt [0.] specific to the tilted gravity case (amplitude and an-
gle wrt the vertical direction).

Namelist entropy_init_pars

initss [’nothing’] initialization of entropy. Currently valid choices are
‘nothing’ (leaves the initialization done in the den-
sity module unchanged),

‘zero’ (put s = 0 explicitly; this may overwrite the
initialization done in the density module),
‘isothermal’ (isothermal stratification, 7' = const),

“isobaric’ (isobaric, p = const),

‘isentropic’ (isentropic with superimposed hot [or
cool] bubble),

‘linprof’ (linear entropy profile in z),

‘piecew-poly’ (piecewise polytropic stratification
for convection),

‘polytropic’ (polytropic stratification, polytropic
exponent is mpoly0),

‘blob’ (puts a gaussian blob in entropy for buoy-
ancy experiments; see Ref. [9] for details)

‘xjump’ (jump in x direction),

‘hor-tube’ (horizontal flux tube in entropy, ori-
ented in the y-direction).

pertss [’ zero’] additional perturbation to entropy. Currently valid
choices are
>zero’ (no perturbation)
‘hexagonal’ (hexagonal perturbation for convec-

tion).
ampl_ss [0.],
widthss [2¢] amplitude and width for some types of initial en-
tropy.
gradsO0 [0.] initial entropy gradient for initss=1linprof.
radius_ss [0.1] radius of bubble for initss=isentropic.

mpoly0 [1.5],
mpolyl [1.5],

186

THE PENCIL CODE

mpoly2 [1.5]

isothtop [0]
khor_ss [1.]

specific to the solar convection case
initss=piecew-poly: polytropic indices of unstable
(mpoly0), stable (mpolyl) and top layer (mpoly2). If
the flag isothtop is set, the top layer is initialized to
be isothermal, otherwise thermal (plus hydrostatic)
equilibrium is assumed for all three layers, which
results in a piecewise polytropic stratification.

flag for isothermal top layer for initss=piecew-poly.
horizontal wave number for pertss=hexagonal

Namelist magnetic_init_pars

initaa [’ zero’]

initialization of magnetic field (vector potential).

Currently valid choices are

‘Alfven-x’ (Alfvén wave traveling in the z-
direction; this also sets the velocity),

‘Alfven-z’ (Alfvén wave traveling in the z-
direction; this also sets the velocity),

‘Alfvenz-rot’ (same as ‘Alfven-z’, but with rota-
tion),

‘Alfven-circ-x’ (circularly polarized Alfven wave
in x direction),

‘Beltrami-x’ (xz-dependent Beltrami wave),

‘Beltrami-y’ (y-dependent Beltrami wave),

‘Beltrami-z’ (z-dependent Beltrami wave),

‘Bz(x)’ (B, x cos(kx)),

‘crazy’ (for testing purposes).

‘diffrot’ ([needs to be documented]),

‘fluxrings’ (two interlocked magnetic fluxrings;
see §[C.4),

‘gaussian-noise’ (white noise),

‘halfcos-Bx’ ([needs to be documented]),

‘hor-tube’ (horizontal flux tube in B, oriented in
the y-direction).

‘hor-fluxlayer’ (horizontal flux layer),

‘mag-support’ ([needs to be documented]),

‘mode’ ([needs to be documented]),

‘modeb’ ([needs to be documented]),

‘propto-ux’ ([needs to be documented]),

‘propto-uy’ ([needs to be documented]),

‘propto-uz’ ([needs to be documented]),

‘sinxsinz’ (sinxsin z),

‘uniform-Bx’ (uniform field in = direction),

‘uniform-By’ (uniform field in y direction),

‘uniform-Bz’ (uniform field in 2 direction),

‘zero’ (zero field),

K.1 Startup parameters for ‘start.in’

initaa2 [’ zero’]

amplaa [0.]
amplaa2 [0.]

fring{1,2} [0.],
Iring{1,2} [0.],
Rring{1,2} [1.],
wr{1,2} [0.3]

radius [0.1]
epsilonaa [1072]
widthaa [0.5]
z0aa [0.]

kx_aa [1.],

ky aa [1.],

kz aa[1.]
Ipress_equil [F]

additional perturbation of magnetic field. Currently
valid choices are

‘zero’ (zero perturbation),

‘Beltrami-x’ (x-dependent Beltrami wave),
‘Beltrami-y’ (y-dependent Beltrami wave),
‘Beltrami-z’ (z-dependent Beltrami wave).

amplitude for some types of initial magnetic fields.
amplitude for some types of magnetic field perturba-
tion.

flux, current, outer and inner radius of flux ring 1/2;
see Sect.

used by some initial fields.

used by some initial fields.

used by some initial fields.

used by some initial fields.

wavenumbers used by some initial fields.
flag for pressure equilibrium (can be used in connec-
tion with all initial fields)

Namelist pscalar_init_pars

initlnce [’ zero’]

initlncc2 [’ zero’]

amplincc [0.1]
ampllncc2 [0.]

kx_ Incc [1.],
ky_Incc [1.],
kz Ince [1.]

initialization of passive scalar (concentration per

unit mass, c). Currently valid choices (for In ¢) are

‘zero’ (Inc=0.),

‘gaussian-noise’ (white noise),

‘wave-x’ (wave in z direction),

‘wave-y’ (wave in y direction),

‘wave-z’ (wave in z direction),

‘“tang-discont-z’ (Kelvin-Helmholtz instability),

‘hor-tube’ (horizontal tube in concentration; used
as a marker for magnetic flux tubes).

additional perturbation of passive scalar concentra-
tion c. Currently valid choices are

‘zero’ (0lnc=0.),

‘wave-x’ (add z-directed wave to In c).

amplitude for some types of initial concentration.
amplitude for some types of concentration perturba-
tion.

wave numbers for some types of initial concentra-
tion.

187

188 THE PENCIL CODE
Namelist shear_init_pars
gshear [0.] degree of shear for shearing-box simulations (the

shearing-periodic boundaries are the z-boundaries
and are sheared in the y-direction). The shear veloc-
ityis U = —¢2zy.

Namelist particles_ads_init_pars

init_ads_mol_frac [0.]

initial adsorbed mole fraction

Namelist particles_surf init_pars

init_surf-mol_frac [0.]

initial surface mole fraction

Namelist particles_.chem_init_pars

total_carbon_sites [1.08¢ — 8]

carbon sites per surface area [mol/cm]2

Namelist particles_stalker_init_pars

dstalk [0.1]
Istalk _xx [F]
Istalk_vv [F]
Istalk_uu [F]
Istalk_guu [F]
Istalk_rho [F]
Istalk grho [F]
Istalk_ap [F]
Istalk_bb [T]
Istalk_relvel [F]

times between printout of stalker data
particles position

particles velocity

gas velocity at particles position

gas velocity gradient at particles position
gas density at particles position

gas density gradient at particles position
particles diameter

magnetic field at particles position
particles relative velocity to gas

K.2 List of runtime parameters for ‘run.in’

The following table lists all (at the time of writing, September 2002) namelists used
in file ‘run.in’, with the corresponding parameters and their default values (in square
brackets). Default values marked as [start] are taken from ‘start.in’. Any variable re-
ferred to as a flag can be set to any nonzero value to switch the corresponding feature
on. Not all parameters are used for a given scenario. This list is not necessarily up to
date; also, in many cases it can only give an idea of the corresponding setup; to get more
insight and the latest set of parameters, you need to look at the code.

Once you have changed any of the “¢. in’ files, you may want to first execute the command
pc_configtest in order to test the correctness of these configuration files, before you
apply them in an active simulation run.

Variable [default value]

Meaning

Namelist run_pars

cvsid [7]
ip [14]

nt [0]

svn identification string, which allows you to keep
track of the version of ‘run.in’.

(anti-)verbosity level: ip=1 produces lots of addi-
tional diagnostic output, ip=14 virtually none.
number of time steps to run. This number can be
increased or decreased during the run by touch
RELOAD.

K.2 Runtime parameters for ‘run.in’ 189

it1 [10]
it1d [it1]

cdt [0.9]
cdtv [0.25]
dt [0.]

dtmin [1079]
tmax [1033]

isave [100]
itorder [3]

dsnap [100.]

dvid [100.]

iwig [0]

ix [=11, iy [—11, iz [-1], iz2 [-1]

slice_position ['p’]

zbot_slice [value]

ztop_slice [value]

write diagnostic output every itl time steps (see

Sect. [5.5).

write averages every it1d time steps (see Sect.[5.8.1).

it1d has to be greater than or equal to it1.

Courant coefficient for advective time step; see §5.151

Courant coefficient for diffusive time step; see §5.15]

time step; if # 0., this overwrites the Courant time

step. See for a discussion of the latter.

abort if time step 6t < 0t .

don’t run time steps beyond this time. Useful if you

want to run for a given amount of time, but don’t

know the necessary number of time steps.

update current snapshot ‘var.dat’ every isave time

steps.

order of time step (1 for Euler; 2 for 2nd-order, 3 for

3rd-order Runge—Kutta).

save permanent snapshot every dsnap time units

to files ‘VARN’, where N counts from N = 1

upward. (This information is stored in the file

‘data/tsnap.dat’; see the module wsnaps.f90, which

in turn uses the subroutines outl and out2).

write two-dimensional sections for generation of

videos every dvid time units (not timesteps; see the

subroutines outl and out2 in the code).

if #£ 0, apply a Nyquist filter (a filter eliminating any

signal at the Nyquist frequency, but affecting large

scales as little as possible) every iwig time steps to

logarithmic density (sometimes necessary with con-

vection simulations).

position of slice planes for video files. Any negative

value of some of these variables will be overwritten

according to the value of slice_position. See § [6.7) for

details.

symbolic specification of slice position. Currently

valid choices are

'p’ (periphery of the box)

'm’> (middle of the box)

e’ (equator for half-sphere calculations, i.e. z, y
centered, =z bottom)

These settings are overridden by explicitly setting ix,

iy, iz or iz2. See § 5.7) for details.

z position of slice xy-plane. The value can be any float

number inside the z domain. These settings are over-

ridden by explicitly setting ix, iy, iz or iz2. Saved as

slice with the suffix xy. See §[6.7) for details.

z position of slice xy-plane. The value can be any float

number inside the z domain. These settings are over-

ridden by explicitly setting ix, iy, iz or iz2. Saved as

slice with the suffix xy2. See §5.7) for details.

190

THE PENCIL CODE

tavg [0]

idx_tavg [(0,0,...

d2davg [100.]
ialive [0]

bex [Cp’, ’p’,
bey [Cp’, ’p’, ..
bez [Cp’, ’p’,

D,
Il
D]

random_gen [start]

Iwrite_aux [start]

dspec[value]
oned[T]
onedall[F]

vel_spec|F]
ou_spec[F]
ab_spec[F]
xy_spec[string]

averaging time 7,,, for time averages (if # 0); at the
same time, time interval for writing time averages.
See § for details.

indices of variables to time-average. See § [5.8.4] for
detalils.

time interval for azimuthal and z-averages, i.e. the
averages that produce 2d data. See §/5.8.3|for details.
if # 0, each processor writes the current time step
to ‘alive.info’ every ialive time steps. This provides
the best test that the job is still alive. (This can be
used to find out which node has crashed if there is a
problem and the run is hanging.)

boundary conditions. See Sect. for a discussion
of where and how to set these.

see start parameters, p.

if set T, auxiliary variables (those calculated at each
step, but not evolved mathematically) to ‘var.dat’
and VAR’ files after the evolved quantities.

time unit to comput the power spectra. See sub-
sect. [5.22

if set T, the Fourier spectra is computed only in the x
direction.

if set T, the Fourier spectra is computed in all direc-
tions.

if set T, computes the velocity power spectra.

if set T, computes the power and helicity spectra.

if set T, computers the magnetic power spectra.

if set, computes extra power spectra files. For in-
stance a value of 'uz’ will generate the file ‘poweruz_-
xy .dat’, with information on wavenumbers and z po-
sitions.

Namelist hydro_run_pars

Omega [0.]

theta [0.]

ttransient [0.]

dampu [0.],
tdamp [0.],

magnitude of angular velocity for Coriolis force
(note: the centrifugal force is turned off by default,
unless lcentrifugal_force=T is set).

direction of angular velocity in degrees (¢ = 0 for z-
direction, # = 90 for the negative z-direction, corre-
sponding to a box located at the equator of a rotating
sphere. Thus, e.g., # = 60 corresponds to 30° latitude.
(Note: prior to April 29, 2007, there was a minus sign
in the definition of 6.)

initial time span for which to do something special
(transient). Currently just used to smoothly switch
on heating [Should be in run_pars, rather than here].

K.2 Runtime parameters for ‘run.in’ 191

Idamp_fade [F]

dampuint [0.],
dampuext [0.],

rdampint [0.],
rdampext [impossible],

wdamp [0.2],

ampl_force [0.],

k_fore [0.],
w_fore [0.]

damp motions during the initial time interval 0 < ¢ <
taamp With a damping term —dampu(u). If Idamp-_-
fade is set, smoothly reduce damping to zero over
the second half of the time interval tdamp. Initial ve-
locity damping is useful for situations where initial
conditions are far from equilibrium.

weighting of damping external to spherical region
(see wdamp, damp,, below).

weighting of damping in internal spherical region
(see wdamp, damp,, below).

radius of internal damping region

radius of external damping region, used in place of
former variable rdamp

permanently damp motions in || < Tqampint
with damping term —damp,intu x(r—7"dampint)
or |x| > Tdampext ~With —damping term
—damp,ext u X (T"—Tdampext), Where x(-) is a smooth
profile of width wdamp.

amplitude of the ux-forcing or uy-forcing on the verti-
cal boundaries that is of the form u_z(t) = ampl_forcx
sin(k_forc x x) x cos(w_forc = t) [must be used in
connection with bex="g’ or bcz=‘¢’ and force_lower -
bound="‘vel time’ or force_upper_bound=‘vel time’]
corresponding horizontal wavenumber
corresponding frequency

Namelist density run_pars

¢sO [start],
rhoO [start],

gamma [start]
cdiffrho [0.]

cs2bot [start],
cs2top [start]

lupw_Inrho [.false.]

see start parameters, p. [184]
Coefficient for mass diffusion (diffusion term will be

Cdiffrho 0T Csg -

squared sound speed at bottom and top for boundary
condition ‘c2’.

use 5th-order upwind derivative operator for the ad-
vection term u - V In p to avoid spurious Nyquist sig-

nal (‘wiggles’); see §H.2l

Namelist entropy run_pars

hcond0 [0.],
hcond]1 [start],

192

THE PENCIL CODE

hcond?2 [start]

iheatcond [’K-const’]

Icale_heatcond_constchi [F]

chi [0.]
widthss [start]

isothtop [start]
luminosity [0.],

wheat [0.1]
cooltype [’ Temp’]

cool [0.],

specific to the solar convection case
initss=piecew-poly: heat conductivities K in
the individual layers. hcondO is the value K, in
the unstable layer, hcond1 is the ratio K./ Kunst for
the stable layer, and hcond?2 is the ratio K.,/ Kunst
for the top layer. The function K(z) is not discontin-
uous, as the transition between the different values
is smoothed over the width widthss. If hcondl or
hcond?2 are not set, they are calculated according to
the polytropic indices of the initial profile, K o m+1.
select type of heat conduction. Currently valid
choices are
‘K-const’ (constant heat conductivity),
‘K-profile’ (vertical or radial profile),
‘chi-const’ (constant thermal diffusivity),
‘magnetic’ (heat conduction by electrons in mag-
netic field — currently still experimental).

flag for assuming thermal diffusivity x = K/(c,p) =
const, rather than K = const (which is the
default). This 1is currently only correct with
‘noionization. f90". Superseded by iheatcond.

value of x when lcalc_heatcond_constchi=T.

width of transition region between layers. See start
parameters, p.[186]

flag for isothermal top layer for solar convection case.
See start parameters, p.

strength and width of heating region.

type of cooling; currently only implemented for spher-

ical geometry. Currently valid choices are

‘Temp’,‘cs2’ (cool temperature toward 2 =
cs2cool) with a cooling term

2 2
Cs — Cscool
2

s cool

—C = —Ccool

)
‘Temp-rho’,cs2-rho (cool temperature toward ¢? =
cs2cool) with a cooling term

2 2
c; —C
S s cool
—C = —Ceool p =5 2%

s cool
— this avoids numerical instabilities in low-
density regions [currently, the cooling coeffi-
cient c.,, =cool is not taken into account when
the time step is calculated])
‘entropy’ (cool entropy toward 0.).

K.2 Runtime parameters for ‘run.in’ 193

wecool [0.1]
rcool [1.]
Fbot [start]

chi_t [0.]

lupw_ss [.false.]

tauheat_buffer [0.]
zheat_buffer [0.]

dheat_bufferl [0.]
TTheat_buffer [0.]

Ihcond_global [F]

Iread_hcond [F]

strength c.,,; and smoothing width of cooling region.
radius of cooling region: cool for || > rcool.

heat flux for bottom boundary condition ‘c1’. For
polytropic atmospheres, if Fbot is not set, it will be
calculated from the value of hcondO in ‘start.x’, pro-
vided the entropy boundary condition is set to ‘c1’.
entropy diffusion coefficient for diffusive term
0s/0t = ...+ x:V*%s in the entropy equation, that can
represent some kind of turbulent (sub-grid) mixing.
It is probably a bad idea to combine this with heat
conduction hcond0 # 0.

use 5th-order upwind derivative operator for the ad-
vection term u - Vs to avoid spurious Nyquist signal
(‘wiggles’); see

time scale for heating to target temperature
(=TTheat_buffer); zero disables the buffer zone.

z coordinate of the thermal buffer zone. Buffering is
active in |z| >TTheat _buffer.

Inverse thickness of transition to buffered layer.
target temperature in thermal buffer zone (> direc-
tion only).

flag for calculating the heat conductivity K (and
also V log K) globally using the global arrays facility.
Only valid when iheatcond=‘K-profile’.

flag for reading the conductivity profile and its
derivative from the file “hcond _glhc.dat” or “hcond. -
glhc.ascii”.

Namelist magnetic_run_pars

B_ext [(0.,0.,0.)]

lignore_Bext_in_b2 [F]
or luse_Bext_in_b2 [T]
eta [0.]

height_eta [0.],
eta_out [0.]
eta_int [0.]
eta_ext [0.]

kinflow [’]

kx [1.],

ky [11],
kz[1.]

uniform background magnetic field (for fully periodic
boundary conditions, uniform fields need to be explic-
itly added, since otherwise the vector potential A has
a linear x-dependence which is incompatible with pe-
riodicity).

add uniform background magnetic field when
computing b pencils

magnetic diffusivity n = 1/(uo0), where o is the elec-
tric conductivity.

used to add extra diffusivity in a halo region.

used to add extra diffusivity inside sphere of radius
r_int.

used to add extra diffusivity outside sphere of radius
rext.

set type of flow fixed with ‘nohydro’. Currently the
only recognized value is *ABC’ for an ABC flow; all
other values lead to u = 0.

wave numbers for ABC flow.

194 THE PENCIL CODE

ABC_A [1.],

ABC_B [1.],

ABC_C [1] amplitudes A, B and C for ABC flow.

Namelist pscalar_run_pars

pscalar_diff [0.]
tensor_pscalar_diff [0.]

reinitialize_Incc [F]

diffusion for passive scalar concentration c.
coefficient for non-isotropic diffusion of passive
scalar.

reinitialize the passive scalar to the value of cc_const
in start.in at next run

Namelist forcing run_pars

iforce [2]

iforce2 [0]
force [0.]
relhel [1.]
height_ff [0.]

r_1f[0.]

width_ff [0.5]

kfountain [5]
fountain [1.]

select form of forcing in the equation of motion; cur-

rently valid choices are

’zero’ (no forcing),

’irrotational’ (irrotational forcing),

’helical’ (helical forcing),

>fountain’ (forcing of “fountain flow”; see Ref. [17]),

’horizontal-shear’ (forcing localized horizontal si-
nusoidal shear).

’variable_gravz’ (time-dependent vertical gravity
for forcing internal waves),

select form of additional forcing in the equation of
motion; valid choices are as for iforce.

amplitude of forcing.

helicity of forcing. The parameter relhel corresponds
to o introduced in Sect. (0 = +1 corresponds to
maximum helicity of either sign).

multiply forcing by z-dependent profile of width
height _ff (if # 0) .

if #£ 0, multiply forcing by spherical cutoff profile (of
radius r_ff) and flip signs of helicity at equatorial
plane.

width of vertical and radial profiles for modifying
forcing.

horizontal wavenumber of the fountain flow.
amplitude of the fountain flow.

omega_ff [1.] frequency of the cos or sin forcing [e.g., cos(omega_-
ff*t)].
ampl ff[1.] amplitude of forcing in front of cos or sin [e.g., ampl -
ff*cos(omega ff*t)].
Namelist grav_run_pars
zref [start],

gravz [start],

gravz_profile [start]
nu_epicycle [start]

see p.[184
see Eq. (145) in Sect.[C.5

Namelist viscosity_run_pars

nu [0.]

kinematic viscosity.

K.2 Runtime parameters for ‘run.in’ 195

nu_hyper2 [0.] kinematic hyperviscosity (with V+u).

nu_hyper3 [0.] kinematic hyperviscosity (with Vou).

zeta [0.] bulk viscosity.

ivisc [’nu-const’] select form of viscous term (see §6.2); currently valid
choices are
’nu-const’ — viscous force for v = const, F . =

v(VPu+3VV - u+25-Vinp)

’rho_nu-const’ - viscous force for ;1 = pr = const,

Fus = (u/p)(V*u + 3VV - u). With this op-
tion, the input parameter nu actually sets the
value of 11/pg (rho0O=py is another input param-
eter, see pp.[184] and [197)

’simplified’ — simplified viscous force F';.
vVu

Namelist shear_run_pars

gshear [start] See p.

Namelist particles_run_pars

Idragforce_dust_par [F] dragforce on particles
Idragforce_gas_par [F] particle-gas friction force
Idraglaw_steadystate [F] particle forces only with %Av
Ipscalar_sink [F] particles consume passive scalar
pscalar_sink_rate [0] volumetric pscalar consumption rate
Ibubble [F] addition of the virtual mass term

Namelist particles_ads_run_pars

placeholder [start] placeholder

Namelist particles_surf run_pars

Ispecies_transfer [T] Species transfer from solid to fluid phase

Namelist particles_.chem_run_pars

Ithiele [T] Modeling of particle porosity by application of Thiele
modulus

Namelist power_spectrum_run_pars

inz [0] Compute the power x at a given z.

ckxrange [”] Define the k, range for power_xy.

ckyrange [”] Define the k, range for power_xy.

czrange [”] Define the z range for power_xy.

lintegrate_z [T] Compute the z-integrated power spectra.
lintegrate_shell [T] Compute the shell-integrated power spectra.
Icomplex [F] outputs the complex Fourier transform.
Icylindrical _spectra [F] Compute the cylindrical power spectra.
n_segment _x [1] not yet operational! — n_segment_x always 1
lhalf factor_in_.GW [F] if [F], the total(S)=gg2m:; if [T], total(S)= gg2m.
pdf max [30.] Maximum value of the pdf.

pdf min [-30.] Minimum value of the pdf.

pdf-min_logscale [3.0] Minimum value of the logarithmic pdf.

196 THE PENCIL CODE

pdf max_logscale [-3.0]
Iread_gauss_quadrature [F]

Maximum value of the logarithmic pdf.

if [T], generates polar coordinates in gauss-legendre
quadrature; need to provide file gauss_legendre._-
quadrature.dat

Maximum number of Legendre coefficients in the po-
lar spectrum.

legendre_Imax [1]

K.3 List of parameters for ‘print.in’

The following table lists all possible inputs to the file ‘print.in’ that are documented.

Variable Meaning
Module ‘cdata.f90’

it number of time step (since beginning of job only)
t time ¢ (since start.csh)
dt time step 0t
walltime wall clock time since start of run.x, in seconds
dtv advective timestep as a fraction of the actual one
dtdiffus diffusive timestep as a fraction of the actual one
dtdiffus2 hyperdiffusive (hyper2) timestep as a fraction of the actual

one
dtdiffus3 hyperdiffusive (hyper3) timestep as a fraction of the actual

one
Rmesh Riesh
Rmesh3 Rfﬁ’gsh
maxadvec maxadvec
eps_rkf time step accuracy threshold

Module ‘hydro.£90’
u2tm u(t) - ! u(t’)dt’>
uotm u(t) - [y w(t)dt
outm w(t) - fo w(t')dt
tkinzm ($ou’u.)
gamm (gamma)
2\1/2

gamrms (7%
gammax max(7y)
u2m (u?)
u2sphm [udV, where r = \/2? + 32 + 22
uxpt ux(xl, Y1, 21, 1)
uypt Uy (1,91, 21, 1)
uzpt u,(z1,y1, 21, 1)
uxp2 Ug (T2, Y2, 22, 1)
uyp2 Uy (22, Y2, 22, 1)
uzp2 u (T2, Y2, 22, 1)
uxuypt (uguy) (21, Y1, 21, 1)
uyuzpt Euyuzi(xl Y1, 21, 1)

uzuxpt

(J:lvylu 21,)

K.3 Parameters for ‘print.in’

197

urms
urmsx
urmsz

durms
umax
umin
uxrms
uyrms
uzrms
uxmin
uymin
uzmin
uxmax
uymax
uzmax
uxm
uym
uzm
uzex10m
uzsx10m
uduum
ux2m
uy2m
uz2m
ux3m
uy3m
uz3m
ux4m
uy4m
uz4m
u4dm
ubm
u8m
uxuy2m
uyuz2m
uzux2m
velxx2m
velxy2m
velxz2m

velxrms
TOOm
Txxm
Tyym
Tzzm
Txym
Tyzm
Tzxm
TO0x2m
TOy2m

2\1/2

212 for the hydro_zaver_range
Su2)?

u?)
max(|u|)
min(|u|)

x

()

(u2)"

min(|u;|)
min(|uy|)
min(|u,|)
max(|u,|)
max(|uy|)
max(|u,|)

u”)
u2>1/ ? for the hydro_xaver_range
u’)

2

o~ o~~~

RS

u, cos 10x)
u, sin 10z)
. ’U,>

8:1\3 :

&3:% Ngw@:w ng N:MQQM

Q@ gdk N:kagg;

~ e I e O O

<

Q
4

0)

8

N
P N

<

BISISISICISES
< N

8

/\/Pﬂ\/\/\/\/\/\/\/\/\ P P P N N Py
o’ﬂo [od]
g

198 THE PENCIL CODE

T0z2m (T2)

TOirms (T2)"?

ux2ccm (u? cos? kz)

ux2ssm (uZsin® kz)

uy2ccm <u§ C0822 k:z>

uy2ssm <uy sin kz>

uxuycsm (uzu, cos kzsin kz)

uxuym (uzuy,)

uxuzm (ugu,)

uyuzm (uyus)

umx (ug)

umy (uy)

umz (u,)

omumz <<W)zy : <U)xy> (ry-averaged mean cross helicity produc-
tion)

umamz (u),, - (A)xy>

umbmz (U),, (B)$y> (zy-averaged mean cross helicity produc-
tion)

umxbmz <<U)ay X <B)my> (ry-averaged mean emf)

rux2m (pu?)

ruy2m (pug)

ruz2m (pu?)

divum (divu)

rdivum (odivu))

divu2m ((divu)?)

gdivu2m {(grad divu)?)

u3u2lm (ugusg 1)

ulu32m <U1U,3’2>

uZul3m (uguy 3)

u2u3lm (ugus 1)

u3ulZ2m <U3U,172>

ulu23m (ugus 3)

ruxm (ou,) (mean z-momentum density)

ruym (ou,) (mean y-momentum density)

ruzm (ou,) (mean z-momentum density)

ruxtot (plu|]) (mean absolute z-momentum density)

rumax max(plu|) (maximum modulus of momentum)

ruxuym (ouzu,) (mean Reynolds stress)

ruxuzm (ouzu,) (mean Reynolds stress)

ruyuzm (ouyu,) (mean Reynolds stress)

divrhourms |V - (ow)], e

divrhoumax IV - (ow)] e

rlxm (pyu, — zuy)

rlym (pzu, — xu,)

rlzm (pruy, — yuy)

rix2m oy — zy)?)

rly2m ((pzug — zu)?)

rlz2m {(pzuy, — yuy)?)

K.3 Parameters for ‘print.in’ 199

tot_ang mom Total angular momentum in spherical coordinates about the
axis.

dtu dt/lcss 0/ max|u|] (time step relative to advective time step;
see §[6.15)

oum (w - u)

oxum (w X u)

ourms (w-u)?)?

oxurms (w x u)?)"?

ou_int Jyw-udV

fum (f - u) (continuous forcing only)

odel2um (WV?u)

02m (w?) = ((V x u)?)

02u2m (u?w?)

02sphm [, 5 s w?dV, where r = /2% + y? + 22

orms (w >1/ ?

omax max(|w|)

0x2m (w?)

oy2m (w?)

0z2m (w?)

ox3m (w3)

oy3m (wd)

0z3m (w3)

ox4m (wh)

oy4m (wi)

0z4m (w?)

oxuzxm (Wptly z)

oyuzym (Wyls y)

oxoym (Wawy)

0xozm (Wew,)

oyozm (Wyws)

qfm (q-f)

q2m (a*)

qrms (g*)"?

gmax max(|q|)

qom (g w)

quxom (@ (uxw))

gezxum (e xu)-q)

quysm (B —)7 - a)

Jjxbrqm (J xB/p)-q)

pvzm (w, +2Q/p) (z component of potential vorticity)

oumphi (w-u),

ormphi (wWr)y

opmphi (we),,

ozmphi (w:),

ugurmsx <(uVu)2>1/2 for the hydro_xaver_range

ugu2m (uVu)?

dudx (o)

Marms (u?/c?) (rms Mach number)

Mamax max |u|/c; (maximum Mach number)

200 THE PENCIL CODE
EEK (ou?) /2
EEK2 ((ou?/2)%)
EEK3 ((ou?/2)%)
EEK4 ((ou?/2)")
ekin ($0u?)
ekintot Jy s0u”dV
uxglnrym (uz0, In o)
uyglnrxm (uy 0, In o)
uzdivum (u,V - u)
uxuydivum (uzuy,V - u)
divuHrms (Vi - up)™
uxxrms Uy
uyyrms Uy’
uzzrms uyy
uxzrms Uy
uyzrms ">
uzyrms uye
dtF 0t/[cs; 6z/ max |F|] (time step relative to max force time step;
see § 5.I5) [u,.(0, ¢)Y;™(0, ¢) sin(0)dfdo
udpxxm components of symmetric tensor (u;0;p + u;0;p)
Module ‘density.f90’
rhom (0) (mean density)
rhomxmask (o) for the density xaver range
rhomzmask (o) for the density_zaver range
rho2m (0?)
rho4m)
rho6m (0%
rhol2m (0"?)
rhof2m (o)
drho2m <(0—00)*>
drhom < o— 00>
rhomin min(p)
rhomax max(p)
Inrhomin min(log p)
Inrhomax max(log p)
rhorms V< 0% >
Inrhorms < (Inp)? >
ugrhom (u- Vo)
uglnrhom (u-Vinp)
totmass Joav
mass JodV
sphmass J 0dV inside 7 < 7 giag-
inertiaxx xx component of the inertia tensor (spherical coordinates)
inertiayy yy component of the inertia tensor (spherical coordinates)
inertiazz zz component of the inertia tensor (spherical coordinates)

inertiaxx_car
inertiayy_car
inertiazz_car
vol

xx component of the inertia tensor (Cartesian coordinates)
xx component of the inertia tensor (Cartesian coordinates)
xx component of the inertia tensor (Cartesian coordinates)
[dV (volume)

K.3 Parameters for ‘print.in’ 201

grhomax max(|Vol)
Module ‘entropy.£90’

dtc dt/lcse 0,/ maxcs] (time step relative to acoustic time step;
see §[6.15)

ethm (oe) (mean thermal [=internal] energy)

ssruzm (sou./cp)

ssuzm (su,/cp)

ssm (s/cp,) (mean entropy)

ssbycpm (s/c,) (mean entropy)

ss2m ((s/cp)?) (mean squared entropy)

eem (e)

ppm (p)

ppmax max(p)

ppmin min(p)

csm (cs)

csmax max(cs)

cgam (c,)

pdivum (pV - u)

fradbot [Fyor - dS

fradtop [Fiop - dS

TTtop [TiopdS

ethtot [, 0edV (total thermal [=internal] energy)

dtchi 0t/[csiv 072 /Xmax) ~ (time step relative to time step based on
heat conductivity; see § 5.15)

Hmax H,.. (netheat sources summed see §[5.15)

tauhmin min(Theat)

dtH 0t/[csts T /Hmax] (time step relative to time step based on
heat sources; see §[6.15)

yHm mean hydrogen ionization

yHmax max of hydrogen ionization

TTm (T)

TTmax Tinax

TTmin Trin

gTmax max(|VT)

ssmax Smax

ssmin Smin

gTrms (VT)ms

gsrms (V$)rms

gTxgsrms (VT X V$)rms

gTxgsom (VT x Vs) - w)

fconvm (cpou,T)

ufpresm (—u/pVp)

Kkramersm (Kyramers)

chikrammin min(Xiramers)

chikrammax max(Xkramers)

TT2m ((T)?) (mean squared temperature)

Module ‘magnetic.f£90’
eta_tdep t-dependent 7

202 THE PENCIL CODE

ab_int [A-BdV
jb_int [j-Bdv
b2tm b(t) - [b(t)dt
bjtm b(t) - [15(t")at
jbtm 3(t) - [b(t")dt’
ujtm u(t) - fi3()dt’
jutm 3(t) - fou(t)dt
ubtm u(t) - [b(t")d
butm b(t) - [y u(t')dt
b2ruzm (B?pu.)
b2uzm (B?u.)

ubbzm ((u- B)B,)
bIm (1B])

b2m (B?

EEM <32§ /2

EEM2 ((B?/2)?
EEM3 <(BQ/2)3§
EEM4 (B*/2)*)

b4m log,, (B*)

b6m log,, (B°

b8m logy, éBsﬁ
b12m log,, (B")
logbm (log B)

bm2 max(B?)

j2m (3*)

jm2 max(5?)

abm (A-B)
gLamam (VA - A)
gLambm (VA - B)
abumx (uz A - B)
abumy (uyA - B)
abumz (u, A - B)
abmh (A - B) (temp)
abmn (A - B) (north)
abms (A - B) (south)
abrms (A-B)%)'?
jbrms ((G-B))"
jxbrms ((j x B))'/?
ajm (7-A)

Jbm (- B)

a2b2m (A”- B?)
Jj2b2m (4% B?)

jbmh (J - B) (temp)
Jbmn (J - B) (north)
jbms (J - B) (south)
ubm (u- B)

K.3 Parameters for ‘print.in’ 203

dubrms (u — B)?)"?
dobrms (w— B)2)'?
uxbxm (uzBy)

uybxm (uyB,)

uzbxm (u.By)

uxbym (ugBy)

uybym (uyBy)

uzbym (u.By)

uxbzm (uzB.)

uybzm (uyB.)

uzbzm (u.B.)

uxjxm (ugJz)

uxjym (ueJy)

uxjzm (ug,)

uyjxm (uyJy)

uyjym (uyJy)

uyjzm (uyJ.)

uzjxm (uydy)

uzjym (uzdy)

uzjzm (u,J.)

cosubm (U-B/(|U||B|))
Jybxm (JyBx)

jzbxm (j.Bx)

ijym <szy>

Jybym (JyBy)

jzbym <szy>

jxbzm (JuB2)

Jybzm (JyB:)

jzbzm (7.B.)

uam (u-A)

obm (w- B)

ujm (u-J)

fbm (f-B)

fxbxm (foBz)

epsM <Woj22

epsM2 ((niog”)?)
epsM3 ((npog”)?)
epsM4 ((npog®)*)
epsAD (p™'tap(J x B)?) (heating by ion-neutrals friction)
bxpt B (21,91, 21,1)
bypt By(w1,y1,21,t)
bzpt B.(z1,y1, 21,1)
bxbypt (B2 By) (71,1, 21,1)
bybzpt (ByB.)(z1,y1, 21, 1)
bzbxpt (B:By) (1,41, 21, 1)
Jjxpt Jo (21,91, 21, 1)
Jypt Jy(@1, Y1, 21, 1)
jzpt J(21, 91, 21, 1)
Expt Ex(T1, 1, 21, 1)

204 THE PENCIL CODE
Eypt gy<l’1 Y1, %1,)
EZpt 8Z($1,y1721,)
axpt Ax(z1,91, 21, 1)
aypt Ay(x Y1, 21,)
azpt A (71,91, 21, 1)
bXp2 Bx(SC Y2, 22, t)
byp2 By (3,12, 22, 1)
bzp2 B.(x2, Y2, 22, 1)
Jjxp2 Jo (2, Y2, 22, 1)
Jyp2 Jy (72, Y2, 22, 1)
Jjzp2 J. (72,2, 22, 1)
EXp2 gx($2,y2,22,)
Eyp2 gy(l'g,y272’2,)
Ezp2 E. (w2, Y2, 22, 1)
axp2 A (T2, Yo, 22, 1)
aypz Ay('x?vy%'z?vt)
azp2 Az (ZL‘Q, Y2, 29, t)
exabot J E x AdS|pe
exatop J E x AdS|op
emag I ﬁBQ dv
kmOEM [En(k)dk
kmlEM [kT BN (K) dE
brms <BQ>1/2
o\ 1/2
bfrms B’
bf2m B”
bf4m B"
bmax max(|B])
bxmin min(|B,|)
bymin min(|B,|)
bzmin min(|B.|)
bxmax max(|B,|)
bymax max(|By|)
bzmax max(|B,|)
bbxmax max(|B,|)excluding Buey
bbymax max(|B,|)excluding Bvey,
bbzmax max(|B,|)excluding Bvey
Jjxmax max(|jv,|)
jymasx max(|jv,
Jjzmax max(|jv,|)
. o\ 1/2
jrms
hjrms <j2>1/2
jmax ()
vA23rms <B2/Q4/3>1/2
vArms <BZ/Q>1/2
vAmax max(B?/g)'/?
dtb 0t/[cst 0x /vamax] (time step relative to Alfvén time step; see

§6.15)

K.3 Parameters for ‘print.in’ 205

dteta
dteta3

am

arms
amax
divarms
betalm
betalmax
betam
betamax
betamin
Azmid_min
Azmid max
bxm

bym

bzm

Jjxm

iym

jzm

bxbym
bxbzm
bybzm

bij_cov_diffmax

bmx
bmy
bmz
bmzS2
bmzA2
jmx
Jmy
jmz
bmzph
bmzphe

bsinphz
bcosphz

emxamz3

embmz

ambmz

0t/[csiv 002 /max) (time step relative to resistive time step;
see §[5.15)
6t /[csi vz 028 /ni¥Per] (time step relative to hyper resistive time

max

step; see §5.15)
(4%)
A2 1/2
I<nax>(|A|)
(V- A2
(B?/(2uop)) (mean inverse plasma beta)
max[B?/(2uop)] (maximum inverse plasma beta)

(8)

max 3

<BZIBZ>
difference between two implementations of covariant deriva-
tives

(energy of yz-averaged mean field)

(energy of rz-averaged mean field)

1/2
<B)iy> (energy of zy-averaged mean field)
2
(B S>xy>
2
(Ba)yy)
1/2
<<J);Z (energy of yz-averaged mean current density)
{(I)2) / (energy of zz-averaged mean current density)

1/2
(J)2 > (energy of ry-averaged mean current density)

Phase of a Beltrami field

Error of phase of a Beltrami field
sine of phase of a Beltrami field
cosine of phase of a Beltrami field

(E),, % (A)xy> (ry-averaged mean field helicity flux)

(E),, - B>$y> (zy-averaged mean field helicity production
)
<<A>zy : xy> (magnetic helicity of zy-averaged mean
field)

206 THE PENCIL CODE

ambmzh > (magnetic helicity of zy-averaged mean
ﬁeld temp)

ambmzn y> (magnetic helicity of zy-averaged mean
ﬁeld north)

ambmzs y> (magnetic helicity of zy-averaged mean
ﬁeld south)

jmbmz > (current helicity of zy-averaged mean field)

|uXB\

Rmmz ind| >xy

kx_aa k.

kmz (7)., (B,,)/ ((B),)

bx2m (B?)

by2m (B})

bz2m (B?)

bx3m (B3)

by3m (B%)

bz3m (B?)

bx4m (B

by4m (By)

bz4m (B}

Jjx2m (J2)

Jy2m (Jy)

jz2m (%)

jx4m (74

jydm ()

Jjzdm (J2)

jh2m1 (J2)

jx2m1 (J2y!

jy2m1 (7

jx2m2 (2"

jy2m2 ()"

jx2m3 (J2yM

Jjy2m3 (g™

uxbm (ux B) - By/B;§

Jjxbm (j x B) - By/B}

vmagfricmax max(1/Vmag|j x B/B?|)

vmagfricrms (1/Vinagld % B/B2|2>1/2

b3b21m (B3Bs 1)

b3b12m (B3By2)

b1b32m <BlB3’2>

b1b23m <BlBQ’3>

b2b13m (ByBy 3)

b2b31m (ByBs 1)

uxbmx ((ux B)y)

uxbmy ((u x B)y)

uxbmz ((u x B),)

Jjxbmx (7 x B)y)

K.3 Parameters for ‘print.in’

207

jxbmy
jxbmz
examx
examy
examz
exatotalmx
exatotalmy
exatotalmz
exjmx
exjmy
exjmz
dexbmx
dexbmy
dexbmz
phibmx
phibmy
phibmz
b2divum
jdel2am
jem

aem

ujxbm
WL2D
WL3D
WL3D2
bij2m
sijbibjm
ubgbpm
ugbh22m
Jjxbrmax
jxbr2m
jxbrqgm
bmxy _rms
etasmagm
etasmagmin
etasmagmax
etavamax
etajmax
etaj2max
etajrhomax
etaaniso
etaanisoBB
cosjbm
jparallelm
Jperpm
hjparallelm
hjperpm
b2sphm
brmsx

V). (,9)]7 + [(by).. (2, 9)]° + [{b-)., (z,y)]?

Mean of Smagorinsky resistivity

Min of Smagorinsky resistivity

Max of Smagorinsky resistivity

Max of artificial resistivity n ~ v,

Max of artificial resistivity n ~ J/\/p

Max of artificial resistivity n ~ J?/p

Max of artificial resistivity n ~ J/p

T

BB

(J-B/(|J]|B]))

Mean value of the component of J parallel to B
Mean value of the component of J perpendicular to B
Mean value of the component of J,.. parallel to B
Mean value of the component of ;... perpendicular to B

frT::OTdiag BQdV, where r = \/m

<B2>l/ ? for the magnetic_xaver range

208 THE PENCIL CODE
brmsz <BQ>1/ ? for the magnetic_zaver range
Exmxy (&),

Eymxy ().
Ezmxy (€.),
Module ‘pscalar.f90’
rhocem (oc)
ccmax max(c)
ccglnrm (V. 0)
Module ‘1D_loop.£90’

dtchi2 heatconduction
dtrad radiative loss from RTV
dtspitzer Spitzer heat conduction time step
gmax max of heat flux vector
qrms rms of heat flux vector

Module ‘Lambda_CDM. £90’
redshift redshift
Hubble H(a)
ascale a
Ina Ina
tph tphys

Module ‘advective_gauge.f90’

Lamm (A)
Lampt A(zl,y1, 21)
Lamp2 A(x2,9y2, 22)
Lamrms (A2)'/?
Lambzm (AB,)
Lambzmz (AB.),,
gLambm (AB)
apbrms ((A'B)?)/?
jxarms (J x A)2)'?
Jjxaprms (T x A2
jxgLamrms (J x VA)2)'?
gLamrms (VA2
divabrms (V- A)B]»)"?
divapbrms (V- AYB]2)'?
d2Lambrms ([(V2A)B])'?
d2Lamrms ([V2A]2)?

Module ‘anelastic.f90’
rhom (0) (mean density)
ugrhom (u-Vo)
mass JodV
divrhoum (V- (ou))
divrhourms IV - (ow)], .
divrhoumax IV - (ow)| s

K.3 Parameters for ‘print.in’

209

Module ‘ascale_collapse.f90’

redshift redshift z

Hubble H(a)

ascale a

Ina Ina

tph tphys
Module ‘axionSU2back.f90’

a a

phi phi

phidot phidot

H Hubbley,arameter

Q Q

Qdot Q

Qddot Q

chi X

chidot X

chiddot X

pst (G

psiL Vr

psidot U

psiddot)

TR Tr

TL T

TRdot Tr

TRddot TR

imTR STr

psi_anal gpanal

TR_anal Tanal

TReff2m |Tr|%

TReff2km k| Tr|%

TRdoteff2m |TRTR|eg

TRdoteff2km k | TRTR | off

TRpsim (TE)

TRpsikm (Th(k/a))

TRpsidotm (TEY")

TRdotpsim (T3')

TLeff2m |Tr|%s

TLeff2km k| Tr|%s

TLdoteff2m ‘ TRTR | eff

TLdoteff2km k| TrTr |eft

dgrant_up TX

grand2 T (test)

dgrant Tx

fact O(t)

kO kO

dk dk

Module ‘backreact_infl.f90’

210 THE PENCIL CODE

phim (¢)
phi2m (¢?)
phirms (p2)'/*?
dphim (¢
dphiZm ((¢")%)
dphirms (69"
Hscriptm (4% H)
Inam (Ina)
ddotam a’/a
a2rhopm a*(rho + p)
a2rhom a’rho
a2rhophim a’*rho
a2rhogphim 0.5 < gradphi® >
rho_chi Py
sigEma Py
sigBma Py
count_eb0a fEBo
Module ‘backreact_infl_before.f90’
phim (¢)
phi2m (¢?)
phirms (p)/?
dphim ()
dphi2m (6)?)
dphirms <(¢’)2>1/2
Hscriptm (4% H)
Inam (Ina)
ddotam a’/a
a2rhopm a*(rho + p)
a2rhom a’rho
a2rhophim a’rho
a2rhogphim 0.5 < gradphi® >
rho_chi Py
sigEkma Py
sigBma Py
count_eb0a fEBO
Module ‘bfield.f90’
bmax max B
bmin min B
brms (B%)1/2
bm (B)
b2m (B?)
bxmax max | B, |
bymax max | B,|
bzmax max | B, |
bxm (By,)
bym B,

{
bzm (
bx2m (

K.3 Parameters for ‘print.in’

211

by2m (B7)
bz2m (B?)
bxbym (B, By)
bxbzm (B.B.)
bybzm (ByB.)
dbxmax max | B, — Bext.x|
dbymax max | By — Bext,y|
dbzmax max |B, — Bext |
dbxm (B — Bext.z)
dbym (By — Bexty)
dbzm (B, — Bext.z)
dbx2m ((By — Bexta))
dby2m ((By — Bext y)2>
dbz2m ((B. = Bext.2)?)
jmax max J
Jjmin min J
jrms (J2)1/2
jm ()
j2m ()
JjXxmax max |J,|
Jymax max | J,|
Jjzmax max |J,|
Jxm (Jz)
Jym (Jy)
Jjzm (J2)
jx2m (2
Jy2m (T3
j2m (%)
divbmax max |V - B
divbrms (V- B)*)1/?
betamax max 3
betamin min 3
betam (B)
vAmax max vy
vAmin min vy
VAm (va)

Module ‘chemistry.£90’
dtchem dt chem
nuclrmin (Tmin)
nuclrate (J)

Module ‘chemistry_simple.f90’

dtchem dtchem

Module ‘chiral_mhd.f90’
muSm (us)
muSrms (u2)'?
muSmax max /i
mubm ()

212 THE PENCIL CODE

mu51m (lpsl)
mu53m (ud
mu54m (ud)
mubrms (u2)'?
mubmin min yus
mubmax max s
mubabs max ||
srceb5m (Ss)
gamfbm (I's)
gmubrms (Vps)2)"/?
gmuSrms (Vus)2)'?
gmubmx (Vis),
gmubmy (Vius),
gmubmz (Vis),
bgmubrms (B - Vus)?)"?
bgmuSrms (B - Vug)?)'?
mu5hjm (u5((V x B) - B))
mubhjrms ((us((V x B) - B))?)'/?
dt_lambdab min(us/B*)dz/(An)
dt_D5 (Anmax(B?))~*
dt_gammafb 1/T
dt CMW 5x/((C,C5)Y?max(|Bl))
dt_Dmu (Apmin(B?))~*
dt_vmu dx/(nmax(|us]))
dt_chiral total time-step contribution from chiral MHD
mubbxm (usBy)
mub5b2m {(usB?)
mubjbm (usdJ - B)
Jjxm (Jz)
Dmu5_tdep D(t)
Module ‘collapse.f90’
betm (B)
massm (m)
Module ‘coronae.f90’
dtchi2 0t/[csiv 07 /Xmax) (time step relative to time step based on
heat conductivity; see § [6.15)
dtspitzer Spitzer heat conduction time step
dtrad radiative loss from RTV
Module ‘cosmicray_current.f90’
ekincr (oul,
ethmcer (OcrEer)
Module ‘density_stratified.f90’
mass [pdPx
rhomin min |p|
rhomax max |p|

drhom (Ap/po)

K.3 Parameters for ‘print.in’ 213

drhoZm ((Ap/po)”)
drhorms (Ap/po)rms
drhomax max |Ap/po|
Module ‘detonate.f90’

detn Number of detonated sites (summed over time steps between

adjacent outputs)
dettot Total energy input (summed over time steps between adjacent

outputs)

Module ‘disp_current.f90’
EEEM (E* + B*) /2
erms <E2>l/ ?
eprimerms ((E")? >1/2
bprimerms ((B')?)1/2
Jjprimerms ((J)?)1/2
gam_EBrms ((v)? >1/ ?
boostprms (boost” >
.9\ 1/2

edotrms
emax max(|E|)
alOrms (A2)'/?
grms (C—V- A
daOrms (C—V- A
BcurlEm (B-V x E)
divJrms <VJ2>1/2
divErms <VE2>1/2
rhoerms (pe)l/ ?
divJm (VJ)
divEm (VE)
rhoem (pe)
count_eb0 fEBo
mfpf —f'/f
fppf f'T
afact a (scale factor)
constrainteqn < deldot E+ >
exm (E,)
eym (Ey)
ezm (E,)
sigEm (o)
sigBm (oB)
sigErms (o2)'/?
sigBrms (o)
sigEE2m (orE?)
sigBBEm (ogB - E)
adphiBm ((a/f) < ¢'B- E)
Johmrms <J2>1/2
echarge (€eft)

214 THE PENCIL CODE

ebm (E - B)
Module ‘dustdensity.f90’
KKm ST
KK2m ST
MMxm ZMi,coag
MMym ZMZ,coag
MMzm ZMZ,coag
Module ‘electroweaksu2.f90’
1/2
Wirms <W12>
1/2
W2rms <W22>
1/2
W3rms w3
Wlmax max(|W1|)
W2max max (|W?|)
W3max max(|W?|)
o\ 1/2
dWlrms <W§>
) 1/2
dW2rms <W2>
. o\ 1/2
dW3rms <W§>
dWlmax max(|W1|)
dW2max max(|Ws|)
dW3max max(|W3))
o\ 1/2
Wlddotrms T>
.9\ 1/2
W2ddotrms 2>
) 1/2
W3ddotrms <W3
divW1rms <VW12>1/2
divW2rms <VW22>1/2
divW3rms <VW32>1/2
divW2m (VW)
. 1/2
divdotW1lrms <VW12>
1/2
divdotW2rms <VW22>
. 1/2
divdotW3rms <VW32>
1/2
rhoWlrms <pW12
1/2
rhoW2rms <pW22
1/2

)
)
rhoW3rms pW32>
divdotW1lm VW1>

K.3 Parameters for ‘print.in’ 215

divdotW2m VW,
divdotW3m VW,
rhoWlm (peW 1)
rhoW2m (peW3)
rhoW3m (peW 3)
constrainteqnW < deldotW + >
Wixm (Wl
Wilym (W)
Wizm (Wh
W2xm (W?2)
W2ym (W2)
W2zm (W?2)
W3xm (W3)
W3ym (W3
W3zm (W3)
dW1xm W}
dWlym Wyl
dW1zm W}
dW2xm W2
dW2ym Wj
dW2zm W2
dW3xm w3
dW3ym Wy?’
dW3zm W
W1dotW1lm W, W,
W2dotW2m W2 . W2
W3dotW3m Wg . W3
Module ‘entropy_anelastic.f90’
dtc dt/lcse 0,/ maxcs] (time step relative to acoustic time step;
see §[5.15)
ethm (0oe) (mean thermal [=internal] energy)
ssm (s/c,) (mean entropy)
ss2m ((s/cp)?) (mean squared entropy)
eem (e)
ppm (p)
csm (cs)
pdivum (pVu)
fradbot [Fyor - dS
fradtop [Fiop - dS
TTtop [TiopdS
ethtot J,, 0edV (total thermal [=internal] energy)
dtchi 8t/[csty 072 /Xmax) ~ (time step relative to time step based on

heat conductivity; see §5.15)

216 THE PENCIL CODE

htht hT(x Y1, %1,
hhXpt hx(z1,y1, 21,

ssmxy <S>z
ssmxz (s),
Module ‘forcing.f90’
bfm (B f)
Jfm (J-f)
rufm (of -u)
ufm (f-u)
ofm (w- f)
Module ‘gravitational_waves.f90’
hhT2m (h3)
hhX2m (h%)
hhThhXm (hthx)
ggTpt gr(T1,91, 21, t)
strTpt T(I Y1, 21, 1)
strXpt Sx (1,91, 21, 1)
Module ‘gravitational_waves_hTXk.f90’

STrept ReSy(ky, ki, k1,)
STimpt ImSr(ky, by, Ky, t)
SXrept ReSx (ki, ki, ki1,1)
SXimpt ImSx (ky, ky, ky,t)
hTrept Rehp(ki, ki, ki, t)
hTimpt Imhp(ky, k1, kq,t)
hXrept Rehx (ki k1, k1, 1)
hXimpt Imhx (ky, ki, ki, t)
gTrept Rehy(ky, k1, ki, t)
gTimpt Imhr(ki, ki, ki, t)
gXrept Rehx (k1, k1, ky,t)
gXimpt Imhx (K1, k1, k1, 1)
STrep2 ReSt(ka, ko, ks, t)
STimp2 ImSy(ks, ko, k2, t)
SXrep2 ReSx (ka, ko, ko, t)
SXimp2 ImSx (K2, ks, ks, t)
hTrep2 Rehp(ks, ko, ko, t)
hTimp2 Imhy(ky, ks, ko, t)
hXrep2 Rehx (ka, kg, k2, t)
hXimp2 Imhx (ka, ko, ko, t)
gTrep2 Regr(ks, ka, ko, t)
gTimp2 Imgr(ky, ko, K, t)
gXrep2 Regx (ka, ko, ko, t)
gXimp2 Imgx (ke, ko, ko, t)
gllipt g1, y1, 21, 1)
g22pt 922($1ay17217)
833pt g33(T1, 91, 21, 1)
g12pt gi2(x1,y1, 21,)
g23pt 923(1, 91, 21, 1)
g31pt g31(71, 91, 21, 1)

t)

t)

K.3 Parameters for ‘print.in’

217

ggTpt hT(Ilythlﬂf)
ggXpt hX(x yl?'zlvt)
hth2 hT(I ’yl,Zl,t)
hhXp2 hx (z1, 91,21,)
ggTp2 hT(ST
ggXp2 (171,y1,21,)
hrms (h2 + h3)Y?
EEGW (g +g%) 2/ (327Q)
gg2m (97 + 9%)
Stgm (TgT+SX9X>
hhT2m (h2.)
hhX2m (h%)
ggT2m <g)
ggX2m (9%)
ggTXm (9rgx)
nlin0 (nlin0)
nlinl (nlinl)
nlin2 (nlm2)
h1lrms (R3,)1/?
h22rms (h2,)1/?
h33rms (h§3>1/ 2
h12rms (h2,)1/2
h23rms (h3,)1/?
h31rms (h3,)1/?
Module ‘gravitational_waves_hTXk_no_xpara.f90’
gllpt gu(xl,yl,zl,t)
822pt 922(71,y1, 21,)
833pt 933(T1, 91, 21, 1)
g12pt G12(T1, 91, 21, 1)
g23pt 923(1, 91, 21, 1)
g31pt g31(1' Y1, 21,)
htht hT(ZL’ Y1, 21,)
hhXpt hX(x Y1, 21, 1)
ggTpt hr(21, 91, 21, 1)
geXpt hx (w1, 91,21, 1)
hthZ hT(ZE Y1, 21,)
thp2 hx(l’ yl,Zl,t)
ggTp2 hT($1,y1,21,t)
ggXp2 hX('rlayl?Zla t)
hrms (h2. + h3)1/?
EEGW (g2 + g%) */ (327 @)
gg2m (97 + 9%)
hhT2m (h3.)
hhX2m (h%)
hhTXm (hrhx)
ggT2m (97)
ggX2m (9%)

218 THE PENCIL CODE

ggTXm (9r9x)
Module ‘gravitational_waves_hij6.£90’

h22rms hbs'®

h33rms hy3s

h23rms hys®

gllipt g11(z1,91, 21, 1)

822pt g22(1, 91, 21, 1)

g33pt g33(z1, 91, 21, 1)

gl2pt G12(T1, 91, 21, 1)

g23pt g23(x1, 91, 21, 1)

g31pt g31(z1,y1, 21, 1)

hhTpt hr(x1, 11, 21, 1)

hhXpt hX(5(7 Y1, 21,1)

ggTpt hT(x Y1, 21, 1)

ggXpt hx (21,91, 21, t)

hhTp2 hr(x1, 11, 21, 1)

hhXp2 hx(z1, 91, 21, 1)

ggTp2 hT(xl,thl, t)

ggXp2 h ($1,y1>zl>t)

hrms (h2. + h? >1/ 2

EEGW <g + g%) ¢*/(327G)

gg2m (97 + 9%)

hhT2m (h2)

hhX2m (h%)

hhTXm (hrhx)

ggT2m (97)

ggX2m (9%)

ggTXm (9rgx)

ggTm (97)

ggXm (9x)

hijij2m (h? i i)

gijij2m (6%

Module ‘gravity_simple.f90’
epot (0Pgrav) (mean potential energy)
epottot [y 0PgravdV (total potential energy)
ugm (u-g)
rugm (ou-g)
rgxm (092)

Wgrav Jou-gdVv
Fgravx [09, dV

Module ‘heatflux.f90’
dtspitzer Spitzer heat conduction time step
dtq heatflux time step
dtq2 heatflux time step due to tau
gmax max(|q|)
taugmax max (| Tspitzer|)

qxmin min(|q,|)

K.3 Parameters for ‘print.in’

219

qymin min(|q,|)

qzmin min(|q.|)

gxmax max(|¢|)

qymax max(|qy|)

qzmax max(|q.|)

qrms V(alP)

gsatmin minimum of gsat/qabs

gsatrms rms of gsat/abs
Module ‘hydro_kinematic.f90’

ourms (w-u)?)?

oxurms (w x w)?)'?

EEK (ou?) /2
Module ‘hydro_potential.f90’

u2tm <u(t) . fot 'u,(t’)dt/>

tkinzm (3o0uu.)

u2m (u?)

uxpt Uy (T1, Y1, 21, 1)

uypt Uy (71, Y1, 21, 1)

uzpt uz(xlaylazbt)

uxp2 Uz (T2, Yo, 22, 1)

uyp2 Uy (T2, Y2, 22, 1)

uzp2 U, (T2, Y2, 22, 1)

urms (u?)'/?

urmsx <u2>1/ ? for the hydro_xaver_range

urmsz <u2>1/ ? for the hydro_zaver_range

durms (5u?)'/?

umax max(|ul)

umin min(|u|)

uxrms (u2)'/?

uyrms <u§>1/ 2

uzrms (u2)'/?

uxmin min(|u;|)

uymin min(|u,|)

uzmin min(|u,|)

uxmax max(|u,|)

uymax max(|uy|)

uzmax max(|u,])

uxm (Ug)

uym ()

uzm (u,)

ux2m (u?)

uy2m (u2)

uz2m (u?)

ux2ccm (u? cos? kz)

ux2ssm (u?sin® kz)

uy2ccm <u§ cos? k:z>

THE PENCIL CODE

uy2ssm
uxuycsm
uxuym
uxuzm
uyuzm
umx
umy
umz

omumz

umamz

umbmz

umxbmz

rux2m
ruy2m
ruz2m
divum
rdivum
divuZ2m
gdivuZ2m
u3u2lm
ulu32m
u2ul3m
u2u3lm
u3ulZ2m
ulu23m
ruxm
ruym
ruzm
ruxtot
rumax
ruxuym
ruxuzm
ruyuzm

divrhourms
divrhoumax

rixm
rlym
rlzm
rix2m
rly2m
rlz2m

tot_ang mom

dtu

oum

(u?sin® kz)

Uy Uy cOs kzsin kz)
Uy Uy)

uxuz>

yUz)

g =

Y

/\/\/\/:\/\/\/\

z)
)
)

<
8

W),y <U)xy> (zy-averaged mean cross helicity produc-

=
=}
=}

~

w),, - (A),,)

-<B)zy> (ry-averaged mean cross helicity produc-

e
]
=]

N’

G

Doy X 5"y>z (zy-averaged mean emf)

)

o)
@Qw &Qw
~—

<
N

<
=
w

<
[N}
£
R SRl
—
o — -~

ou,) (mean z-momentum density)

ou,) (mean y-momentum density)

ou,) (mean z-momentum density)

lu|) (mean absolute x-momentum density)
ax(olu|) (maximum modulus of momentum)
(ouzu,) (mean Reynolds stress)

(ouyu,) (mean Reynolds stress)

(ouyu,) (mean Reynolds stress)

V- (ou)]|

) |max

<pyuz - Zuy)

P e e e T P P N e P N
=
w
no

S

rms

((pruy — yus)?)

Total angular momentum in spherical coordinates about the
axis.

0t/lcsy 0/ max|u|] (time step relative to advective time step;
see §

(w-u)

K.3 Parameters for ‘print.in’

221

ou_int Jyw-udV

fum (f-u)

odel2um (wV?u)

02m (w?) = ((V x u)?)

orms (w2

omax max(|w|)

0x2m {(w?)

oy2m (w2)

0z2m (w?)

oxuzxm (Wally 1)

oyuzym (wWyls y)

oxoym (wywy)

0xozm (Wew,)

oyozm (Wyws)

qfm (- f)

q2m (a%)

qrms (g*)"”?

qgmax max(|q|)

qom (q-w)

quxom (@ (uxw))

oumphi (w-u)

dudx (3t

Marms (u?/c?) (rms Mach number)

Mamax max |u|/¢; (maximum Mach number)

EEK (ou?) /2

ekin (1 0u?)

ekintot [, sou?dv

uxglnrym (uz0y1In o)

uyglnrxm (1,0 In o)

uzdivum (u,V - u)

uxuydivum (uzpuy,V - u)

divuHrms (Vi - ug)™

uxxrms (o

uyyrms Uy’

uxzrms Uy

uyzrms Uy’

uzyrms uyy

udpxxm components of symmetric tensor (u;0;p + u;0;p)
Module ‘interstellar.f90’

taucmin min(7eoo1)

Hmax_ ism max(I" — pA)

Lamm (A)

nrhom TBC

rhoLm (pA)

Gamm (T")
Module ‘klein_gordon.f90’

phim (0)

phi2m (¢?)

phirms (p2)'/*?
dphim (¢'
dphiZm ((¢")%)
dphirms (¢
psim (¥)
psi2m (¥?)
psirms (Y2)?
dpsim (/'
dpsiZm ((¥')?)
dpsirms ()"
Hscriptm (4xH)
Inam (Ina)
ddotam a’/a
a2rhopm a*(rho + p)
a2rhom a’*rho
a2rhophim a’rho
a2rhogphim 0.5 < gradphi® >
a2rhopsim a’rho
a2rhogpsim 0.5 < gradpsi® >
rho_chi Py
sigEma Py
sigBma Py
count_eb0a fEBO

Module ‘klein_gordon_philippe.f90’
phim ()
phi2m (¢?)
phirms (¢
dphim (¢
dphiZm ((¢")%)
dphirms (¢
psim (1)
psiZm (62)
psirms ()
dpsim (")
dpsiZm ((¥")?)
dpsirms ()"
Hscriptm (4% H)
Inam (Ina)
ddotam a’/a
a2rhopm a*(rho + p)
a2rhom a’*rho
a2rhophim a’*rho
a2rhogphim 0.5 < gradphi® >
a2rhopsim a’*rho
a2rhogpsim 0.5 < gradpsi® >
rho_chi Py
sigEma Py
sigBma Py

THE PENCIL CODE

K.3 Parameters for ‘print.in’

223

count_eb0a fEBO
Module ‘klein_gordon_tmp.f90’

phim (¢)
phi2m (¢?)
phirms (p2)/?
dphim (¢
dphiZm ((¢')%)
dphirms (679"
psim ()
psiZm (v2)
psirms ()2
dpsim (")
dpsiZm ((¥)?)
dpsirms ()"
Hscriptm (4% H)
Inam (Ina)
ddotam a’/a
a2rhopm a*(rho + p)
a2rhom a’*rho
a2rhophim a’*rho
a2rhogphim 0.5 < gradphi® >
a2rhopsim a’*rho
a2rhogpsim 0.5 < gradpsi® >
rho_chi Py
sigEma Py
sigBma Py
count_eb0a JEBO

Module ‘lorenz_gauge.f90’
phim ()
phipt o(xl,yl, 21)
phip2 o(22,y2,22)
phibzm (¢pB,)
phibzmz (9B.),,

Module ‘lucky_droplet.£90’
rad r / T
tauk
ttlm ()
qqlm (InT)
qQq2m (InT?)
qQq3m (InT3)
qq4m (InT%)

Module ‘magnetic_shearboxJ.f90’
ab_int JA-BdV
jb_int j j BdV
b2tm)« [y b(t)dt! >

224 THE PENCIL CODE
bjtm b(t) - [5(t")dt
jbtm 3(t) - [b(t)at
b2ruzm (B?pu.)
b2uzm (B*u.)
ubbzm ((u-B)B,)
blm {1B])
b2m (B?)
bm2 max(B?)
j2m)
jm2 max(5°)
abm (A- B)
abumx (uz A - B)
abumy (uyA - B)
abumz (u, A - B)
abmh (A - B) (temp)
abmn (A - B) (north)
abms (A - B) (south)
abrms (A-B)?)'?
jbrms ((G-B))"”
ajm (G- A)
jbm (j - B)
jbmh (J - B) (temp)
Jjbmn (J - B) (north)
jbms (J - B) (south)
ubm (u- B)
dubrms (u — B)?)"?
dobrms (w— B)2)"?
uxbxm (uyBy)
uybxm (uyBy)
uzbxm (u,By)
uxbym (uz By)
uybym (uyBy)
uzbym (u.By)
uxbzm (u.B,)
uybzm (uyB.)
uzbzm (u,B.)
cosubm (U-B/(|U||BYJ))
Jjxbxm (joBy)

Jybxm (JyBa)
Jjzbxm (7.Bx)
Jxbym (JeBy)
Jybym {3y By)
jzbym (j. B,)
Jjxbzm (1. B.)
Jybzm (JyB:)
Jzbzm (7.B.)
uam (u-A)
ujm (u-J)
fbm (f-B)

K.3 Parameters for ‘print.in’ 225

fxbxm (foBy)
epsM (o3)
epsAD {(p™'tap(J x B)?) (heating by ion-neutrals friction)
bxpt B (21,91, 21, 1)
bypt By(z1,y1,21,1)
prt Bz(wlaybzla)
.]Xpt Jm<x U, 21,)
Jypt Jy(x1,91, 21, 1)
.]Zpt JZ(Q: Y1, 21,)
Expt Eu(x1,y1, 21, 1)
Eypt Ey(w1,y1, 21, 1)
Ezpt E(x1, 91, 21, 1)
aXpt Ax (Il, Y1, 21, t)
aypt Ay(z1,91, 21, 1)
azpt A, (z1, 11, 21, 1)
bxp2 B (22,2, 22,1)
byp2 By (12, Y2, 22, 1)
bzp2 B.(x2,Ys, 22, 1)
JXpZ J$<I27y27227)
Jyp2 Jy(2, Y2, 22, 1)
Jjzp2 J. (12, Y2, 22, 1)
EXP2 gx(x2>y2az2a)
Eyp2 Ey(T2,Y2, 22, t)
EZp2 gz(xg,y2722,)
axp2 A (22, Y2, 22, 1)
ayp2 Ay(2, Y2, 22, 1)
azp2 A (332,y2,22,t)
exabot [E x AdS|po
exatop [E x AdS|p
emag Jy 5oB*dV
brms <BQ>1/2

o\ 1/2
bfrms B’
bmax max(|B])
bxmin min(|B,|)
bymin min(|By|)
bzmin min(|B,|)
bxmax max(|B,|)
bymax max(|By|)
bzmax max(|B.,|)
bbxmax max(|B;|)excluding Bvey:
bbymax max(|B,|)excludingBvey,
bbzmax max(| B, |)excluding Bvey
Jjxmax max(|jv,|)
jymasx max([v,)
Jjzmax max(|jv,|)
. .2\ 1/2
jrms J
hjrms <j2>1/2

Jjmax max(|7])

THE PENCIL CODE

vArms
vAmax

dtb
dteta

aZm
arms
amax
divarms
betalm
betalmax
betam
betamax
betamin
bxm
bym
bzm
bxbym
bmx
bmy
bmz
bmzS2

bmzA2
jmx
Jmy
jmz
bmzph
bmzphe

bsinphz
bcosphz

emxamz3

embmz

ambmz

ambmzh

ambmzn

ambmzs

< B? / Q>l/2

max(B2/0)!/?

0t/[cst 0 /va max) (time step relative to Alfvén time step; see
§B.15)

0t/[csiv 022 /nmax) (time step relative to resistive time step;
see §

(4

<A2>1/2

max(|Al)

(V- A2

(B?/(2uop)) (mean inverse plasma beta)

max[B?/(2uop)] (maximum inverse plasma beta)

(B)

max [

min 3

1/2
Z> (energy of yz-averaged mean field)

>1/2 (energy of xz-averaged mean field)

<
S~
< N
N
\/
.
~
[\
~~
®
=}
@
3
o
—
<
N
[
<
IS
’1
o
o
@
o
@
S
=
o
c
)-1
~
@
=]
[
o,
)
=}
[0)]
o
=%
%
p—

1/2
(energy of zy-averaged mean current density)

Phase of a Beltrami field

Error of phase of a Beltrami field
sine of phase of a Beltrami field
cosine of phase of a Beltrami field

(E),, % (A)xy> (ry-averaged mean field helicity flux)
(E),, $y> (zy-averaged mean field helicity production

xy (magnetic helicity of zy-averaged mean

ﬁeld)
(magnetic helicity of zy-averaged mean
ﬁeld temp)
oy (magnetic helicity of zy-averaged mean

ﬁeld north)

Bl)
B.,)
B.,)
B.,)

(magnetic helicity of zy-averaged mean
ﬁeld south)

K.3 Parameters for ‘print.in’ 227

jmbmz
kx aa
kmz

bx2m
by2m
bz2m
uxbm
Jjxbm
magfricmax
b3b21m
b3b12m
b1b32m
b1b23m
b2b13m
b2b31m
uxbmx
uxbmy
uxbmz
jxbmx
jxbmy
Jjxbmz
examx
examy
examz
exjmx
exjmy
exjmz
dexbmx
dexbmy
dexbmz
phibmx
phibmy
phibmz
b2divum
ujxbm
Jjxbrmax
Jjxbr2m
bmxy_rms
etasmagm
etasmagmin
etasmagmax
etavamax
etajmax
etaj2max
etajrhomax
cosjbm
Jjparallelm

jperpm
hjparallelm

- B)xy> (current helicity of zy-averaged mean field)

u x B) - By/B?
(§ x B) - Bo/Bj
Magneto-Frictional velocity (j x B) - B?

V). (2, 9)]? + [(by), (2, 9)* + [(b2) (x,9)]?

Mean of Smagorinsky resistivity

Min of Smagorinsky resistivity

Max of Smagorinsky resistivity

Max of artificial resistivity n ~ v,

Max of artificial resistivity n ~ J/,/p

Max of artificial resistivity n ~ J?/p

Max of artificial resistivity n ~ J/p
(J-B/(|J]|B]))

Mean value of the component of J parallel to B
Mean value of the component of J perpendicular to B
Mean value of the component of J;,,... parallel to B

228 THE PENCIL CODE

hjperpm Mean value of the component of .Jj,y,,.. perpendicular to B
brmsx <BQ>1/ ? for the magnetic_xaver_range
brmsz <B2>1/ ? for the magnetic_zaver range
Exmxy (&),
Eymxy (Ey).
Ezmxy (€.),
Module ‘maxwell.f90’

aa2m (A?)
ee2m (E?)
EEEM (B + B?)/2)
akxpt Akt
ekxpt Eka?!
sigma o
emag I ﬁBQ dv
bmax max(|B)
brms <BQ>1/ ?
arms <A2>1/ ?
erms <E2>1/ ?

1/2
bfrms <B’ 2>

Module ‘meanfield.f90’

gsm (0(B))
gpm (a,(B)) _
gem (¢e(B)), in the paper referred to as (q,(B))
qam (D))
alpm () l(where is this implemented?)
etatm (M)
EMFmz1 (E)y a
EMFmz2 (E)ay ly
EMFmz3 (E)ay |2
EMFdotBm (€-B)
EMFdotB_int JE-Bav
alpKjbm (axB - J)
alpKm (o)

Module ‘meanfield_demfdt.f90’
EMFrms ({€))rms
EMFmax max((£))
EMFmin min((£))

Module ‘neutralvelocity.f90’
epsKn (2v,0,S2)

Module ‘noentropy.£90’
dtc 0t/lcse 0,/ maxcs] (time step relative to acoustic time step;
see §(5.15)

ethm (oe) (mean thermal [=internal] energy)

pdivum (pVu)

K.3 Parameters for ‘print.in’ 229

csm (cs)
Module ‘particles_caustics.f90’
TrSigmapm (Tr [o])
blowupm Mean no. of times o falls below cutoff
InVpm Mean of (logarithm of) Volume around an inertial particle
Module ‘particles_chemistry.f90’
Shchm meanparticleSherwoodnumber
Module ‘particles_dust.f90’
Xpm Lpart
xpmin Tpart
xpmax Tpart
xp2m 7?2
p part

vrelpabsm Absolutevalueofmeanrelativevelocity
vpxm Upart

2
vpx2m Usrt
ek-inp Ekin,part
vpxmax MAX (Upart)
vpxmin MIN (wpqrt)
npm meanparticlenumberdensity

Module ‘particles_dust_brdeplete.f90’
Xpm Tpart
xp2m xfmt
vrelpabsm Absolutevalueofmeanrelativevelocity
vpxm Upart

2
vpx2m Usygrt
ek‘inp E kin,part
vpxmax MAX (Upart)
vpxmin MIN (upgrt)
npm meanparticlenumberdensity

Module ‘particles_lagrangian.f90’

xpm Tpart
xp2m
vrelpabsm Absolutevalueofmeanrelativevelocity
vpxm Upart

2
vpx2m Unprt
ekjnp Ekin,part
vpxmax MAX (Upart)
vpxmin MIN (upart)
npm meanparticlenumberdensity

Module ‘particles_mass_swarm.f90’

mpm m,
mpmin min; m,, ;
mpmax max; my, ;

Module ‘particles_surfspec.f90’

230 THE PENCIL CODE

dtpChem dtparticle,chemistry

Module ‘particles_tetrad.f90’
TVolm Mean absolute volume of the tetrads
TVolpm Mean of positive volume of the tetrads
TVolnm Mean of negative volume of the tetrads
VelVolm Mean absolute volume of the tetrads in velocity space
VelVolpm Mean of positive volume of the tetrads in velocity space
VelVolnm Mean of negative volume of the tetrads in velocity space.

Module ‘polymer.£90’

polytrm (Tr[Ci])
frmax max(f(r))

Module ‘radial_dist_func.f90’
rad r/r,
tauk Tk
tt1m (T)
qqlm (InT)
qq2m (InT?)
qq3m (InT3)
qq4m (InT%)

Module ‘reaction_0D.f90’

eem (m)
eelm (Inl)
ee2m (n*)
ee3m (n®)
eedm {(n*)
eel0 (110%)
ee50 {M50%)
ee90 (190%)
ee99 (199%)
AAm ([A])
DDm ([D])
LLm (L)
DLm ([D] + [L])
kC ke
Al Ay
A2 Ay
A3 As
A4 Ay
A5 As
D1 D,
D2 Dy
D3 D3
D4 Dy
L1 Ly
L2 Lo
L3 L

>

K.3 Parameters for ‘print.in

231

L4 Ly
L5 Ls

Module ‘rel_1d.£90’
betm (B)
betmax Bruax

Module ‘selfgravity.f90’

rugpotselfm (pu - V)
gpotself2m (VD)%)

Module ‘shear.f90’
dtshear advec_shear/cdt
deltay deltay

Module ‘shock.£90’
shockmax Max shock number

Module ‘shock_highorder.f90’
gshockmax max |VVsnock|
Module ‘solar_corona.f90’
dtvel Velocity driver time step
dtnewt Radiative cooling time step
dtradloss Radiative losses time step
dtchi2 0t/[csiv 072 /Xmax) (time step relative to time step based on
heat conductivity; see §[5.15)
dtspitzer Spitzer heat conduction time step
mag flux Total vertical magnetic flux at
Module ‘solid_cells_CGEQ.f90’
Module ‘solid_cells_ogrid_chemistry.f90’
dtchem dtehem
Module ‘solid_cells_reactive.f90’
Module ‘temperature_idealgas.f90’

TTmax max(7")
gTmax max(|VT)
TTmin min(7")
TTm (T)
TTzmask (T') for the temp_zaver _range
TT2m (T?)
TugTm (Tu-VT)
Trms (1?)
uxTm (u,T)
uyTm (u,T)
uzTm (u,T)
gT2m (VT)?)
guxgTm (Vu, - VT)
guygTm (Vu, - VT)

THE PENCIL CODE

guzgTm (Vu, - VT)
Tugux_uxugTm (Tu-Vu,+u,u-VT) = (u-V(u,T))
Tuguy uyugTm (Tu-Vu,+uu-VT) = (u-V(u,T))
Tuguz uzugTm (Tu-Vu,+u,u-VT)= (u-V(u.T))
Tdxpm (T'dp/dzx)
Tdypm (T'dp/dy)
Tdzpm <po/ dz)
fradtop —K >, (top radiative flux)
fradbot < K >t (bottom radiative flux)
yHmax DOCUMENT ME
yHmin DOCUMENT ME
yHm DOCUMENT ME
ethm (eh) = (cupT) (mean thermal energy)
eem (e) = (¢, T) (mean internal energy)
ethtot [, 0edV (total thermal energy)
ssm S
thcool Teool
ppm P
csm Cs
csmax max(cs)
dtc 0t/lcse 0,/ maxcs] (time step relative to acoustic time step;
see §
dtchi 0t/[csiv 072 /Xmax) (time step relative to time step based on
heat conductivity; see §5.15)
Module ‘temperature_ionization.f90’

TTmax max(7")
TTmin min(7")
TTm (T)
ethm (etn) = (cu,pT) (mean thermal energy)
eem (e) (mean internal energy)
ppm (p)
Tppm <max(pthresh — D, 0>norm>
heatThm aTh
TTref Tt

Module ‘test_chemistry.f90’
dtchem dtchem

Module ‘testfield_axisym.£90’

alpPERP oy
alpPARA oy
gam v
betPERP B
betPARA B
del)
kapPERP Kl
kapPARA Kl
mu o
alpPERPz a) (2)
alpPARAz ay (z)

K.3 Parameters for ‘print.in’

233

gamz (2)
betPERPz B1(z)
betPARAz B1(z2)
delz i(z2)
kapPERPz k1 (2)
kapPARAz K1 (z)
muz w(z)
bx1pt bl
bx2pt b2
bx3pt v
blrms (B2)'/?
b2rms (2)'?
b3rms (b2)!?
Module ‘testfield_axisym2.£90’
alpPERP oy
alpPARA o)
gam g
betPERP B
betPARA B
del J
kapPERP Kl
kapPARA Kl
mu 0
bx1pt bl
bx2pt b2
bx3pt b3
blrms (b2)"/?
b2rms (B2)"?
b3rms (B2)?
Module ‘testfield_axisym4.f90’
alpPERP oy
alpPARA o)
gam v
betPERP B
betPERP2 2
betPARA B
del J
del2 5@
kapPERP K1
kapPERP2 KD
kapPARA Kl
mu v
mu2 2
alpPERPz al(z)
alpPARAz ay (z)
gamz v(2)
betPERPz B1(z2)

234 THE PENCIL CODE
betPARAz B1(z)
delz 0(2)
kapPERPz K1 (2)
kapPARAz K1 (z)
muz w(z)
bx1pt bl
bx2pt b2
bx3pt b3
blrms (b2)'/?
b2rms <b§>1/ 2
b3rms (B2)'?
Module ‘testfield_compress_z.f90’
a1p11 11
alp21 21
alp31 sy
alp12 o9
alp22 099
alp32 Q3o
etall mk
eta2l o1k
etal2 7]12/{3
eta22 Mook
alpK a
alpM aM
alpMK aME
phill P11
phi2l P21
phil2 P12
phi22 P22
phi32 P32
pSlll ’Lpn]{?
pSl21 ﬂ)glk’
psil2 P12k
p5'122 wggk’
sigl o1
sig2 lop
sig3 03
taul on
tau2 T9
phiK o
phiM oM
phiMK pME
alpllcc aqq cos® kz
alp21sc o1 sinkz cos kz
alp12cs g coskzsinkz
alp22ss Qg sin? kz
etallcc N1 cos? kz
eta2lsc 791 sin kz cos kz
etalZcs M12 cos kz sin kz

K.3 Parameters for ‘print.in’ 235

eta22ss Moo sin? kz
s2kzDFm (sin2kzV - F)
Mi1 M
M22 Moy
M33 Mss
Mi1lce My cos? kz
M11ss My sin? kz
M22cc Moy cos? kz
M22ss My sin? kz
M12cs Miscoskzsinkz
bx11pt bt
bx21pt b2
bx12pt b2
bx22pt b2
bxOpt b0

11
by2ie i
by12pt bzl/2
by22pt bg2
byOpt b0

Y
ullrms (u?))?
u2lrms (u2,)"?
ul2rms (u2,)?
u22rms (u2,)'?
hllirms (h2)'"?
h21rms (h2)'?
h12rms (h2,)'/?
h22rms (h2,)'?
j1irms ()2
bl1rms (B2)?
b21rms (2,)?
b12rms (b2,)"*
b22rms (B2,)"?
uxOm Ug,
uyOm 2u0y>>
uxllm (u11,)
lly.l Im <U11y>
uOrms (u2)'"?
bOrms (B2)?
hOrms (h2)'?
rhoOm (exp ho)
uOmax max |u|
bOmax max |by|
hOmax max hg
bhrms (B2)"/?
JbOm (Jbo)

Ellrms (&2)?

236 THE PENCIL CODE

E21rms (€3)
E12rms (E2)'?
E22rms (E2)'*
EOrms (E)'?
EOmrms (£
EOxrms <€§7x>1/ ?
EQyrms <€§7y>1/2
Ex11pt el
Ex21pt e
Ex12pt &L
Ex22pt E22
ExOpt o
Eylipt &l
Ey21pt S
Eyl12pt £,
Ey22pt EF
EyOpt &)
bamp bamp
E11lz gl
E211z el
E311z en
E121z £
E221z e
E321z 21
E1127 £l
E2127 £l
E312z g2
E122z £22
E2227 £2
E322z £22
alpllz ag1(z,t)
alp21z a9 (z,t)
alp12z aga(z,t)
alp22z (2, t)
etallz mi(z,1t)
eta2lz 21 (Z, t)
etal2z ma(z,t)
eta22z N2 (2, t)
E10z £y
E20z &Y
E30z £
EBpq E- B
EOUm E-U
EOWm E-w
bx0mz (0s) 4,
byOmz (0y) 4y
bzOmz (02) 4,
M11z <M 11>xy
M22z <M22>$y

K.3 Parameters for ‘print.in’ 237

M33z <M 33 > zy
Module ‘testfield_meri.f90’
E1 le E1 1zy
E12Xy Eley
E13xy E3y
E21xy Eogy
E22X_Y E22$y
E23X_Y Eggzy
E31xy E31ay
E32xy Es94y
E33xy Essey
E41X_Y E41$y
E42Xy E42$y
E43Xy E43$y
E51xy Esiay
E52xy Esouy
E53xy Essey
E61X_Y EGlxy
E62xy Eeoay
E63Xy E@gzy
E71xy Er1ay
E72xy Erouy
E73X_Y E73:By
E81xy Eg;
E82xy Egs
E83Xy E83
E91xy Eg,
E92X_Y E92
E93Xy E93
allxy 11
al2xy 12
al3xy o3
aley Q91
a22xy 99
a23xy Q93
a3 lxy 31
a32xy 39
a33xy o33
b11lxy _111
b121xy _121
b131xy _131
b211xy 211
b221xy 221
b231xy 231
b311xy 311
b321xy 321
b331xy _331
b112xy _112

b122xy _122

238 THE PENCIL CODE

b132xy _132
b212xy 212
b222xy 222
b232xy 232
b312xy 312
b322xy 322
b332xy _332
Module ‘testfield_nonlin_z.f90’
alpll o
alp21 Qa1
alp31 a1
alp12 o
alp22 99
alp32 sy
etall m1k
eta2l o1k
etal2 7]12/{3
eta22 77221{3
alpK af
alpM aM
alpMK aME
phill P11
phi21 Pa1
phil2 P12
phi22 P22
phi32 P32
psill Y1k
pSlZl wglk
psil2 Yok
psi22 Yook
phiK ot
phiM oM
phiMK pME
alpllcc o cos® kz
alp21sc o1 sinkz cos kz
alp12cs g coskzsinkz
alp22ss Qe sin? kz
etallcc N1 cos? kz
eta2lsc 791 sin kz cos kz
etalZcs M12 cos kz sin kz
eta22ss Moo sin? kz
s2kzDFm (sin2kzV - F)
M11 My,
M22 Mo
M33 M
Millce M cos? kz
M11ss My sin? kz
M22cc My cos? kz

M22ss Moo sin? kz

K.3 Parameters for ‘print.in’ 239

M12cs
bx11pt
bx21pt
bx12pt
bx22pt
bx0pt
by1lpt
by21pt
by12pt
by22pt
byOpt
ullrms
u2lrms
ulZ2rms
u22rms
jllrms
bllrms
b21rms
b12rms

b22rms
uxOm
uyOm
uxllm
uyllm
uOrms
bOrms
uOmax
bOmax
jbOm
ubOm
ujOm
Ellrms
E21rms
E12rms
E22rms

EOrms
Ex11pt
Ex21pt
Ex12pt
Ex22pt
ExOpt
Eylipt
Ey21pt
Ey12pt
Ey22pt
EyOpt
bamp
Elllz

My coskzsinkz
bl
b2
bl2
b2

=

—

240

THE PENCIL CODE

E211z EN

E311z &

E121z It

E221z EX

E321z EA

E112z &2

E212z &2

E312z &2

E122z £z

E222z £

E322z Ex

E10z &Y

E20z &Y

E30z &Y

EBpq - B

E0Um U

EOWm W

bx0Omz (0s) 4y

byOmz (0y) 4y

bzOmz (02) 4,

Ml11z <M 11>xy

M22z <M22>$y

M33z <M33>xy
Module ‘testfield_x.f90’

alpll o1

alp21 91

a1p31 31

a]p12 192

alp22 99

alp32 39

etall mk

eta2l o1k

etal2 7]12/{3

eta22 Mook

alpllcc o cos? kx

alp21sc Qo1 sin kx cos kx

alp12cs o cos kx sin kx

alp22ss Qo sin? kx

etallcc N1 cos® kx

eta2lsc 121 Sin kx cos kx

etalZcs 112 cos kx sin kx

eta22ss N9 sin? ka

a]pl 1x 11T

alp21 x 9T

alpl2 x 19T

alp22_x 9o

etall x mikx

eta2l x 121 kx

etal2 x Nokx

K.3 Parameters for ‘print.in’

241

eta22 x Mook
alp11_x2 a2
alp21_x2 Qo 2
alp12.x2 o T?
alp22_x2 Q912
etall x2 7]11]€$2
eta2l_x2 N1 ka?
etal2 x2 niokx?
eta22 x2 Nookx?
b1lrms (b2,
b21rms (B2)"?
b12rms (b2,)"?
b22rms (b2,)"*
bOrms (B2)"?
Ellrms ()"
E21rms (E2)"?
E12rms (EL?
E22rms (E2)V'?
EOrms (&)
El11z e
E211z en
E311z g
E121z £
E2217 £
E321z 21
E112z g2
E2122 g2
E312z g2
E1227 £2
E2227 £2
E322z £22
E10z &Y
E20z &9
E30z &9
EBpq - B
bx0Omz (02)
byOmz (by) 4,
bzOmz (02) 4
alpllx agp(x,t)
alp21x ag (z,t)
a]p12X 0412(13, t)
alp22x age(x,t)
etallx mi(z,t)
eta2lx 21 (27, t)
etal2x Ma(z,t)
eta22x Moz (7, 1)
Module ‘testfield_xz.f90’
El1lz g

242 THE PENCIL CODE
E211z EN
E311z &
E121z It
E221z EX
E321z EA
a1p11 a1
a1p21 91
etall 77113k?
eta2l 7’]213]{3
b1lrms (b3,)
b21rms (b3,)
Module ‘testfield_z.f90’
a]pll 11
a]p21 91
a1p31 31
alp12 19
a]p22 99
a1p32 Q39
31p13 13
a1p23 Q93
etall N3k or nyk if leta_rank2=T
eta2l M213k or no1k if leta_rank2=T
eta3dl 77313]€
etal2 N2sk or ok if leta_ rank2=T
eta22 Mook or maok if leta_rank2=T
eta32 7”]323]@'
alplicc aqp cos® kz
alp21sc o1 sin kz cos kz
alp12cs g coskzsinkz
alp22ss Qoo sin® kz
etallcc N1 cos? kz
eta2lsc Mo1 sin kz cos kz
etalZcs Mo cos kzsin kz
eta22ss oo sin® kz
s2kzDFm (sin2kzV - F)
M11 My,
M22 Moy
M33 Mss
Mi1lce My cos® kz
M11ss My sin? kz
M22cc My, cos? kz
M22ss Mo sin? kz
M12cs Migcoskzsinkz
bx11pt bt
bx21pt b2
bx12pt b2
bx22pt b2
bxOpt b2
byllpt b,

K.3 Parameters for ‘print.in’

243

by21pt
by12pt
by22pt
byOpt
bllrms
b21rms
b12rms
b22rms
bOrms
jbOm
Ellrms
E21rms
E12rms
E22rms

EOrms
Ex11pt
Ex21pt
Ex12pt
Ex22pt
ExOpt
Eylipt
Ey21pt
Ey12pt
Ey22pt
EyOpt
bamp
alpllz
alp21z
alp12z
alp22z
alp13z
alp23z
etallz
etaZ2lz
etal2z
eta22z
uzjxlz
uzjylz
uzjzlz
uzjx2z
uzjy2z
uzjz2z
uzjx3z
uzjy3z
uzjz3z
uzjx4z
uzjy4z
uzjz4z

244 THE PENCIL CODE
Elllz en
E211z e
E311z en
E121z g1
E2217 £
E321z £
E112z g2
E212z £l
E312z g2
E1227 £2
E2227 £22
E3222 £22
E10z &Y
E20z &Y
E30z £
EBpq - B
EOUm U
EOWm W
bx0Omz (0s) 4,
byOmz (by)
bzOmz (02)
Ml11z <M11> zy
M22z <M22> zy
M33z <./\/l33 Ty
Module ‘testflow_z.£f90’
gal GAL-coefficients, couple I and U
aklam AKA-)\-tensor, couples Fand W =V x U
gamma ~v-vector, couples F and V - U
nu v-tensor, couples F and 02U /02>
zeta ¢-vector, couples F and G, = V. H
xi ¢-vector, couples F' and 9%2H /02?
aklamQ aklam®@-vector, couples Q and W
gammag@ y@-scalar, couples Q and V - U = dU., /dz
nu@Q v@-vector, couples Q and 9°U /0>
zetaQ (“?-scalar, couples Q and G,
xiQ ¢@-scalar, couples () and 0?H /02>
aKij Vi Vij CZ fz I/iQ ak:lam? ./T‘Z)q qu <qu2> <hpq2>
uxOmz (Uz) 4,
uyOmz (Uy)
uzOmz (Uz) gy
Module ‘testperturb.£90’
a1p11 a1
alp21 91
alp31 sy
a]p12 Q19
alp22 99
alp32 Qg0
etall Mmisk

K.3 Parameters for ‘print.in’ 245

eta2l 7]213k’
eta3l 7’]313]43
etal2 N123k
eta22 77223]{3
eta32 n323k
Module ‘testscalar.f90’

gamll A
gaml2 751)
gamls3 7:5,1)
gam21 7
gam22 752)
gam23 7?()2)
gam3l %3)
gam32 753)
gama33 7§3)
kapl11 K11
kap21 K91
kap31 K31
kap12 K12
kap22 K929
kap32 K39
kap13 K13
kap23 K23
kap33 K33
gamllz fyfl)(z,t)
gaml2z 751) (z,1)
gaml13z fyél) (z,1)
gam21z 752) (z,1)
gam22z 752) (z,1)
gam23z %()2) (z,1)
gam31lz %3) (z,1)
gam32z 753) (z,1)
gam33z 7:&3) (z,1)
kapllz K11(z,t)
kap21z Ko1(z,t)
kap31z K31(z,t)
kap12z Ki2(z, 1)
kap22z Koo (2, 1)
kap32z K32 (Z, t)
kap13z K13(z, 1)
kap23z Ras(z,1)
kap33z K33 (Z, t)
mgama33 Y33
mkap33 K33
ngam33 ’3/33
nkap33 /%33

clrms (cF

246 THE PENCIL CODE
c2rms (2)'?
c3rms (2)?
c4rms (2)?
cbrms (2)'?
c6rms (e2)'?
clpt ct
c2pt c?
c3pt c3
cdpt ct
c5pt cd
c6pt b
Fl1z F}
F21z Fl
F31z b2
F12z Fi
F22z F2
F32z F?

Module ‘testscalar_axisym.f90’
mucl pteh)
muc2 ple?
gamc A©)
kapcPERPI1 K
kapcPERP2 2
kapcPARA K|
mucz p9(z,)
gamcz YO (z,t)
kapcPERPz K1(z,t)
kapcPARAz ry|(2,1)
gamll %1)
gam12 A
gaml3 %())1)
gam21 42
gam22 752)
gam23 7?()2)
gam3l 753)
gam32 753)
gam33 7§3)
kapl11 K11
kap21 Ko1
kap31 K31
kap12 K12
kap22 K99
kap32 K32
kap13 K13
kap23 Ko3
kap33 K33
gamllz (2, 1)

K.3 Parameters for ‘print.in’ 247

gaml2z (2,1
gaml3z 7?()1) (z,1)
gam21z %2) (z,1)
gam22z 752) (z,1)
gam23z 7§2) (z,1)
gam31z 73 (z,1)
gam32z 753) (z,1)
gam33z 7§3) (z,1)
gam3z 7 (z,t)
kapllz k112,)
kapZIZ Ko1 (Z, t)
kap31z r31(z,t)
kap12z K12(2,t)
kap22z Koo (2,t)
kap32z K32(2,t)
kap13z K13(z,t)
kap23z Kas(z,t)
k3p33Z K33 (Z, t)
mgam33 ’3/33
mkap33 K33
ngama33 33
nkap33 K33
clrms (2)'?
c2rms (2)'/?
c3rms (2)'/?
c4rms (2)?
cbrms (2)'?
c6rms (c2)'/?
clpt cl
c2pt c?
c3pt c?
cdpt ct
chpt cd
c6pt o
Fllz 7l
F21z 7!
F31z F
F12z Fi
F227 F3
F32z F3
Module ‘testscalar_simple.f90’

gam11 ~{1
gamil2 751)
gaml3 yél)
gamZ21 %2)
gam22 P

)

gam23 Y3

248 THE PENCIL CODE

gam3l "
gam32 753)
gama33 7?()3)
kapll K11
kap21 Ko1
kap31 K31
kap12 K12
kap22 K92
kap32 K39
kap13 K13
kap23 K23
kap33 K33
gamllz v (z,1)
gaml2z yél) (z,1)
gaml3z 7?()1) (z,1)
gam21z v (2, 1)
gam22z 752) (z,1)
gam23z 7§2) (z,1)
gam31z 753) (z, 1)
gam32z 753) (z,1)
gam33z 7§3> (z,1)
kapllz K11(z,t)
kap21z Ko1(2z,t)
kap31z K31(z,t)
kap12z K12(2,t)
kap22z Koo (2, t)
kap32z K3a(z,t)
kap13z Iilg(z, t)
kap23z /{23(2’, t)
kap33z K33(z,1)
mgama33 Y33
mkap33 K33
ngams33 Y33
nkap33 K33
clrms (2)'?
c2rms (2)?
c3rms (2)'?
c4rms (2)?
cbrms (2)?
c6rms (c2)?
clpt ct

c2pt c?

c3pt el

c4dpt ct

chpt cd

c6pt o

Fliz Fi
F21z Fy

K.3 Parameters for ‘print.in’ 249

F31z Fi
Fi12z F?
F22z F3
F32z F3
Module ‘thermal_energy.f90’
TTmax max(7)
TTmin min(7)
ppm (p)
TTm (T)
ethm (en) = (cupT) (mean thermal energy)
ethtot [, emdV (total thermal energy)
ethmin mineg,
ethmax maxei,
eem (e) = (¢, T) (mean internal energy)
etot (et + pu?/2)
Module ‘training_torchfort.f90’
loss torchfort training loss
tauerror \/<(Zm W * U — tauij)2>
Module ‘viscosity.f90’
nu_tdep time-dependent viscosity
fviscm Mean value of viscous acceleration
fviscmin Min value of viscous acceleration (redundant)
fviscmax Max absolute viscous acceleration
fviscrmsx Rms value of viscous acceleration for the vis_xaver_range
num Mean value of viscosity
numax Max value of viscosity
numin Min value of viscosity
nusmagm Mean value of Smagorinsky viscosity
nusmagmin Min value of Smagorinsky viscosity
nusmagmax Max value of Smagorinsky viscosity
nu_LES Mean value of Smagorinsky viscosity
visc_heatm Mean value of viscous heating
quiscm <q ’ fvisc>
ufviscm (U foise)
Sij2m (S?)
epsK <2y9522
epsK2 ((2v0S%)?)
epsK3 ((2v08%)%)
epsK4 ((2v08%)*)
epsKint [(2v08%) aV
sijoiojm (Si jwiw;)
dtnu 8t/[csty 02% /Umax] (time step relative to viscous time step; see
§
meshRemax Max mesh Reynolds number
mesh3Remax Max hyper3 mesh Reynolds number
Reshock Mesh Reynolds number at shock

250 THE PENCIL CODE

K.4 List of parameters for ‘video.in’

The following table lists all (at the time of writing, October 28, 2025) possible inputs to
the file ‘video.in’.

Variable Meaning

Module ‘hydro.f90’

uu velocity vector u; writes all three components separately to
files ‘ulxyz] . {xz,yz,xy,xy2}’

u2 kinetic energy density u?; writes ‘u2.{xz,yz,xy,xy2}

00 vorticity vector w = V x u; writes all three components sepa-
rately to files ‘oo [xyz] . {xz,yz,xy,xy2}’

02 enstrophy w? = |V x u|?; writes ‘02.{xz,yz,xy,xy2}

divu V - u; writes ‘divu. {xz,yz,xy,xy2}

mach Mach number squared Ma?; writes ‘mach.{xz,yz,xy,xy2}

Module ‘density.f90’

Inrho logarithmic density In p; writes ‘lnrho.{xz,yz,xy,xy2}
rho density p; writes ‘rho.{xz,yz,xy,xy2}’
Module ‘entropy.£90’

Ss entropy s; writes ‘ss.{xz,yz,xy,xy2}’
PP pressure p; writes ‘pp.{xz,yz,xy,xy2}’

Module ‘temperature_idealgas.f90’
InTT logarithmic temperature In 7'; writes ‘1nTT.{xz,yz,xy,xy2}
TT temperature 7'; writes ‘TT.{xz,yz,xy,xy2}’

Module ‘shock.f90’

shock shock viscosity vgoa; Writes ‘shock. {xz,yz,xy,xy2}’

Module ‘eos_ionization.f90’

yH ionization fraction yy; writes ‘yH. {xz,yz,xy,xy2}’

Module ‘radiation_ray.f90’

Qrad radiative heating rate),.q; writes ‘Qrad. {xz,yz,xy,xy2}’
Isurf surface intensity I, (?); writes ‘Isurf.xz’

Module ‘magnetic.f90’

aa magnetic vector potential A; writes ‘aa[xyz] .{xz,yz,xy,xy2}
bb magnetic flux density B; writes ‘bb[xyz] . {xz,yz,xy,xy2}

b2 magnetic energy density B?; writes ‘v2.{xz,yz,xy,xy2}

)] current density j; writes ‘jj[xyz] . {xz,yz,xy,xy2}

j2 current density squared j*; writes ‘j2.{xz,yz,xy,xy2}’

jb jB; writes ‘jb.{xz,yz,xy,xy2}

betal inverse plasma beta B*/(2u0p); writes ‘betal.{xz,yz,xy,xy2}

Poynting Poynting vector 1j x B — (u x B) x B/ writes
‘Poynting[xyz] .{xz,yz,xy,xy2}’

K.5 Parameters for ‘phiaver.in’ 251

ab magnetic helicity density A - B; writes
‘ab[xyz] .{xz,yz,xy,xy2}
Module ‘pscalar.f90’
Incc logarithmic density of passive scalar Inc¢; writes
‘Incc.{xz,yz,xy,xy2}
Module ‘cosmicray.f90’
ecr energy e, of cosmic rays (?); writes ‘ec.{xz,yz,xy,xy2}’

K.5 List of parameters for ‘phiaver.in’

The following table lists all (at the time of writing, November 2003) possible inputs to

the file ‘phiaver.in’.

Variable Meaning
Module ‘cdata.f90’
rcylmphi cylindrical radius @w = /2?4 y? (useful for debugging az-
imuthal averages)
phimphi azimuthal angle ¢ = arctan £ (useful for debugging)
zmphi z-coordinate (useful for debugging)
rmphi spherical radius r = V/w? + 22 (useful for debugging)
Module ‘hydro.£f90’

urmphi (uw),, [eyl. polar coords (w, ¢, 2)]
upmphi (ug).,
uzmphi (uz),,
rurmphi (Pu=),
rupmphi (pug,)so
ruzmphi (puz).,
ur2mphi (uZ),
up2mphi (u? .
uz2mphi (u?),
urupmphi (uwtip),
uruzmphi (Ul B
upuzmphi (upu, .
rurupmphi (puzuy).,
ruruzmphi (puzu.),
rupuzmphi (pupus),
ursphmphi (ur),
uthmphi (us),
rursphmphi (pur).,
ruthmphi {puy)
uumphi shorthand for urmphi, upmphi and uzmphi together
uusphmphi shorthand for ursphmphi, uthmphi and upmphi together
u2mphi (u?),
02mphi (W?),

252 THE PENCIL CODE

fkinrsphmphi ($o0u’u,) .

Module ‘density.f90’
Inrhomphi (Ing),
rhomphi (0),

Module ‘entropy.£f90’

ssmphi

(s),
ss2mphi (%),
cs2mphi (),
TTmphi (T),
ppmphi 2
dcoolmphi divergence of combined heating and cooling fluxes
divcoolmphi divergence of cooling flux
divheatmphi divergence of heating flux

fradrsphmphi_kramers F,q (p-averaged, from Kramers’ opacity)
fradrsphmphi_Kconst F.q (p-averaged, for K-const)

fconvrsphmphi (cpou,T),

fconvthsphmphi (chu9T><p

fconvpsphmphi (cpgu(z,T}w

ursphTTmphi (w,T),,

fturbrsphmphi Fsas (p-averaged SGS diffusion for star-in-a-box simulations)

Module ‘magnetic.f90’

jbmphi (J-B),

brmphi (Bw) o [cyl. polar coords (w, ¢, 2)]
bpmphi (By),

bzmphi (B:),

br2mphi (B2).,

bp2mphi <Bf,>¢

bz2mphi (B2),

bbmphi shorthand for brmphi, bpmphi and bzmphi together
bbsphmphi shorthand for brsphmphi, bthmphi and bpmphi together
b2mphi <B2><P

brsphmphi (Br),

bthmphi (By).,

brsmphi (sinfBy),,

bremphi (cos0By),,

bpsmphi (sinfB,),

bpcmphi (cos6B,),

bzsmphi (sindB.),

bzemphi (cos0B.),,

brbpmphi (BzBy),

brbzmphi (BzB.),

bpbzmphi <BsoBz>¢

Inrhomphi (Ing),

K.6 Parameters for ‘xyaver.in’ 253

rhomphi (0),
Module ‘entropy_anelastic.f90’
ssmphi (s),,
cs2mphi (),
Module ‘hydro_potential.f90’
urmphi (uz),, [eyl. polar coords (w, ¢, 2)]
upmphi (uSD)@
uzmphi (us),
ursphmphi (ur),
uthmphi (ug).,
uumphi shorthand for urmphi, upmphi and uzmphi together
uusphmphi shorthand for ursphmphi, uthmphi and upmphi together
u2mphi (u?),
Module ‘magnetic_shearboxJ.f90’
jbmphi (J-B),
brmphi (B > [cyl polar coords (w, ¢, z)]
bpmphi (By),
bzmphi (B.),
bbmphi shorthand for brmphi, bpmphi and bzmphi together
bbsphmphi shorthand for brsphmphi, bthmphi and bpmphi together
b2mphi <B2><p
brsphmphi (Br),
bthmphi (By),,
Module ‘viscosity.f90’
fviscrsphmphi (2v0u;Sir) , (r-xomponent of viscous flux)

K.6 List of parameters for ‘xyaver.in’

The following table lists possible inputs to the file ‘xyaver.in’. This list is not complete
and maybe outdated.

Variable Meaning

Module ‘cdata.f90’

dtvmaxz z-dependent version of dtv

Module ‘hydro.£90’

u2mz (u?),,

02mz (W),
divu2mz (V-u)?),,
curlru2mz (VxoU)?),,
divru2mz (V-ou)?),,
fmasszmz (ous),,
tkinzmz <%gu2uz>xy

254 THE PENCIL CODE

fkinzupmz (zoutus),
fkinzdownmz (zoutu.y)
uxmz (uz),, (horiz. averaged x velocity)
uymz ()
uzmz (Uz)
uxphlmz (ug) vy | phase1
uxphZ2mz (Uy) , [phase2
uxph3mz (uz>xy | phases
uyphlmz (Uy) 4y |phaser
uyph2mz <uy>zy ‘phaseZ
uyph3mz (uy) zy | phase3
uzphlmz <uz>xy ‘phasel
uzph2mz (u,) vy | phase2
uzph3mz (uz>wy | phases
u2phlmz (u?) 4y |phaser
u2ph2mz (u?) 4y |phasea
u2ph3mz (u2>xy | phase3
ux2phlmz (u?) 2y lphasel
ux2ph2mz (u?), Iphasea
ux2ph3mz (U3) 4y Iphases
uy2phlmz <u§>xy | phasel
uy2ph2mz <u§>$y | phase2
uy2ph3mz <u;>x y |phase3
uz2phlmz (uﬁ}xy | phase1
uz2ph2mz (u?) 2y |phase2
uz2ph3mz (u2) 4 |phases
ffdownmz Filling factor of downflows
uzupmz (Ust)
uzdownmz (Usl)
ruzupmz (ouzt),,
ruzdownmz (ouzy),,
divumz (divu),,
uzdivumz (u.diva),,
oxmz (We) gy

oymz (Wy) 2y

0zmz (W2) 2y
ux2mz (U3) 4y
uy2mz <u§>xy
uz2mz (u2) 4y
ux3mz (U3) 4y
uy3mz <u§>zy
uz3mz (u2) 4y
ux4mz (U3) 4y
uy4mz <u§j>xy
uz4dmz (ul),,
uz2upmz (ult),,
uz2downmz (u?)) »

K.6 Parameters for ‘xyaver.in’
y

255

ox2mz
oy2mz
0z2mz
ruxmz
ruymz
ruzmz
ruxphlmz
ruxph2mz
ruxph3mz
ruyphlmz
ruyph2mz
ruyph3mz
ruzphlmz
ruzph2mz
ruzph3mz
rux2phlmz
rux2ph2mz
rux2ph3mz
ruy2phlmz
ruy2ph2mz
ruy2ph3mz
ruz2phlmz
ruz2ph2mz
ruz2ph3mz
ekinphlmz
ekinph2mz
ekinph3mz
oxphlmz
oxph2mz
oxph3mz
oyphlmz
oyph2mz
oyph3mz
ozphlmz
ozph2mz
ozph3mz
ouphlmz
ouph2mz
ouph3mz
rux2mz
ruy2mz
ruzZ2mz
uxuymz
uxuzmz
uyuzmz
Rxymz
Rxyupmz

Y

< T

(ouz),,

(ouy)

{ous)

<Qum>x ‘phasel
<Qum>x ‘phaseQ
<Quac>x ‘phase3
<Quy>x |phase1
{ouy)
(ouy)
(ous)
(ous)
(ous)
(ouz)
{ouz)

Y/ zy ‘phaseZ

=)
<

Y/ zy |phase3

o)
£

z ‘ hasel
zy IP

)
<

OUz) 1y \phasez
OUz) oy |phase3
ou;
ou? oy | phase2
(ou >xy | phases
<QUZ> |phase1
<Quy>xy | phase2
< Quy>$y \phase:a
(ou? >xy |phase
ng>xy ‘phase?

Ty | phasel

e

U2) 1y |phases
gwy |phase1

U=
:w Qm

>xy |phaseZ
%)
u zy ‘phase?)

x)zy ’phasel

D R

NN TN TS

E N N N~

w:p>my ’phase2
Wy zy |phase3

Wy zy ’phasel

(S

Y/ zy ’phaseZ

(SIS

z)zy ’phasel

(S

z/zy |phase2

)
)
)
Yy > Ty ’ phase3
)
)
)

(S

2/ zy |phase3

€

: 'U,>$y |phase1
* W), [phase2
S W) 4, |phases
0UZ) 4,
0uy)
0UZ) 4y
Uy Uy)

€ €

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Yy
Ty

256 THE PENCIL CODE
Rxydownmz <u;Tu’yT>xy
Rxzmz (uhul,),
Rxzupmz (ulu, 5 o
Rxzdownmz (uortily)
Ryzmz <u;u;>xy
Ryzupmz (ul, ¢>xy
Ryzdownmz (Upult),,
ruxuymz (PULUy) 2y
ruxuzmz (PULU2) oy
ruyuzmz (PUYU2) 2y
ruxuy2mz ((puigtsy)?) ay
ruxuzZmz ((pugtiz)?)zy
ruyuzZ2mz ((puyu)?) ey
0XUXXIMZ (wrum>xy
oyuxymz (Wyta) 4,
oxuyxmz (Watly,z)
oyuyymz (Wyllyy) gy
oxXuzxmz (wxuz,x>w
oyuzymz (Wytizy)
uyxuzxmz (uyﬁxuzﬂxy
uyyuzymz (UyyUizy),,
uyzuzzmz (uyvzuz,»my
ekinmz (30 2>$y
oumz (w-u),,
Remz (e

3a; (VSi)
oguxmz (w-Vu)),,
oguyms (w-Vu),).,
oguzmz (w-Vu).),,
ogux2mz (w-Vu)?),,
oguy2mz ((w- Vu)f)wy
oguz2mz (w-Vu)?),,
oxdivumz (W, V-),
oydivumz (W, V),
ozdivumz (W.V - u),,
oxdivu2mz (W V- u)?),,
oydivu2mz (W, V-u)?),
ozdivu2mz (W.V-u)?),,
acczmz (Du,/Dt),,
acczupmz (Du./Dt),,.
acczdownmz (Du,/Dt),,
accpowzmz ((uDu./Dt)*),,
accpowzupmz ((uDu./Dt)*),, .
accpowzdownmz ((w.Du./Dt)?),,
totalforcezmz (oDu./Dt),,
totalforcezupmz (oDu./Dt),, .

K.6 Parameters for ‘xyaver.in’
y

257

totalforcezdownmz (¢Du./Dt),,
Module ‘density.f90’
rhomz (0)sy
rhoupmz (01) 4y
rhodownmz (01) 2y
rho2mz (0%) 2y
rho2upmz <Q%>xy
rho2downmz (Qi>zy
rhof2mz (0%) 4y
rhof2upmz (o o
rhof2downmz <Q,f>xy
gzlnrhomz (V.Ing),,
uglnrhomz (u-Vinp)
ugrhomz (u-Vo),,
uygzlnrhomz (uyV:Ino),,
uzgylnrhomz (u:Vylno),,
rhophlmz (7?) 1y |phase1
rhoph2mz (7?) 1, |phase2
rhoph3mz T2 [phaes
rho2phlmz <P> | phase1
Ty
rho2ph2mz <n_> | phase2
xy
rho2ph3mz <F> | phases
Ty
rho2mx (0%),.
Module ‘entropy.£90’
fradz (Frad) gy
feconvz (cpou, T)
Fenthz (cp(ouy) T’ vy
Fenthupz ((cp(ou)T")1),,
Fenthdownz ((ep(ou)T")y),,
ssmz (8) 4y
ssupmz (1) y
ssdownmz (S1) 4y
ss2mz (8%) oy
ss2upmz (s %)
ss2downmz (s i>
ssf2mz (5%) 2y
ssf2upmz (s /T2>
ssf2downmz (s i>
ppmz (D) 4y
TTmz (T)m
TTdownmz (1),
TTupmz (T1),,
TT2mz (T%),,

fradz_kramers
fradz_Kprof
fradz_constchi
fturbz

258 THE PENCIL CODE
TT2upmz <TT2>zy
TT2downmz <Tf>my
TT2mz (T")
TTf2upmz <TT’2>W
TTf2downmz <T¢’2>xy
ugradpmz (u-Vp),,
gradpxmz (VP
gradpymz (VDy) 4y
gradpzmz (VDp:),,
pdivumz (pV - u),,
uxTTmz (u,T),,
uyTTmz (uyT),,
uzTTmz (uzT)xy
uzTTupmz (w.T)1),,
uzTTdownmz (w.T)),,
gTxgsxmz (VT X V$)s),,
gTxgsymz (VI x Vs)y),,
gTxgszmz (VT x Vs).),,
gTxgsx2mz (VT x Vs)2),,
gTxgsy2mz (VT x Vs)§>xy
gTxgsz2mz (VT x Vs)?)

xy
F}.q (from Kramers’ opacity)

F}.q (from Kprof)
F}q (from chi_const)
0T'x;V.s),, (turbulent heat flux)

(
fturbtz (0T'XxV.s),, (turbulent heat flux)
fturbmz (0T'x/V.5),, (turbulent heat flux)
fturbfz <QTX,5V s'),, (turbulent heat flux)
dcoolz divergence of heating term (only for get_heat_cool _gravz)
heatmz divergence of heating term (all terms except tau_relax_ss and
tau_cool _ss)
Kkramersmz (KoT®=Y) /platd) Doy
ethmz (0€) 4,
fpreszmz — <%
Ty
gTT2mz <VT2>xy
gss2mz <V32>xy
fracvphlmz (fv)my |phaser (Phase 1 fractional volume)
fracvph2mz (fv)xy lphasez (Phase 2 fractional volume)
fracvph3mz (fv)xy |phases (Phase 3 fractional volume)
Module ‘magnetic.f90’
axmz (As) 2y
aymz (Ay),,
azmz (Az) oy
abuxmz (A B)ug),,
abuymz ((A-B)uy),,
abuzmz ((A- B)u.),,

K.6 Parameters for ‘xyaver.in’ 259

bzLammz
divamz
uxbxmz
uybxmz
uzbxmz
uxbymz
uybymz
uzbymz
uxbzmz

%
=

8 8
<

8 8
< o«

uabxmz ((u- A)B$>xy
uabymz ((u- A)By>xy
uabzmz ((u-A)B.),,
bbxmz (BL) sy
bbymz (B,),,
bbzmz <B;>xy
bxmz <B$>zy
bymz <By>xy
bzmz <Bz>xy
Jjxmz <\7I>xy
jymz (T ey
jzmz (jz>:cy
Exmz <gx>acy
Eymz (Ey)ay
Ezmz <82>zy
bx2mz <B:%>acy
by2mz (By),
bz2mz (B2),,
bx2rmz (B3/0),,
by2rmz <B§/ Q>$y
bz2rmz (B2/ Q>:vy
betalmz ((B?/2410) /D),
betamz (B)zy
beta2mz (B%)ay
jbmz (J - B) |y
bdel2amz (B-V?A)) |y
jdel2amz (J - V2A)) |y
d6abmz (V°A - B) .y
d6amz1 (V°A),, |
d6amz2 (V°A),, Iy
d6amz3 (V°A),, |
abmz (A B) |y
ubmz (u- B) |uy
ujmz (w - J) [ay
obmz (W B) |ay
uamz (u-A) sy
bzuamz <Bzu) A> |:cy
bzaymz (B:Ay) |zy
bzdivamz (B.V - A) |y

(

(

(

(

(

(

(

(

(

<

~ Y~ ~— - ~— ~—— ~—
8
<

3
<

260 THE PENCIL CODE
uybzmz (uybz) |ay
uzbzmz (u:02) |2y
ujxbmz (u-(J x B)),,
examzl (Ex A),, |
examz2 (B x A),,ly
examz3 (ExA),,l
exatotalmz1 (B x A),,
exatotalmz2 (B x A),,ly
exatotalmz3 (ExA),,l
e3xamzl (Epypers X A)xy |2
e3xamz2 (Ehypers X A)xy ly
e3xamz3 (Epypers X A)xy |,
etatotalmz (1) 4y
ay2mz <A§>xy
aybxmz (AyBz),,
bxbymz (B:By),,
bxbzmz (B:B.),,
bybzmz (ByB:),,
a2mz <A2>Iy
b2mz <B2>xy
bf2mz (B’ 2>xy
j2mz),
poynzmz Averaged poynting flux in z direction
bcurlfmz (B-V x F/u),,, where F is the additional EMF imposed

through continuous forcing (Iforcing_cont_aa=T)

epsMmz (ko3”),,
vmagfricmz <1/ymag|g X B/BQ|>
bxphlmz (Bw:) 4y Iphaset
bxph2mz (B.).y e
bXph3mZ <Bx> ‘phased
byphlmz <By>x ‘phasel
byph2mz <By>m |phase2
byph3mz <By>x | phases
bzphlmz (Bz>x | phase1
bzph2mz <Bz>x ‘phaseQ
prhng <Bz>x ‘phaseS
bx2phlmz (B2) 4y Iphase1
bx2ph2mz (Bi} \phaseg
bx2ph3mz (B2 >$y | phase3
by2phlmz <82>1y | phase1
by2ph2mz (B),, lphase2
by2ph3mz (B 2>my | phase3
bZ2ph1mZ <82>gjy ’phasel
bz2ph2mz (BQ)W | phase2
bz2ph3mz (Z)xy | phase3
bx2rphimsz (B2).yl
bX21"ph2mZ <B /Q>xy ‘phase?

K.6 Parameters for ‘xyaver.in’
y

261

bx2rph3mz (B2/ 0) oy |phases
by2rphlmz <32 / Q> | phasel
by2rph2mz <BQ/Q>xy ’phase2
by2rph3mz (BZ/ Q>xy | phases
bz2rphlmz (B%/ 0) 4y |phase1
bz2rph2mz (B2/0), lphase2
bz2rph3mz (B2/0) 4y lphases
abphlmz (A B) |sylphaser
abph2mz (A B) |zy|phase2
abph3mz (A - B) |1y|phases
jbphlmz (J - B) |2yl phaset
jbph2mz (J - B) |ay|phase2
_]bph3mz <J : > |xy|phase3
poynzphlmz Averaged poynting flux in z direction for phase 1
poynzph2mz Averaged poynting flux in z direction for phase 2
poynzph3mz Averaged poynting flux in z direction for phase 3
jxphlmz (T) 2y Iphasel
,]XpthZ <jx>$y |phase2
_]Xph3mz <ja:> |phase3
Jyphlmz <\7y>z | phase1
Jjyph2mz <Jy>x [phase2
jyph3mz (o s
jzphlmz (T2) 2y |phase1
jzph2mz (T2) 4y Iphase
Jjzph3mz (T2) 2y Iphases

Module ‘ascalar.f90’
accmz (C)ay

Module ‘bfield.f90’
bmz (B)ay
b2mz (B?),,
bxmz (By)ay
bymz (By)ay
bzmz (B.)ay
bx2mz (B2) 4y
by2mz (B2) ey
bz2mz (B2).,
bxbymz (B.B,)ay
bxbzmz (B:B.)y
bybzmz (ByB.)zy
betamz (B) 2y
beta2mz (B 2y

Module ‘cosmicray_nolog.f90

ecrmz (ecr>w
ecrphlmz (€cr) 4y Iphaset
ecrph2mz (ecr>xy | phase2
ecrph3mz (€cr) gy Iphases

262 THE PENCIL CODE

Module ‘density_stratified.f90’

drhomz (Ap/po)ay
drho2mz ((Ap/p0)2>xy
Module ‘disp_current.f90’
exmz (Ea)ay
eymz (Ey)ay
ezmz (E2) uy
e2mz (E?),,
Module ‘electroweaksu2.£90’
Wixmz V1) ey
Wilymz (W, >my
Wizmz WD) 4y
W2xmz V)
W2ymz <W§>zy
W2zmz W)
W3xmz VD)
W3ymz (W3 o
W3zmz W)
dWixmz <W§ >
zy
dWlymz <W; >$y
dWizmz <)/VZ1 >
Ty
dW2xmz <W§ >
Ty
dW2ymz <W§ > .
dW2zmz <Wz2 >
zy
dW3xmz <W§’ >
zy
dW3ymz <W§’ >
zy
dW3zmz <W§’ >
Ty
Module ‘gravity_simple.f90’
epotmz (0Pgrav),,
epotuzmz (Qégmuz)zy (potential energy flux)
Module ‘hydro_potential.f90’
u2mz (u?),,
02mz (W >xy
divu2mz (V-u)?),,
curlru2mz (VxoU)?),,
divru2mz (V- ou)?),,
fmasszmz (0uz),,
fkinzmz ($ouu, >$y
uxmz (Uz),, (horiz. averaged x velocity)

K.6 Parameters for ‘xyaver.in’
y

263

uymz
uzmz
uzupmz

uzdownmz

ruzupmz

ruzdownmz

divumz
uzdivumz
oxmz
oymz
ozmz
ux2mz
uy2mz
uz2mz
ox2mz
oy2mz
0z2mz
ruxmz
ruymz
ruzmz
rux2mz
ruy2mz
ruz2mz
uxuymz
uxuzmz
uyuzmz
ruxuymz
ruxuzmz
ruyuzmz
ruxuy2mz
ruxuzl2mz
ruyuzZ2mz
OXUXXIMZ
oyuxymz
oxuyxmz
oyuyymz
0XUzxXmz
oyuzymz
uyxuzxmz
uyyuzymz
uyzuzzmz
ekinmz
oumz

Remz

oguxmz
oguymz

g
<

SRS
LSRN

— S~ ~—
~8 8
8 < <
<

<
N
&
g
8
<

QuzT>xy
u2¢>xy

o

=
£
&

u.divu),,

(SIS
< 8
S~ ~——"
8 g
< <

wZ)my
Uz) gy
Uy)
u%))xy
Wy Ty
)y
W2)y
QUy

8
<

D R
SIS
<
<

g g
808
SE
SRS
NG
8 8
< <

Uyl)

hs
S
<
<
IS
g
<

R

SEE

8 8

< <

N <
~ ~— ~ -~ ~——

&

&
8
I
8
B
8

&
<
<
8
@
8
<

& &
8 <
S 2
Iy <
ERRS
8 8

<

8
S
e
8
~ N Y~~~
8
<

€
g

e T NN N N N N N~ N NN~~~ o~ o~~~ o~ o~~~
<
8
<

264 THE PENCIL CODE

oguzmz (w-Vu).),,

ogux2mz (w-Vu)?),,

oguy2mz ((w- Vu)f)xy

oguz2mz (w-Vu)?),,

oxdivumz (W V-),

oydivumz (W, V- u),

ozdivumz (W.V-u),,

oxdivu2mz ((wynabla - u)*),,

oydivu2mz (W, V-u)?),

ozdivu2mz (W.V-u)?),,

accpowzmz ((u.Du./Dt)?),.

accpowzupmz ((uDu./Dt)*),, .

accpowzdownmz ((u.Du./Dt)?*),,

Module ‘interstellar.f90’

rhoHCmz (oL = p*A),,
Module ‘magnetic_shearboxJ.£90’

axmz (Az)

aymz <Ay>xy

azmz (Az) sy

abuxmz ((A- B)ug),,

abuymz ((A-Buy),,

abuzmz ((A-B)u.),,

uabxmz ((u-A)B.),,

uabymz ((u-A)By),,

uabzmz ((u-A)B.),,

bbxmz (B) 2y

bbymz <B’y>xy

bbzmz (B.) 4,

bxmz (By) sy

bymz <By>xy

bzmz (B:) 4y

Jjxmz (T) ay

Jymz <‘-7y>xy

Jjzmz (J2)ay

Exmz (i) ay

Eymz (Ey) ay

Ezmz (E2) uy

bx2mz (B) 4y

by2mz <B§>xy

bz2mz (B2),,

bx2rmz (B2/0) 4

by2rmz (B:/ Q>xy

bz2rmz (B2/0) 4,

betalmz ((BQ/QMO)/@

betamz (B) 2y

beta2mz (52)5@

K.6 Parameters for ‘xyaver.in’ 265

jbmz (J - B)l.,
d6abmz (V°A - B)|,,
d6amz1 (V°A),, |
d6amz2 (VSA), |,
d6amz3 (V6A>xy |
abmz (A-B) |y
ubmz (u- B) |y
uamz (u- A) gy
uxbxmz (Uzby) |2y
uybxmz (uyby) |y
uzbxmz (Uzby) |y
uxbymz (Uuzby) |2y
uybymz (uyby) |zy
uzbymz (uzby) |ay
uxbzmz (uzhz) |oy
uybzmz (uybs) |y
uzbzmz (uzb2) |ay
examzl (E x A)Iy |2
examz2 (E x A)wy |y
examz3 (E X A)my |.
e3xamz1 (Ehypers X A),, o
e3xamz2 (Enypers X A) Iy
e3xamz3 (Ehypers X A),, |-
etatotalmz (M) 2y
bxbymz (BuBy),,
bxbzmz (B:B.),,
bybzmz (ByB.),,
b2mz <B2>xy
bf2mz <B’2>xy
j2mz < j2>xy
poynzmz Averaged poynting flux in z direction
epsMmz (n103?),,
Module ‘meanfield.f90’
qpmz (0p) 4y
Module ‘shock_highorder.f90’
Module ‘temperature_idealgas.f90’
ppmz (D) sy
TTmz (T),,
ethmz (€th)
fpresxmz (VD)a) sy
fpresymz ((VD)y) 4y
fpreszmz ((VD)2) 4y
TT2mz (T%),,
uxTmz (u:T),,
uyTmz (uyT),,
uzTmz (u, T

266 THE PENCIL CODE

fradmz (Frad>xy

fconvimz (cpou.T),,

Module ‘temperature_ionization.f90’

puzmz (pus),,
primz (p/0) 4y
eruzmz (eous.),,
ffakez (ou.c,T),,
mumz (u)xy
TTmz (T)Zy
ssmz (s>$y
eemz (e>$y
ppmz (D) 2y
Module ‘thermal_energy.f90’
ppmz (D) 2y
TTmz (T),,

Module ‘viscosity.f90’
fvisemz (2ygui8iz>xy (z-component of viscous flux)
fviscsmmz (2V8mag guiSZ-Z>xy (z-component of viscous flux)
epsKmz (2v08%)
sijxxmz (Sia) ay
sijxymz (Szy) s,
sijxzmz (Siz)ay
sijyymz <Syy>xy
sijyzmz (Sy2) 0y
sijzzmz (S22) 4y
viscforcezmz ((0F visc) =) ay
viscforcezupmz ((0F visc)2) wy+
viscforcezdownmz ((0f visc)=) 2y

K.7 List of parameters for ‘xzaver.in’

The following table lists possible inputs to the file ‘xzaver.in’. This list is not complete

and maybe outdated.

Variable Meaning

Module ‘hydro.£90’

uxmy (Ug),,
uymy (Uy)
uzmy (uz),.,
oumy (w-u),

Module ‘density.f90’

rhomy (0),.

K.7 Parameters for ‘xzaver.in’

267

Module ‘entropy.£90’

ssmy (s),.
ppmy ()
TTmy (T),.
Module ‘magnetic.f£90’
bxmy (By),.
bymy (By)s.
bzmy (B.),.
bx2my (B}),.
byzmy (Bj),.
bz2my (BI),.
bxbymy (B.B,),.
bxbzmy (B.B.),,
bybzmy (B,B.),.
Module ‘density_stratified.f90’

drhomy (Ap/m)x;
drhoZmy ((Ap/po))=

Module ‘gravity_simple.f90’
epOtmy <Q(I)grav>mz

Module ‘hydro_potential.f90’
uxmy (Ug),.
uymy (uy),,
uzmy (u.),.
oumy (w-u),,

Module ‘magnetic_shearboxJ.f90’

bxmy (By),.
bymy (By)s.
bzmy (B.),.
bx2my (B}),.
byzmy (Bj),.
bz2my (BI),.
bxbymy (B.B,),.
bxbzmy (B.B.),,
bybzmy (B,B.)_.

Module ‘shock_highorder.f90’

Module ‘temperature_idealgas.f90’

ppmy (P) s
TTmy (T),.

Module ‘thermal_energy.f90’
ppmy (p),,
TTmy (T),.

268 THE PENCIL CODE

K.8 List of parameters for ‘yzaver.in’

The following table lists possible inputs to the file ‘yzaver.in’. This list is not complete
and maybe outdated.

Variable Meaning
Module ‘hydro.£90’
u2mx (u?),.
uxmx <ux)yz
uymx (uy),.
uzmx (uz),.
ruxmx (oug),.
ruymx (ouy),.
ruzmx (ou.),.
rux2mx (pu2),.
ruy2mx (pus)y-
ruz2mx (pu?)y.
ruxuymx (pUugty)y.
ruxuzmsx (puztiz)y.
ruyuzmx (puyt)y.
ux2mx (u?),.
uy2mx (u? .
uz2mx (u?),.
ox2mx (W2),e
oy2mx (w? >yz
0z2mx (W),
uxuymx (Ugly)y
uxuzmx (Ugtz)ys
uyuzmx (Uyts)y
oumx (w-u),,
ekinmx (3pu?)y.
fkinxmx (3 0uu, >yz
Module ‘density.f90’
rhomx (0),.
Module ‘entropy.£90’

ssmx (8)y-
ss2mx (%)
ppmx (D)y.
TTmx (T),.
TT2mx (T%),.
uxTTmx (uzT),.
uyTTmx (uyT),.
uzTTmx (u.T),.
feonvxmx (cpousT),,
fradmx (Fraa),, (for K-profile or constant K)

K.8 Parameters for ‘yzaver.in’
y

269

fturbmx
Kkramersmx
dcoolx
fradx_kramers
fradx_constchi

(0T'Xx4V;s),, (turbulent heat flux)
(KoT'3 —b)/rhola + 1))
surface cooling flux

F.q (from Kramers’ opacity)
(Fraq) " (for chi-const)

yz

Module ‘magnetic.£90’

b2mx (B?),.
j2mx (J 2>yz
jbmx (J-B)y,
b2mmx (B?),: mask
bxmx (Bu),.
bymx <By>yz
bzmx (B.,) ”
bx2mx (B32),.
by2mx <B§>yz
bz2mx (B2),.
bxbymzx (B:By),.
bxbzmx (ByB.)y:
bybzmx (ByB.)y:
betamx (B)y-
beta2mx (8%)y-
etatotalmx (),
Module ‘bfield.f90’
bmx (B)y-
b2mx (B?),.
bxmx (By)y:
bymx (By)y-
bzmx (B.)y-
bx2mx (B2),.
by2mx (B2)y-
bz2mx (B2),.
bxbymx (ByBy)y:
bxbzmx (ByB.)y:
bybzmx (ByB.)y:
betamx (B)y=
beta2mx (B%)y2
Module ‘density_stratified.f90’
drhomx (Ap/po)y:
drho2mx <(Ap/p0)2>yz
Module ‘disp_current.f90’
e2mx (E?),.
Module ‘gravity_simple.f90’
epotmx (0Pgrav),.
epotuxmx <g<I>graVuz>yz (potential energy flux)

270

THE PENCIL CODE

Module ‘hydro_potential.f90’

uxmx (W),
uyms (),
uzmx (uz),.
ruxmx (oug),.
ruymx (ouy),.
ruzmx (ou.),,
rux2mx (pu2),.
ruy2mx (puz),y-
ruz2mx (pu?)y.
ruxuymx (puzty)ys
ruxuzmsx (puztiy)y.
ruyuzmx (puyuz)y.
ux2mx (u?),.
uy2mx (u? .
uz2mx (u?),.
ox2mx (W),
oy2mx (w? >yz
0z2mx (W),
uxuymx (Ugty)y
uxuzmx (Ugly)ys
uyuzmx (Uytz)y
oumx (w-u),,
ekinmx (3pu?)y.
fkinxmx (30uu, -
Module ‘magnetic_shearboxJ.f90’
b2mx (B?),.
bxmx (Ba),.
bymx (By),.
bzmx (B.),.
bx2mx (B3),.
by2mx (B} >yz
bz2mx (B2),.
bxbymx (B:By),,
bxbzmx (ByB.)y:
bybzmx (ByB.)y:
betamx (B)y-
beta2mx (B%)y2
etatotalmx (1),
Module ‘shock_highorder.f90’
Module ‘temperature_idealgas.f90’
ppmx (D).
TTmx (T),.
Module ‘thermal_energy.f90’
ppmx D)y

K.9 Parameters for ‘yaver.in’

271

TTmx (T),.

Module ‘viscosity.£90’
fvisemx (2vou;Siy) ” (z-component of viscous flux)
numx (v),. (yz-averaged viscosity)

K.9 List of parameters for ‘yaver.in’

The following table lists possible inputs to the file ‘yaver.in’. This list is not complete

and maybe outdated.

Variable

Meaning

Module ‘hydro.£90’

uxmxz
uymxz
uzmxz
ux2mxz
uy2mxz
uz2mxz
uxuymxz
UxXuzmsxz
uyuzmxz
oumxz
ox2mxz
oy2mxz
0z2mxz
oymxz

£ & &
<
Qd\/

SRS
PN
<

<~
< g

/\/\/\/\/\/\/z\/\/\/\/\/\/\/\
8
< § IS
~ ~— ~—~—

&
<
<

Module ‘density.f90’

rhomxz

—

s

<
<

Module ‘entropy.£90’

TTmxz
ssmxz

Py
T3
S e

)

Module ‘magnetic.f90

b2mxz
axmxz
aymxz
azmxz
bx1mxz
by1mxz
bzlmxz
bxmxz
bymxz
bzmxz

& W
e B N
< <

<

EE Tl
8
<

r=
~ ~— ——
<

N N~ o~~~ o~~~
I3

W
\/S/\/

N

272 THE PENCIL CODE

Jjxmxz (Ja)y
jymxz (),
Jjzmxz (J2),
bx2mxz (B3),
by2mxz (B2 ,
bz2mxz (B2),
bxbymxz (B, By>y
bxbzmxz (B, Bz>y
bybzmxz (ByB.),
uybxmxz (UyBz),
uybzmxz (UyB.),
Exmxz (Ex)y
Eymzxz (&y),
Ezmxz (€2,
vAmxz (v3),
Module ‘density_stratified.f90’
drhomxz (Ap/po)y
drho2mxz (Ap/po)?),
Module ‘hydro_potential.f90’
uxmxz (Uz),
uymxz (uy),
uzmxz (uz),
ux2mxz (u?),
uy2mxz <u§>y
uz2mxz (u?),
UxXuymsxz (uzty),
UXuzmxz (uzpu,) y
uyuzmxz (uyuz),
oumxz (w-u),
Module ‘magnetic_shearboxJ.£90’
b2mxz (B?),
axmxz (Az),
aymxz (Ay),
azmxz (A.),
bx1mxz (\mey
bylmsz (3,0,
bzlmxz (|B:]),
bxmxz (Bx)y
bymxz (By),
bzmxz (B:),
Jjxmxz (Jz),
Jjymxz (Jy),
Jjzmxz (J2),
bx2mxz (B3),
by2mxz (B?)

<

K.10 Parameters for ‘zaver.in’ 273

bz2mxz (B2),
bxbymxz (B:By),
bxbzmxz (B:B.),
bybzmxz (ByB.),
uybxmxz (UyBa),
uybzmxz (UyB.),
Exmxz (&),
Eymxz (&),
Ezmxz (),
vAmxz (vi),
Module ‘meanfield.f90’
peffmxz (Pett),,
alpmxz (),
Module ‘temperature_idealgas.f90’
TTmxz (1),
EmAIA94mxz Emission off AIA 94 channel integrated over y direction
EmAIA131mxz Emission off AIA 131 channel integrated over y direction
EmAIA171mxz Emission off AIA 171 channel integrated over y direction
EmAIA193mxz Emission off AIA 193 channel integrated over y direction
EmAIA211mxz Emission off AIA 211 channel integrated over y direction
EmAIA304mxz Emission off AIA 304 channel integrated over y direction
EmAIA335mxz Emission off AIA 335 channel integrated over y direction
EmXRTmxz Emission off XRT Al-poly channel integrated over y direction
Module ‘thermal_energy.£f90’
TTmxz (T) y

K.10 List of parameters for ‘zaver.in’

The following table lists possible inputs to the file ‘zaver.in’. This list is not complete

and maybe outdated.

Variable Meaning
Module ‘hydro.£90’

uxmxy (ug),
uymxy (uy),
uzmxy (uz),
uxupmxy (Ugr),
uxdownmxy (Ugy),
ruxupmxy (puat).,
ruxdownmxy (Puzy),
ux2upmxy (uZy)
ux2downmxy (u2,).
ffdownmxy Filling factor of downflows
uxuymxy (ugtiy)

274 THE PENCIL CODE
uxuzmxy (upus)
uyuzmxy (uyu.)
Rxymxy (u), u’y>z
Rxyupmxy ((ubu)r)
Rxydownmxy ((uur)y)
Rxzmxy (uhul,)
Rxzupmxy ((ula)y),
Rxzdownmxy ((uhul),),
Ryzmxy <u;u’z > .
Ryzupmxy ((upul)r),
Ryzdownmxy ((uul),),
0XmXxy (Wa),
oymxy (wy),
0zmxy (w2),
oumxy (w-u),
pvzmxy ((w, +292)/0), (z component of potential vorticity)
uguxmxy (u- Vu).).,
uguymxy (w-Vu),),
uguzmxy (u-Vu),),
ruxmxy (pus),
ruymxy (puy),
ruzmxy (pu.),
ux2mxy (u?),
uy2mxy (uz).
uz2mxy (u?),
ox2mxy (w?),
oy2mxy (we).
0z2mxy (w?),
rux2mxy (puz).
ruy2mxy (pu).
ruz2mxy (pu?),
ruxuymxy (puguy)
ruxuzmxy (puzu,),
ruyuzmxy (puyu.)
fkinxmxy (3ouu,)
fkinymxy ($ou’uy)
fkinxupmxy (30U uyy ;Z
fkinxdownmxy (5ouu,)

Module ‘density.f90’
rhomxy (0).
rho2mxy (0%).
Module ‘entropy.£90’
TTmxy (T,
ssmxy (s),
uxTTmxy (u,T),
uyTTmxy (uy, T
uzTTmxy (u.T),
gTxmxy (V. T),

K.10 Parameters for ‘zaver.in

275

gTymxy
gTzmxy

gsxmxy

gsymxy

gszmxy
gTxgsxmxy
gTxgsymxy
gTxgszmxy
gTxgsx2mxy
gTxgsy2mxy
gTxgsz2mxy
fconvxy
fconvyxy
fconvzxy
fradxy_Kprof
fradymxy_Kprof
fradxy_kramers
fradr_constchixy

(cp QuzT>z

Frad (z-component of radiative flux, z-averaged, from Kprof)
F;ad (y-component of radiative flux, z-averaged, from Kprof)
F}.q (z-averaged, from Kramers’ opacity)

F,.q (from chi_const)

fturbxy (0TXx:Vys),
fturbymxy (0T'x:Vys) .
fturbrxy (oT'x,iVis), (radial part of anisotropic turbulent heat flux)
fturbthxy (0T'x0:V;s), (latitudinal part of anisotropic turbulent heat
flux)
dcoolxy surface cooling flux
Module ‘magnetic.£90’
bxmxy (Ba),
bymxy (By).,
bzmxy (B.),
jxmsxy ().
Jymxy (Jy).
jamxy (),
axmxy (Az),
aymxy (Ay).
azmxy (A,),
bx2mxy (B2,
by2mxy <B§>Z
bz2mxy (B?).
bxbymxy (BsBy),
bxbzmxy (B,B.).
bybzmxy (ByB.),
poynxmxy (Ex B)_|,
poynymxy (Ex B),|y
poynzmxy (E x B)_|,
etatotalmxy (n),
jbmxy (J-B),
abmxy (A-B),
ubmxy (U-B),
examxyl (ExA)_ |,

276 THE PENCIL CODE

examxy?2 (E x A)_|,
examxy3 (ExA),_ |
StokesImxy (e1), |-
StokesQmxy — (ep1 cos2x), |-
StokesUmxy — (ep1 sin2x), |.
Stokes@1mxy + (Fepy sin2x), |.
StokesUIlmxy — (Fepy cos2x), |
betalmxy (B*/(2p0p)) |-
Module ‘axionSU2back.f90’
grandxy (T9).
grantxy (T,
Module ‘density_stratified.f90’
drhomxy (Ap/po)-
drho2mxy ((Ap/po)*)-
Module ‘gravity_simple.f90’
epotmxy (0Pgrav),
epotuxmxy (0Pgravtiz), (potential energy flux)
Module ‘hydro_potential.f90’
uxmxy (ug),
uymxy (uy),
uzmxy (us),
uxuymxy (Uugtly)
uxuzmxy (ugts),
uyuzmxy (uyu)
0XmXxy (Wa),
oymxy (wy),
0zmxy (w2),
oumxy (w-u),
ruxmxy (pug) .,
ruymxy (puy),
ruzmxy (pu.),
ux2mxy (u2),
uy2mxy (uz).
uz2mxy (u?),
rux2mxy (pu?),
ruy2mxy (puz).
ruz2mxy (pu?),
ruxuymxy (pugtty)
ruxuzmxy (puzu,),
ruyuzmxy (puyu.)
fkinxmxy (50uug)
fkinymxy (50uuy)
Module ‘magnetic_shearboxJ.f90’
bxmxy (By).
bymxy (By),
bzmxy (B.),

277

K.11 Boundary conditions
jxmxy ().
Jymxy (Jy).
jamxy (L.),
axmxy (Az),
aymxy (4y),
azmxy (A,),
bx2mxy (B%),
by2mxy <B§>Z
bz2mxy (B?).
bxbymxy (B:By),
bxbzmxy (B,B.).
bybzmxy (ByB.),
poynxmxy (E x B),
poynymxy (E x B),
poynzmxy (E x B),
Jjbmxy (J-B),
abmxy (A-B),
examxyl (ExA)_ |
examxy2 (Ex A),_|,
examxy3 (ExA), |
StokesImxy (eB1), |»
StokesQmxy — (ep1 cos2x), |-
StokesUmxy — (ep1sin2y), |-
StokesQ1mxy + (Fepy sin2x), |,
StokesUlmxy — (Fepy cos2x), |.
betalmxy (B?/(2110p)). |-
Module ‘temperature_idealgas.f90’
TTmxy (T,
EmAIA94mxy Emission off AIA 94 channel integrated over z direction
EmAIA13Imxy Emission off AIA 131 channel integrated over z direction
EmAIA171mxy Emission off AIA 171 channel integrated over z direction
EmAIA193mxy Emission off AIA 193 channel integrated over z direction
EmAIA211mxy Emission off AIA 211 channel integrated over z direction
EmAIA304mxy Emission off AIA 304 channel integrated over z direction
EmAIA335mxy Emission off AIA 335 channel integrated over z direction
EmXRTmxy Emission off XRT Al-poly channel integrated over z direction
Module ‘thermal_energy.f90’
TTmxy (T,
Module ‘viscosity.f90’
fviscmxy (2vou;S;;), (z-xomponent of viscous flux)
fviscsmmxy (2V8mag 0U;Siz) , (x-xomponent of viscous flux)
fviscymxy (2vou;S;y) . (y-xomponent of viscous flux)

K.11 Boundary conditions

The following tables list all possible boundary condition labels that are documented.

278

THE PENCIL CODE

K.11.1 Boundary condition bex

Variable Meaning
Module ‘boundcond.f90’

0 zero value in ghost zones, free value on boundary

P periodic

s symmetry, fyy; = fy_s; implies f'(xx) = f"(z0) = 0

sf symmetry with respect to interface

ss symmetry, plus function value given

sds symmetric-derivative-set

s0d symmetry, function value such that df/dx=0

a antisymmetry, fy.; = —fy_;; implies f(xy) = f"(xg) =0

af antisymmetry with respect to interface

a2 antisymmetry relative to boundary value, fy.; = 2fy — fyv_;; implies
f//(xo) —0

a2v set boundary value and antisymmetry relative to it fy.; = 2fy — fnv_i;
implies f”(xy) =0

alr sets d2f /dr®+2df /dr — 2f /r* = 0 This is the replacement of zero second
derivative in spherical coordinates, in radial direction.

cpce cylindrical perfect conductor implies f” + f//R =0

cpp cylindrical perfect conductor for Aphi implies RA” + A’ =0

cpz cylindrical perfect conductor for Az implies R(RA)” — (RA) =0

spr spherical perfect conductor implies f” +2f'/R =0and f(zy) =0

v vanishing third derivative

cop copy value of last physical point to all ghost cells

Is onesided

dls onesided for 1st/2nd derivative in two first inner points, Dirichlet in
boundary point

nls onesided for 1st/2nd derivative in two first inner points, Neumann in
boundary point

1so onesided

cT constant temperature (implemented as condition for entropy s or tem-
perature 1)

cl constant conductive flux

Fgs black body: - chi_t*rho*T*grad(s) - K*grad(T) = sigmaSBt*T**4

Fct Fbot = - K*grad(T) - chi_t*rho*T*grad(s)

Fem Fbot = —K * grad(T) —chi, * rho* T x grad(s)

sT symmetric temperature, Ty_; = T ;; implies 7" (zy) = T"(x9) = 0

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, Ty_; = Ty =; implies 7" (zx) = T"(z9) =0

db low-order one-sided derivatives (“no boundary condition”) for density

f “freeze” value, i.e. maintain initial value; antisymm wrt boundary

fg “freeze” value, i.e. maintain initial value at boundary, also mantaining
the ghost zones at the initial coded value, i.e., keep the gradient frozen
as well

1 f =1 (for debugging)

set set boundary value to fbex

st set boundary value to value generated by function bc_st. Special time-

dependent boundary condition to model temporal changes.

K.11 Boundary conditions 279

der set derivative on boundary to fbcx

slo set slope at the boundary = fbex

slp set slope at the boundary and in ghost cells = fbcx

shx set shearing boundary proportional to x with slope=fbcx and ab-
scissa=fbcx2

shy set shearing boundary proportional to y with slope=fbcx and ab-
scissa=fbcx2

shz set shearing boundary proportional to z with slope=fbcx and ab-
scissa=fbcx2

dr0 set boundary value [really??]

ovr overshoot boundary condition ie (d/dx — 1/dist) f = 0.

out allow outflow, but no inflow forces ghost cells and boundary to not point
inwards

elo allow outflow, but no inflow uses the el extrapolation scheme

ant stops and prompts for adding documentation

el extrapolation [describe]

e2 extrapolation [describe]

e2h extrapolation [describe]

e3 extrapolation in log [maintain a power law]

el linear extrapolation from last two active cells

pl extrapolate using power law with the power index specified by fbcx

hat top hat jet profile in spherical coordinate.

jet top hat jet profile in cartezian coordinate.

spd sets d(rA,)/dr = foex(j)

sfr stress-free boundary condition for spherical coordinate system.

srl Stress-free bc for spherical coordinate system. Implementation with
one-sided derivative.

nfr Normal-field bc for spherical coordinate system. Some people call this
the “(angry) hedgehog bc”.

nrl Normal-field bc for spherical coordinate system. Some people call this
the “(angry) hedgehog bc”. Implementation with one-sided derivative.

sa2 (d/dr)(rB,) = 0 imposes boundary condition on 2nd derivative of rA,.
Same applies to # component.

pfc perfect-conductor in spherical coordinate: d/dr(A,) +2/r = 0.

fix set boundary value [really??]

fil set boundary value from a file

ctb radial centrifugal balance

g set to given value(s) or function

ioc inlet/outlet on western/eastern hemisphere in cylindrical coordinates

exp exponentiate x ghost zone of other variable

slc set x ghost zones from slice.

nil’,”’no do nothing; assume that everything is set

Module ‘boundcond_alt.f90’

0 zero value in ghost zones, free value on boundary

P periodic

S symmetry, fnii = fy—; implies f'(zn) = f"(z9) =0

ss symmetry, plus function value given

s0d symmetry, function value such that df/dx=0

a antisymmetry, fx; = — fy_;; implies f(zyn) = f"(20) =0

280 THE PENCIL CODE

a2 antisymmetry relative to boundary value, fy.; = 2fy — fyv_;; implies
f//(fEO) —0

alr sets d?f/dr*+2df /dr —2f /r* = 0 This is the replacement of zero second
derivative in spherical coordinates, in radial direction.

cpce cylindrical perfect conductor implies f” + f//R =0

cpp cylindrical perfect conductor implies f” + f//R =0

cpz cylindrical perfect conductor implies f” + f//R =0

spr spherical perfect conductor implies f” + 2f'/R =0 and f(zy) =0

v vanishing third derivative

cop copy value of last physical point to all ghost cells

1s onesided

1so onesided

cT constant temperature (implemented as condition for entropy s or tem-
perature 1)

cl constant temperature (or maybe rather constant conductive flux??)

Fgs Fconv = - chi_t*rho*T*grad(s)

Fct Fbot = - K*grad(T) - chi_t*rho*T*grad(s)

Fem Fbot = —K * grad(T) —chi, * rho x T * grad(3)

sT symmetric temperature, Ty_; = T ;; implies 7"(zy) = T"(x9) =0

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, Ty_; = Ty =; implies T"(zy) = T"(z0) =0

f “freeze” value, i.e. maintain initial

fg “freeze” value, i.e. maintain initial

1 f =1 (for debugging)

set set boundary value to fbex12

der set derivative on boundary to fbcx12

slo set slope at the boundary = fbex12

dr0 set boundary value [really??]

ovr overshoot boundary condition ie (d/dx — 1/dist) f = 0.

out allow outflow, but no inflow forces ghost cells and boundary to not point
inwards

elo allow outflow, but no inflow uses the el extrapolation scheme

ant stops and prompts for adding documentation

el extrapolation [describe]

e2 extrapolation [describe]

e3 extrapolation in log [maintain a power law]

hat top hat jet profile in spherical coordinate.

jet top hat jet profile in cartezian coordinate.

spd sets d(rA,)/dr = fbcx12(j)

sfr stress-free boundary condition for spherical coordinate system.

nfr Normal-field bc for spherical coordinate system. Some people call this
the “(angry) hedgehog bc”.

sa2 (d/dr)(rB,) = 0 imposes boundary condition on 2nd derivative of rA,.
Same applies to # component.

pfc perfect-conductor in spherical coordinate: d/dr(A,) +2/r = 0.

fix set boundary value [really??]

fil set boundary value from a file

g set to given value(s) or function

nil do nothing; assume that everything is set

ioc inlet/outlet on western/eastern hemisphere in cylindrical coordinates

K.11 Boundary conditions 281

do nothing; assume that everything is set
s implies f'(yn) = f"(yo) =0

K.11.2 Boundary condition bcy

Variable Meaning

Module ‘boundcond.f90’

0 zero value in ghost zones, free value on boundary

P periodic

pp periodic across the pole

yy Yin-Yang grid

ap anti-periodic across the pole

s symmetry, fx1; = fx_s; implies /(yx) = f"(y0) = 0

sf symmetry with respect to interface

ss symmetry, plus function value given

sds symmetric-derivative-set

cds complex symmetric-derivative-set

s0d symmetry, function value such that df/dy=0

a antisymmetry

af antisymmetry with respect to interface

a2 antisymmetry relative to boundary value

v vanishing third derivative

v3 vanishing third derivative

out allow outflow, but no inflow forces ghost cells and boundary to not point
inwards

1s onesided

dls onesided for 1st and 2nd derivative in two first inner points, Dirichlet
in boundary point

nls onesided for 1st and 2nd derivative in two first inner points, Neumann
in boundary point

cT constant temp.

sT symmetric temp.

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, Ty_; = Ty =; implies 7"(zy) = T"(z0) =0

f freeze value

s+f freeze value

fg “freeze” value, i.e. maintain initial

fBs frozen-in B-field (s)

B frozen-in B-field (a2)

1 f=1 (for debugging)

set set boundary value

sse symmetry, set boundary value

sep set boundary value

el extrapolation

e2 extrapolation

e3 extrapolation in log [maintain a power law]

der set derivative on the boundary

cop outflow: copy value of last physical point to all ghost cells

282 THE PENCIL CODE

c+k no-inflow: copy value of last physical point to all ghost cells, but sup-
pressing any inflow

sfr stress-free boundary condition for spherical coordinate system.

nfr Normal-field bc for spherical coordinate system. Some people call this
the “(angry) hedgehog bc”.

spt spherical perfect conducting boundary condition along 6 boundary f” -+
cotff' =0and f(zn) =0

pfc perfect conducting boundary condition along 6 boundary

exp exponentiate y ghost zone of other variable

slc set x ghost zones from slice.

nil’,”’no do nothing; assume that everything is set

Module ‘boundcond_alt.f90’

sds symmetric-derivative-set

0 zero value in ghost zones, free value on boundary

P periodic

pp periodic across the pole

ap anti-periodic across the pole

s symmetry symmetry, fyi; = fv_i;

ss symmetry, plus function value given

sds symmetric-derivative-set

cds complex symmetric-derivative-set

s0Od symmetry, function value such that df/dy=0

a antisymmetry

a2 antisymmetry relative to boundary value

v vanishing third derivative

v3 vanishing third derivative

out allow outflow, but no inflow forces ghost cells and boundary to not point
inwards

1s onesided

cT constant temp.

sT symmetric temp.

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, Ty_; = Ty =; implies T7"(zy) = T"(zo) =0

f freeze value

s+f freeze value

fg “freeze” value, i.e. maintain initial

1 f=1 (for debugging)

set set boundary value

sse symmetry, set boundary value

sep set boundary value

el extrapolation

e2 extrapolation

e3 extrapolation in log [maintain a power law]

der set derivative on the boundary

cop outflow: copy value of last physical point to all ghost cells

c+k no-inflow: copy value of last physical point to all ghost cells, but sup-
pressing any inflow

str stress-free boundary condition for spherical coordinate system.

K.11 Boundary conditions 283

nfr
spt
pfc

nil’)
sep

Normal-field bc for spherical coordinate system. Some people call this
the “(angry) hedgehog bc”.

spherical perfect conducting boundary condition along 6 boundary f”+
cotff =0and f(xy) =0

perfect conducting boundary condition along 6 boundary

do nothing; assume that everything is set

set boundary value

K.11.3 Boundary condition bcz

Variable Meaning
Module ‘boundcond . £90’

0 zero value in ghost zones, free value on boundary

P periodic

yy Yin-Yang grid

s symmetry

sf symmetry with respect to interface

s0d symmetry, function value such that df/dz=0

0ds symmetry, function value such that df/dz=0

a antisymmetry

a2 antisymmetry relative to boundary value

a2v set boundary value and antisymmetry relative to it

af antisymmetry with respect to interface

a0d antisymmetry with zero derivative

v vanishing third derivative

v3 vanishing third derivative

1s one-sided

dls onesided for 1st and 2nd derivative in two first inner points, Dirichlet
in boundary point

nls onesided for 1st and 2nd derivative in two first inner points, Neumann
in boundary point

als special for perfect conductor with const alpha and etaT when A con-
sidered as B; one-sided for 1st and 2nd derivative in two first inner
points

fg “freeze” value, i.e. maintain initial value at boundary, also mantaining
the ghost zones at the initial coded value, i.e., keep the gradient frozen
as well

cl special boundary condition for Inp and s: constant heat flux through
the boundary

cls complex

Fgs black body: - chi_t*rho*T*grad(s) - K¥*grad(T) = sigmaSBt*T**4

Fct Fbot = - K*grad(T) - chi_t*rho*T*grad(s)

c3 constant flux at the bottom with a variable hcond

pfe potential field extrapolation

plD potential field extrapolation in 1D

pot potential magnetic field

pwd a variant of ’pot’ for nprocx=1

hds hydrostatic equilibrium with a high-frequency filter

284 THE PENCIL CODE

cT constant temperature. If used for Inrho, sets both Inrho and ss (in
which case the BC for ss should be set to 'nil’) If used for ss, sets only
Ss.

cT1 constant temperature using one-sided derivatives

cT2 constant temp. (keep Inrho)

cT3 constant temp. (keep Inrho)

hs hydrostatic equilibrium

hse hydrostatic extrapolation rho or Inrho is extrapolated linearily and the
temperature is calculated in hydrostatic equilibrium.

cp constant pressure

sT symmetric temp.

ctz for interstellar runs copy T

cdz for interstellar runs limit rho

ism exponential decay/growth in rho/T by scale height

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, Ty_; = Ty =; implies 7"(zx) = T'(z9) = 0

c2 special boundary condition for s: constant temperature at the bound-
ary — requires boundary condition ’a2’ for In p

db low-order one-sided derivatives (“no boundary condition”) for density

ce complex

el extrapolation

e2 extrapolation

ex simple linear extrapolation in first order

exf simple linear extrapolation in first order

exd simple linear extrapolation in first order

exm simple linear extrapolation in first order

b1 extrapolation with zero value (improved ’a’)

b2 extrapolation with zero value (improved ’a’)

b3 extrapolation with zero value (improved ’a’)

f’’fa freeze value + antisymmetry

fs freeze value + symmetry

fBs frozen-in B-field (s)

B frozen-in B-field (a2)

g set to given value(s) or function

1 f=1 (for debugging)

StS solar surface boundary conditions

set set boundary value

sep set boundary value

der set derivative on the boundary

div set the divergence of u to a given value use bc = ’div’ for iuz

ovr set boundary value

inf allow inflow, but no outflow

ouf allow outflow, but no inflow

in allow inflow, but no outflow forces ghost cells and boundary to not point
outwards

out allow outflow, but no inflow forces ghost cells and boundary to not point
inwards

crk no-inflow: copy value of last physical point to all ghost cells, but sup-

pressing any inflow

K.11 Boundary conditions 285

in0 allow inflow, but no outflow forces ghost cells and boundary to not point
outwards relaxes to vanishing 1st derivative at boundary

ou0 allow outflow, but no inflow forces ghost cells and boundary to not point
inwards relaxes to vanishing 1st derivative at boundary

ind allow inflow, but no outflow forces ghost cells and boundary to not point
outwards creates inwards pointing or zero 1st derivative at boundary

oud allow outflow, but no inflow forces ghost cells and boundary to not point
inwards creates outwards pointing or zero 1st derivative at boundary

ubs copy boundary outflow, reduce inflow speed outside the boundary

win forces massflux given as Xp;(u; + ug) = fbez1/2(p)

cop copy value of last physical point to all ghost cells

exp exponentiate z ghost zone of other variable

slc set z ghost zones from slice.

nil’,”’no do nothing; assume that everything is set

Module ‘boundcond_alt.f90’

ctb radial centrifugal balance

fBs frozen-in B-field (s)

B frozen-in B-field (a2)

0 zero value in ghost zones, free value on boundary

p periodic

s symmetry

sf symmetry with respect to interface

s0d symmetry, function value such that df/dz=0

0ds symmetry, function value such that df/dz=0

a antisymmetry

a2 antisymmetry relative to boundary value

af antisymmetry with respect to interface

a0d antisymmetry with zero derivative

v vanishing third derivative

v3 vanishing third derivative

1s one-sided

fg “freeze” value, i.e. maintain initial

cl complex

Fgs Fconv = - chi_t*rho*T*grad(s)

Fct Fbot = - K*grad(T) - chi_t*rho*T*grad(s)

c3 constant flux at the bottom with a variable hcond

pfe potential field extrapolation

plD potential field extrapolation in 1D

pot potential magnetic field

pwd a variant of ’pot’ for nprocx=1

hds hydrostatic equilibrium with a high-frequency filter

cT constant temp.

cT2 constant temp. (keep Inrho)

cT3 constant temp. (keep Inrho)

hs hydrostatic equilibrium

hse hydrostatic extrapolation rho or Inrho is extrapolated linearily and the
temperature is calculated in hydrostatic equilibrium.

cp constant pressure

sT symmetric temp.

286 THE PENCIL CODE

ctz for interstellar runs copy T

cdz for interstellar runs limit rho

asT select entropy for uniform ghost temperature matching fluctuating
boundary value, Ty_; = Ty =; implies 7" (zx) = T"(z9) = 0

c2 complex

db complex

ce complex

el extrapolation

e2 extrapolation

ex simple linear extrapolation in first order

exf simple linear extrapolation in first order

exd simple linear extrapolation in first order

exm simple linear extrapolation in first order

b1 extrapolation with zero value (improved ’a’)

b2 extrapolation with zero value (improved ’a’)

b3 extrapolation with zero value (improved ’a’)

ffa freeze value + antisymmetry

fs freeze value + symmetry

fBs frozen-in B-field (s)

B frozen-in B-field (a2)

g set to given value(s) or function

1 f=1 (for debugging)

StS solar surface boundary conditions

set set boundary value

der set derivative on the boundary

div set the divergence of u to a given value use bc = ’div’ for iuz

ovr set boundary value

inf allow inflow, but no outflow

ouf allow outflow, but no inflow

in allow inflow, but no outflow forces ghost cells and boundary to not point
outwards

out allow outflow, but no inflow forces ghost cells and boundary to not point
inwards

in0 allow inflow, but no outflow forces ghost cells and boundary to not point
outwards relaxes to vanishing 1st derivative at boundary

ou0 allow outflow, but no inflow forces ghost cells and boundary to not point
inwards relaxes to vanishing 1st derivative at boundary

ind allow inflow, but no outflow forces ghost cells and boundary to not point
outwards creates inwards pointing or zero 1st derivative at boundary

oud allow outflow, but no inflow forces ghost cells and boundary to not point
inwards creates outwards pointing or zero 1st derivative at boundary

ubs copy boundary outflow,

win forces massflux given as Xp;(u; + ug) = fbezl/2(p)

cop copy value of last physical point to all ghost cells

nil do nothing; assume that everything is set

K.12 Initial condition parameter dependence

The following tables list which parameters from each Namelist are required (e), optional
(o) or irrelevant (blank). The distinction is made between required and optional where by

287

K.12 Initial condition parameter dependence

a parameter requires a setting if the default value would give an invalid or degenerate

case for the initial condition.

nn-zy
nn Ay

nn-xy

MWSLr An

Jor An

Jomor nn

Joddnnn

ysurnn

ygornn

puein

nnyypLs

nnpdure

inituu

[J
° o °
[]
[]
[
[J
[] [
[] [
o o | ¢ e | o | o
e (O e | 6| 6| 6| 6| 6| 6 O o o e | o | | | O | | @
N
o | o
zl.e N N | o
S|'S 7) b ,.mm
SIEl Ixlzlxlelnlv|&] |2|Bl2] |2 | E
Slg2lg| S| S| S| @ = : ;
S| EIEIE|R|IR|IB|alel8|8|8|a|2|8|B|2|%E
BB S S| S| Q[Q|9 ||| Q||| G| R|.8]3
% | 9 ElE|lE|E|E|E|D|&lE L1292 R|%!| &l E
o mttt.l.l.l_,.lnC.I.VSSg o
S22l lglglE2El=Slaeles|l=2|3|S|R|E|8l8]5]2]4
o 3| s .2 clElElololElole|2|=H|o|lo|l a2 &
Nlawlawl XA MAMAISISISlolsl3lalmlald|lolol8 KB

L

I N L L

YA CILED]

A culich)

X G193U99

7 TJI9)Ud)

A" T197Ud0

X TJ9)Ud)

SS™I0YY

dojypost

gArodw

TATodwa

oATodwa

1SU09™SS

IYSLrss

Yor ss

ssyaad

ospeid

ss~uofisdo

SSYIPIM

SsTSnIped

ss 1dure

initss

Zero

const_ss

THE PENCIL CODE

288

blob

isothermal

Ferriere

xjump

hor-fluxtube \ ° \ ° \
hor-tube

sedov

sedov-dual

isobaric

isentropic

linprof

piecew-poly |

polytropic

L. bin scripts 289

L bin scripts

Brief description of the scripts included in pencil-code/bin

Script Meaning

run
pc_build Compile the executables in the running directory.
pc_start Check the start.in file and initialize the simulaiton.
pc_run Check the run.in file and run the simulation

CVS
cvsci_run Add run directory to CVS. csh version.
cvsci_run_bash Add run directory to CVS. bash version.

git
pc_git Update and merge the local git repository with the master

branch.

290 THE PENCIL CODE

References

[1] Abramowitz, A., Stegun, 1. A., Pocketbook of Mathematical Functions, Harri
Deutsch, Frankfurt (1984)

[2] Babkovskaia, N., Haugen, N. E. L., Brandenburg, A.: 2011, “A high-order public
domain code for direct numerical simulations of turbulent combustion,” J. Comp.
Phys. 230, 1-12 (arXiv/1005.5301)

[3] Banerjee, R., & Jedamzik, K., Phys. Rev. D 70, 123003 (2004) “Evolution of cosmic
magnetic fields: From the very early Universe, to recombination, to the present”

[4] Barekat, A., & Brandenburg, A., Astron. Astrophys. 571, A68 (2014) “Near-
polytropic stellar simulations with a radiative surface”

[5] Bhat, P., & Brandenburg, A., Astron. Astrophys. 587, A90 (2016) “Hydraulic effects
in a radiative atmosphere with ionization”

[6] Brandenburg, A., Astrophys. J. 550, 824—840 (2001) “The inverse cascade and non-
linear alpha-effect in simulations of isotropic helical hydromagnetic turbulence”

[7] Brandenburg, A., in Advances in non-linear dynamos, ed. A. Ferriz-Mas &
M. Nunez Jiménez, (The Fluid Mechanics of Astrophysics and Geophysics,
Vol. 9) Taylor & Francis, London and New York, pp. 269-344 (2003);
http://arXiv.org/abs/astro-ph/0109497

[8] Brandenburg, A., Dobler, W., Astron. Astrophys. 369, 329-338 (2001) “Large scale
dynamos with helicity loss through boundaries”

[9] Brandenburg, A., & Hazlehurst, J., Astron. Astrophys. 370, 1092—-1102 (2001) “Evo-
lution of highly buoyant thermals in a stratified layer”

[10] Brandenburg, A., & Kahniashvili, T. Phys. Rev. Lett. 118, 055102 (2017) “Classes of
hydrodynamic and magnetohydrodynamic turbulent decay”

[11] Brandenburg, A., He, Y., Kahniashvili, T., Rheinhardt, M., & Schober, J. Astrophys.
J. 911, 110 (2021) “Gravitational waves from the chiral magnetic effect”

[12] Brandenburg, A., & Sarson, G. R., Phys. Rev. Lett. 88, 055003 (2002) “The effect of
hyperdiffusivity on turbulent dynamos with helicity”

[13] Brandenburg, A., Dobler, W., & Subramanian, K., Astron. Nachr. 323, 99-122
(2002) “Magnetic helicity in stellar dynamos: new numerical experiments”

[14] Brandenburg, A., Enqvist, K., & Olesen, P., Phys. Rev. D 54, 1291-1300 (1996)
“Large-scale magnetic fields from hydromagnetic turbulence in the very early uni-
verse”

[15] Brandenburg, A., Jennings, R. L., Nordlund, A., Rieutord, M., Stein, R. F., & Tuomi-
nen, L., J. Fluid Mech. 306, 325-352 (1996) “Magnetic structures in a dynamo sim-
ulation”

[16] A. Brandenburg, T. Kahniashvili, S. Mandal, A. Roper Pol, A. G. Tevzadze, and T.
Vachaspati, Phys. Rev. D 96, 123528 (2017) “Evolution of hydromagnetic turbulence
from the electroweak phase transition”

[17] Brandenburg, A., Moss, D., & Shukurov, A., MNRAS 276, 651-662 (1995) “Galactic
fountains as magnetic pumps”

http://arXiv.org/abs/1005.5301
http://arXiv.org/abs/astro-ph/0109497

REFERENCES 291

[18] Brandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U., Astrophys. J. 446,
741-754 (1995) “Dynamo-generated turbulence and large scale magnetic fields in a
Keplerian shear flow”

[19] Collatz, L., The numerical treatment of differential equations, Springer-Verlag, New
York, p. 164 (1966)

[20] Dobler, W., Stix, M., & Brandenburg, A.: 2006, “Convection and magnetic field gen-
eration in fully convective spheres,” Astrophys. J. 638, 336-347

[21] Durrer, R., “The Cosmic Microwave Background,” Cambridge University Press
(2008)

[22] Gammie, C. F., Astrophys. J. 553, 174-183 (2001) “Nonlinear outcome of gravita-
tional instability in cooling, gaseous disks”

[23] Goodman, J., Narayan, R. & Goldreich, P., Month. Not. Roy. Soc. 225, 695-711
(1987) “The stability of accretion tori — II. Nonlinear evolution to discrete planets”

[24] Haugen, N. E. L., & Brandenburg, A. Phys. Rev. E 70, 026405 (2004) “Inertial range
scaling in numerical turbulence with hyperviscosity”

[25] Hockney, R. W., & Eastwood, J. W., Computer Simulation Using Particles, McGraw-
Hill, New York (1981)

[26] Hurlburt, N. E., Toomre, J., & Massaguer, J. M., Astrophys. J. 282, 557-573 (1984)
“Two-dimensional compressible convection extending over multiple scale heights”

[27] Kim, dJ., Moin, P. & Moser, R J. of Fluid Mech. 177, 133 (1987) “Turbulence statistics
in fully developed channel flow at low Reynolds number”

[28] Kippenhahn, R. & Weigert, A. Stellar structure and evolution, Springer: Berlin
(1990)

[29] Krause, F., Radler, K.-H., Mean-Field Magnetohydrodynamics and Dynamo Theory,
Akademie-Verlag, Berlin; also Pergamon Press, Oxford (1980)

[30] Lele, S. K., J Comp. Phys. 103, 16—42 (1992) “Compact finite difference schemes
with spectral-like resolution”

[31] Martel, H., & Shapiro, P. R. Month. Not. Roy. Soc. 297, 467-485 (1998) “A conve-
nient set of comoving cosmological variables and their application”

[32] Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation, San Francisco: W.H.
Freeman and Co. (1973), p. 213.

[33] Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D.: 2009, “Turbulent dynamos in
spherical shell segments of varying geometrical extent,” Astrophys. J. 697, 923-933
(arXiv/0812.3106)

[34] Nordlund, A., & Galsgaard, K., A 83D MHD code for Parallel Computers,
http://www.astro.ku.dk/~aake/NumericalAstro/papers/kg/mhd.ps.gz (1995)

[35] Nordlund, A., Stein, R. F., Comput. Phys. Commun. 59, 119 (1990) “3-D simulations
of solar and stellar convection and magnetoconvection”

[36] Olesen, P., Phys. Lett. B 398, 321 (1997) “Inverse cascades and primordial magnetic
fields”

http://arXiv.org/abs/0812.3106
http://www.astro.ku.dk/~aake/NumericalAstro/papers/kg/mhd.ps.gz

292 THE PENCIL CODE

[37] Press, W., Teukolsky, S., Vetterling, W., & Flannery, B., Numerical Recipes in For-
tran 90, 2nd ed., Cambridge (1996)

[38] Stanescu, D., Habashi, W. G., J. Comp. Phys. 143, 674 (1988) “2N-storage low dissi-
pation and dispersion Runge—Kutta schemes for computational acoustics”

[39] Williamson, J. H., J. Comp. Phys. 35, 48 (1980) “Low-storage Runge—Kutta
schemes”

[40] Pencil Code Collaboration, . Open Source Software 6, 2807 (2021) “The Pencil
Code, a modular MPI code for partial differential equations and particles: multi-
purpose and multiuser-maintained”

[41] Porter, T. A., Johannesson, G., & Moskalenko, 1. V., Astrophys. J. Supp. 262,
30 (2022) “The GALPROP Cosmic-ray Propagation and Nonthermal Emissions
Framework: Release v57”

[42] Intel https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference

https://software.intel.com/en-us/fortran-compiler-developer-guide-and-reference-mcmodel

293

Part IV
Indexes

File Index

K G e e 11l bfield.f90 210, 2611, 2691
K FO0 e Nl bin/], 6], @, 111, (13, 130, [31], [80]
S N 301 [31], [18§] boundcond.f90 278 287] 283
*x.10Cal ... 31 boundcond_alt.f90 279 282
P 151 bUES/ « i 1]
/32C [153]
.adapt-mkfile.inc 79 cdata.£90 . .. [91],92] 113 [196] 251] [253]
baShTC . v [chem.inp......... L. 691
cconf L. 18] chemistry.f90 2111
cshrc 4] chemistry_simple.f90 211]
CMACS .+ e e e e eoeee e 131 chiral _mhd.f90 211l
LSVI/ e e sl collapse.f90 212
/scratch/ 6l compilers..................... 16
KID> v ettt et 16| config 17,
$PENCIL_HOME/python/pencil/files/remesh.pyconfig-local 17
151 config/ [17]
$PENCIL_HOME/python/pencil/files/sim/remesBopfigFinder 16, 17
[151] configure.....................
$PENCIL_HOME ooveennnnn.. 89 conv-slab/ b, [8, 48], 157,
$PENCIL_HOME/python 45 conv-slab/src/
~/.config/systemd/user/ 111 coronae.f90 212
“/.idl_history 49 cosmicray.f90 251
~/pencil-auto-test 710 cosmicray_current.f90 212
1D_100p.f90 .. oot 208 cosmicray_nolog.f90 261
1d-test/ambipolar-diffusion 65| cparam.inc 13} B1],
2d-tests/baroclinic 1109 cparam.local . .6, 11} 13} 211,139, 48, 53]
2d-tests/battery_term 87 (104} 153]
2d-tests/spherical_viscous_ring . [109 cparam_pencils.inc 106
ctimeavg.local 17l 29|
aalxyz] . {xz,yz,xy,xy2} 250
ablxyz] . {xz,yz,xy,xy2} 251] data/ 6}, (L3}, 25, [31], 48]
adapt-mkfile 20 data/ ... [13]
advective_gauge.f90 208] data/dim.dat [182]
alive.info 24], data/param.nml 88, 154,
anelastic.f90 208 252 data/procN/ 24
ascalar.f90 261] data/prock/ 2527
ascale_collapse.f90 209 datadir.in 6,
AUuto—test . . . v v e 2l debug_c.c......... 114
axionSU2back.£90 209, density.£90 . .[29][65] 99| 200] 250] 252,
257, 266, 268, 271], 274
b2.{x2,y2,Xy,xy2} 250 density_stratified.f90 . 212 262] 267,
backreact_infl.f90 209 269, 272]
backreact_infl_before.f90 210 detonate.f90 213]
bb.net, 40| developers.txt 3,
bb[xyz] .{xz,yz,xy,xy2} 2501 dim.dat 13, 14],
betal.{xz,yz,xy,xy2} 250] disp_current.f90...... 213] 262

294

FILE INDEX 295

divu.{xz,yz,xy,xy2} 250]
doc/ il
dust-vortex/ (0l
dustdensity.f90............... 214]
AX/ 11l
dx/basic........ 40|
dx/macros/ 30|
ec. {xz,yZ,xy,xy2} ... 2511
electroweaksu2.f90 214
entropy.£90 [29] [114] [207], 250, 252} 257
267, 268] 71],
entropy_anelastic.f90 215]
eos_ionization.f90 250
EQU . ..o 99
equ.f90 102l
examples/pro/ 40|
experimental 152
forced/ L1
forced/idl/ B3l
forcing.f90, 216|
fourier_fftpack.f90 51
fourier_transform.y 51l
generate_kvectors.pro 1157
getconf.csh 9, 11, @3] B1]
gravitational _waves.f90 216

gravitational_waves_hij6.f90 ...[21§]

gravitational _waves_hTXk.f90 ...
gravitational_waves_hTXk_no_-
xpara.f90 217
gravity_simple.f90 218 262], 267, 269
2'(6l
EravZ/ oo e Nl
grid.dat............... [14]
H2_flamespeed/ 37
heatflux.f90 218
helical-MHDturb............... 1157
helical-MHDturb/ 34]
host=IDoouo.... [17]
host_ID.conf 16l
hosts 16|
hosts/ 16l
hsections.pro 158
hydro. £90 . 29 65, 78, 99, (104, 196, 250,
[251], 253], 266, 268], 271}, 273
hydro_kinematic.f90 219
hydro_potential.f90 219 253] 262 267
270, 272,

hyperresi_strict_2nd 143

hypervisc_strict_2nd 143
1d1/ 01l
indeX.pro..........covvn... 14,
inlinedoc-modules.tex 1179
Intel.conf 16}
Intel_MPI.conf 16}
interlocked-fluxrings 1109
interstellar.f90.......... 221],
Isurf.xz.. ..., 200
j2.{xz,yz,xy,xy2} 250
jb.{xz,yz,xy,xy2} 250
jjlxyz] {xz,yz,xy,xy2} 250
Kodat v 31
K_VECTORS/t 157
kinematic/t 1]l
klein_gordon.f90 221
klein_gordon_philippe.f90 222
klein_gordon_tmp.f90 223
Lambda_CDM.f90 208]
legend.dat [14]
Incc.{xz,yZ,Xy,xy2} 251
lnrho.{xz,yz,xy,xy2} 250)
Intho.net 40
InTT.{x2,yZ,Xy,Xy2} «...oon.... 250
local_remesh.py............... 1511
lorenz_gauge.f90 223
lucky_droplet.f90 223
mach.{xz,yz,xy,xy2} 250
magnetic.f90[viil, 29| 100, 102} 114, 207],
250, 252] 258] 267, 269, 271, 275!
magnetic_shearboxJ.£90 . [223] 253] 264,
[267] [270], 272,
make read_videofiles 20|

Makefile . [12][20] 211 B0, [31], [80] [87] 128
Makefile.localﬁﬂ,ﬂﬂ-@,@,@,m

51} 53} [611 63} [79], (80,
Makefile.src [6l, 171 13} 20, [80}
manual.texX 93] [108]
maxwell .f90 228]
meanfield.f90 [228] 265, 273
meanfield_demfdt.f90 228
mkeparam. [13], 80 106!
mpicomm.f90 811
neutraldensity.f90 (551
neutralvelocity.f90 65,
NEWDIRvviieeinennnn. B33,

296 THE PENCIL CODE

nochiral...................... 80|
noentropy.f90 228!
NOERASE 38
noinitial_condition.f90........ 1109
noionization.f90 1192
nomagnetic.f90 hviul, 102 (103
nompicomm.f90 [B1],
nospecial .f90 107
02.{x2,yZ,xy,xy2} 250
oldvar=$VAR, 151
oolxyz] .{xz,yz,xy,xy2} 250
os/Unix.conf 18
param.nml 14, 31 153
param2.nml 14 [31]
params.log 14l
particles_caustics.f90......... 229
particles_chemistry.f90........ 229
particles_dust.f90 229!
particles_dust_brdeplete.f90 ... [229i
particles_lagrangian.f90 229
particles_mass_swarm.f90 229
particles_surfspec.f90......... 229
particles_tetrad.f90 230
pc_read_phiavg.pro 29|
pc_read_video 2|
pc_read_Xyaver 28
PC_SELUPSTC + v v v v e e e eeiieen .
pencil-code/ 10,
pencil-code/idl/read [
pencil-code/utils 32l
pencil-runs/ [10}, 11l
Pencil::ConfigFinder 16}
Pencil::ConfigParser 16|
pencil_check.f90 84!
PENCIL_HOME/python/tests/README.md
112

pencil_test.service 11dl
pencil_test.timer 112
phiaver.in 28]
phiaverages.dat................ 28]
PHIAVGNo i e i S|
phiavg.pro 29|
pointmasses.f90................ (2l
polymer.f90 250
POWET + vttt it it et et et e 51l
POWET .PTO « v o v vt v et e e e e e e e 02
power_kin.dat 51
power_krms.dat 511

powerbx_x.dat 51

powerhel mag.dat 511
powerux_x.dat 51l
poweruz_xy.dat 1190
Poynting[xyz] .{xz,yz,xy,xy2}....
pp-{xz,yz,xy,xy2} L 250
print. in8} 12} 23] 24} [102] [103] [154] 196]
procN 14, 31l
PrOCO « vttt 14l
procl ... 14
procN/ ...
pscalar.f90 208,
pt_positions.dat 104l
Qrad.{xz,yz,xy,xy2} 250
ol o 43, 48
radial_dist_func.f90 230
radiation_ray.f90 250
rall.pro.....oouuvveennnn.. 43
reaction_0D.f90............... 230
README 31l 1111 157
reference.out BL 13
rel 1d.f90t 231]
RELOAD 14,
remesh.csh [187]
RERUN B3],
rho.{xz,yz,xy,xy2} 250]
Tings/ ..o e L1l

run.csh Emmmmm
run.in Eﬂ,mmmw

TUN.PTO « v v et e e et et eeee e 311
TUN.X e e e eeeenn s [7, 141, (30} 38|, 11l
runA_32a. e 211
TUNS/ 11l
Tvid_boX o 25|
rvid_box.pro, 20|
rvid_line.pro 25}
rvid_plane.pro 20|
samples/ 24 O], 13|, 123]
samples/parameter_scan.......... 311
samples/README 1]
SAVE .\ttt B33
SCRATCH_DIR 85|
sedimentation/
seed.dat................... 14l
selfgravity.f90............... 231
sfb-1.dat ... vvviii 53l
sfu-l.dat..................... 58]

FILE INDEX 297

sfzl-1l.dat B3l
shear.f90...... 237
shock.{xz,yz,xy,xy2} 250
shock.f90 231],
shock_highorder.£90 237] 265, 267,
S1ACE + it e B8]
slice_uul.yz 29|
slize* 25|
sn_series.dat DEL 14
sn_series.in 13}, 14l
solar_corona.f90 231]
solid_cells_CGEQ.f90 231
solid_cells_ogrid_chemistry.f90 . [23]]
solid_cells_reactive.f90 231
sound-spherical-noequi/ 23]
SOUTCEME .« « v v v v e v e e e e e 4], [77]
sourceme.csh 4 171 77, 8]
sourceme.sh 4 111, [77] [88]
SPEED & v ttitee e 31l
spher/ 11l
src/ bvaaal, 3] [6], (10}, 011, (13}, 31,
STC/ e 13l
src/*.1local, 30i
src/.config-files 119
src/cparam.local 151 [153]
src/Makefile.inc............... 510
src/Makefile.local . [37][109] I51] 153
158
src/read_all_videofiles.x 25|
src/read_videofiles.x 2527
ss. {xz,yz,xy,xy2} 250
Ss.net ... e 40
start.csh . . [9 01}, 13 30} 31l [37, [66] [84],
1511
start.in. . [l [7 12 23] 26] 3] B3] 36,
38, 139} 58, (84}, 104}, 109}, 1511, 154}
[160, 18], 188
start.pro............... Eﬂl |B|, 88
start.xm,@,mmmm@,mm
STOP « v 32, B3]
structure.pro %]
sub.f90 1100
TAVGN . . o 30i
temperature_idealgas.f90 . . .[231] [250]
265, 267, 270] 73]
temperature_ionization.f90 . [232]
test_chemistry.f90
testfield_axisym.f90 232
testfield_axisym2.f90 233

testfield_axisym4.f90 233

testfield_compress_z.f90 234
testfield meri.f90 237
testfield_nonlin_z.f90......... 238
testfield x.f90............... 240
testfield_xz.f90.............. 24 1]
testfield_z.f90......... 242
testflow_z.f90 244
testperturb.f90............... 244
testscalar.f90 245
testscalar_axisym.f90 2406l
testscalar_simple.f90 247
thermal_energy.f90 [249] 266 267 270,
273
time.dat................... DZL
time_series.dat(8] [13] [14], 23] 30, 31l [39]
43
timeavg.dat 30|
top.log 31l
training_torchfort.f90......... 249
tran.dat........ 65
ES.PLO v ve i 41H43]
tsnap.dat 14,
TT.{x2,y2,Xy,xy2} .o 250
tvididat. ... 14
u2.{xz,y2,xy,xy2} 250
ulxyz] . {xz,yz,xy,xy2}.......... 250
uu.net ... 40|
VAR « oo 39, [88] 151l
VARN (14, 24 [30], 32, [35]
var.dat [7, [14] [24] (30} [33] [35] 39 411 43
188, 150H152, 1811 189] 190
var.general 40|
VARO ©vv et 181l
VARL 1152
VARE ..o 33
video.in............ 2527 [154],
viscosity.f90 . [249] 253|266 271l 277
vsections.pro 11591
vsections2.pro 11591
XoXY o e
XiXZ oot 115]
X oyZ oo 15]
Xyaver.in............. 28], [154],
xyaverages.dat
XZaver .1l . . v v vt i i e e e 28],
xzaverages.dat 28]
yaver.in............... ... 28,
yaverages.dat

298 THE PENCIL CODE

yH.{x2,yZ,xy,xy2} 250
yzaver.in 28 [268]
yzaverages.dat 28
Zaver.in.o, 28] 273l

zaverages.dat 28]

Variable Index

drue. ..o e 28
0dscovvvii 283
Is oo 278], 280H283]
1SO .o oo 78|
0............ 278, 279, 281H283]
1............ 278, 2801282 [284],
a........ 209 278, 279], 281H283]
ald 283]
aOrms 213
Al .. 230
allxy 237
al2xy ... 237
Al3XY .o 237
als e 283!
A2 230
a2...... ... 278 2801-283],
A2IXY .. 237
A22XY « 237
A23XY . 237
a2b2m 202]
A2M .. 205
A2MZ oo e 260!
Q2T 278,
a2rhogphim 210, 222,
a2rhogpsim 222]
a2rhom.............. 210 222
a2rhophim 210] 222] 223]
al2rhopm 210, 222,
a2rhopsim 222
Q20 . o 278
A3 . 230
a3Ixy ... 237
AS2XY o oo 237
A33XY e 237
Ad .. 230
A5 230
T B 157,
aal e 157
AA2M ... 228
AAm 230
ab ... 251
ablint ... 202]
abspec 190]
ABCA [194]

299

ABCB 194!
ABCC 194
abm 202,
abmh 202,
abmn, .. 202,
abms 202,
abmxy 275,
abmz 259,
abphlmz 261
abph2mz 261
abph3mz 261
abrms...... 202,
abumx 202,
abumy 202,
abumz 202,
abuxmz.................. 258
abuymz.................. 258,
abuzmz.................. [258] 264
ACCMZ « v v oottt et e e e 261
accpowzdownmz 256,
QCCPOWZMZ . . o v ve e oe e 256,
QCCPOWZUPMZ . . o v e e e v e .. 256,
acczdownmz 256
QCCZMZ © v o i i e et e e e 256
QCCZUPMZ o o v v e e e et e e e e e 256
adphiBm 213]
QML vt e it et e e e 207
af o 278, [281], [283],
afact 213
AIM . o 202,
aklam 244]
aklam@ 244]
akxpt 228]
alpll 234] 238, 240], 242,
alpllx.......... 240}
alpllx2 241
alpllcc........... 234] 238, 240,
alpllx 241
alpllz 236,
alpl2 234], 238, 240], 242,
alpl2x 240}
alpl2x2 241]
alpl2cs........... 234] 238, 240,
alpl2x 241
alpl2z 236,
alpl3 242

300 THE PENCIL CODE

alpl3z 24 3]
alp21 234] 238], 240], 242]
alp21x......... 240
alp21.x2
alp2lsc........... 234 238, 240,
alp21x 241]
alp21z 236],
alp22 234] 238], 240, [242]
alp22x 240]
alp22x2 2417]
alp22ss 234, 238 240,
alp22x 2417]
alp22z 236,
alp23 242
alp23z 24 3]
alp31 234] 238], 240], 242]
alp32 234] 238], 240], 242]
alpK ... 234],
alpKjbm
alpKm 228]
alpM 234],
alpm 228]
alpMK 234]
alpmxz 273]
alpPARA 232 233
alpPARAz 232 233
alpPERP 232] 233
alpPERPz 232] 233
AMAX « o oo e 2051
ambmz [205]
ambmzh 206]
ambmzn 206]
ambmzs 206]
ampl ff..... 194
amplforc 191
amplss [185]
amplaa 187
amplaa2 187
ampllnce 187
ampllnee2.cc...... 187
ampllnrho 184
ampluw 134 [183]
ARE .o 279,
) < 281]
apbrms 208]
ATMS . o oo 205] 226] 228
ascale 208]
asT.......... [278], [2801-282] 284,
QXMXY . o o ov e e e e 275, 277
AXMXZ . o o e ee e e e 271] 272

AXMZ oot 258
AXP2 .. 204,
AXPE o 204,
AY2MZ . . oo e 260
aybxmz 260)
AYMXY . o ve e e eie e e 275 277
QYMXZ . o ve e e 271,
AYMZ e 258
AYD2 oo 204],
AYDE o oo e e 204],
Azmid-max...................
Azmid.min
QZMXY . o oo e 275,
QZMXZ o oo e 271, 272
AZMZ . oot 258 264]
AZP2 .. 204,
AZPE o 204,
bOmax 235],
borms 235, [239] [241],
bl........ 284, 286
BITIxy ..o 237
BII2xy ..o 237
bllrms 235] 239
bI2Ixy . ..o 237
DI22XxY ..o 237
bI2m 202]
bl2rms 235 239, 247],
BISIXY oot 237
bl32xy 238]
blb23m 206], 227
blb32m 206, 227
bIm 202,
blrms 233 234
b2 250], [284],
b21Ixy . oo 237
b212xy 238]
b2lrms 235 239,
b22Ixy ... 237
b222xy 238]
b22rms 235], [239] [241],
B23IXY oo 237
B232XY .o 238
b2b13m 206,
b2b3Im 206),
b2divum 207,
b2m 202} 210,
b2mmx 269
b2mphi 252,
b2mx ... 269,

b2mxz.......... 271, 272

VARIABLE INDEX 301

b2mz ... 260, 261],
b2rms 233] 234
b2ruzm 202,
b2sphm 207
b2tm . ..o 202, 223]
b2uzm 202
b3 . 284]
D3IIxy ..o 237
B3I2XY oo 238
b32Ixy ... 237
b322xy ... 238]
b33Ixy ... 237
b332xy ... 238]
b3BIZM oo 206,
b3b2Im 206,
b3rms......... 233] 234]
bdm 202]
b6m 202]
b8m 202]
Bext.......... 193]
bamp 236, 239]
bb . . [114]
bbmphi.................. 252
bbsphmphi 252]
bbxmax. 204
bbxmz................... 259
bbymax.................. 204],
bbymz................... 259
bbzmax.................. 204,
bbzmz 259]
be{x,y,2} oo 38
becosphz.................. 205,
BeurlEm 213
becurlfmz 260
bex [38], 39, [85] [183], 190,
bey oo [38], [183], [190],
bez [38], 39, [85] [183], 190,
bdel2amz 259
betal 250)
betalm 205
betalmax 205
betalmxy 276
betalmz 259,
betalmx 269]
betalmz [259] 261],
betam [205] 211],
betamax [205] 211],
betamin [205] 211],
betamx 269]
betamz [259] 261],

betm 212 237
betmax 231
betPARA 232 233]
betPARAz 233] 234]
betPERP 232,
betPERP2
betPERPz 233]
bf2m 204
bf2mz 260,
bfdm 204
o 216
bfrms [204], 225]
bgmubrms 212
bgmuSrms 212
bhrms....................... 235]
biji2m 207
bijcovdiffmax
bjtm 202,
blowupm 229
bm ... 210}
bm2 ... 202
bmax 204] 210] [225]
bmin........ 210}
bMX ..o 28], 205], 226,
bMXYyIrms 207,
bmy ... 28] 205,
bmz 28, [205] 226,
bmzA2 [205],
bmzph 205,
bmzphe.................. 205,
bmzS2 205],
boostprms 213
bp2mphi 252]
bpbzmphi 252
bpcmphi 252
bpmphi.................. 252,
bprimerms 213
bpsmphi 252
br2mphi 252
brbpmphi 252
brbzmphi 252
bremphi 252
brmphi 252,
brms......... [134] 204], 210} 225,
brmsxo 207
brmsz o 208], 228
brsmphi 252
brsphmphi 252,
bsinphz.................. 205],

bthmphi 252,

302 THE PENCIL CODE

butm 202
bxOmz............ 236] 240] [241],
bxOpt ..o 235, 239
bxllpt 235, 239,
bxl2pt 235], 239,
bxImxz R71],
bxlpt 233 234]
bx2lpt ... [235] 239,
bx22pt ..., 235, 239,
bxa2m ... 206, 210,
bx2mx 269]
bx2mxy 275]
bx2mxz 272
bx2my ... 267
bx2mz............... [259] 261],
bx2phimz 260]
bx2ph2mz 260]
bx2phdmz 260
bx2pt .o 233 234]
bx2rmz 259] 264]
bx2rphlmz 260]
bx2rph2mz 260]
bx2rph3mz 261]
bx3m ... 206
ba3pt .. 233, 234]
bxdm 206]
bxbym [205] 217],
bxbymx 269
bxbymxy 275]
bxbymxz 272]
bxbymy 267
bxbymz 260] 261],
bxbypt ... 203
bxbzm 205] 211
bxbzmx [269]
bxbzmxy 275
bxbzmxz 272
bxbzmy 267
bxbzmz 260] 261],
DX o 205, 210,
bxmax 204 270|
bxmin 204],
bxmx ... 269,
bxmxy 275
baxmxz 2711
bxmy ... 267
bxmz [259] 261], 264
DXP2 .o 204],
bxphlmz..................... 260]

bxph2mz..................... 260]

bxph3mz 260}
BXDE © oo 203
byOmz............ 236, 240}, [241],
byOpt 235 239,
byllpt 235,239,
byl2pt [235] 239,
bylmxz 2711,
by2Ipt 235 239,
by22pt 235, 239,
by2m 206] 217],
by2mx 269,
by2mxy 275,
by2mxz 272
by2my 267
by2mz 259, 2611
by2phimz 260}
by2ph2mz 260}
by2ph3mz 260)
by2rmz 259, 264
by2rphlmz 261
by2rph2mz 261
by2rph3mz 261
bySm 2006}
bydm 2006}
bybzm 205, 2111
bybzmx 269,
bybzmxy 275,
bybzmxz 272,
bybzmy 267
bybzmz 260l 267],
bybzpt 203]
bym ... [205] 210,
bymax 204 270
bymin 204,
bymx 269,
bymxy 275,
bymxz 271,
bymy ... 267
bymz 259, 2611
byp2 . .. [204],
byphlmz..................... 260}
byph2mz..................... 260}
byph3mz 260}
BYDE © oo 203
bz0mz............ 236] 240| 241]
bzlmxz 271, 272l
bz2m ... 206, 217, 227
bz2mphi 252
bz2mx........ 269,
bz2mxy 275, 277

VARIABLE INDEX 303

bz2mxz 272
bz2my 267
bz22mz............... 259 261
bz2phlmz 260]
bz2ph2mz 260
bz2ph3mz 260)
bz2rmz 259,
bz2rphlmz 261]
bz2rph2mz 261]
bz2rph3mz 261]
bz8m ...
bzdm 206
bzaymz 259
bzbxpt 203]
bzemphi 252
bzdivamz 259
bzLammz 259
bzm ... 205], 210]
bzmax............... 204] 270|
bzmin 204]
bzmphi 252] 253
bzmx ... 269]
bzmxy 275]
bzmxz . ..o 271,
bzmy ... 267
bzmz.......... [259] 261], 264
bzp2 ... 204]
bzphlmz 260)
bzph2mz 260)
bzph3mz 260)
bzpt oo 203
bzsmphi 252]
bzuamz........... 259
c+k . 282
el 278, 280, 283],
clpt 246248
clrms 245] 247,
cls ...
C2 284,
c2pt ... 246H248]
CArms 246H248]
CS 283
e3Pt . 246H248]
CITMS . o oo e e et e e 246248
cdpt ... 246248
cdrms 246H248]
copt ... 246H248]
corms 246H248]
copt 246H248]
corms 246H248]

clight2....................... 70}
ceglnrm 208]
COMOAX « o v v oo e e e e et e e e e e 208]
cdiffrho 191
cdS . 287] 282
edt 36, 37, 39,
cdts ... 36!
cdtv ... 361 37,
cdz .. [284],
e [284],
cfb o 279,
CEAM . . i vttt 201
chemistry.f90 179]
Chi oo, 192,
Chit .o 193l
chiddot 209
chidot 209
chikrammax 201]
chikrammin 201]
CHIRAL 80)
ckxrange 195}
ckyrange 195}
coeffgrid 22, 23]
constrainteqn 213
constrainteqgnW 219
cool 192
cooltype 192
Cop i 278, 2801282 285,
cosjbm 207,
cosubm 203]
counteb0 213
countebOa 27101 222] 223
1 < R 284],
CPC v ve et 278],
CPD o o oot 278,
CDZ o vt 278,
crk .. 284]
esO [184], 197
CS2 114
eS2b0t . .. [184] 197]
cs2cool 192]
es2mphi 252,
CS2tOP . . 184 191
CSML. o oo 201] 215] 229
CSMOX . o v o oo e 207]
cT........... 278, 2801282 [284],
¢TI 284
T2 .. . 284,
TS ., 284,

304 THE PENCIL CODE

curlrulmz. 2531 dexbmz 207
cutoff ... 134 dgrant 209
CUSCLITUN ..o i it ein e 289 dgrantup 209
cuscirunbash 2891 dheat bufferl 193
evsid 1811 diffrho_hyper3_mesh 147
CZrANZEe . o o v v v v ettt et e 195 diV . [284]
DI .o, s AVabIns 208
dls e VAMZ oo
""""""""" divapbrms[208
fi);davg@l, dL:varms [205], 226]
d2Lambrms 208! dl_vbmax """"""""""" 211]
d2Lamrms 208] d%vbrms L
D3 o 230 diveoolmphi 252)
DA .o 230 3‘:”3"’5%’" """"""""""" %
D5 o 230 WAOLWIrms ...oooovevenen
- divdotW2m 215]
Goamet U g dedoWams
- wdotWdm
Goames U gy diodoWarms
wEm
ZZOm’;"?jjjjj;;:jjjjjj;;;jjjjj% AivErms ... 213
dampu . ..o 190, 19T glzvzeatmphi
dampuext WML v
damlp?uint % divdrms 213
datadir A3 divrhoum 208}
db. . 278, PR, divrhoumax [198] 208,
dbx2m ... 21Tl divrhourms 198, 208, 220
ADXM © oo 211l divruZmz 253,
Abxmax . . 211 divu ... e 250)
dby2m 211 divudm [198]
dbym 21171 divudmz 253] [262]
dbymax 217 divuHrms 200,
dbz2m ... 211 divum................... 198,
dbzm 211 divumz, 254,
dbzmax...................... 21171 divWlm 214]
dcoolmphi.................... 252 divWirms.................... 214
deoolx 269! dioW2mo 214]
deoolxy 2751 divW2rms 214
deoolz 258! divWdm 214]
DDm 230 divWdrms 214]
ddotam 210 222 223 Al . o 209
del 232 233 DLm 230
del2 233 Dmubitdep 212
deltay 231] dobrms 203] 2241
delz 233] 234] dphi2m.............. 210] [222]
der 2791282, 284, dphim 210] 222, 223
detn 213 dphirms 210] 222]
dettot 213l dpsi2m 222,
dexbmx 207, dpsim 222,

dexbmy 207, 227 dpsirms 222], 223]

VARIABLE INDEX 305

drO 279,
drho2m 200} 213
drho2mx 269!
drho2mxy 2’76
drho2mxz 272l
drho2my 267
drho2mz 262
drhom 200],
drhomax..................... 213
drhomx 269
drhomxy 2776l
drhomxz 272
drhomy 267
drhomz......... 262!
drhorms 213l
dsnap 24 [35]
dspec 190]
dstalk 188
dt .o 8,137}, [39, 189, 1961
dtchiral
dt.CMW 212
dt D5 212
dtDmu 212
dtgammafb 212
dt lambdab 212
divmu 212
dtb 204,
dic 8] 201], 215], 228],
dtchem 217], 23],
dtchi............... [8, 2011, 215,
dtchi2 208, 212 2317]
didiffus 196
didiffus2..................... 196
dtdiffus3..........
dteta [205]
dteta3 205]
dtF 200
dtH 201
ditmin 189
ditnewt 2317l
ditnuc.c ... 8l
dipchem 230
AEG oo 218]
dtq2 ..o 218]
ditrad 208]
dtradloss 231
dtshear 231
dtspitzer 208 212], 218| 23171
dtu . ..o 8,199,
dtv .. 196

dtvel 237
dtvmaxz 253
dubrms.................. 203,
dudx......... 199,
durms. 197,
dvid 25| 26], [35]
dWImaxcc.0. ... 214
AWIrms 214
dWlxm 215]
dWlxmz 262
AWlym
dWlymz 262
dWizm 215]
dWizmz 262
dW2max 214
dW2rms 214
dW2xm 215
dW2xmz 262
dW2ym 215}
dW2ymz
dW2zm
dW2zmz 262
dW3max 214
dW3Srms 214
dW3xm 215]
dW3xmz 262
dW3ym 215}
dW3ymz 262
dW3zm 215]
dW3zmz 262
dz_1 22]
dztilde....................... 22]
EOmrms 236
EOrms 236} 239, 241],
EOUm............... 236} 240,
EOWm 236, 240,
EOxrms............ 236
EOyrms........... 236
el 279H282 284],
El0z............. 236} 240] 241
Elllz............ 236, 239] 241],
E112z 236, [240] [2417],
Ellrms 235 239 247],
Ellxy 237
El21z............ 236, 2401242,
EI22z............ 236, 240], 241],
El2rms 236] 239 247],
El2xy 237
El3xy 237

306 THE PENCIL CODE

€2 ... 279282 284],
E20z............. 236, 240, 241]
E211z............ 236, 240242,
E212z............ 236, 240] 241]
E2lrms 236, 239] 241] 243
E2Ixy 237
E221z............ 236], 240242,
E222z 236, 240] 241
E22rms 236}, 239] 2417
E22xy 237
E23xy 237
e2h ... 2779
@2MX . . e 269
€2MZ . . i 262!
e3 e 2791282
E30z............. 236, 240] 241],
E311z............ 236, 240242,
E312z............ 236 240, 241}
E3Ixy 237
E321z............ 236, 240242,
E322z 236, 240}, 241]
E32xy 237
E33xy 237
eSxamzl 260]
e3xamz2 260,
e3xamz3 260
Edlxy 237
Ed2xy 237
E43xy 237
E5Ixy 237
E52xy 237
E53xy . ..o 237
E6lxy 237
E62xy 237
E63xy 237
E7Ixy 237
E72xy 237
E73xy 237
E8Ixy 237
E82xy 237
E83xy 237
E9Ixy 237
E9%2xy 237
E98xy 237
ebm 214
EBpg 236, 240, 241],
echarge 213
CCT © et 257]
CCTTNZ o v v e et e et e 261]

ecrph2mz 261
ecrph3mz 261]
edotrms 213
eelO 230
eelm 230
€C2ML . . [228],
€e3ML . . v i i e 230
eedm 230)
eeb0 230
ee90 230
ee99 e 230
EEEM 213
EEGW 217, 218
EEK 200} 219,
EEK2 200}
EEK3 200}
EEK4 200}
EEM 2021
eem.......... 201], 215] 230, [232],
EEM2........... 2021
EEMS3, 202
EEM4....................... 202
CCMZ « v v v ettt e e e 266
ekin [200],
ekiner 212
ekinmx 268
ekinmz 256,
ekind 229
ekinphlmz 255}
ekinph2mz 255}
ekinph3mz 255}
ekintot 200
ekxpt 228]
el . 279]
eMag ..o 204! [225]
EmAIAI3Imxy 277
EmAIAI3Imxz 273
EmAIAI7Imxy 277
EmAIAI7Imxz 273
EmAIAI98mxy 2771
EmAIA1983mxz 273]
EmAIA2IImxy 277
EmAIA21Imxz 273]
EmAIA304dmxy 2771
EmAIA3O04dmxz 273]
EmAIA335mxy 277
EmAIA33Smxz 273
EmAIA94mxy 277
EmAIA94mxz 273]
EMAX © o oo o et e 213

VARIABLE INDEX 307

embmz 205]
EMFdotBint 228]
EMFdotBm 228]
EMFmax 228
EMFmin..................... 228
EMFmz1 228
EMFmz2 228
EMFmz3 228]
EMFrms 228
emxamz3d 205
EmXRTmxy 2'((
EmXRTmxz 273
€0S_METZeT . . v v v i e it eeen 92
EPOL o\ 218
EPOLMX . o v v vt e e 269!
EPOLMXY o v v v et et e 2’/ 6!
EPOLMY '« v v ot e 26/}
EPOLMZ oot 262
ePOLLOt . . . 218
ePOLUXMX . . . v v v 269
ePOLUXMXY . o v v v et 276!
epotuzZmMz 262!
ePrimermsooowuun.. 213
epsrkf 196
epsAD 203]
epsilonac 187
epsK 249
epsK2 249
epsK3 249
epsK4 249
epsKint 249
epsKmz 2606
epsKn 228
epsM 203
epsM2 203
epsM3 203
epsM4 203
epsMmz 260,
ETMS v v e et 213]
ETUZMZ « v vt i ittt e e 266
CEA . i 193l
etall 234] 238 240], 242]
etall x 0., 240!
etall x2 0o uu... 241
etallcc 234] 238, [240],
etallx..........., 241
etallz................... 236} 243]
etal2 234], 238] 240}, 242 245]
etal2x 240!
etal2x2 241!

etal2¢s 234], 238] 240],
etal2x......... 241
etal2z........ 236,
eta2l1 234], 238] [240], 242]
eta2lx 240
eta21x2 241
eta2lsc 234] 238, 240
eta2lx.......... 241
eta2lz.......... 236,
eta22 234] 238 240], 242
eta22.x e 241
eta22x2 241
eta22ss 235] 238] 240,
eta22x. 241
eta22z 236
eta3l 242,
eta32 242,
etaext 193]
etaint 193
etaout, 193]
etatdep 201
etaanisoin. 207
etaanisoBB 207
etaj2max 207, 227
etajmax 207,
etajrhomax 207,
etasmagm 207,
etasmagmax 207,
etasmagmin 207,
etatm, 228
etatotalmx 269]
etatotalmxy 2775]
etatotalmz 260
etavamax 207] 227
ethm 201], 215 [228] 232]
ethmax 249
ethmer 212
ethmin 249
ethmz 258,
ethtot 201], 215] 232,
etot 249
B ot [284],
ExOpt 236 239,
Exllpt 236, 239,
ExI2pt 236, 239,
Ex2Ipt 236, 239, 243
Ex22pt 236, 239, 243
exabot 204],
XAMX . o v o v e e et 207] 227

308 THE PENCIL CODE

examxy2 276,
examxy3 276
EXAMY . oo v e 207
EXAMEZ .« o v o oo e 2071
examzl 260,
eXAMZE2 . . o oo 2601
examz3 260],
eXALOP . . e 204,
exatotalmx 207
exatotalmy 207
exatotalmz 207
exatotalmzl 260
exatotalmz2 260]
exatotalmz3 260]
exd 284]
exf 284
EXJIMX o i 207
EXTIY '« i 207
EXJMZ i 207
XM v 213] 284],
Exmxy 208,
Exmxz 272
Exmz 259,
BXMZ o o v e et e e 262
@XD \ e 279, 282
Exp2..... 204],
Expt0 ... 203]
EyOpt 236, 239
Eyllpt 236, 239]
Eyi2pt 236, 239]
Ey2ipt 236, 239 243
Ey22pt 236], 239, 243
YML o o e 213
Eymxy 208,
Eymxz 272,
Eymz 259 264
CYMZ o o e e e 262l
Eyp2..... 204]
Eypt 204]
CZM . o oo vt 213
Ezmxy 208
Ezmxz 272 273
Ezmz 259]
CZMZ . o i ittt e e e 262)
Ezp2. 204,
Ezpt 204],
oo 278],
iy < 284]
Fiiz.................... 246/H248
F12z................ 246, 247,

F21z 246H24 8]
F22z 246 247,
F3lz 246 247,
F32z................ 246 247, 249
fact 209
B .o 281]
foex ... 278,
foex12 280}
foex2. ... 279
fom . . 203]
Fbot 193
fBS . 281]
FC 83]
Fem 278],
feconvm 201
feconvmz 266]
feconvpsphmphi 252
feconvrsphmphi 252
feconvthsphmphi 252]
feonvxmx 268]
feonvxy 275}
feonvyxy 275}
feonvz 257
feonvzxy 2751
Fet 278 2801 283,
Fenthdownz 257
Fenthupz 257
Fenthz 257
ffakez 266}
ffdownmxy 273]
ffdownmz 254
FFLAGSDOUBLE 50
fo 278, [280H283],
Fgravx
Fgs.............. 2778, 280}, [283],
fil oo 279]
X ... o 2779,
fkinrsphmphi
fkinxdownmxy 274
fhinxmx 268
fRinxmxy 274,
fRinxupmxy 274
fRinymxy 274,
fkinzdownmz 254
fRinzm [196),
fRinzmz 253], 262l
fRinzupmz 254
fmasszmz 253], 262l
fmax........ 102

VARIABLE INDEX 309
fountain 194] fxbxm 203], 225
fopf o P £79, 280, 284, 236
foresxmz 269
: GIIDt o 216218
foresymz 269 19nt 5TELOTY
fpreszmz 258, BLEPL wvvee el
> 822Dt . 216-218
fracophlmz 258] .
- 823Dt o 216218
fracoph2mz 258] -
2 S3IPt . 216218
fracoph3mz 258] 233pt oT6O1Y
fradbot 207], 215 232 e o1
fradmx 268] gam """"""""""" m 233
,7:: ZZr"njonstcthy """""""" gg gamll 2451247
- _ 11z. 245] 246], 248
fradrsphmphi Kconst 252] anm*L 1 22 D AEL AT
fradrsphmphi_kramers 252 gami2z m o7,
fradtop R0LRIS @32 s 045247
fradx_constchi................. 269 13 D45] 047 P48
fradx_kramers 269 gZ?ﬂ 12 """"""" S AEL DA
fradxy Kprof 2°(Ol gam2lz. 045|247, 248
fradxy kramers 2°(0l 2am22 ... 045047
fradymxy Kprof iﬂ!ﬂ 2am22z. D45, 247, 248
fradz e 25 :" gam23 D457
fradz constchi 258] 2am23z. ..o 045, 247, 248
fradz Kprof 258] gam31 045, 246, 248
fradz_ kramers. 258] gam3lz. 045|247, 248
fringLfring2 187 2am32 ... 245] 246, 243
frmax Plfm gam32z. 245| 247, 248
fs oo 284] 286 2am33 ..., 045, 248, 248
fsum o o oL 102 gam33z. .. 245| 247, P48
fturbfz 258 SAMSBZ oo 947
fturbmx L. 269 gam EBrms 213
fturbmz EEEEEEE R 258 GAMC o oo 040
fturbrsphmphi SAMCZ . o oo oot 246}
fturbrxy ... 275l gamfdm 212
fturbthxy 2(0) Gamm 221]
fturbtz 258 GAMIML . o oo 196
fturbxy 2?45:1 SaAMMA . oo 184 191], 244
fturbymxy 2ol gamma® 244
f tur bZ 258] AMMAX . . .o v v i i 196
fum .o 199} 221 SAMIMSoviun.... 196
foisem oL o 249 SOMZ .o
foiscmax o oL 249 gdivulm [198,
fuisemin o o L. 249 geometrical typesf90 179
foiscmx 27T 8E2M .. 217, 218]
foisemxy 277T] ggT2m 217,218
foisemz 266 gsTm 218
fuoisecrmsx 2409 ggTp2 217, 218§
fuiscrsphmphi 253 Tot . oo 216H2718]
881p
fuisesmmxy 277 ggTXm 217, 218
fuisesmmz 88X2m 217, 218]
fuiscymxy 277 ggXm 218]

310 THE PENCIL CODE

88Xp2 217,218
g8Xpt 217,218
SU2m 218
gLamam 202
gLambm 202]
ghamrms 208
Smudbmx 212!
gmudmy 212!
gmudbmz 212!
gmudrms 212!
gmuSrms 212
gpotself2m 231
gpu_astaroth.fo0 179
gradpxmz 258]
gradpymz 258]
gradpzmz 258]
grads0
grand2
grandxy 276
Srantxy, 2/ 6!
Sravampeeeniiian 1185
gravtilt [185]
Sravz [135] 184 (194
gravz_profile [135], 136|184 194
grhomax 201]
grid func 22]
SIMS . oo 213
gshockmax 231
SSTMS « v oot e e 201
8SS2mz 258
SSXMXY o v v e et e e 275!
SSYMXY o o o e e e e e e e 275
SSZMXY o o v i i e e e 275
gT2m 231]
glimp2............ 216
glimpt 216
gTmax 2011 [231]
glrep2 216
glrept. 216
glrms.......... 2017
gTT2mz 258
glxgsom 2011
gTxgsrmsc.c......
gTxgsx2mxy, 279
gTxgsx2mz 258]
gTxgsxmxy 2°(9l
gTxgsxmz
gTxgsy2mxyc....u ... 275
glxgsy2mz 258

gTxgsymxyc.cuun.n.. 275

glxgsymz 258]
gTxgsz2mxy 2'(9|
glxgsz2mz 258]
glxgszmxyc..u.ui.. 2'75]
glxgszmz 258]
ghxmxy 274
ghymxy i, 2'(9|
glzmxy, 2'(9|
guxgTm 231
guygTm 231
guzgTm 232
gXimp2..... 216
gXimpt 216
gXrep2 216
gXrept 216
gzlnrhomz 25|
H 209
hOmax0.000u...
hOrms..........0 .v.... 235}
hllrmsc...... 217, 235]
h12rms. 217
h2Irms
h22rms.............. 217, 218
h23rms 217,
h3Irms 217
h33rms oo 217 21§
hat ... 279,
hecondO [91H193]
heondl 191],
hecond2 192
hds . . oo 283
headt 113
headtt 113l
heatmz 258]
heatThm 232
heighteta 193
height ff 1941
hhT2m 216218
RhThhXm 216!
hhTp2 217, 218l
hhTpt 2162718
RRTXmcovviiinn... 217, 218
hhX2m 216218
hhXp2 217,
hhXpt 216218
) AL
hjparallelm 207,
hjperpm 207,
hjrms 204,
Hmax 201]

VARIABLE INDEX 311

Hmaxism 221
hrms. 217, 218
RS oo 284
Hscriptm 210, 222,
hse 284]
hTimp2 216
hTimpt 216l
hTrep2 216
hTrept 216
Hubble 208,
hXimp2 216l
hXimpt 216
hXrep2 216
hXrept 216
hydrofo0 179
hydro _potential.f90 179
ialive 24
idiagjbm 102
idiff .. 147
IDLPATH 4] 53]
dxtavg, 29,
iforce 194
iforce2 194
theatcond [192] 193]
IMAX . oo et e B3l
imTR 209
I 284]
in0 ... 285
ind ... [285],
INETLIQXX . . o oot
INertiaxx_Caruo.... 200
INETLIAYY « o o v oo e et e 200
Inertiayy Carcou... 200
INertiazz v v it e 200
INertiQzz_caroouuu...
INf o 284]
init_.ads_mol frac 188]
init_surf-mol frac 188]
INIEAA . . o o e 186
NItaal 187
initlnee 187
initlnec2 187
initlnrho [184]
initpower [133] [134]
Initpower2 133l
INIESS v v o e et e e e e 185
IIEULL © oo oo e e 183l
INZ et e e 195!
BOC o oot 279,
D et e B3] 181

IringLIring2 187
ISAU & v oo ettt e e e 24]
ISAUE . v v v et e et e 189
7 7 284!
isSothtop 186,192
Isurf....... 250}
12 Bl 32
it 23] 28,
itld ... 28,
itorder B35, 37,
117777 2 104
VAT e e 113
LULSC '« v v e et e e et e et e 1195
7 189
B o e e 25,
IY o 25]
72 25,
122 25]
JlIrms 235
5 222 250
G22I 202
J2mo. ... 202] 2111
GOME 269
J2mz ... 260,
Jb oo 102,
JbOm 235] 239,
Jgbant ... 202,
Jbm .. [102] 202,
jbmh 202,
jbmn. L. 202,
jbmphi 252] 253]
jbms 202,
Jbmx ... 269
jbmxy [275],
Jbmz ... 259,
Jophlmz 261
Jjoph2mz 261
Jbph3mz 261
jbrms 202, 224
gbtm 202,
jdel2am 207
jdel2amz. 259
JeM © o e 207
Jet ..o 279]
G 216
GROmMI L 206
JT e e 250
T e 211
JM2. 202,

Jmax, 204! 211] 225}

312 THE PENCIL CODE

gmbmz 206,
JMIN . 211]
JMX 205,
JMY oo 205,
JMZ oo 205,
Johmrms 213
Jjparallelm 207
Jperpm 207
JPTIMerms oo 213
JrMS ... 204 2111
JUIm .. e 202
JX2m ... 206] 2111
Jx2ml 206
JX2m2 ... 206
JxX2m3 ... 206
Jxdm ... 206
JXAPTIS © oo oo 208
JXATMS . oo e 208!
Jxbm ... 206, 227
Jxbmx ... 206} 227
Jxbmy 207,
Jxbmz 207,
Jxbr2m 207,
Jxbrmax 207 227
Jxbrms 202]
jxbrgm [199]
Jxbxm 203]
Jxbym ... 203]
Jxbzm 203]
JjxgLamrms 208]
JXM .o [205] 211],
JXmax 204] 217],
JXMXY oo 275 277
JXMXZ oo 272l
JXMZ .o 259
JXD2 204],
Jxphlmz 261]
Jxphlmz 261]
Jxph3mz 261]
APt . 203]
JV2M o 206, 211
Jjyml 206
Jy2m2 ... 206
Jy2m3 ... 206
Jyvdm ... e 206
Jybxm ... 203
gybym ... 203
Jybzm ..o 203], 2241
JYMU o oo 205, [217]
jymax 204] 2171],

JYMXY oo 275,
JYMXZ oo e e e 2'(2
JYMZ oo 259,
JYP2 204],
Jyphlmz 261
Jyph2mz 261
Jyph3mz 261
JYPE . [203]
JZ2m o 206, 211
Jzdm ...
jebxm 203,
Jjebym ... 203
jebzm L. 203
JEM oo 205 211
JZmax 204 217],
JZMXY o 275, 277
JZMXZ e 2'(2
JZMZ oo 259,
JZD2 204,
Jzphlmz 261
Jzph2mz 261
Jzph3mz 261
JEDE . 203
RO ... 209
kRforc 191l
kapll 245] 246, 248
kapllz 245], 247,
kapl2 245 246,
kapl2z 245 247,
kapl3 [245] 246,
kapl3z [245] 247,
kap21 [245] 246),
kap2lz 245 247
kap22 [245] [246],
kap22z 245] 247,
kap23 245 246,
kap23z 245 247,
kap31 [245] 246,
kap3lz 245 247 248
kap32 245] 246,
kap32z 245] 247,
kap33 245 246 248
kap33z 245], 247,
kapcPARA 246}
kapcPARAz 246}
kapcPERPI 246}
kapcPERP2 246}
kapcPERPz 246
kapPARA 232], 233

VARIABLE INDEX 313

kapPERP 232] 233
kapPERP2 233
kapPERPz 233] 234]
RC 230}
kfountain [194]
Rhor_ss 186
kinflow 193
KK2m 214]
KKm........ 214
Kkramersm 201]
Kkramersmx 269
Kkramersmz 258
EmOEM 204]
kmIEM 204]
Emz ... 206 227
kpeak 134
BX oo 193
kxaa [187, 206,
kxlnce 187
By 193]
By aa 187
kylnce 187
RZ o 193l
kzaa 187
kzlnce 187
L1 230}
A 113
L2 2301
12 . 113
L3 230
L4 ... 231
L5 231
Lambzm 208]
Lambzmz 208]
Lamm 208] 2211
Lamp2 208]
Lampt 208]
Lamrms 208]
LANG........ 86}
Ibonxgrid 53]
lbubble [195]
lcalc_heatcond _constchi 192
lcomplex 195}
leylindrical spectra 195]
Idamp_ fade 191
ldensityvar 92|
ldragforce dust par............. 195]
ldragforce gas par 195]
ldraglaw_steadystate 195]

legendrelmax................. 196

lequidist 22
Ifirst 113
lfirstpoint
lhalf factorin GW 199
lhecond global 193]
lignore Bextin b2 193
lintegrate_shell 195}
lintegrate z 195}
LLm 230
Ina ... 208, 209!
Inam 210, 222]
Ilncc 251
lnowrite 181l
Intho 250)
Inthomax 200]
Inthomin 200]
Inrhomphi 252]
Inthorms 200]
InTT, 250]
InVpm 229
logbm 202
oSS . .. 249
lout..... ... 113l
Ipert 187
Ipressequil 187
Iprocz _slowest [49] [187]
lpscalar sink 195}
lreadaux 182
lread gauss quadrature 196}
lread_hcond 193
lreadoldsnap 182
lread_oldsnap nomag 182
lread _oldsnap_nopscalar 182
lroot 113
Ishiftoorigin 182
Ispecies_transfer [T] 195}
Istalkap 188]
Istalk bb 188}
Istalk grho 188]
Istalk guw 188}
Istalkrelvel 188
Istalkorho 188
Istalkuw. 188
Istalkvv [188
Istalkxxc. ... [188
lthiele [T] 195]
luminosity 192
lupwlinrho 191
lupwss.co .. 193]
luse Bextin b2 193]

314 THE PENCIL CODE

lwrite2d 187l
lwriteaux (66|, [104] [181],
lwritedc, 187l
lwrite_phiaverages 28]
lwrite_ yaverages 8
lwrite zaverages 28]
Layz oo 211, 23], (33, [181]
7 113l
ml ... I13l
MII 235, 238,
Mllcc............... 235 238,
MI1Iss............... 235], 238, (242
Milz 236, 240|
MI2cs............... 235, 239
M2 113l
M22 235, 238,
M22cc............... 235, 238,
M22ss............... 235 238,
M22z 236, 240,
M33 235, 238,
M33z 237, 240,
mach 250]
mag flux 231
magfricmax 227
MAGNETIC_INIT PARS 182
Mamax 1991
Marms 199
MOSS . oo e ee e [200] 208,
MASSML © o e e e et e et e e 212!
QUX « o oe e et e 311 104
maxadvec 147
mesh3Remax 249
meshRemax 249
MIDf oo 213
mgam33 [245] 247,
mkap33 245, 247,
MMxm 214
MMym 214]
MMzm0cc0iuiu.. 214]
MPM . o oo e e e ettt e e e 229
MPMAX . o v e v e e et e e e e e 229!
MPMITL © o oottt e e et e e 229
mpolyO [185]
mpolyl [185]
mpoly2 [186]
U ot e e 232 233
mulO /0
MUS . 233l
mudIm 212!
muddm 212!

muddm 212
mubabs 212
mubb2m 212
mubbjm
mubbjrms
mudbxm 212
mudjbm 212
MUBIL . o oo 217]
mubmax 212
Mubmin
mudrms 212
mucl 246
MUCZ . .o 246
TMUCZ o oo ottt et e et e e 246
MUMZ . o oottt et e e it e e 266
MUSM oo 2111
MUSMAX . . .o oo 2171
MUSTMS © . oo 211]
TUZ oo 233], 234
MUGT ..o e 311, 80,
MX o e 24] 25| 113], 114
MY 24 25] 113], 114
MZ o 24] 25| 113|114
Tl e 113
nl.... ... I13]
RIS oo 278 287],
N2 . i3]
nsegmentx0.0... 195
nfro....., 2779], 280}, [282],
ngam33 245 247,
nil . 280,
nily 283
nil’’no [279] 282]
nkap33 245] 247,
nlinO 217
nlinl 217
nlin2 217
noentropy.fo0 179]
nogpu.f90 179]
nohydro.f90 179
nopower _spectrum.fo0 1179
noyinyang.foo 179
noyinyang mpi.fo0 179i
25) 2 229
APTOCY v o v e e e 49 181
NPTOCZ o o v vttt ettt e et e e 49
nrl 2'79
nrdirections 53l
nrhom 2211

NE .o [7], (34 [188]

VARIABLE INDEX 315

777 [194] [195]
nuepicycle [185] 194
nu_hyper2 195]
nu_hyper3 195]
nuLES 249
nutdep...................... 249
nuclrate 217
nuclrmin 211
UM vt e e e e et 249!
UMK . oo oo oottt e e e e e 249
NUMITL o oo i e e e e e e e e e e 249!
MUMX oo oo e e et e e e e e et 2711
nu@ e 244
NUSMAZSML .« . v oo o e e e e e 249!
NUSMAZMAX . o o o v ee e e e e e e 249!
NUSMASMIN . . v e e e e e 249!
U oo e e e e 113l
RUGE © oo et e i e 24],
X oo 27, [106] 113|114
nxgrid 61], 653 113
Y oo 27, 113|152
nygrid 39
NZ e 27, 113l
nzgrid.
02 . 250!
02M . . 199,
o2mphi 2511
02MZ . 253]
o2sphm 199
02u2m 1199
obm 203]
obmz 259
odel2um 199
ofm 216
OZUX2MZo 256 264]
OSUXMNZ . . o v eve e 256,
OSUY2MZ . . oo 256
OSUYMZ . . oo 256,
OSUZ2MZ 256,
OSUZMZ o . o v ee e et 256 264]
OMAX + o v e e e 199]
Omegau.... 190
Omega_ff 194
OMUMZ o oo e e e [198|
oned 190]
onedall 190
00 . v it e 250
opmphi 199
ormphi 199
10 &% 199,

oul [285]
OUINE « oo 199,
OUSPEC . o oo e e et e e e 190
oud [285],
ouf ..o 284,
OUM v i 24, (199,
oumphi.................. 199,
OUMX o oo i 268],
OUMXY . o v e e eie e 274,
OUMXZ . . o ov e eie e 271],
OUMY oo 266,
OUMZ oo 256,
ouphlmz 255}
ouph2mz 255}
ouph3mz 255]
OUTIIS © o v o e e e [199]
out . oo 279H282] 284],
outl
OULZ . o e 189
OUIML . v oot et e i e 196
OUF « vt 279] 280] 284,
0X2Mm 199
OX2MX . . o oo 268,
OX2MXY « o o ot et e et e e 274
OX2MXZ « o o i e e et et 2°(1]
OX2MZ . . e 255,
OX3M v v e 199
oxdm ... 199
oxdivu2mz [256],
oxdivumz 256,
OXMXY « oo v e e e i e e 274,
OXTZ . o oot [254] 263
OXOYML . v v o e e 199,
OXOZML . o oo i 199,
oxphlmz 255}
oxph2mz 255}
oxph3mz 255}
OXUM v v it i it et et e 1199
OXUTTS © oo v eie e 199,
OXUXXMZ © o oo oeeeeee e 256,
OXUYXMZ . . o ov i ie e e 256,
OXUZXML . oo v ei e e 199,
OXUZXMZ « o e e [256],
OY2Mm ... 199,
OY2MX . . oo 268,
OY2MXY « o v v e et 274
OY2MXZ . oo 271
OY2Mmz 255
OY3M . . 199

316 THE PENCIL CODE

oydivulmz 256,
oydivumz 256
OYMXY « o o ov e e eee e i 274
OVIMXZ « o v o e e et e e et e et e 271!
OYMZ . o oo i 254] 263
OYOZIM . . oo e eie e 199 221]
oyphlmz 255]
oyph2mz 255]
oyph3mz 255]
OYUXYMZ . v ve e e e 256,
OYUYYMZ o v v veee e ee . 256 263
OYUZYML . . oo v i e 199,
OVUZYMZ o o oo veeee e 256],
0Z2M . o 199
0Z2MX . o o 268|
0Z2MXY o o oo 274
0Z2MXZ . o oot 271l
0Z2MZ . ..o 255],
0Z3M . . 199
ozdm 199
ozdivulmz 256, 264]
ozdivumz 256]
ozmphi 199
OZMXY « o o ove e eie e i 274
OZMZ o o e 254]
ozphImz 259
ozph2mz 255]
ozphd3mz 255]
Do 278, 2'79] 281H283]
plD ... 283
pP%curlb 70l
phjjohm 70l
particles_adsorbed.f90 179
particles_chemistry.f90 179
particles_surfspec.f90 179
PATH...................... 4] 111
pebuild 289
PCTUN oo v it i i i e e 289
pestarto, 289
PCZIt oo oot
pdfmax 195]
pdf max_logscale 196
pdfmin 195]
pdf-min_logscale 195]
pdivum 207 215]
pdivumz
peffmxz........... 273]
PENCILHOME 4] 77
PENCIL HOSTID 17

pertss e 1185

pfe ... 279], 280} [282],
Dfe oo 283
phi 209
phill 234],
phil2 234],
phi21 234],
phi22 234],
phi2m............... 210]
phi32 234]
phibmx 207,
phibmy 207, 227
phibmz 207,
phibzm, 223
phibzmz 223
phidot........... 209
phiK.................... 234],
phiM 234],
phim 210]
phiMK 234],
phimphi 257]
phip2 223]
phipt 223]
phirms 210, 222,
Pl 279
placeholder 195}
polytrm 230}
POL oo 283
power_spectrum.f90 179]
Poynting 250
POYRXINXY © o v v vvee e e 275,
POYRYIMXY © o v vveee e 275, 277
POYRZMXY v ovvie e ee e e 275, 277
POYNZMZ . o v ov i 260,
poynzphlmz 261
poynzph2mz 261
poynzph3mz 261
DD e eeeeee et 250, 287], 282
ppm 201, 215] 232,
PPMAX © o v v o i i e e e 201
PPMIT . o vt e et et et e 201]
ppmphi....... 252
PPMX o ovee i 268,
PPMY o e e e e e 267
DPPMZ e 257 265
primz........ 2606)
pretend InTT 183
pscalar diff 194
PSCALAR INIT PARS 182
pscalar_sink_rate 195}
PSL oo e 209

VARIABLE INDEX 317

psill 234] 238
psil2 ... 234] 238
PSI21 . 234 238
DPSI22 .. 234] 238
DSI2M .. 222]
psianal 209
psiddot 209
psidot 209
psiL 209
DSIML oo 222]
DSIFTMS oo oo e 222,
DUZMZ . o oo it e e et e e e e 266!
PUZM oo it e 199!
PUZMXY « oo ot eeee et e e 274!
pwd ... 283]
PYTHONPATH 5
Q 209
g2m ... 199,
QAML . oo 228
Qddot 209]
Qdot 209
QeM . .. 228
QEZXUML . v v v v i v ettt e e e 199!
qfm. ... 199,
qfuiscm 249
gmax 53], [199] 208 218,
QOML . .o 199,
AP o oo e 228
gPMZ o oo e 265!
qglm 223]
qa2m 223]
qqdm 223
qgdm 223]
Qrad 250
Qrms [199 208, 219]
Qsatmin
gSalrms 219!
qshear [188
QST .« o o 228
QUXOM . . .o iie e 199,
QUYSI . o oot et e e e e 199!
GQXMAX .« o o o oo e 219
QXTITL . o oo e e e e 218
QYMAX © oo e et e 219!
QYMIN o oot e et e e 219
QZMAX .« oo oo oo 219!
QZMITL . o oot e e e 219!
Fext .o 193
3 7 [194]

PARE o 193]
rad ... 223],
radis 187
radiuS_8S 185
random.gen 183,
rcool 193
reylmphi 251
rdamp 191
rdampext 191l
rdampint 191l
rdivum [198, 220
REAL PRECISION 50,
redshift.................. 208,
reinitializeInce. 194]
relhel 157
relhel uw..................... 134
Remz [256], 263
Reshock 249
e 1 218]
Tho 250)
rhoO 184, 1911
rhoOm 235]
rhol2m 200]
rho2downmz.................. 257
rho2m............. 200]
rho2mx 257
rho2mxycovuun. .. 274
rho2mz 257
rho2phlmz 257
rho2ph2mz 257
rho2ph3mz 25771
rho2upmz 25|
rhodm 200
rho6mo u...
rhochi 210] 222]
rholeft 184
rhoright..................... 184
rhocem 208]
rhodownmz 257
rhoemc. i, 213
rhoerms 213
rhof2downmz 257
rhof2m
rhof2mz 257
rhof2upmz 257
rhoHCmz 264
rhoLm 221
rhom 8, 24], 200},
rhomax.................. [200],

rhomin 200, 212

318 THE PENCIL CODE

rhomphi 252]
rhomx....................... 268
rhomxmask 200
rhomxy 274
rhomxz 271
rhomy........... 266
rhomz....................... 257
rhomzmask................... 200]
rhophIlmz 257
rhoph2mz 257
rhoph3mz 257
rhorms
rhoupmz 257
rhoWim 215]
rhoWlrms 214
rhoW2m 215]
rthoW2rms 214
rhoW3m
rhoW3rms 214
rlx2m 198,
rlxm [198|
rly2m 198,
rlym ... 198,
rlz2m [198,
PlZm o [198]
Rmesh 196
Rmesh3 196
Rmmz....................... 206!
rmphi 251]
Rringl,Rring2 187
FUfM . o 216
TUSTL oo 218
rugpotselfm 231
TUMAX o oot e e e 198,
rupmphi 251]
rupuzmphi 251]
rurmphi 251]
rursphmphi 251]
rurupmphi 251]
ruruzmphi 251]
ruthmphi 251]
TUX2ML . o oo 198,
TUX2MX . oo e e 268,
TUX2IMXY oo e 274,
TUX2MZ . oo 2551
rux2phlmz 259
rux2phlmz 259
rux2phdmz 259
ruxdownmxy 273]

TUXM oo oi i e [198] 220]

TUXIX . o oo e e e e e e e 268
FUXTIXY « o voeeeee e e e 274,
TUXIMZ oo e e e 255, 263l
ruxphlmz 259
ruxph2mz 259
ruxph3mz 255}
TUXEOE © . o oo 198,
FUXUPIMXY © o v v v e et e e e e e e e 273
TUXUY2MZ oo 256,
TUXUYIML . . oo ee e e [198,
PUXUYIX © o oo e e e e e e 268
FUXUYIXY © o o oveie e e e 274,
FUXUYMZ . o oo oee e e 256,
TUXUZEZMZ . . oo 256,
TUXUZI . o o eee e e e e e e 198
TUXUZIX « o oo oe e e e e oo e 268
FUXUZIMXY oo eeeee e 274,
TUXUZIMZ « o oeeee e e e e e 256,
TUY2ML . o oo 198,
TUY2MX o oo 268,
TUY2MXY © oo oe i 274,
TUY2MZ o oo 255,
ruy2phlmz
ruy2phmz 255}
ruy2ph3mz 255}
FUYIL © oo [198]
FUYIX . oo e e e e e e e 268,
TUYIXY « o ovoeeeeee e e 274,
FUYMZ oo e i e e 255,
ruyphlmz 255}
ruyph2mz 250
ruyph3mz 259
TUYUZEZMZ . . oo 256,
TUYUZIM . oo ee e ie e e 198,
FUYUZIMX . . oo oe e ie e e 268,
FUYUZIMXY © o o oeeie e ee e 274],
TUYUZIMZ . . o oeie e e 256,
TUZ2M . oo [198,
TUZ2MX . . oo 268,
FUZ2MXY © oo oo 274,
TUZ2MZ . ..o [255],
ruz2phlmz 255}
ruz2phlmz 255}
ruz2phdmz 255}
ruzdownmz 254]
TUZIM oo e [198],
ruzmphi 251
TUZMX . oo e e e e e [268],
TUZIXY « o o e e i ee e 274,
TUZMZ . oo e e 255],

VARIABLE INDEX 319

ruzphlmz 255]
ruzph2mz 255]
ruzph3mz 255]
TUZUPMZ . . o ooe e eie e e 254
Rxydownmxy 274]
Rxydownmz 256
Rxymxy 2'74
Rxymz 259
Rxyupmxy 274
Rxyupmz 255]
Rxzdownmxy 274
Rxzdownmz 256
Rxzmxy...................... 2'74
Rxzmz 256
Rxzupmxy [274]
Rxzupmz 256
Ryzdownmxy 2'74]
Ryzdownmz 256
Ryzmxy...................... 274
Ryzmz 256
Ryzupmxy 274
Ryzupmz 256
S 278, 279] 281H283],
SH 281
sod 278, 279] 281283,
s2kzDFm 235 238,
SA2 .. 279,
SAS i 278, 287],
SED i 28 1H284]
set [278], 2801-282] 284
S e 278 281], 283,
SFr 279] 280,
Shchm 229
shock 250]
shockmax 231]
ShX . 2779
ShY o 2779
shz . . 2791
SIGL o 234]
SIZ2 234
SIS e 234
sigBBEm 213
SigBm 213
sigBma 210 222]
SIGBrms 213
SISEE2m 213]
SigEm 213
sigEma.............. 210] 222]
sigErms 213
SISMA .« o oot it e et 228!

Sij2m 249
sybibjm ... 207
SLJOLOJML v o v v v et e et e e 249
SUXXMZ © o v o vttt e et e 266
SUXYMZ © oo o ettt e 266
SUXZMZ © oo ettt e e 266
SUYYMZ © oo ottt e et e e 266
SUYZMZ © oo i e e e e e e 266)
SUZZMZ . o oo e e e e 266)
sle oo [279] 282]
slice_position 25, 26, 189!
slo ... 279,
slp o 279
SPA . 279]
sphmass 200}
SPT v e 278,
SPt o 282], 283
srl .. 279
srcebm 212
SS 250, 278], [279] 281l 282
ss2downmz 257
SS2M . . 201],
ss2mphi 252
SS2MX . v v i 268
SS2MZ . v v i 257
SS2UPMZ . o o vt e e 257
ssbyecpm
ssdownmz 257
88€ i 287]
ssf2downmz 257
SSF2mz 257
ssf2upmz 257
SSML. o v 8 201] 215], 232
SSIMAX . o o e e 201]
SSMITL © v v v i e e e e e e 201
ssmphi 252,
SSMX « v v e e e e e e e 268|
SSIXY « o ve e 216,
SSMXZ v v o e et 216,
SSMLY v v e e e e e e 267
SSMZ . v it 257,
SSTUZM . o v v v i e e e e i e e e e 201
SSUPMZ « o v v e ettt e 257
SSUZM . . i i i e e e e e e 201
sT........... 278, 280H282] 284
St e 278]
Stgm .o 217
STimp2 216
STimpt 216}

320 THE PENCIL CODE

StokesQImxy 276, FOEMASS . o v o oo e e e e 200}
Stokes@mxy 276, ph . 208,
StokesUlmxy 276, ToOPML « o 232]
StokesUmxy 276, TR .. 209
STrep2 216 TRanal 209
STrept 216] TRddot 2091
stript 216| TRdot 209
StrXpt ... 216l TRdoteff2km 209
StS .. 284 TRdoteff2m 209
SXimp2 216} TRdotpsim 209
SXimpt 216] TReff2kmccouoen.. 209
SXrep2 216l TReff2m oo 900
SXrept 216l Trms . . . o 231
b 8, 24 13, ;ﬂgﬁzﬁgm ------------------- =
TO0m oo T g 209
TOx2m 197 TrSigmapmc..n. 229
TO y.) m IS v e E!Bi
T0z22m 198 TT oo 220
taul 234 fIm ..o 223,
aud 034 TT2downmz 258
BQUCTIN © . o oo e e 2211 TT2m ... 201} 231]
LQUeTTOr 249 TT2mx ..o 263
tauheat buffer................. 193 TT2mz 257,
tauhmin . . . 201] TT2upmz 258]
tauk 23] TTdownmz 257
FQUQIMAK o o o oo oo 218 TTf2downmz 258]
FQUG oo oo 29, 30, TTmz 258]
FaAMP . 190, {91l TT2upmz.................... 258]
TAXPM « o e 237 TTheat buffer 193l
Tdypm 232] TTm ..o, [201] 231} 232]
Tdzpm 232 TTmax 201 231} 232] 249
tensor pscalar diff 194 TTmin 201, 231], 232]
test_chemistry.f90 179 TTmphi 252]
theool 232 TTmx 268} 270,
PREE® . o o 190 TTmxy ..., 274,
timestep.f90 179 TTmxz 2711, 273]
timestep_strang.foo0 179 TTmy ... 267
timestep _subcycle.f90 179 TTmz 257 [265]
TL . . . 2090 ttransient 190
TLdoteff2km TTref ..., 232
TLdoteff2m 209 TTtop 2071],
TLeff2km 209 TTupmzccuivon.. 257
TLeff2m 209 TTzmask 231
EMAx . ..o 189 TugTm 231
tot.ang_.mom 1991 Tugux_ uxugTm 232
total_carbon_sites 188 Tuguy uyugTm 232
totalforcezdownmz 257 Tuguz uzugTm 232
totalforcezmz 256 TVolm 230}
totalforcezupmz 256 TVolnm 230}

VARIABLE INDEX 321

TVolpm 230)
TXX © oo e 197
TXYIL oo 197
Tyym . ..o 197
Tyzm ... 197
T2XI oo 197
Tzzm .o 197
udmax 235]
uOrmso 235
ullrmsccu. .. 235]
wl2rms. 235
wulu23m 198
wlud2m [198|
U2 . o e 250!
u2lrms o 235]
U22rms 235
75277 [196]
ulmphi.................. 251]
UZIMX .o e e e 268
UDMZ oo 253] 262]
u2phlmz 254]
u2phlmz 254]
u2ph3mz 254]
u2sphm 196
U2EM . 196,
wuldm 198,
w2udlm [198|
udul2m 198
udu2lm ... [198|
udm ... 197
UBIL o oo 197
USBIL o oo 197
uabxmz. 259,
uabymz.................. 259
uabzmz [259] 264
UG oot e 203]
UGMZ o oo i e 259,
ubOm
ubbzm 202] 224]
ubgbpm 207
ubm ... 202
ubmxy 2775
ubmz ... 259
ubs ... 285
ubtm 202
udpxxm ... 200],
wduum 197
UM o 216
ufpresm 201]

UFVISCIL . . o o oo e e e e 249

ugh22m 207
uglnrhom
uglnrhomz 25|
= 7 218]
ugradpmz 258]
ugrhom.................. 200,
ugrhomz 257
USUZM ..ot 199
USUTTISX « o o v o e e e et e e e s 199
USUXTIXY « o o v e e et e e e et e e e s 274
USUYMXY « o o v e et e et e e e e 274
USUZIMXY « o oo e e ee e e e e e eee e 274
wiom 239
WM oo 203,
UJMZ o o oot e e e et et e 259
WEM .. o 202
wjxbm 207, 227
ujxbmz 260)
UMAMZ . o o ee e e e e 198
UMAX o oo oo 8 [197],
umbmz 198
UMIN o oo e 197
UMX o oot 28] 198]
umxbmz [198],
UMY oo 28, 198,
177777 28] 198
unit density 36,
unitlength 36,
unitsystem................ 36,
unit_temperature 351 [36],
unitvelocity 36, 182
0] 77 196
up2mphi 251
upmphi.................. 257],
upuzmphi 251
ur2mphi 251
UFand oo 183
urmphi 251,
UTMS . o oo e 8, 24 134, 197,
UPTISX o oo [197,
UTTNSZ © oo oe e e e e e e 197,
ursphmphi 251],
ursphTTmphi 252
urupmphi 251
uruzmphi 251
uthmphi 251], 253
U e e e e e e e e e e 250
uvand 157
uul. ..o 157
uuleft 183

322 THE PENCIL CODE

uuright 183
uumphi 251] 253
uusphmphi 251 253
UL e 104
uxOm 235]
uxOmz0 0. 244
uxllm 235]
UX2CCML . o oo [198|
ux2downmxy 273]
UXDM oo 197
UXDMX oo 268,
UX2IMXY o o v oo e i e 274,
UXDMXZ . o oo ee e e 271],
UXD2MZ oo 254],
ux2phlmz.................... 254]
ux2phlmz. 254]
ux2ph3mz 254
UXDSSTL . o v oo e 198,
UXDUPIMXY « o o oe e e e e e 273
UXSML oo 197
UXSMZ oo e e e e e e e e e 254!
uxdm ... 197
uxdmz 254!
uxbm 206,
uxbmx 206,
uxbmy 206],
uxbmz 206,
uxbxm 203,
uxbxmz 259]
uxbym 203
uxbymz 259
uxbzm ... 203] 2241
uxbzmz 259]
UxdoWwnmxyo..u... 273
uxglnrym 200]
UXJXT o oo e e e e e e e 203
UXTYI © ot e e e e e e e e 203
UXJZML © o oo e e e e e e 203
UK o oo 197,
UXIMAX e 197,
UXIMIT . oo e e e e e e e e 197,
UXMX oo e e e e 268
UXTIXY o o o e ee e e e ie e e 273
UXIMXZ . o o e e et e e e e e 2711
UXTILY o oe e i e e e e e 266,
UXMZ o oo e 254] 262
UXP2 . oo 196,
uxphlmz 254
uxph2mz 254

uxph3mz 254]

UXDE oo [196,
UXTINS © o v oo e e e e 197,
uxTm 231
uxTmz 265]
uxTTmx 268]
uxTTmxy 2'74]
uxTTmz 258]
UXUDIIXY « o o v e e e e e e e e e e e 273
UXUY2M oo 197
UXUYCSTTL « . o vve e eeee e e e [198,
uxuydivum [200], 2271
UXUYML oo oo e e e e e [198,
UXUYMX o ove e eie e 268,
UXUYMXY « o veeeeeie e e 273,
UXUYMXZ . o veeeeeee e e e 271,
UXUYMZ . . o ooee e e e e e 255,
UXUYPE o oo e e 196
UXUZI oo e e e e 198
UXUZIMX . o o oo e e e e e e e e e 268
UXUZIMXY « o oo eeeeee e e 274,
UXUZIMXZ o o ee e ee e e e e 277],
UXUZMZ . o oee e e e e e [255]
UXXTINS & o oo e e e ee e ee e 200],
UXZTTS o oo e e e ee et 200,
wyOm 235,
uyOmz 244
wyllm 235,
uy2eem [198,
UY2M . 197,
UY2MX .« 268,
UY2IMXY . o oo 274,
UY2MXZ . oo e i 271], 272
UY2MZ .o 254,
uy2phlmz.................... 254
uy2phlmz.................... 254
uy2phdmz.................... 254
UY2SSML . o oo e e 198,
UWYSML o 197
UYSMZ o oo e e e et e 254!
uydm ... 197
uydmz ... 254
uybxm 203,
uybxmxz 272,
uybxmz 259,
uybym 203,
uybymz 259,
uybzm 203],
uybzmxz 272,
uybzmz 260,
uyglnrxm 200, 227

VARIABLE INDEX 323

uygzlnrhomz 257
WYX oo e e 203
UYJYIL © oo e e e e e e e e 203
UYJZM © oo oo e e 203
UYL o e e e 197,
UYMAX oo ee e ee e e 197,
UYMIN . oo e e e e 197,
UYMX oo i 268|
UYTXY o o oo eee e e i e e 73]
UYTXZ o o oo ee e e i e e R271]
UYMY o oo e 266,
UYMZ oo e 254
UYP2 o oo 196,
uyphlmz 254]
uyphlmz 254]
uyphdmz 254]
Uypt oo [196] 219
UYTIS © oo e e e e e e e 197,
uyTm 231]
uyTmz 269
uyTTmx 268
uyTTmxy 274
uyTTmz 258
UYUZEML oo 197
UYUZI oo oo 198,
UYUZIMX . o o oo eee e e 268
UYUZIXY o o o ovee e eeee e e e as 274
UYUZIXZ « o o ooee e eie e e e as 271
UYUZIZ o o oeee e eie e e e 255]
UYUZDE o oo oot e e 196!
WYXUZXMZ « . o oveeeeie e e e as 256] 263
UYYTINS © o oo e e e e e e e 200,
UYYUZYMZ o oeeee i e e 256 263
UYZTINS © o oo e ie e e e 200,
UYZUZZMZ « o ooeoee e e 256,
uzOmz. 244
uz2downmz 254]
UZ2M o 197
uz2mphi 251]
UZ2MX oo 268
UZ2ZMXY o oo oo e e 274
UZOMXZ . o oo 271],
UZ2MZ . . oo 254]
uz2phlmz 254]
uz2ph2mz 254]
uz2phdmz 254
UZ2UPMZ . o oo e e e e 254]
UZ3M oo 197
UZSMZ . oo 254]
uzdm ... 197

uzdmz. 254
uzbxm 203]
uzbxmz 259]
uzbym L. 203],
uzbymz 259,
uzbzm 203
uzbzmz 260,
uzexIOm 197
uzdivum [200],
uzdivumz [254],
uzdownmz 254],
uzgylnrhomz 257
uzjxlz . ..o 24 3]
UZJX2Z o oo e e 24 3]
UZJX3Z o oo e e e 24 3]
UzZjxdz . o 24 3]
UZJXTL o oo e e e e e e e 203
uzjylz ... o 243
UZJY2Z o o o e e e e e e 243
1 S 7 243
UZIy4z . o o e 243
UZJYM oo oo e e e
uzjzlz 243]
UZJZ2Z . o e et e e 24 3]
UZJZ3Z oo e e e e e 24 3]
Uzjz4z . ..o 24 3]
UZJZML o v o v et e e e 203]
UZIL oo e e e 197,
UZMAX « o oo e e 197
UZMIN . o oo e e e e 197
uzmphi 251], 253
UZMX oo oo e e e e 268
UZIXY o oo e e e e 273,
UZMXZ o o e ee e e e e e e e 277] 272
UZILY o oo et i e 266,
UZMZ oo i et e [254],
UZP2 . o 196,
uzphlmz..................... 254
uzph2mz..................... 254]
uzph3mz 254]
UZPE oo [196,
UZTIS © oo oo e e i e 197,
uzsxIOm 197
wzTm 237]
uzTmz 265]
uzTTdownmz 258]
uzTTmx 268]
wzTTmxy, 274
uzTTmz 258]

uzTTupmz 258]

324 THE PENCIL CODE

UZUPMZ o ovie i e 254
UZUX2M . . oo 197
UZUXPE . e e e e e e e e 1196l
UZYIMS o o o ovee e e 200
17774 4 X S 200
Ve 278, 280H283]
V3. 281H283],
VA23rms . ..o 204
VAM .. 211
vVAmax 204 2111
VAmin 21171
VAMXZ .. o 272,
VArms. 204
vel spec...................... 190]
VelVolm 230]
VelVolnm 230}
VelVolpm 230]
VelXxrms 197
velxx2m 197
velxy2m 197
velxz22m 197
vischeatm 249
viscforcezdownmz 266
viscforcezmz 266]
viscforcezupmz 266
vmagfricmax 206
vmagfricmz 260]
vmagfricrms
vol .. 200
UPX2M oo e e e 229!
UPXI v oot et e e e e 229!
UPXIMGAX « o o v e v ettt e e e e e e e 229!
UPXIMLITL © o v v e i e e et e e e e e e 229!
vrelpabsm 229
Widdotrms 214]
WidotWim 215]
Wimax........ccccooiuinin.. .. 214
Wirms ... 214]
Wixm 2195
Wixmz ...,
Wiym
Wiymz 262
Wizm 2195
Wizmz 262
Waddotrms 214
W2dotW2m. 215]
Womax 214
W2rms 214
Woxm 215

W2xmz, 262
Woym ..o
W2ymz 262
Wozm ..o
Wozmz 262)
W3ddotrms 214
W3dotW3m
Wlmax 214]
W3rms 214
Wxm
Wxmz
WSym . ..o
W3ymz 262
W3zm 215]
W3zmz 262
WIOre . ..o 191l
walltime 196}
weool 193]
wdamp 191l
Wgrav....................... 218]
wheat 192]
width ff 194
widthaa 187
widthlnrho 184
Widthsso v [185]
widthuw 183
WIN . oot e e e [285],
WL2D 207!
WL3D 207
WL3D2 207!
wrlwr2 187
writeslices 26]
wsnaps.f90 189
XL oo e e 244
XIQ . . o 244]
XP2M . 229
XD oot e e e e e e 229
XPMAX © v oo ettt e et e e 229
XPMUATL .« o v oo e e e e e et e e 229
XY e e e e e e 189
XY2 o e 189
XY SPEC « v v i e et e 190
xyz0 .. 211, 23] 181
XYZSEAT .o 23]
yH .. 250
yHmM .o 201],
yHmax 201], 232
yHmin 232)

VARIABLE INDEX

325

yinyang mpi.fo0 179
VY 281]
200 187
P2 184
22 185
zbotslice [25], 27] 189
ZetA ... [195]
zeta@Q 244
zheat buffer 193
zmphi 251]
zref . [184], 194

ztopslice [25] 27 (189

Index

This index contains options, names, definitions and commands. Files and variables have

their own indexes.

VARIO 44
—SCTipt-tests 112l
S 2 43|
477 7 43|
SVIL o hnl
Jtrimall [44]
RIN o 62
MAZ . o e 62
saffman 62l
2N-scheme 166l
6th-order derivatives 162
pc_mkproctree 16
abspec=T (2
adapt-mkfile 79
adapt-mkfile 20}, O1]
Anaconda 45
anelastic...................... 66)
Auto-tests. 110!
autoconf
Autoconf................... 90]
Autoconf/automake.............. 90
Averages 28] 29
Azimuthal averages 8
bandwidth 49|
Bash....................... 4l [77]
bash 42
be .. 42]
Beowulfclusters 49
Bidiagonal scheme [165]
bin/pcrun 85|
Boundary conditions. [37]
Bourneshell 4]
C tviil, (1) 1141
Canopy oo
Cdata 113l
cgsunits. [35], [182]
Changes 132
Check-indetails 95
ChiralMHD 68}
Coding standards [101],
Combustion [65]

326

Comments 129
Coordinate systems 58]
COpPY-proc-to-proc. 30)
Coriolisforce 190
Cosmicrays 68}
Cosmological expansion 72|
Courant number............. 134, B5]
Covariant derivatives 172l
Cron......... [110]
crontab-e 110
CSH
Csh................... 11, [4, 111, [77]
cSh . o 77
Curvilinear coordinates 68, 172
CVS ..
CVS .. bl
CVS . e 10]
cvs-add-rundir 30
Daainit...................... 154
Data directory
Dataexplorer 1,
datafiles 24]
Density_ init_pars [183]
Density run_pars 191
Diffusivity, time-dependent
double precision 60,
Download 2], 42|,
Download forbidden [77]
DX .. (I} 4], 11}, 130
Electromagnetism 69i
Emacs settings 131]
Entropy 60)
Entropy 14, 39,
Entropyf90.................... 26
Entropy initpars [185]
Entropy runpars 191
Equation of state 62
Error, diffusive 167
Etatest
frarray [104]
90 20|, 21]
FO5. bviial, (1]

95 20
FAQ . oo oo el
FBCX1 154!
FBCX22 154!
o 44
ffvarname 44
FFET
Fftpack....................... 51l
Filters 143
Flag [181]
Fluxrings.................... 134
Forcing_run_pars[35] [156] 157, 194
Fortranrecord 24],
Fortranrecord 24]
fp-array 105
Frequently Asked Questions. [77
fip 42]
Fully qualified host name 17
GT7 . e (9
GO9S ... 50, [78
GDL 40]
Gfortran.................. fviiil,
Ghostpoints 38
Ghostzones [38] 49]
Git oo
Git .o
it o 3]
Glibe 79
Gnu Data Language 40]
GNUgcc. oviiiiii . fvidl
Gnuplot 14,
gnuplot 42]
Gravinitpars 184
Gravr
Gravrunpars 154 194
Gravitational Waves [73]
Gravity....................... 12
Gravity_simple
SreD oo lviii, Q9]
grid, nonuniform 21
h-index....................... 95]
Hydrof90 26
Hydroinitpars 183
Hydrorun pars [182]
hyperdiffusivity 143
Hyperviscosity . [143] 145-147, 162} [164]
Icc .. o [78]

IDL viiil (1}, 4} [7} 18, (11 [14] 2527} [29H31]
[40-43] 52} 53]

IDL 157
idl .. 42
Ifc. [78]
Ifort [78,
ifort 50)
incompressible 66!
Initpars.................. B3, 181
Initial conditions 133
InitialCondition module 109
Intel 78]
Interlocked flux rings 134
Interstellar. 13, 14l
I0. . . 113,114
To_mpiodist.f90 14l
Ionization 63,
Ionization.f90 351
ireset_tstart=0, lread_oldsnap=T, lwrite_-

var_anyway=T 182
itorder GW=2 '76]
Janus 20] 27]
Lambdaeffect................. 175
ldensity 92i
Linux 1l [78]
locate mpifh 83
Ispecstart=T
Magnetic 102l
Magnetic 102
Magnetic diffusivity, time-dep[149i
Magnetic helicity vl
Magnetic.f90 26}
Magnetic_init pars 186}
Magnetic_run_pars 154} 193]
Make 1l [2] 21],
make 6l [12] [18]
makeclean [78]
Makefile [6l, 131 [20]
Makefile 19i
Manual................. vl 93],
Mesh Reynolds number [35],[36] [69] (147,

168,
mesh, nonuniform 211
Message passing interface 48|
Module lviill
Moduleh [78
Modulefile
Modules 12
Modules b,
MPEG 25]

328 THE PENCIL CODE

Mpegencode
MPI [vii, 0 9, 12H14, 20, 48, 79, 91
mpif90 -show 83l
mpif90 -showme B3l
PITUR © . oo e e e e e i e e
multiple special modules 108
namelist 108]
Namelist 31
Namelists 32 B3]
Networks 40|
NEWDIRfile 33|
Newphysics 109
Noentropy 139
NOERASEfile
Nogravity 12l
Noionization.f90 351 36
Nomodule.f90 (8]
Nonewphysics 109
nonuniformgrid 21
Nospecial.f90 [108]
OCEAUE . . o oo 42
Onsagercoouuue... 21
OpenDX dl
Option “host-id” 17l
Option “max-level’ 111l
Option “use-pc’ 111l
Option “use-pc_auto-test’ 20]
Option “b’. 20
Option “D’ [1171]
Option “f” 110
Option “fast’. 211
Option “fno-second-underscore’. . [{8] [79]
Option“H’ 17 111
Option “I’ 110}
Option “Impi” 20]
Option “m’ I11l
Option “mcmodel=large’ 78]
Option “memodel=medium’ [78
Option “N’ 111l
Option “nothreads’ (9l
Option 02 -w’ 20]
Option“03 20,
Option “qextname’ (8]
Option “T” I11l
Option “# 111l
Option “Uc¢” 111
Option “Wa,-max-level=2". 111
Option ‘/png’

Option@”

Option‘a2’ 38
Option‘cl” [38] 138, 193]
Option‘c2’ [38, 191
Option‘ce’. 38
Option‘eT” [38]
Optiondd” 38|
Optiong” 38}
Option As’ 38}
Option ‘nohydro’.
Optionp” [38]
Optionpot’. 1391
Option pwd’ 1391
Option‘s” 38
Option‘she’. 38
ouspec=T
Particles [70], [154]
Particles_ads_init_ pars 188}
Particles_.ads run_pars
Particles_chem_init_pars......... [188]
Particles chem run pars......... 195
Particles run pars 195
Particles_stalker_init pars 188
Particles_surfinit pars.......... 188}
Particles_surf run.pars.......... 195
pcjobtransfer.................. 33
pc_auto-test 19 20| 95| 110]|,
pc_auto-test —help 20,
Pcbuild
pebuild [16, [18, 19l
pcbuild —<leanall 111l
pcbuild-help.................. 19i
peget.quantity 42 441
pcjobtransfer 33
pcmkdatadir
PCREWIUNL . . oo e it
pcread_const 44
pcreadparam 44
pecread puvar.............. 44
pereadt............
pcreadvar................. 42 [44]
pcreadvarraw 42 44l
pecreadxyaver 44
pecread xzaver 44
pcread.yzaver 44
PCIUN o ooeeeen .. 16, [18, [19, 85
pcrun-help 19i
pcsetupsrc 11l 31, 50l [77],
PCSURUD . o o v oe e i e it eieeiee s Bl
pessvnup -val ...
PCASNAD . o oo 25

INDEX 329

Pencilcase 106]
Pencilcheck 107
Pencil Code 90i
Pencil consistency check 107
Pencildesign 11l
pencil-test 20|, 110, 111]
pencil-test -help 20,
pencil_check_small
Pencils fvii,
Perl M, 01l
perldoc Pencil::ConfigFinder
perldoc PENCIL::ConfigParser 16}
Planet solution 140}
PNG......... 25]
Pointmasses 72l
Polytropic atmosphere 1361
Potential-field boundary condition . [139]
POWET . o it e it 62l
power_mag.dat 52
power_saffman_ubdat............ 62l
Power_spectrum run pars........ 199
pretend InTT 61,
Programming style [101] (128
Pscalar...................... [109]
Pscalar_init_ pars 187
Pscalar runpars 194
ptoutput 104
Python fviiil
Python 45|
Radiative transfer 65, 169l
Readline...................... 42]
Regridding 150}
Remeshing 150l
RERUNffile 33]
restart-new-dir../32¢ 153]
Restarting B9, 153] [154]
Restarting with different /O 152l
rlwrap 42
Run directory Bl
7 % 29|
Run_pars 25-27 B3] [153] 188, 190
Runge-Kutta 166l
Runge-Kutta timestep 36)
Runge-Kutta-Fehlberg time step .. .[37
scalefactor 72l
Seripts 301
Setup (4l [40], [77]
Shear 38|

Sheariinitpars................ 188

Shear run pars............ 154, [195
Shock viscosity 36,
Slunits 351 182
single point output 104l
Sixth-order derivatives 162
SLD [164]
slicefiles 27
Slicefiles 25
slope-limited diffusion 164
sound speed 37, [59], [75], [87], [113], [138], [181]
Specialmodule 107
start.esh 39
Stdout 23]
Stratification 135
structure 58]
Style.................. 3], [107], 128
Sub............. . 114l
summarize-history 32l
32 ¢ S 2], 3] @3] 121
Svn. . .[2,[3] 10, 13 [30} B, 121} (181 188
SUTL © v et e e e
svn annotate src/*.f90 Vi
svn up sourceme.csh 89
svn up sourceme.sh 89
svnupdate 111
svn update -r #####
Svn/git ...
Syscalls 78]
tab .. [107]
Tab characters 128]
tagnames.uuuu.... 44
Tesh 4l
Testfield method 73], [153]
Time averages 29
Timestep [36l, 166
Toroidal averages g
touch NEWDIR
touch NOERASE [182]
touch RELOAD 188]
typeld 83
UNAMC . . v oo e et et e ee s 20|
Underscore problem (9
Units 351 182
UnixX. ...,
Upwinding 136,99,
USE '« v et et e e
Vector potential 60i
Videofiles. 25

330 THE PENCIL CODE

Viscosity [36,
Viscosity, time-dependent 149
Viscosity_run_pars [154] [194]
Weylgauge. 60)
Whitespace. 128]
XIf o 78

Xmgraceoouiieiin... 14

INDEX

331

Id

	I Using the Pencil Code
	System requirements
	Obtaining the code
	Obtaining the code via git or svn
	Updating via svn or git
	Getting the last validated version
	Getting older versions

	Getting started
	Setup
	Environment settings
	Linking scripts and source files
	Adapting Makefile.src
	Running make
	Choosing a data directory
	Running the code

	Further tests

	Code structure
	Directory tree
	Basic concepts
	Data access in pencils
	Modularity

	Files in the run directories
	start.in, run.in, print.in
	datadir.in
	sn_series.in
	reference.out
	start.csh, run.csh, getconf.csh [obsolete; see Sect. 5.1]
	src/
	data/

	Using the code
	Configuring the code to compile and run on your computer
	Locating the configuration file
	Structure of configuration files
	Compiling the code
	Running the code
	Testing the code

	Adapting Makefile.src [obsolete; see Sect. 5.1]
	Changing the resolution
	Using a non-equidistant grid
	Diagnostic output
	Data files
	Snapshot files

	Video files and slices
	Averages
	One-dimensional output averaged in two dimensions
	Two-dimensional output averaged in one dimension
	Azimuthal averages
	Time averages

	Helper scripts
	RELOAD, STOP and SAVE files
	RERUN and NEWDIR files
	Start and run parameters
	Physical units
	Minimum amount of viscosity
	The time step
	The usual RK-2N time step
	The Runge-Kutta-Fehlberg time step

	Boundary conditions
	Where to specify boundary conditions
	How to specify boundary conditions

	Restarting a simulation
	One- and two-dimensional runs
	Visualization
	Gnuplot
	Data explorer
	GDL
	IDL
	Python

	Running on multi-processor computers
	How to run a sample problem in parallel
	Hierarchical networks (e.g., on Beowulf clusters)
	Extra workload caused by the ghost zones

	Running in double-precision
	Power spectrum
	Other power spectra
	Structure functions
	Particles
	Particles in parallel
	Large number of particles
	Random number generator

	Non-cartesian coordinate systems

	The equations
	Continuity equation
	Equation of motion
	Induction equation
	Entropy equation
	Viscous heating
	Alternative description

	Transport equation for a passive scalar
	Bulk viscosity
	Shock viscosity

	Equation of state
	Ionization
	Ambipolar diffusion

	Combustion
	Radiative transfer
	Self-gravity
	Incompressible and anelastic equations
	Dust equations
	Cosmic ray pressure in diffusion approximation
	Chiral MHD
	Electromagnetism with displacement current
	Particles
	Tracer particles
	Dust particles

	N-body solver
	Cosmological expansion and scale factor
	Test-field equations
	Gravitational wave equations

	Troubleshooting / Frequently Asked Questions
	Download and setup
	Download forbidden
	Shell gives error message when sourcing [sourceme]sourceme.X

	Compilation
	Error: `relocation truncated to fit'
	Problems compiling syscalls
	Unable to open include file: chemistry.h
	Compiling with ifc under Linux
	Segmentation fault with ifort 8.0 under Linux
	The underscore problem: linking with MPI
	Compilation stops with the cryptic error message:
	The code doesn't compile,
	Some samples don't even compile,
	Internal compiler error with Compaq/Dec F90
	Assertion failure under SunOS
	After some dirty tricks I got pencil code to compile with MPI, ...
	Error: Symbol 'mpi_comm_world' at (1) has no IMPLICIT type
	Error: Can't open included file 'mpif.h'
	Compilation fails on MacOS Sonoma or Monterey
	Compilation fails on Tanmay's MacOS
	Missing ld_classic on MacOS
	Further MacOS tips

	Pencil check
	The pencil check complains for no reason.
	The pencil check reports MISSING PENCILS and quits
	The pencil check reports unnecessary pencils
	The pencil check reports that most or all pencils are missing
	Running the pencil check triggers mathematical errors in the code
	The pencil check still complains
	The pencil check is annoying so I turned it off

	Running
	Periodic boundary conditions in start.x
	csh problem?
	run.csh doesn't work:
	Code crashes after restarting
	auto-test gone mad...?
	Can I restart with a different number of cpus?
	Can I restart with a different number of cpus?
	fft_xyz_parallel_3D: nygrid needs to be an integer multiple...
	Unit-agnostic calculations?

	Visualization
	start.pro doesn't work:
	start.pro doesn't work:
	Something about tag name undefined:
	Something INC in start.pro
	nl2idl problem when reading param2.nml
	Spurious dots in the time series file
	Problems with pc_varcontent.pro

	Programming new slices
	General questions
	``Installation'' procedure
	Small numbers in the code
	Why do we need a /lphysics/ namelist in the first place?
	Can I run the code on a Mac?
	Wrong user-id in commit emails
	Pencil Code discussion forum
	The manual

	II Programming the Pencil Code
	Understanding the code
	Example: how is the continuity equation being solved?

	Adapting the code
	The Pencil Code coding standard
	Adding new output diagnostics
	Output at one point in space
	The f-array
	The df-array
	The fp-array
	The pencil case
	Pencil check
	Adding new pencils

	Adding new physics: the Special module
	Adding switchable modules
	Adding your initial conditions: the InitialCondition module

	Testing the code
	How to set up periodic tests (auto-tests)
	Auto-tests with systemd
	Testing the postprocessing modules

	Useful internals
	Global variables
	Subroutines and functions

	III Appendix
	Timings
	Test case
	Running the code
	Triolith
	Lindgren

	Coding standard
	File naming conventions
	Fortran Code
	Indenting and whitespace
	Comments
	Module names
	Variable names
	Emacs settings

	Other best practices
	General changes to the code

	Some specific initial conditions
	Random velocity or magnetic fields
	Turbulent initial with given spectrum
	Beltrami fields
	Magnetic flux rings: initaa='fluxrings'
	Vertical stratification
	Isothermal atmosphere
	Polytropic atmosphere
	Changing the stratification
	The Rayleigh number
	Entropy boundary condition
	Temperature boundary condition at the top

	Potential-field boundary condition
	Planet solution in the shearing box

	Some specific boundary conditions
	Perfect-conductor boundary condition
	Stress-free boundary condition
	Normal-field-radial boundary condition

	High-frequency filters
	Conservative hyperdissipation
	Hyperviscosity
	Conservative case
	Non-conservative cases
	Choosing the coefficient
	Turbulence with hyperviscosity

	Anisotropic hyperdissipation
	Hyperviscosity in Burgers shock
	Time-dependent viscosity and magnetic diffusivity

	Special techniques
	After changing REAL_PRECISION
	Remeshing (regridding)
	Remeshing hdf5-formatted data
	Remeshing unformatted fortran binary data using Python
	Remeshing unformatted fortran binary - original method

	Restarting with different I/O strategy
	Restarting from a run with less physics
	Restarting with particles from a run without them

	Runs and reference data
	Shock tests
	Sod shock tube problem
	Temperature jump

	Random forcing function
	Three-layered convection model
	Magnetic helicity in the shearing sheet

	Numerical methods
	Sixth-order spatial derivatives
	Upwind derivatives to avoid `wiggles'
	The bidiagonal scheme for cross-derivatives
	The 2N-scheme for time-stepping
	Diffusive error from the time-stepping
	Ionization
	Radiative transfer
	Solving the radiative transfer equation
	Angular integration

	Curvilinear coordinates
	Covariant derivatives
	Differential operators
	Gradient
	Divergence
	Curl
	Advection operator
	Mixed advection operator
	Shear term
	Another mixed advection operator
	Strain Matrix
	Lambda effect
	Laplacian of a scalar
	Hessian of a scalar
	Double curl
	Gradient of a divergence

	Switchable modules
	Startup and run-time parameters
	Startup parameters for start.in
	Runtime parameters for run.in
	Parameters for print.in
	Parameters for video.in
	Parameters for phiaver.in
	Parameters for xyaver.in
	Parameters for xzaver.in
	Parameters for yzaver.in
	Parameters for yaver.in
	Parameters for zaver.in
	Boundary conditions
	Boundary condition bcx
	Boundary condition bcy
	Boundary condition bcz

	Initial condition parameter dependence

	bin scripts

	IV Indexes

