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Subharmonic dynamo action of fluid motions
with two-dimensional periodicity

By A. TILGNER AND F. H. BUSSE
Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

Kinematic dynamos based on steady velocity fields with two-dimensional period-
icity are analysed numerically. The velocity fields of the study by G. O. Roberts
(1972) are used and the analysis is extended to the case when the spatial pe-
riodicity of the magnetic field differs from that of the velocity field not only in
the homogeneous third direction. While the solutions of Roberts correspond to
the most efficient dynamos in most cases, there are some cases in which spatially
subharmonic dynamos are preferred.

1. Introduction

The spatially periodic magnetic fields obtained as solutions of the kinematic dy-
namo problem by G. O. Roberts (1969, 1970, 1972) and by Childress (1969)
have become a classical part of dynamo theory because of their mathematical
simplicity. The complications of dynamos in spheres or in spherical shells which
are of direct geophysical relevance can be avoided to a considerable extent in
the spatially periodic case because of the absence of boundaries. Moreover, a
particular case studied by Roberts, which is a first order dynamo in his nota-
tion, has turned out to be a very efficient dynamo. A modified version of it has
therefore been proposed as the basis for a laboratory dynamo experiment (Busse
1992) which is likely to be realized in the near future (Busse & Miiller 1994).
Nearly two-dimensional velocity fields of a similar kind are believed to be driven
by thermal or chemical buoyancy in the liquid metallic cores of the Earth and
other planets. The analytical model of the geodynamo proposed by Busse (1975)
thus incorporates features similar to those exhibited in the first order dynamo of
Roberts.

In all cases treated by Roberts, the computations of dynamos have been re-
stricted to magnetic fields which exhibit the same periodicity as the velocity field,
except for an additional periodic dependence on the coordinate of which the ve-
locity field is independent. While it is plausible in many cases that this restricted
class of solutions includes the preferred dynamo corresponding to a minimum
magnetic Reynolds number, there is no proof for such a mathematical property.
Indeed, counter examples can be constructed, as will be discussed in the follow-
ing. There are thus several reasons to consider more general classes of solutions,
as will be done in this paper.
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2. Mathematical formulation of the problem

Kinematic dynamos are defined as growing solutions of the induction equation

(gi - w2> B =V x(uxB) (2.1)
for the magnetic flux density B where X is the magnetic diffusivity. The velocity
field u is a given solenoidal vector field. According to Cowling’s theorem growing
two-dimensional solutions of equation (2.1) do not exist. But two-dimensional
velocity fields can give rise to dynamo action. For details on the derivation of
equation (2.1) and its properties we refer to books on dynamo theory; see, for
instance Moffatt (1978), Roberts & Gubbins (1987) and others.

We use a Cartesian system of coordinates and assume the solenoidal velocity
field in the form

u=Vi(z,y) x k+ kw(z,y), (2.2)

where k is the unit vector in the z-direction. Following Roberts we shall choose
v and w in the form

1 1
b= > apexp{ipz +igy}, w= > by exp{ipz +iqy}, (2-3a)

pg=—1 pg=—1

where a,, = (—0po + 640)/2 in the cases I through III, while the coefficients b,,
are given by

case I i by = (840 — 6p0)/2,
case Il ¢ by, = (6po + 640)/2 — 6p040s (2.3b)
case III  :  b,, = (1 — bpo — 80 + 6p0040)/2.

In case IV the representation

1 ¢ , i < N
= 1 Z (840 — 6p0) exp{2i(pz + qy)}, w = i Z (q + p)bpe exp{ipz + iqy}
p,g=—1 p,g=—1
(2.3¢)
is used where 6,, denotes the Kronecker symbol, é,, = 1 for p = ¢ and 6,, =0
for p # q. Cases I through IV correspond to the velocity fields,

u! = (siny, sinz, cos z — cos y),
u'l = (siny,sinz, cosz + cosy),

2.3d
ul = (siny,sinz, 2 cos z cos y), (2:3d)
u!V = (sin 2y, sin 2z, sin(z + y)),
in Roberts’s (1972) formulation.
To solve equation (2.1) for B the general Floquet ansatz,
N
B = Z B, exp{i(m + f.)z +i(n + f,)y +if.z + ot}, (2.4)

mn=—N
is introduced which gives rise to the following equations for the z- and y-compo-
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nents of the coefficient vector B,,.,,

(0 + Bm™Y[(m+ £.)* + (n + £,)%]) Bunn

= Z lapg(a(m — g+ fo) =p(n —p+ £,))) — ibquZ]Bm—q,n—p

pg=—1
1 A
+ Y apA By, (2.5a)
pg=—1

where the vector an includes only the z- and y-components of B,,, and where
the matrix A is defined by
_(0 ¢
4= (p2 0 ) '

Since we have chosen the amplitude of motion and its wavenumber equal to
unity it is appropriate to replace the diffusivity A by the inverse of the magnetic

Reynolds number Rm. The z-component of B,,, is determined through the con-

dition V- B = 0 once equation (2.5) for B,,, has been solved. The latter equation
represents an eigenvalue problem for the eigenvalue o as a function of the Floquet
vector f.

While equation (2.5) has been derived for cases I through III, a somewhat more
complex equation is obtained in case IV:

(0 + Rm'l[(m + fo)?+ (n+ fy)z])an

= Z {%(6110 —bp0)lg(m —2q + f) —p(n—2p + fy)]Bm~2q,n—2p

p,g=-—1
+i(q + p)(qufzémﬂ‘n“p + (5q0 — 6poA - Bm—2q7n~2p}‘ (2.50)

In principle the summation limit N in expression (2.4) is infinite. But in order to

solve equations (2.5) numerically we have to assume a finite truncation parameter
N. Coefficients B,,, with |m| or |n| exceeding N are neglected. By replacing N
by N — 2 the accuracy of the numerical solution can be checked. As the magnetic
Reynolds number Rm is increased the truncation parameter N must be increased
as well. For the results described in the following section it was sufficient to use
N = T in case I, N = 11 in cases II and III. But in case IV values of IV as high
as 13 were required to reduce the difference between results for N and N — 2 to
less than 2%.

3. Discussion of the numerical results

It is not feasible to plot the magnetic Reynolds number Rm as a function
of all three parameters f,, f,, f.. Since the structure of basic equation (2.1) is
that of a Mathieu equation in the z- and in the y-coordinate, it seems likely
that in addition to the case f, = f, = 0 and its neighbourhood the cases with
fe =% or f, = ; will lead to the lowest values of Rm for which growing fields
B occur. Since this expectation was confirmed in preliminary computations we
shall focus on the ‘subharmonic’ cases in the following while f, will be regarded

as a continuous parameter.
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Figure 1. The magnetic Reynolds number Rm for onset of dynamo action in case I as a function

of the wavenumber f, for the example f, = fy =0 (0), fo = 0.5, fy, =0 (0), and f = f, = 0.5
(o). In the latter two examples oscillatory dynamos occur.
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Figure 2. The imaginary parts o; of the growth rates o for the examples of figure 1 in which
oscillatory onset of dynamo action occurs: fz = 0.5, fy =0 (——), fo = fy = 0.5 (—).

In figure 1 the critical Reynolds number for case I is shown for various com-
binations of f, and f,. As expected the case f, = f, = 0 analysed by Roberts
(1972) corresponds to the lowest value of Rm. An oscillatory onset of dynamo
action occurs for the other cases. The imaginary part o; of the growth rate at the
point ¢, = 0 is shown in figure 2. Since the dynamos correspond to a Hopf bifur-
cation, the complex conjugate of any eigenvalue ¢ also is an eigenvalue. Even in
the supercritical regime the real part o, of the growth rate assumes its maximum
value in the case f, = f, = 0 as is indicated in figure 3 where the growth rates
have been plotted for a given value of Rm. For reasons of symmetry the cases
fy = %, f=0and f, = %, fy = 0 give the same results and the former case has
not been plotted in any of the figures.
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Figure 3. The growth rate o, for the examples of figure 1 at Rm = 15. The strongest growing

magnetic fields may correspond to different eigensolutions as a function of f, as indicated by
the intersection in the figure.
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Figure 4. The magnetic Reynolds number Rm and frequency o; (left ordinate) for the onset of
dynamo action in case II for the examples fo = fy = 0 (0, dotted line for oy) and fo = 0.5, f, =0
(O, dashed line for o;). No dynamo was found for f; = f, = 0.5 for Rm < 20.

The results for case IT of (2.3) are shown in figure 4. The subharmonic dynamo
almost matches the critical value of Rm for f, = f, = 0. No growing magnetic
fields could be found in the doubly subharmonic case f, = f, = 3 in the regime
Rm < 20, |f.| < 1. Both types of dynamos are of oscillatory nature and the
parallel dependence of o; on f, for f, > 0.1 indicates a close correspondence in
the dynamo mechanisms. The approximate linear dependence of o; on f, suggests
that the dynamo waves propagating in the z-direction exhibit a nearly constant

phase velocity.
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Figure 5. Same as figure 4 in case III. Dynamo action was also found in the case f, = f, = 0.5in
the ranges 0.15 < f, < 0.25 and 0.5 < f, < 0.75 for Rm = 20. But the corresponding curves
are not included in the figure, because the values of Rm are higher than in the other examples.

In figure 5 the results for case III are shown. Here the subharmonic dynamo
does indeed correspond to the critical magnetic Reynolds number within the
intermediate regime 0.5 < f, < 0.8 of the z-wavenumber. As shown in the figure
there are two other subharmonic branches, but these are preceded by the onset of
magnetic fields with the same periodicity as the velocity field. In addition there
are doubly subharmonic dynamos, but they occur only in the regions 0.15 < f, <
0.25 and 0.5 < f, < 0.75. They correspond to relatively high values of Rm of the
order 20 or larger and are not shown in figure 5 for this reason. Again, all of the
dynamos are oscillatory. The imaginary part of the growth rate plotted in the
same figure exhibits a similar approximate linear trend as in the case II. Case IV
is unusual in that the basic wavenumbers of the two components of the velocity
fields (2.2) differ by a factor two. Dynamos that are subharmonic with respect to
w(z,y) exist for sufficiently high values of f, and the dynamo with f, = f, = 1
actually precedes the dynamo with the same periodicity as the velocity field in
the regime 0.7 < f, < 1.4 as shown in figure 6.

When the dynamos of the cases I through IV are compared for a given value
of the wavenumber f, which may correspond to the finite size of the domain
of electrically conducting fluid, then case I appears to offer the lowest magnetic
Reynolds number for dynamo action. Except for case IV the differences in the
critical values Rm are not substantial for f, of the order 0.5 or larger. But in the
limit f, — 0 the dynamo with f, = f, = 0 of case I is unique in that the magnetic
Reynolds number tends to zero. This property is caused by the fact that case I
represents a first order dynamo in the language of Roberts (1972). This property
is lost as soon as finite values of f, or f, are used and a finite value Rm of the
order of f, or f, must be expected in the limit f, — 0. The first order dynamo of
Roberts (1971) has been studied in considerable detail by Childress (1979) and
Soward (1989) with a special emphasis on the limit of large Rm. Unfortunately
such analytical studies can not easily be extended to subharmonic cases.
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Figure 6. Same as figure 1 in case IV. The dynamos are characterized by a monotone onset in
this case.

4. Concluding remarks

The subharmonic dynamos discussed in the preceding section have not received
much attention since they do not exhibit a mean component of the magnetic
field in the sense of an average over the z,y-plane. In the case of a spherical
dynamo subharmonic dynamos driven by a velocity field which is periodic in the
azimuthal direction would not show an axisymmetric component of the magnetic
field. In general, however, there is an entire spectrum of motions available such
that a mean or an axisymmetric component of the magnetic field can be generated
through secondary interactions. For this reason the subharmonic route of dynamo
action deserves some attention.

A characteristic feature of all subharmonic dynamos displayed in figures 1-6
is the property that they require a wavenumber in excess of a positive minimum
value f,. The cause of this feature is not obvious and analytical treatments of the
problem are difficult.

Another question that can not be answered in a general sense concerns the
necessary properties of two-dimensional, spatially periodic steady velocity fields
of the form (2.2) that are required for dynamo action. The four cases considered
in this paper have been selected originally by Roberts on the basis of heuristic
arguments. Other cases obtained by phase shifts of 90° of w relative to ¥ typically
lead to disappearance of dynamo action. This property is not surprising, since
the velocity field (2.2) can be written in the form,

v = Vi x (k+ (4 +7)/v2), (4.1)

if x and y are replaced by z + %w and y — %7r in the expansion (2.3) for w in
the case I and by « + 37 and y + {7 in the case II. The velocity field (4.1) is
a toroidal velocity field and thus incapable of dynamo action. A similar shift of
the vertical component w in case III also leads to an apparent disappearence of
dynamo action at least for Rm < 20. But the streamlines of the velocity field do
not lie in parallel planes in this case. Actually the undulating surfaces spanned by
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the streamlines resemble the surface tangential to the velocity field of case II. It
is not obvious why dynamo action is obtained in one case and not in the other. It
is hoped that antidynamo theorems for certain types of periodic velocity fields of
the form (2.2) will eventually lead to a better understanding for the restrictions
on dynamo action.

The research reported in this paper has been supported by the Deutsche Forschungsgemeinschaft.
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