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ABSTRACT

Powerful lasers may be used in the future to produce magnetic fields that

would allow us to study turbulent magnetohydrodynamic inverse cascade



behaviour. This has so far only been seen in numerical simulations. In the

laboratory, however, the produced fields may be highly anisotropic. Here,

we present corresponding simulations to show that, during the turbulent

decay, such a magnetic field undergoes spontaneous isotropizsation. As a

consequence, we find the decay dynamics to be similar to that in isotropic

turbulence. We also find that an initially pointwise non-helical magnetic field

is unstable and develops magnetic helicity fluctuations that can be

quantified by the Hosking integral. It is a conserved quantity that

characteriszes magnetic helicity fluctuations and governs the turbulent

decay when the mean magnetic helicity vanishes. As in earlier work, the

ratio of the magnetic decay time to the Alfvén time is found to be around

approximately  in the helical and non-helical cases. At intermediate times,

the ratio can even reach a hundred. This ratio determines the endpoints of

cosmological magnetic field evolution.
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1. Introduction

In the absence of any initial velocity field and without any type of forcing, an initially random

magnetic field can only decay. This decay can be sped up by turbulent gas motions driven

through the Lorentz force that is being exerted by the magnetic field itself. The decay of such

a random field obeys power law behaviour where the magnetic energy density  decays

with time  like as , and the magnetic correlation length  increases like as

. For a helical magnetic field, we have  (Hatori 1984; Biskamp & Müller,

1999), while for a non-helical magnetic field, we have  and  (Hosking &

Schekochihin, 2021; Zhou et alet al . 2022). Such a decay has been seen in many

hydromagnetic numerical simulations (Brandenburg, Kahniashvili & Tevzadze 2015; Hosking &

Schekochihin, 2021; Armua, Berera & Calderón-Figueroa 2023; Brandenburg et alet al . 2023),

but not yet in plasma experiments. With the advance of high-powered lasers, it is already
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possible to amplify magnetic fields in the laboratory (Tzeferacos et alet al . 2018), and similar

advances may also allow us to achieve sufficient scale separation to perform meaningful

inverse cascade experiments. However, such magnetic fields may be strongly anisotropic, so

the question arises to what extent this affects the otherwise familiar decay dynamics.AQ1

Our goal here is to study the decay of an array of magnetic flux tubes with an electric current

that is aligned with the magnetic field (Jiang, Pukhov & Zhou 2021). Such a field is indeed

highly anisotropic such that the correlation length in the direction along the tubes is much

larger than that perpendicular to it. A simple numerical realiszation of such a magnetic field is

what is called the Roberts field I, which is more commonly also known as Roberts flow I. It is

one of four flow fields studied by Roberts (1972) in the context of dynamo theory. The field is

fully helical, but with a slight modification, it can become a pointwise non-helical field, which is

then called the Roberts field II. Both fields are here of interest. They are defined in section§  2,

along with a proper measure of anisotropy, the relevant evolution equations,, and relevant

input and output parameters. In section§  3, we present numerical results for both flows using

different magnetic diffusivities and scale separation ratios. Inverse cascading during the

turbulent decay of helical and non-helical magnetic fields has applications to primordial

magnetic fields in the radiation dominated era of the Universe, which are discussed in

section§  4. We conclude in section§  5.

2. Our model

2.1. Roberts fields

To fix our geometry, we assume magnetic flux tubes to extend in the - direction and being

perpendicular to the  -plane. Such a field can be realiszed by the so-called Roberts field I,

i.e.,i.e. the magnetic field  is given by

is an  periodic field. Such a magnetic field has a component in the  -direction, but no

variation along that direction, so it is highly anisotropic. This may change with time as the

magnetic field undergoes a turbulent decay. The Roberts field I is maximally helical with
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, so . Here,  is the magnetic vector

potential and . The Roberts field II, by contrast, is given by

where  is  phase shifted in the - and  -directions relative to , and  is the

eigenvalue of the curl operator for field I, i.e.,i.e. , so , while

 pointwise. In the Coulomb gauge, we have, for field II, , where

and therefore also . Thus, for field II, not just the current helicity density vanishes

pointwise, but in the Coulomb gauge, also the magnetic helicity density vanishes pointwise.

Both for fields I and II, we have .

2.2. Quantifying the emerging anisotropy

To quantify the degree of anisotropy, we must separate the derivatives of the magnetic field

along the  -direction ( ) from those perpendicular to it ( ), so . We also

decompose the magnetic field analogously, i.e.,i.e. . The mean current density

can be decomposed similarly, i.,e., , but this decomposition mixes the underlying

derivatives. We see this by computing  (where the permeability has been set to

unity). Using this decomposition, we find

noting that . The term of interest for characteriszing the emergent isotropiszation

is the first one, , because it involves only parallel derivatives (  -derivatives), which

vanish initially. We monitor the ratio of its mean squared value to .

The last term in equation (2.4) is just , but the first and second terms cannot

simply be expressed in terms of , although  would be  if the magnetic field only

had a component in the plane, and  would be  if the magnetic field only had a
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component out of the plane. We therefore denote those two contributions in the what

followings by  and , respectively, so that .

Thus, with the abovementioned as motivationed above, to monitor the emergent

isotropiszation, we determine . For isotropic turbulence, we find that this ratio is

about approximately , and this is also true for ; see Appendix A for an

empirical demonstration. In the expression for , there is also a mixed term,

, which turns out to be positive in practice. Here, commas

denote partial differentiation. Thus, we have

In the isotropic case, we find , and for the mixed term, we then have

.

2.3. Evolution equations

To study the decay of the magnetic field, we solve the evolution equations of

magnetohydrodynamics (MHD) for an isotropic compressible gas with constant sound speed

, so the gas density  is proportional to the pressure . In that case,  and the

velocity  obey

where  is the advective derivative,  is the kinematic viscosity, and  is

the rate-of-strain tensor with components . To ensure that the

condition  is obeyed at all times, we also solve the uncurled induction equation for

, i.e.,i.e.



As before, the permeability is set to unity, so  is the current density.

We use the Pencil Code (Pencil Code Collaboration et alet al . 2021), which is well suited for

our MHD simulations. It uses sixth- order accurate spatial discretiszations and a third- order

time-stepping scheme. We adopt periodic boundary conditions in all three directions, so the

mass is conserved and the mean density is  is constant. The size of the domain is

 and the lowest wavenumber in the plane is . By default, we choose

, which fixes all dimensions in the code.

2.4. Input and output parameters

In the following, we study cases with different values of . We specify the amplitude of the

vector potential to be  for most of the runs with Roberts field I and  for

Roberts field II. We use , so  for field I and  for field II. For other

values of , we adjust  such that  is unchanged in all cases. This implies 

and , and therefore  and , respectively. The initial values of the Alfvén

speed, , are therefore transonic. We often give the time in code units,

, but sometimes we also give it in units of , which is physically more

meaningful. However, we must remember that the actual magnetic field and therefore the

actual Alfvén speed are of course decaying.

In addition to the Roberts field, we add to the initial condition Gaussian-distributed noise of a

relative amplitude of . This allows us to study the stability of the field to small

perturbations. To measure the growth rate, we compute the semilogarithmic derivative of

 for a suitable time interval.

The number of eddies in the plane is characteriszed by the ratio . The aspect ratio of the

domain is quantified by . The electric conductivity is quantified by the Lundquist

number , and the kinematic viscosity is related to  through the magnetic

Prandtl number, . In all our cases, we take . This is an arbitrary choice,

just like  would be arbitrary. The value of  affects the ratio of kinetic to magnetic

energy dissipation (Brandenburg, 2014; Brandenburg & Rempel, 2019). While this topic is

interesting and important, it is not the focus of our present study. Laboratory plasmas tend to

have large values of , so the choice  instead of unity is at least qualitatively
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appropriate. Much larger values of  would become computationally prohibitive.

Furthermore, the choice  can lead to exceptional behaviour, particularly when the

cross- helicity is finite; see figure 1 of Rädler & Brandenburg (2010).

Important output parameters are the growth rate , evaluated in the

regime where it is non-vanishing and approximately constant. It is made non-dimensional

through the combination . We also present magnetic energy and magnetic helicity

variance spectra,  and , respectively. These spectra depend on  and , so we

denote the spectra sometimes also as  and , respectively.

Since , the value of  is also equal to the instantaneous Alfvén speed, , and its

square is the mean magnetic energy density, . The latter can also be computed

from the magnetic energy spectrum  through . The

integral scale of the magnetic field is given by

It is of interest to compare its evolution with the magnetic Taylor microscale, ,

where  is the root-mean-squared current density, i.e.,i.e. . (We recall that the

permeability was set to unity; otherwise, there would have been an extra  factor in front of

.) Both in experiments and in simulations,  may be more easily accessible than , so it

is important to find out whether the two obey similar scaling relations.

During the decay,  decreases and  increases. The Alfvén time, i.e.,i.e. the ratio

, therefore also increases; see Banerjee & Jedamzik (2004) and Hosking &

Schekochihin (2023 a) for early considerations of this point. Both for standard (isotropic)

helical decay with  and , as well as for non-helical decay with 

and , the value of  increases linearly with , i.e.,i.e.

This is also consistent with the idea that the turbulent decay is self-similar (Brandenburg &

Kahniashvili 2017). It was found that the ratio  approaches a constant that increases
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with the Lundquist number (Brandenburg et alet al . 2024). The difference between the

quantity  and the factor  defined byin Brandenburg et alet al . (2024) is the

exponent  in the relation  for non-helical and  for helical turbulence

with .

To compute the Hosking integral, we need the function , which is a weighted integral

over , given by

and  is the spherical Bessel function of order one. As shown by Zhou

et alet al . (2022), the function  yields the Hosking integral in the limit of large radii ,

although  must still be small compared with the size of the domain. They referred to this as

the box-counting method for a spherical volume with radius .

3. Results

3.1. Isotropiszation

In figure 1, we show the evolution of  for Roberts fields I and II. We see that, after a

short decay phase, exponential growth commences followed by a saturation of this ratio. We

expect the ratio  to reach the value  at late times; see Appendix A. The insets of

figure 1 show the degree to which this is achieved at late times. Especially in the helical case,

when inverse cascading is strong, the peak of the spectrum has already reached the lowest

wavenumber of the domain. This is probably the reason why the value of 4/15 has not been

reached by the end of the simulation. But However, also for the non-helical case, the system

retains memory of the initial state for a very long time; see the insets of both panels.

The early growth of  shows that both the Roberts fields I and II are unstable to

perturbations and develop an approximately isotropic state. The normaliszed growth rates

are given in table 1 along with the times  of maximum growth. The normaliszed values are in

the range 0.7  to –6, but mostly around unity for intermediate values with . The

normaliszed times, , tend to decrease with increasing values of  and are about



approximately ten 10–20to twenty times larger for field I than for field II. This difference was

also found in another set of simulations in which  was the same for fields I and II; see

Appendix B.

Figure 1 .  Evolution of  for (a) Roberts field I with  (blue),  (green), 

(orange),  (red), and  (black dashed), and for (b) Roberts field II with  (black), 

(blue),  (green),  (orange),  (red), and  (black dashed). The short thick line on the

upper right indicates the value of 4/15, which is reached only at much later times outside

this plot. The insets demonstrates that  much later.

Visualizsations of  on the periphery of the computational domain are shown in figure 2 for

Roberts fields I and II. The initially tube-like structures are seen to decay much faster for

Roberts field II. At time , the magnetic field has much larger structures for Roberts field

I than at time  for Roberts field II.

Figure 2 .  Visualiszations of  on the periphery of the computational domain at times 

, 10, 30, and 100 for RrRoberts field I (top) and at times , 10, 100, and 1000 for

RrRoberts field II (bottom).

3.2. Spectral evolution

In figure 3, we plot magnetic energy and magnetic helicity variance spectra for the Roberts

field I. Note that the spectra are normaliszed by  and , respectively. At early times,

the spectra show spikes at  and , respectively, along with higher harmonics. We also

show the time evolution of the normaliszed values of these spectra at the lowest wavenumber

. For , we also scale by , which then gives an approximation to the value of

the Hosking integral (Hosking & Schekochihin, 2021). Again, we see a sharp rise in both time

series when the fields becomes unstable.

We also see that at late times, a bump appears in the spectrum near the Nyquist

wavenumber. This shows that the Lundquist number was somewhat too large for the



resolution of . However, comparing with simulations at lower Lundquist numbers shows

that the large-scale evolution has not been adversely affected by this.

In figure 4, we show the same spectra for the case of Roberts fields II. Again, we see spikes in

the spectra at early times. Those of  are again at , along with overtones, but those

of  are now at  instead of , and there are no spikes of  at . This is a

consequence of the fact that the field has zero initial helicity pointwise, and helicity is quickly

being produced owing to the growth of the initial perturbations. The plot of  shows

nearly perfectly a constant level for . This indicates that the Hosking integral is

well conserved by that time.

3.3. Spontaneous production of magnetic helicity variance

As we have seen from figure 4, the case of zero magnetic helicity variance is unstable and

there is a rapid growth of  also at small wavenumbers. This was already anticipated by

Hosking & Schekochihin (2021), and the present experiments with the Roberts field II show

this explicitly.

Figure 3 .  Evolution of magnetic energy and magnetic helicity variance spectra,  and

, respectively, for RrRoberts field I with  at different times  indicated by

different colours and line types as seen in the time traces on the right. The open black

symbols in panels (b) and (d) correspond to the dotted lines in panels (a) and (c).

Figure 4 .  Same as figure 3, but for the RrRoberts field II at different times  as seen in the

time traces on the right.

Figure 5 .   for RrRoberts field II with (a)  at  (black), 1.5 (blue), 2.2 (green),

3.2 (orange), and 4.6 (red). and (b)  at  (black), 147 (blue), 316 (green), 570

(orange), and 824 (red). The arrow indicates the sense of time.



Figure 6 .  Time dependence of (a)  (black solid line) along with  (red solid line) in

units of  as well as  (blue dashed line) and  (orange dashed line) and (b)

the ratio  for RrRoberts field II with . The plateaus at 0.03 and 3000 are

marked by dotted lines. In panel (a), the dashed-dotted straight lines indicate the slopes

 (black),  (orange), and  (blue). The inset in panel (a) shows the growth of 

in a semilogarithmic representation along with a line .

We now discuss the function ; see Hosking & Schekochihin (2021) and Zhou et alet al .

(2022). The result is shown in figure 5. For small values of ,  increases . This

indicates that the mean squared magnetic helicity density is not randomly distributed on

those scales. In the present case, the actual scaling is slightly shallower than , which is

probably due to the finite scale separation. For , corresponding to scales compatible to

the size of the computational domain, we see that  has a plateau. It is at those scales,

, that we must determine the Hosking integral . In figure 6, we show

the time dependence of  for Roberts field II with  normaliszed both by 

(which is constant) and by  (which is time-dependent). Note that the time axis is here

also logarithmic. We see an early rapid growth of  proportional to  by over eight orders

of magnitude. The detailed mechanism behind this initial generation of magnetic helicity

variance is not clear. A comparison with a 20 times more resistive run shows the same initial

growth . This suggests that it is not a resistive effect. We are therefore tempted to

associate the magnetic helicity variance generation with the scrambling of the initially

perfectly pointwise non-helical magnetic field. In figure 6, we have indicated this with a

question mark to say that this is tentative.

Previous work showed that the value of  can greatly exceed the dimensional estimate

 (Zhou et alet al . 2022). Figure 6 shows that at late times, , this is also the

case here. After the initial rapid growth phase, however, the normaliszed value of  is still

well below unity (around approximately 0.03). The growth of  after  is

mostly due to the decay of  and it is later counteracted by a growth of . The dashed blue

and orange lines in figure 6(a) show separately the evolutions for  and ,

respectively.



If the Hosking scaling applies to the present case of initially anisotropic MHD turbulence, we

expect  and therefore . The actual slope seen in figure 6 is however

around approximately 3 at late times. For , we expect a  scaling and therefore

, i.e., the reciprocal one of . Again, the numerical data suggest a larger value of

around approximately 3. In section§  4.1, we analysze in more detail the anticipated scaling of

 and . We find that the two instantaneous scaling exponents  and  are

indeed larger than what is expected based on the Hosking phenomenology. However, the

instantaneous scaling exponents also show a clear evolution towards the expected values.

It is interesting to observe that the evolution of  proceeds in two distinct phases. In the first

one, when ,  shows a rapid growth that is not exponential; see the inset of figure

6, where the growth of  is shown on a semilogarithmic representation. The growth is closer

to that of a power law, and the approximate exponent would be around approximately eight,

which is rather large. During this phase, the turbulent cascade has not yet developed, but a

non-vanishing and nearly constant value of  has been established. However, in units of

, its value is rather small (around approximately 0.03).

In the second phase, when , turbulence has developed, and a turbulent decay is

established. It is during this time that the ratio  approaches larger values (around

approximately 3000) that were previously seen in isotropic decaying turbulence simulations

(Zhou et alet al . 2022). The reason for this large value was argued to be due to the

development of non-Gaussian statistics in the magnetic field. However, Brandenburg &

Banerjee (2025) presented an estimate in which the value of this ratio is equal to . With

, this would agree with the numerical findings.

4. Cosmological applications

4.1. Evolution in the diagnostic diagram

In view of the cosmological applications of decaying MHD turbulence, it is of interest to

consider the evolution of the actual Alfvén speed  in an evolutionary diagram

as a parametric representation versus ; see figure 7(a). With  and , we

expect that  with  for the fully helical case of Roberts field I. This is in



agreement with early work showing that  and  (Hatori 1984; Biskamp &

Müller, 1999).

Figure 7 .  (a) Parametric representation of  versus  for Roberts fields I (red) and II

(blue). The solid (dotted) curves are for  ( ). Note that the red dotted

line for  starts at the same value  as the non-helical runs (blue

lines). The similarity between the dotted and solid red lines shows that the initial amplitude

does not matter much. The open (filled) symbols indicate the times  ( ). The

dashed-dotted lines give the slopes  and 5/4 for RrRoberts fields I (red) and II (blue),

respectively. (b)  diagram field fields I (red) and II (blue) with . Larger symbols

indicate later times.

Figure 8 .  (a)  and (b)  versus time for RrRoberts fields I (red) and II (blue).

In figure 7(a), we have also marked the times  (open symbols) and  (filled

symbols). The points of constant times depart significantly from the lines of constant Alfvén

time, , for which  grows linearly with . We expect the times to be larger by a

factor  than the corresponding values of . This is indeed the case: the point 

lies on the line , i.e.,i.e. . This is twice as much as our nominal value of about

approximately 50.

There is an interesting difference between the cases of Roberts fields I and II in that for field II,

there is an extended period during which  shows a rapid decrease before the expected

increase emerges. The fact that such an initial decrease of the characteristic length scale is not

seen for Roberts field I is remarkable. The rapid development of smaller length scales is

probably related to the breakup of the initially organiszed tube-like structures into smaller

scales. In the helical case, however, the nonlinear interaction among helical modes can only

result in the production of modes with smaller wavenumbers, i.e.,i.e. larger length scales; see

Frisch et alet al . (1975) and Brandenburg & Subramanian (2005) for a review. Such a

constraint does not exist for the non-helical modes, where this can then reduce the effective
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starting values of  and therefore also of the effective Alfvén time, , early in the

evolution. In Appendix B, we present similar diagrams for different values of , but with a

drag term included that could be motivated by cosmological applications.

We inspect the time-dependences of  and  for Roberts fields I and

II in figure 8. We see that  reaches values in excess of 100 for  in both cases. This

is more than what has been seen before, but it also shows significant temporal variations.

Figure 9 .  Compensated evolutions of  and  allowing the non-dimensional prefactors

in equation (4.1) to be estimated.

4.2. Universality of prefactors in the decay laws?

The decay of a turbulent magnetic field is constrained by certain conservation laws: the

conservation of mean magnetic helicity density , where  is the local

magnetic helicity density, and the Hosking integral, . When the

magnetic field is fully helical, the decay is governed by the conservation of , and when it is

non-helical, it is governed by the conservation of . The time of cross-over depends on the

ratio  (Brandenburg & Banerjee, 2025). Specifically, the correlation length ,

the mean magnetic energy density , and the envelope of the peaks of the magnetic

energy spectrum  depends on the values of the conserved quantities with

(Brandenburg & Larsson, 2023)

where  is the exponent with which the length enters in :  when the mean magnetic

helicity density governs the decay ( ) and  for the Hosking integral ( ). In

figure 9, we show the appropriately compensated evolutions of  and  such that we can

read off the values of  and  for the helical and non-helical cases.

In table 2, we summarizse the values for the six coefficients reported previously in the

literature and compare with those determined here. The fact that the coefficients are now
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somewhat different under the present circumstances suggests that they might not be

universal, although the anisotropy of the present set-up as well as the limited scale separation

may have contributed to the new results. For the purpose of providing relevant information

for future studies of anisotropic magnetic decay, we present in Appendix C the temporal

evolution of the length scales and field strengths in the parallel and perpendicular directions.

The question of universality is significant, however, because universality would mean that the

decay laws of the form (e.g.,e.g. Vachaspati 2021)

could be misleading in that they suggest some freedom in the choice of the values of 

and  at the time . Comparing with equation (4.1), we see that

so they cannot be chosen arbitrarily, but they must obey a constraint that depends on the

relevant conservation law.

5. Conclusions

We have seen that a tube-like arrangement of an initial magnetic field becomes unstable to

small perturbations. The resulting magnetic field becomes turbulent and tends to isotropizse

over time. This means that tube-like initial conditions that could be expected in plasma

experiments would allow us to study the turbulent MHD decay dynamics – even for moderate

but finite scale separation of 4:1 or more. In other words, the number of tubes per side length

should be at least four.

We have also seen that a pointwise non-helical magnetic field, as in the case of the Roberts

field II, is unstable and develops magnetic helicity fluctuations. After about approximately one

Alfvén time, the Hosking integral reaches a finite value, but a fully turbulent decay commences

only after about approximately one hundred Alfvén times. From that time onwards, the value

of the Hosking integral relative to that expected on dimensional grounds reaches a value of

several thousand, a value that was also found earlier (Zhou et alet al . 2022).



Our present results have confirmed the existence of a resistively prolonged turbulent decay

time whose value exceeds the Alfvén time by a factor . As emphasiszed

abovepreviously, the fact that this ratio depends on the microphysical magnetic diffusivity is in

principle surprising, because one of the hallmarks of turbulence is that its macroscopic

properties should not depend on the microphysics of the turbulence. It would mean that it is

not possible to predict this behaviour of MHD turbulence by ignoring the microphysical

magnetic diffusivity, as is usually done in so-called large eddy simulations.

The present results have shown that the decay time can exceed the Alfvén time by a factor of

about approximately 50–100, which is similar to what was found previously (Brandenburg et

alet al . 2024). During intermediate times, however, the decay time can even be a hundred

times longer than the Alfvén time. The dimensionless prefactors in the dimensionally

motivated powerlaw expressions for length scale and mean magnetic energy density are also

roughly similar to what was previously obtained from fully isotropic turbulence simulations.
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Figure 10 .  Evolution of , , and  for decaying isotropic

turbulence with an initial peak wavenumber  using  meshpoints (a) with

helicity and (b) without helicity.

Appendix A.  for isotropic turbulence

We have examined the evolution of  for isotropic turbulence using a set-up

similar to that of Brandenburg et al. (2023); see figure 10. The scale separation, i.e.,i.e.

the ratio of the peak wavenumber to the lowest wavenumber in the domain is 8 for this

simulation and the Lundquist number, which is the r.m.s. Alfvén speed times the

correlation length divided by the magnetic diffusivity, is about approximately . The

other parameters are as in the earlier work of Brandenburg et al. (2023); see the data

availability statement of the present paper.



Appendix B. Diagnostic diagrams for different 

In figure 7, we did already present a diagnostic diagrams of  versus.  for .

We also performed runs for different values of  to compute the growth rates and the

times  of maximum growth in table 1, but not all the runs were long enough to

compute similar tracks in the diagnostic diagram. In figure 11, we show such a diagram

for a case in which a drag term of the form  is included on the right-hand side of

equation (2.7). Here, we choose a drag coefficient that automatically changes in time so

as to allow for a nearly self-similar decay. Using a multiple of  is an obvious

possibility, but it would always be the same at all locations and for different types of

flows. The local vorticity might be one possible option for a coefficient that varies in

space and time, and has the right dimension. Another possibility, which is also the one

chosen here, is to take  to be a multiple of  and write ,

where  is a dimensionless prefactor, and  has been set. Again, as was

already clear from figure 7, the tracks without helicity show a marked excursion to

smaller values of  before displaying a decay of the form . The

corresponding values of  and  are given in table 3.

Figure 11 .  Same as figure 7(a), but for , showing a parametric representation

of  versus  and  for RrRoberts field I (left) with  (black), 

(blue),  (green),, and  (orange),  (red),  (black), and 128 (blue). The open (filled)

symbols in both plots indicate the times  ( ).

Our definition of the Roberts fields follows the earlier work by Rheinhardt et al. (2014).

In the original paper by Roberts (1972), however, the field was rotated by . In that

case, , where the upper and lower signs refer to Roberts fields I and

II. For this field, a lower eigenvalue of the curl operator, namely , can be

accessed. In that case, we can accommodated one1 pair of flux tubes instead of four.

This can be done both for fields I and II. They are given by



(B.1)

(C.1)

(C.2)

which satisfies  and , just like the non-rotated field.

But However, here,  is the eigenvalue of the curl operator.

Appendix C. Anisotropy

Given that the magnetic field remains anisotropic for a long time, it is useful to consider

the possible effects of anisotropy. For this purpose, we define the length scales

which represent the typical length scales in the directions perpendicular and parallel to

the magnetic flux tubes, respectively. In figure 12, we plot the evolution of  and

 along with that of  and  for the non-helical case of Roberts field II. We

see that there are no clear power laws. During limited time intervals, however, the

curves have the slopes  and  for the length scales and field strengths,

respectively, as expected from an isotropic evolution.

Figure 12 .  Scalings of (a)  and , and (b)  and  for the non-helical

case. The expected slopes  and  are indicated for reference.

Figure 13 .  Spectra of (a)  and (b)  as a function of  in both panels. The last

time is shown as a thick line. The sense of time is also shown by the arrows in both



panels.

We demonstrated already that the three-dimensional magnetic energy spectrum

increases ; see figure 4. This shows that there are no long-range correlations; see

Hosking & Schekochihin (2023 b) for a corresponding demonstration in the

hydrodynamic case and Zhou et al. (2022) for the application to magnetic fields.

However, our two-dimensional spectra (see figure 13), and especially that of , as a

function of , increases ; see figure 13(b). This shows that there are no long-range

correlations of the flux of  over the  -plane. Thus, even if the flux of  over  -

planes might constitute an additional corresponding conserved quantity, it could not

constraint the dynamics in the present case, because such a quantity vanishes in our

case.

Table 1 .  Normaliszed growth rates  and peak times  for different

values of . The hyphen indicates that no growth occurred. 🔍

fField 2 4 8 16 32 64

I —– 2.9 1.4 1.1 0.7 0.5

II 5.5 1.2 0.8 1.9 1.6 1.0

I —– 34 16 7.7 3.4 1.2

II 1.0 1.6 2.0 0.3 0.2 0.1

Table 2 .  Comparison of the dimensionless prefactors with values in

earlier papers. 🔍



References

Brandenburg & BbBanerjee (2025) 0.12 0.14 4.3 4.0 0.7 0.025

Brandenburg et al. (2023) —– 0.12 —– 3.7 —– 0.025

Brandenburg & LlLarsson (2023) —– 0.15 —– 3.8 —– 0.025

pP resent work 0.04 0.10 15 6 —– —–

Table 3 .  Similar to table 1, showing normaliszed growth rates  and

peak times  for different values of , but with the photon drag

term included. Here, unlike the case of table 1, the values of  are

the same for RrRoberts fields I and II. The hyphen indicates that no

growth occurred. The lowest value of  has been set in italics to

indicateNote that we used here what we called the rotated

RrRoberts field. 🔍

fField 0.71 1 2 4 8 16 32 64

I —– —– 0.01 0.02 0.05 0.05 0.05 0.05

II 0.12 0.15 0.19 0.20 0.22 0.22 0.19 0.13

I —– —– 310 122 62 31 12 4.5

II 78 51 27 14 6.7 3.5 1.8 1.2
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