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Abstract. The magnetic fields observed in the galactic disc are generated by the differential rotation
and the helical turbulent motions of interstellar gas. On the scales | = 27k ™" which lie in the interval
lo<1<I, (lo= 100 pc is the energy-range scale of the galactic turbulence), the spectral density of the
kinetic energy of turbulence (k™) exceeds the magnetic energy spectral density (k™. The
equipartition between magnetic and kinetic energies is reached at I =I,=6pc in the intercloud
medium and is maintained down to the scale [ =1;=0.03pc. In dense interstellar clouds [ is
determined by the individual cloud size and [; = 0.1 pc. The internal turbulent velocities in H 1 clouds
(cloud size is assumed to be 10 pc) lie in the range from 1.8 to 5.6km s~', fitting well within the
observed range of internal rms velocities. Dissipation of the interstellar MHD turbulence leads to
creation of temperature fluctuations with amplitudes of 150K and 65K in dense clouds and
intercloud medium, respectively. The small-scale fluctuations observed in the interstellar medium
may arise from such perturbations due to the thermal instability, for instance. Dissipation of the
MHD turbulence energy provides nearly half of the energy supply needed to maintain the thermal
balance of the interstellar medium.

1. Introduction

Various observations provide strong evidence of a large-scale galactic magnetic
field with a strength of about 2 uG (see Moffatt, 1978; Parker, 1979; Vainshtein
et al., 1980). In the galactic gaseous disc the mean large-scale magnetic field is
predominantly azimuthal; its poloidal component is approximately ten times
weaker than the azimuthal one. Along with the large-scale field, there are
small-scale magnetic fields of comparable strength. The distinction between large
and small scale is quite natural and is found at 100 pc, the dominant energy-range
scale of the interstellar turbulence.

The mean galactic magnetic field is generated and maintained due to the
turbulent dynamo-action. Only the laminar and spatially-averaged characteristics
of the velocity field are essential for the theory of the generation of the
large-scale magnetic field; that is differential rotation, turbulent diffusion and
helicity of the turbulence. On the other hand, with regard to small-scale fields we
must be aware of the detailed properties of the turbulence such as its spectrum,
the width of the inertial range, the damping scale, etc. In the present paper we
shall make an attempt to determine the statistical properties of the galactic
turbulent magnetic fields and point out some observational tests designed to
verify the theory.
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2. Generation of the Mean Magnetic Field

Consider first the energy balance of the large-scale galactic magnetic field. The
hydromagnetic equation describing the evolution of the mean field B is

B/t = rot{(w Xr) X B+ aB — B rot B}, (D

where w is the angular velocity of the galactic gaseous disc, a is the helicity
function, and B is the magnetic diffusivity. Below we shall use the cylindrical
coordinates (r, ¢, z) with the z-axis orthogonal to the plane of the disc. Denoting
the scale, velocity and lifetime of the dominant turbulent eddies by I, vo, and 7,
respectively, we can write

2
a=——T3—°<vrotv>=5’hﬂa(z), ()

where h is the half-thickness of the disc, a(z) =0(1) is the dimensionless odd
function of z, and the angular brackets symbolize an ensemble average (Moffatt,
1978; Parker, 1979; Vainshtein et al., 1980). The magnetic diffusivity, v, includes
two dissipative processes: the turbulent diffusion, v;, and resistive diffusion, v,.
In the galactic disc v, > v, and we shall put v = v, = 3lyv, in (1).

To obtain the equation for the magnetic field energy B?*/87 multiply Equation
(1) by B and integrate over the disc volume. The result can be written as

0 B2 3 3
e 7dr=fBrot{(w><r)><B}dr+
+faB roth3r—J' v, (rot B)* &r . 3)

Due to the influence of the differential rotation the radial lines of force
(component B,) are sheared in the azimuthal direction, producing the ¢-com-
ponent of the large-scale field. This effect is represented by the first term on the
right-hand side of (1): i.e.,

B rot{(e X r) X BY = B,B,r ‘31—‘;’ . @)
The second term on the right-hand side describes the inverse process: produc-
tion of the radial component by the helical turbulence in the presence of the
azimuthal field. If the rotation is strongly non-uniform the role of the second

term in the energy balance is negligible. This becomes evident after writing

_ jw B,B, _ (L’
B rot Bl = 42 22 —(h) BB, .

From this we estimate the ratio of the second term to the first one to be
(Io/h)*dInr/dInw =0.05 in the solar neighbourhood (Ruzmaikin and
Shukurov, 1981). The last term on the right-hand side of Equation (1) represents
the loss of the mean magnetic field.
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Using (4) we obtain the following estimate of the first integrand on the
right-hand side of Equation (1) with h(r) = const.:

& = 47hRB,B,(Vg —2V), 5)

where B, and B, are the field components (slowly varying with r) averaged
over the disc volume, Vz = w(R)R is the rotational velocity at the disc edge
r=Rand V=(/R) [ (f V(r) dr is the mean velocity of rotation. The dissipation
integrand is estimated as

2
ép = —4mv, %— Bfu .

Therefore, in the stationary situation, d/dt = 0, we arrive at

B,

B,

VtR

- wR 6
h* (Vg —2V) ©

Substituting such typical values for the galaxy as »,=10*cm’s™", R = 15kpc,
V = Vz=250kms™!, h =400 pc, we come to an estimate of B,/B, = 1/10. In the
innermost region of the galaxy the a’-dynamo action is possible (Ruzmaikin and
Shukurov, 1981). If this is the case, the second term in (1) is not negligible and
B,/B, = 1. Note that, in the solar neighbourhood, the ratio B,/B, is close to 0.1
(Ruzmaikin et al., 1977).

Altogether, the rate of magnetic energy production (5) is proportional to the
rotational velocity of the disc, but not to the rotational energy. The omitted term
[ aBrot B &r = 4whR*B,B,a/h does not include the energy of the helical tur-
bulence. Hence, the differential rotation and the helicity of turbulence are just
the ‘driving belts’ which transfer energy from the interstellar turbulence to the
mean large-scale magnetic field. The interstellar turbulence, in turn, is fed by
supernovae explosions and the strong outflow of gas from the luminous young
stars. The efficiency of the magnetic field generation depends, of course, on the
capacity of driving mechanism. The sink of the mean magnetic field energy is
provided by turbulent motions, the most destructive of which is on scale .

3. The Spectrum of Turbulent Magnetic Fields

The mean large-scale magnetic field maintained by the turbulent dynamo action
is inevitably accompanied by the small-scale magnetic fields of turbulent cells.
Moreover, the generation of the large-scale field is impossible without the
small-scale fields, because the source term in Equation (1) is the correlator
(vXb)=aB, where b is the small-scale random component of the magnetic field.
In the galactic disc the magnetic Reynolds number of the dominant eddies is
rather high, R, = 10° (see below). It suggests that the magnitude of the galactic
small-scale field is not less than the magnitude of the mean field, [b|= |B|. In this
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section we discuss the spectrum of the small-scale fields arising due to the
mean-field dynamo action.

To obtain the equation governing the evolution of b, subtract (1) from the
hydromagnetic equation for the total magnetic field, B +b; the result is

db/at = rot{(w X r) X b} +rot(vx B)+rot G + v, Vb , 7

where G =vxb—(vXxb) (cf. Moffatt, 1978; Vainshtein et al., 1980). If we view
the fluid from the local frame of reference rotating with the angular velocity w,
the first term on the right-hand side of (7) is eliminated. Now, note that the
growth rate of b is obviously the same as the growth rate of the mean field,
b « B x exp(yt). The rate at which the magnetic field grows, vy =1/(5 X 10® yr)
(Ruzmaikin and Shukurov, 1981), is much less than both the rate at which the
turbulent energy cascades toward the smaller scales and the inverse lifetime of
the turbulent eddies. Thus, the small-scale fields may be considered as the
quasistationary, db/dt =0, on the span t <+vy~'. Expressing the hydromagnetic
equation (7) in terms of the spatial Fourier transforms, b, and v, of b and v,
respectively, we have the following order of magnitude estimates

(Irot(v X B))x =kuviB;  (brotG) =—bi7n;  (bvaVb)=—b¥7s,
(8)

where k is the wave-number, 7, is the time-scale of the spectral energy cascade
at the wave-number k, 7; = 1/(v,k? is the magnetic dissipation time on the scale
k™', and the subscript ‘k’ denotes the spatial Fourier transforms. The estimate of
(brot G), follows from the arguments that are similar to Orszag (1970) -
approximation arguments. Now we can readily calculate the magnetic field
spectrum, by, and the magnetic energy spectral density, M, < k™ 'b}. Equations
(7) and (8) yield

bk—"‘—‘kvakB for Tq > Tk -

We should bear in mind that Equations (1) and (7) are the kinematic dynamo
equations, i.e. they do not incorporate the dynamical back-action of the
magnetic force on the velocity field. It follows that for these equations to be
valid, the magnetic energy density must be much less than the turbulent kinetic
energy density. Thus, the turbulence presumably should exhibit a Kolmogorov
spectrum and

Ey o k™'vg o k7P, v o k7' e = (kvp) ™",

where E; is the kinetic energy spectrum. Hence, for 74 > 7, i.e. at wave-numbers
k <kn=koRY* 2uko' =1y, Ry = volo/v, is the magnetic Reynolds number) the
magnetic spectrum has the form

Mk Ockﬂl; bk ocko. (9)

If 7 <7, i.e. in the range k, >k >k, where the magnetic field dissipation is
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essential, we have
Mk o kﬂll/ls; bk = k‘l)k'TdB o k—4/3

(the inequality k, > k, certainly holds true in the galactic disc). The magnetic
and kinetic energy spectra in the linear regime (Ei> M,) are sketched in
Figure 1la.

(a)

[

log M; and log By

e Ky kg Ky
log(k/k ) —=—wm

Fig. 1. The spectra of magnetic (solid curves) and kinetic (dashed curves) energy of MHD

turbulence (both in arbitrary units) when the large-scale turbulent dynamo is in action. The spectral

indices are written alongside the corresponding part of the curve. (a) The linear regime when
Ei > M. (b) The equipartition range Ex = M is well developed.
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The large-scale field B grows at the rate y and this causes the turbulent
magnetic energy to grow at the rate 2+ until the equipartition between magnetic
and kinetic energies is reached at the wave-number k,. From this moment, the
inertial range of magnetohydrodynamic (MHD) turbulence with M, = E; appears
and spreads down over the spectrum. The foregoing arguments become inap-
plicable when the equipartition is reached. Spectra of the magnetic and kinetic
energies in the inertial range are determined by the conservation of the energy
flux flowing along the spectrum from the dominant wave-number up to the
cut-off wave-number,

KMy _ KE;

Tki Tki

= € = const. ,

and by the physical nature of the energy cascade. In the inertial range MHD
turbulence can be regarded as an ensemble of random hydromagnetic waves
moving at nearly the Alfvén speed, V3 = (b?/4mp, where p is a gas density. Now
the time-scale, 7y, at which the energy cascades across a wave-number mag-
nitude k, is not equal to the eddy lifetime (kvy)”', as was the case in the linear
regime. 7 is essentially the time-scale for the nonlinear interaction of random
waves of the scale k™'. For weak MHD turbulence the three-wave interaction
prevails (Sagdeev and Galeev, 1969; Kaburaki and Uchida, 1971). If the tur-
bulence is helical, the interaction of Fourier components b, and v, at the
wave-number ko excites the harmonics of smaller wave-numbers, k <k,
(Pouquet et al., 1976; Moffatt, 1978); that is, the large-scale magnetic field is
intensified. The process of generation of higher harmonics provides the flow of
energy towards higher wave-numbers, i.e. the turbulent energy cascade. The
three-wave interaction equations are quadric with respect to the energy density,
so we can write 7i = wi(kM/U), where wi = kV 4 is the Alfvén frequency and U
is a homogeneous function of dimension cm?s~2 (cf. Sagdeev and Galeev, 1969).
Upon writing U = V3, we have 7' = k?M/Vs; hence, kM/1q = k*Mi/V,i=e
This brings us to the spectrum of MHD turbulence in the inertial range,

M o« k™ b < k™,

as Kraichnan (1965) determined with his use of dimensional arguments. For
those wave-numbers where M, < E, the earlier developed spectra are still valid,
of course. In Figure 1b we have sketched the spectra of magnetic and kinetic
energies after the inertial range has evolved.

The lower wave-number boundary of the inertial range, k., is determined from
the equation M, = E,, where E; « k", Thus,

ke = kQ(UQ/ VA)3 . (10)

The wave-number at which the inertial range cuts-off, k4, is determined by the
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equality 7; = 74; hence,
ka = (€] Vava)'® = koR7 (0o V' . (11)

When the equipartition range has spread over the whole spectrum up to the
dominant scale, then vo= V4 and k; = koRZ%.

Note that if a small-scale turbulent dynamo of some type acts, then the
spectrum in the range ko <k <k, (ko <k <k, in the linear regime) has the form
M, « k* (Kraichnan and Nagarajan, 1967; Ruzmaikin and Sokolov, 1981) and
sharply differs from the spectrum (9). Therefore, even a crude experimental
estimate of the magnetic spectrum index in the range ko < k < k. would allow us to
determine whether the small-scale turbulent dynamo action is possible.

5. The Small-Scale Fields in the Galactic Disc

To obtain numerical estimates of typical parameters of the galactic MHD
turbulence, we should begin with the magnetic diffusivity, »,,. Collisions between
hydrogen ions, H", and neutral hydrogen atoms, H, produce the most important
damping mechanism which destroys the small-scale magnetic fields in the
partially ionized interstellar gas. This diffusion coefficient can be written as

=2 % 10° e’ 5! (0.03 cm‘3)<1 cm‘3)<104 K)( B >2<10‘l4 sz) ’
n. h, T 1 [.LG Tig
(12)

where T is the gas temperature, n, and n, are the number densities of free
electrons and neutral atoms respectively, and o, is the ion-neutral collisions
cross-section (og—y=10""cm? for T = 10*K; Dalgarno, 1960). The mean elec-
tron number density in the galactic disc is n. =0.03 cm ™ (Kaplan and Pikel’ner,
1979). Then, adopting the values B =2 uG, n,=1cm™ and T = 10°K, we have
vm = 10" cm®s ! and R,, = 3 X 10°.

Following the interpretation of the Faraday rotation measures of pulsars
(Ruzmaikin and Sokolov, 1977), the magnetic field fluctuations on the dominant
scale Iy= 100 pc are of the magnitude 6B = 1.2B —i.e., bo=2.5 uG. The spectral
energy density of turbulent magnetic fields is a decreasing function of wave-
number, so that the main contribution to the total magnetic energy comes from
the dominant scale, (b)>=b3 Thus, the Alfvén speed is V= bo/Vamp =
5.5kms™! (for p=17%x10*gcm™). For M, « k™' the lower boundary of the
equipartition region lies at the wave-number k, defined by (10). In the galaxy,
where vo=10km s™', we have k. = 6k,. The associated scale is I, = 1,/6 = 20 pc.
The inertial range cuts-off at k = ky = 5.5 X 10° ko (see (11)). In the region k >k
both magnetic and Kinetic energy spectra cut-off exponentially, but the equipar-
tition is maintained until the Alfvén frequency exceeds the dissipation rate
(Kraichnan and Nagarajan, 1967) —i.e., if k <ka= Va/vm =3 X 10°k,. For k > kj

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1982Ap%26SS..82..397R

S..82- ~397R!

[19B2A0&:

404 A. A. RUZMAIKIN AND A. M. SHUKUROV

the linear-regime spectra E; « k™ and M, « k™" are re-established. Due to a
kinematic viscosity v (and/or a thermal conductivity), the ultimate damping of
the turbulence occurs at the wave-number k, =k, Re¥* (Res= vi,/vka is the
Reynolds number on the scale k).

Thus, the inequality k., <k, holds true in the galactic disc, so that the inertial
range k, <k <k, is well developed and the magnetic and kinetic energy spectra
have the form, represented in Figure 1b.

Recently Vainshtein (1980) proposed a small-scale dynamo model for the
turbulent velocity field with zero mean helicity. He claims that the turbulent
magnetic fields grow if the Reynolds number of the dominant scale Re is far less
than the magnetic Reynolds number R,, > Re. The same conclusion was reached
by Batchelor (1950) in his pioneering paper. However, with regard to the galactic
disc, the sense of the inequality is the reverse. Indeed, in H1 regions the
kinematic viscosity is » =3%x10° n! T"?cm?s™!, thus Re =2 x 10’ while R,, =
2x10*. In the intercloud medium v =10°n""T>?cm?s™!; therefore, Re=
6 x 10’ > R,, = 3 x 10° (for the values of R, see below).

If a small-scale turbulent dynamo of some other type acts in the galactic disc,
then the spectrum in the range of wave-numbers ko < k <k, is My « k*; therefore,
k. = ko(vo/ V 4)¥" = 1.4k and I, = 70 pc. Thus, even a crude observational estimate
of the small-scale magnetic field spectral index for the scales 70 pc = = 20 pc
would be sufficient to verify the theory of the small-scale turbulent dynamo. If by in
this interval is a decreasing function of [, then the small-scale dynamo is in action.
On the other hand, if it turns out that b, = const., one can be sure that the turbulent
magnetic fields are entirely due to mixing and stretching of the lines of force of the
large-scale field. It is clear that if the turbulent magnetic fields are generated by a
small-scale dynamo of any type, their spectrum reaches the maximum on a scale,
which is a little smaller than the dominant one. We should note, that the analysis of
the Faraday rotation measures of the pulsars (Ruzmaikin and Sokolov, 1977) has
not yet revealed any indication of such a maximum.

The foregoing numerical estimates of the characteristics of the galactic MHD
turbulence are based on the mean values of the ionization degree, temperature,
matter density and, hence, magnetic diffusivity of the interstellar gas. However,
the interstellar medium is highly inhomogeneous. Recent discussions (see, for
instance, Cox and Smith, 1974; McKee and Ostriker, 1977) suggest that there are
three main phases of the interstellar medium: cool, dense clouds; ‘standard’ hot
intercloud medium; and very hot tunnels formed by merging of supernova
remnants. Of course, the magnetic diffusivity and, therefore, width of the inertial
range of MHD turbulence are not the same in all the phases. As it was shown by
the detailed calculations (MclIvor, 1977), ion-neutral collisions provide the main
damping mechanism in clouds and the intercloud medium. The gas in the tunnels
is highly ionized and, in addition, a large fraction of turbulent energy is stored in
the longitudinal magnetosonic waves —but not in the transverse Alfvén waves.
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For these reasons, the main contribution to the damping rate in the tunnels
comes from the thermal conductivity. This contribution is so considerable, that
the turbulence is strongly suppressed and presumably there is not any inertial
range (Mclvor, 1977). Hence, all of both the magnetic and kinetic energies of
MHD turbulence dissipates out of the tunnels, and it is thought that the tunnels
may occupy half of the galactic disc volume (Jenkins and Meloy, 1974). We shall
calculate the wavenumbers at which the inertial range of turbulence starts and
terminates in clouds and the intercloud medium. We shall also briefly discuss the
role of MHD turbulence in the energy balance of the interstellar gas.

We shall adopt the following values for the H 1 cloud parameters: T = 100 K,
n=20cm>, n,=0.05cm > (Kaplan and Pikel’ner, 1979). The cross-section of
the H'-H collisions in the cloud is oz~ = 1.5 X 107 cm? (Osterbrock, 1961). The
matter density in the clouds is higher than the mean value, so the magnetic fields
there are higher too, B « n??. Thus, for the clouds we use the values B =15 uG
(B=2uG for n=1cm™) and be=1.2B =18 uG. The corresponding Alfvén
speed is V,=10km s™'. Hence, the beginning of the inertial range is found
immediately on the dominant scale, I, =1l,. The typical cloud size, 10 pc, is
considerably smaller than ly; therefore, the maximum turbulent scale, velocity
and the consequent Alvén speed are determined by the actual size of an
individual cloud. Substituting to (12) the adopted values for the relevant
parameters, we have the magnetic diffusivity v, = 1.5 X 102 cm” s™' and magnetic
Reynolds number R, =2 X 10*. It follows, that k; = keRZ*~=8 X 10?k, and l; =
0.12 pc. The turbulent velocities on the scales 0.12 pc and 10 pc are 1.8 kms™
and 5.6km s™', respectively. It is interesting to note that the small-scale r.m.s.
velocities in H1 clouds lie in the range from 1.2kms™! to 4.5kms™' (Weaver,
1970; Hobbs, 1974) which is inferred from the observed line broadening. This
range is sufficiently close to the turbulent velocity range calculated above.

Similar calculations for the intercloud medium, for which we adopt the values
T=10K, n=0.2cm™? and n, =0.02cm (Kaplan and Pikel’ner, 1979), lead to
the following estimates: by=0.8 uG, Vo=4.0km s™', R, =3 x 10°, k, = 16k, (I, =
6 pc) and ks =3 x 10* ko (I; = 0.03 pc).

Now we are ready to estimate the contribution of MHD turbulence to the
heating of the interstellar medium. In the H1 clouds the rate at which the
turbulent energy dissipates is € =2ep =2 X 10 ® ergcm ™ s™! (the factor 2 comes
from the equal contributions of magnetic field and turbulent velocity field). This
rate is comparable to the energy supply from the other sources (Kaplan and
Pikel’'ner, 1979). However, cosmic rays and soft X-rays, for example, heat the
medium more or less uniformly, whereas the damping of the MHD turbulence
causes temperature fluctuations of the scale l;. The magnitude of the fluctuations
is 8T = er/(nk), where k is the Boltzmann constant and 7 is the lifetime of the
smallest eddies. Taking into account that 7, = (voko) ' (ko/ks)** =7 x 10* yr, we get
0T = 150K (8T/T = 1.5) for H1 clouds. Similar calculations for the intercloud
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medium vyield: é=2x107ergcm>s™", 7 = (vk.)" (kfks)¥* =3x10*yr, and
therefore 8T = 65K (i.e., 8T/T = 6.5 x 107°). The typical scale of these fluctua-
tions is I; = 0.03 pc. The fluctuations may grow due to thermal instability, for
example, this may produce the small-scale temperature and density fluctuations
of a characteristic scale of the order of 0.03 pc, which are observed in Hur
regions (Kaplan and Pikel’ner, 1979). For example, the small-scale fluctuations in
the Orion nebula have the scale of the order of 0.02-0.05 pc (Pikel’ner and Shajn,
1954; Mezger, 1970).

Finally, note that for the observed thermal and ionization state of the
interstellar medium to be maintained, energy must be supplied at the rate of
about 2x 10 ergecm>s™! (Kaplan and Pikel’ner, 1979). Compare this figure
with the mean rate of dissipation of the energy of MHD turbulence, of the order
of 10 ergecm>s™! (based on the mean value n=1cm™). It is clear that the
MHD turbulence plays an important role in maintaining the present thermal and
ionization state of the interstellar medium.
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