
Draft version July 9, 2025
Typeset using LATEX manuscript style in AASTeX631

Helicity Fluxes and Hemispheric Helicity Rule of Active Regions Emerging from the

Convection Zone Dynamo

Valery V. Pipin ,1, 2 Shangbin Yang ,1 and Alexander G. Kosovichev 3
1

1National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing,2

China3

2Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk, 664033, Russia4

3New Jersey Institute of Technology, Newark, NJ 07102, USA5

Submitted to ApJ6

ABSTRACT7

Using a 3D non-linear mean-field solar dynamo model, we investigate the magnetic8

helicity flux and magnetic twist and tilt parameters of bipolar magnetic regions (BMRs)9

emerging from the solar convection zone due to the magnetic buoyancy instability.10

The twist and tilt of the BMR magnetic field are modeled as a result of an effective11

electromotive force along the rising part of the toroidal magnetic field. This force12

generates the poloidal field that tilts the whole magnetic configuration. We find that13

variations of BMR’s twist and tilt determine the magnitude and sign of the magnetic14

helicity flux on the solar surface. The model shows that the helicity flux associated with15

the BMR’s tilt/twist is the dominant contribution to the BMR helicity at the beginning16

of the BMR’s evolution, while the effect of differential rotation is the main source of17

the helicity flux at the final stage of the BMR’s evolution. We discuss the implications18

of these effects on the basic properties and variations of the hemispheric helicity rule of19

active regions on the solar surface.20
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1. INTRODUCTION22

Magnetic helicity balance plays an important role in the dynamo processes in the solar and stel-23

lar convection zones. In particular, the nonlinear saturation of the turbulent dynamo significantly24

depends on the evolution of the magnetic helicity and its expulsion from the dynamo domain (Klee-25

orin & Ruzmaikin 1982; Brandenburg et al. 2023). Moreover, the magnetic helicity flux from the26

depth of the convection zone can affect the activity phenomena in the chromosphere and corona. For27

example, the amount of helicity stored in solar active regions affects their flare and coronal mass28

ejection (CME) productivity (e.g., Berger & Ruzmaikin 2000; Pariat et al. 2009; Georgoulis et al.29

2009; Toriumi & Wang 2019).30

It was found that the solar differential rotation provides a major effect on the rate of helicity pro-31

duction, both in the flaring and CME activity of individual active regions and in the progression of32

solar activity cycles (Berger & Ruzmaikin 2000; Hawkes & Yeates 2019). This supports the basic33

dynamo scenario of Parker (1955), suggesting that the differential rotation and turbulent generation34

of large-scale magnetic fields are the main sources of the magnetic energy generated in the solar35

dynamo. This model predicted that the dynamo-generated magnetic field migrates in radius and lat-36

itude in the form of dynamo waves. It showed that magnetic stresses and modulation of the turbulent37

heat flux, associated with these waves, result in 11-year variations of the differential rotation38

(“torsional oscillations”) which are featured by an extended 22-year mode propagating39

during two solar cycles from the polar regions to the equator (Kosovichev & Pipin 2019;40

Pipin & Kosovichev 2019; Mandal et al. 2024). Similarly, the model reproduces varia-41

tions of the meridional circulation, also in agreement with helioseismology results (e.g.,42

Komm et al. 2018; Pipin & Kosovichev 2020; Getling et al. 2021; Getling & Kosovichev43

2025).44

The emergence of the tilted bipolar magnetic regions (BMR), together with the effects of the45

cyclonic convection motions (associated with the so-called α-effect), represents the turbulent dynamo46
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generation of the large-scale magnetic field observed on the surface of the Sun. Both effects are47

related to the production of the helical magnetic field and therefore affect the magnetic48

helicity fluxes from the solar convection zone. Previous studies (e.g., Kleeorin et al. 2000;49

Blackman & Brandenburg 2003; Brandenburg & Subramanian 2005) suggested an important role for50

turbulent magnetic helicity fluxes for the large-scale dynamo.51

Another important aspect of the problem is the hemispheric helicity rule (hereafter HHR). It states52

that the electric current helicity, which is a proxy of magnetic helicity, is predominantly negative in53

the Northern hemisphere and positive in the Southern hemisphere. In other words, the magnetic54

field of bipolar magnetic regions (BMRs) is twisted counter-clockwise in the Northern hemisphere55

and clockwise in the Southern hemisphere. Starting from the results of Seehafer (1990), Pevtsov56

et al. (1994) and Bao & Zhang (1998), the hemispheric helicity rule is a well-established statistical57

pattern of the solar active regions. However, there are significant fluctuations (Zhang et al. 2024). In58

particular, observations show that solar active regions can violate the hemispheric helicity rule mostly59

during the initial phase of active region emergence (Kutsenko et al. 2019). The mean-field dynamo60

models attempt to relate the HHR with the sign of the α-effect and magnetic helicity conservation61

(Sokoloff et al. 2006; Pipin et al. 2013). The surface flux-transport models interpret observations of62

the HHR in a different way. For example, Prior & Yeates (2014) modeled HHR as an effect of the63

differential rotation acting on the initial random distribution of the helical BMRs. The reader can64

find more information on solar magnetic helicity and beyond in reviews published in Kuzanyan et al.65

(2024). Using a surface flux-transport model, Hawkes & Yeates (2019) found that the magnitude of66

the helicity flux due to the decay of active regions is about two orders of magnitude lower than that67

of the helicity flux produced by the differential rotation. However, the flux-transport models do not68

take into account the radial dependence of the magnetic field distributions and the BMR emergence69

in the convection zone (Yeates et al. 2023; Pipin 2024). This can lead to an underestimation of the70

BMR role in the magnetic helicity budget and consequently the helicity flux from the photosphere71

to the solar corona. Nevertheless, it is important that the magnetic helicity flux, initiated by the72

BMR’s emergence and evolution, and the HHR can be closely related.73
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Our general goal is to evaluate the contribution of BMRs to the total magnetic helicity balance. For74

this purpose, we use the non-linear 3D MHD dynamo model of Pipin et al. (2023), which addresses the75

emergence and evolution of BMR simultaneously with the global dynamo in the solar convection zone.76

We calculate the helicity flux initiated by BMRs and also the latitudinal distribution of the magnetic77

twist parameters of BMRs. The dynamo model allows us to estimate directly the contributions of78

the helicity production rate on the solar surface caused by the large-scale flows and the evolution of79

the bipolar active regions. Our plan is as follows. Section 2 discusses some aspects of the dynamo80

model and the evolution equation for the helicity rate. In Section 3, we calculate the surface helicity81

flux using typical configurations for emerging BMRs. Then, we calculate the HHR for the BMR’s82

twist parameters and helicity flux. The paper ends with a discussion and conclusions.83

2. MAGNETIC HELICITY BALANCE84

The total magnetic helicity inside the convection zone can be defined via the volume integral,85

HV =

ˆ
A · BdV, (1)86

where A is the magnetic vector potential, B = ∇ × A. Hereafter, we assume the volume87

integral is calculated over the bulk of the convection zone. Generally, the vector-potential88

is defined only up to a gauge transformation, A → A + ∇g, where g is an arbitrary scalar. For89

the large-scale dynamo models, the uncertainty is cured by the decomposition of the magnetic field90

into a sum of the toroidal, BT , and poloidal components, BP , (Krause & Rädler 1980), which are91

decomposed further following Chandrasekhar & Kendall (1957):92

B=BT +BP = ∇× rT (r, t) +∇×∇ × rS (r, t) (2)93

where the first term in the RHS corresponds to BT , and T and S are scalars, which are94

called superpotentials. The superpotentials also have gauge uncertainty. However, in95

this case, the arbitrary scalars, which take part in the gauge transformation, depend96

on the radial coordinate only. This uncertainty can be removed if we consider the97

appropriate integral averaging of T and S. The procedure is particularly simple in the98
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case of the spherical dynamo models, see more details in Appendix A and the book by99

Krause & Rädler (1980). The helicity integral, HV , measures the linkage of, BT and BP100

in the volume (Berger & Hornig 2018).101

We employ the Electromagnetic units system throughout the paper, and following the102

Faraday law,103

∂B

∂t
= −∇×E, (3)104

where E is the electric field, determine the helicity rate in the bulk of the convection zone:105

dHV

dt
=

ˆ (
∂A

∂t
·B +A · ∂B

∂t

)
dV =

ˆ (
2A · ∂B

∂t
+∇ ·

(
A× ∂A

∂t

))
dV (4)106

=−2

ˆ
E ·BdV + 2

˛
dS · (A×E) +

˛
dS ·

(
A× ∂A

∂t

)
. (5)107

It is noteworthy that the last integral in this formula is identically zero (Berger & Hornig 2018). We108

keep it because in the dynamo equations,
(
A× ∂A

∂t

)
has a counterpart in (A×E). Taking into109

account Ohm’s law,110

E = −v ×B + ηJ , (6)111

where v is the plasma velocity, J is the electric current density, and η is the microscopic diffusivity,112

we get the helicity rate in the volume of the convection zone:113

dHV

dt
=−2η

ˆ
B·JdV + 2

˛
dS ·B (A · v)− 2

˛
dS · v (A ·B) (7)114

+2η

˛
dS · (A× J) +

˛
dS ·

(
A× ∂A

∂t

)
. (8)115

Next, following the standard approach of the mean-field magnetohydrodynamics, we decompose the116

induction vector of the magnetic field, B, and its vector-potential A, into the mean and fluctuating117

parts,118

B= ⟨B⟩+ b, (9)119

A= ⟨A⟩+ a,120

v= ⟨U⟩+ u,121

J= ⟨J⟩+ j122
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where the small letters denote the turbulent fluctuations and the angular brackets denote the aver-123

aging over the ensemble of fluctuations. Substituting these decompositions into Eq.(5) and averaging124

over the ensemble of fluctuations, we get,125

dHV

dt
=

d

dt

ˆ
(⟨a·b⟩+ ⟨A⟩ · ⟨B⟩) dV = −2η

ˆ
(⟨b · j⟩+ (⟨B⟩ · ⟨J⟩)) dV (10)126

−
˛
dS · F ⟨ab⟩ + 2η

˛
dS · (⟨a× j⟩+ ⟨A⟩ × ⟨J⟩) +

˛
dS ·

(
⟨A⟩ × ∂ ⟨A⟩

∂t

)
,127

where F ⟨ab⟩ is the flux of the turbulent magnetic helicity density, ⟨a·b⟩. This equation shows that128

the total helicity rate in the volume is only due to the Ohmic dissipation of the current129

helicity, and the turbulent helicity flux F ⟨ab⟩ through the dynamo domain boundaries.130

In the mean-field theory, the general expression of F ⟨ab⟩ is complicated (see, Kleeorin & Rogachevskii131

2022; Gopalakrishnan & Subramanian 2023). It includes the products of the large-scale flow, ⟨U⟩132

, magnetic field, ⟨B⟩ and its vector potential ⟨A⟩ with the second moments of the turbulent fields,133

and the triple-order moments of the turbulent fields. In our study, we approximate it by the effect134

of turbulent diffusion,135

F ⟨ab⟩ = −ηχ∇ ⟨a·b⟩ . (11)136

Following the results of Mitra et al. (2010); Kleeorin & Rogachevskii (2022), we set ηχ = 1
10
ηT ,137

where ηT is the amplitude of the magnetic eddy diffusivity. The latter is determined with the help138

of the analytical results of the mean-field theory and the standard mixing-length approximation for139

the convective zone turbulent flows. Except for F ⟨ab⟩, the second line of Eq.(10) contains the140

Fickian-type fluxes of the small-scale and large-scale helicity due to the Ohmic diffusion,141

i.e., the contributions like, η∇ ⟨a·b⟩ and η∇ ⟨A⟩ · ⟨B⟩ (cf., Eq.(23) and Sec. 3). However,142

these contributions are much smaller in comparison to the turbulent diffusion, and,143

therefore, we neglect them in our analysis.144

The evolution equation for the small-scale helicity can be obtained from Eq(10) using145

the mean-field induction equation,146

∂ ⟨B⟩
∂t

= ∇× (E + ⟨U⟩ × ⟨B⟩) , (12)147
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where E = ⟨u× b⟩ is the mean electromotive force of the turbulent flows. We describe148

the mathematical details in Appendix A. The final result is as follows,149

d

dt

ˆ
⟨a·b⟩ dV =−2

ˆ
(E · ⟨B⟩) dV −

ˆ
⟨a·b⟩
Rmτc

dV + 2η

˛
dS · ⟨a× j⟩ (13)150

−
˛
dS · F ⟨ab⟩ +

˛
dS · ⟨U⟩ (⟨A⟩ · ⟨B⟩)151

−2

˛
dS · (E × ⟨A⟩)− 2

˛
dS · ⟨B⟩ (⟨A⟩ · ⟨U⟩) ,152

where, Rm is the turbulent magnetic Reynolds number, τc is the typical convective153

turnover time of the turbulent flows. Here, we employ the result of Kleeorin & Ro-154

gachevskii (1999) for isotropic turbulence, 2η ⟨b · j⟩ =
⟨a·b⟩
Rmτc

. In this study, we assume155

that the normal to the surface component of the large-scale flow, ⟨U⟩, is zero at the top156

boundary. The term -2
¸
dS · (E × ⟨A⟩) represents the helicity flux initiated by the turbu-157

lent processes in the large-scale dynamo. Pipin et al. (2013) found that this helicity flux158

results in the small-scale magnetic helicity density evolution following the large-scale159

dynamo wave. This alleviates the non-linear saturation (catastrophic quenching) of the160

α-effect. Del Sordo et al. (2013) and Brandenburg (2018) investigated this flux using161

direct numerical simulations and found that it was difficult to confirm this effect due to162

the limited numerical resolution. The term −2
¸
dS · ⟨B⟩ (⟨A⟩ · ⟨U⟩) stands for effects of the163

large-scale flow, i.e., the differential rotation and meridional circulation (Berger & Ruzmaikin 2000;164

Hawkes & Yeates 2019). Our goal is to study the contribution of the bipolar active regions to these165

helicity fluxes.166

To achieve this goal, we consider the dynamo model with emerging active regions proposed by Pipin167

et al. (2023). In this model, the evolution equation for the mean magnetic induction vector, ⟨B⟩, de-168

scribes both the dynamo-generated large-scale magnetic field and the magnetic field of active regions169

that are formed from the large-scale toroidal magnetic field due to the magnetic buoyancy instability.170

Such formulation of the mean-field dynamo model is possible by considering mean nonaxisymmetric171

magnetic fields. In the model, we approximate the magnetic configurations of active regions in the172

form of bipolar magnetic structures. Observations show that the contribution of bipolar-like active173
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regions to the total unsigned flux of the photospheric radial magnetic fields is less than 10 percent174

(Nagovitsyn et al. 2016; Pevtsov et al. 2021). Moreover, the flux distribution in the solar active175

regions shows a rich diversity of the magnetic patterns (Abramenko et al. 2023). The above argu-176

ments show the limitations and the main source of uncertainty in the comparison of the model with177

observations.178

We consider the mean magnetic field induction equation (Eq. 12) for the highly conductive media179

with the addition of the effects of the bipolar magnetic regions. In this equation, the electromotive180

force E contains both the mean-field turbulent effects and the generation terms for BMRs, defined in181

Appendix A and the next section. The mean large-scale flow velocity, ⟨U⟩, represents the differential182

rotation and the meridional circulation. It is calculated consistently by solving Eq. (12) together with183

the equations that describe the angular momentum balance, the meridional circulation, the mean-field184

heat transport, and the integral balance of the magnetic helicity in the bulk of the solar convection185

zone (Pipin & Kosovichev 2024). We use the harmonic field approximation (Bonanno 2016) outside186

the dynamo domain, which is more suitable for modeling the magnetic helicity because, unlike the187

usual potential field approximation, it does not suppress the contributions from the tilt and twist of188

BMRs on the surface. In this case, we employ the standard boundary conditions: continuity of the189

normal component of the magnetic field and the tangential component of the mean electromotive190

force (see Appendix B).191

3. MODEL OF TILTED/TWISTED BIPOLAR MAGNETIC REGIONS192

The mean electromotive force, E = ⟨u× b⟩, represents the effects of turbulent flows and magnetic193

fields on the large-scale magnetic field induction. We formulate it as follows,194

Ei = (αij + γij) ⟨B⟩j − ηijk∇j ⟨B⟩k + E (BMR)
i , (14)195

where αij describes the turbulent generation by the hydrodynamic magnetic helicity (the global196

dynamo α-effect), γij is the turbulent pumping, ηijk is the eddy magnetic diffusivity tensor, and197

E (BMR) models the emergence of the tilted/twisted bipolar active regions, see details in Appendix A.198

The additional term of the mean electromotive force, E (BMR), is formulated as follows (Pipin et al.199
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Figure 1. A snapshot of the large-scale axisymmetric magnetic field and magnetic helicity

density in the northern hemisphere of the Sun: a) the color image shows the toroidal magnetic

field, and the contour lines of the axisymmetric vector potential show the poloidal magnetic

field lines; the black circle shows the position of the BMR initiation; b) the color image show

the magnetic helicity density of axisymmetric magnetic field at the same time as in panel (a),

and the contour lines are the same as in panel (a)); c) the same as b) at the end of the run

E6, which included the initial axisymmetric poloidal magnetic field, see Table 1.

2023):200

E (BMR) = αBMR
β ⟨B⟩+ Vβ (r̂ × ⟨B⟩) , (15)201

where the first term takes into account the BMR’s tilt/twist and the second term models the rise of202

the magnetic region to the surface in the bipolar form with velocity Vβ. In our basic scenario, the203

term αBMR
β ⟨Bϕ⟩ induces an effective electromotive force along the rising part of the toroidal magnetic204

field. This electromotive force generates the poloidal magnetic field, which tilts the whole magnetic205

configuration of BMR. If we leave the toroidal magnetic field at rest (no rise), then this additional206

small-scale poloidal magnetic field results in the twisted magnetic field configuration. Therefore, it207

makes sense to divide the BMR formation process, described by Eq. (15), into the two corresponding208

parts:209

E (BMR)=E1 + E2, (16)210

E1=α
BMR
β ⟨B⟩ ξ1(t, r)211

E2=Vβ (r̂ × ⟨B⟩) ξ2(t, r)212
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where functions ξ1 and ξ2 describe the spatio-temporal parameters of the initial perturbations of213

the magnetic buoyancy instability. The magnetic buoyancy velocity, Vβ, includes the turbulent and214

mean-field buoyancy effects (Kitchatinov & Pipin 1993):215

Vβ=
αMLTuc

γ
β2H (β) (17)216

where function H (β) describes the quenching effect of the magnetic tension (see the above-cited217

paper). Also, αMLT = 1.9 is the mixing length theory parameter, uc is the RMS convective velocity,218

and γ is the adiabatic constant. All these parameters are taken from the results of the standard219

MESA model for the Sun (Paxton et al. 2011). Following Pipin (2022), we define220

αBMR
β = Cαβ cos θVβψα(β). (18)221

Here, the parameter Cαβ determines the magnitude of tilt/twist of the BMR for a given latitude.222

The function, ψα (β), where β = |⟨B⟩| /
√

4πρu2
c, describes the algebraic quenching of the α effect.223

We define the functions ξ1,2(t, r) in the same way as Pipin et al. (2023). Their description is given224

in Appendix C. A similar form of the α-effect was suggested earlier by Ferriz-Mas et al.225

(1994). In our model, the typical amplitude of αBMR
β is about 5-10 m/s. This is of226

the same order of magnitude as the global dynamo α-affect in the upper part of the227

convection zone (see Figure 3 in Pipin 2022). According to Choudhuri (1992) and228

Hoyng (1993), such strong fluctuations can be possible if we take into account the local229

character of the BMR’s formation.230

We did not investigate whether this effect could generate a large-scale dynamo on231

its own. Clearly, a solar-like BMR can be produced when a sufficiently strong seed232

toroidal magnetic field is present. Its action on a weak poloidal field is consistent with233

the standard mean-field α effect. Pipin (2022) found that for a given parameter Cαβ,234

the amplitudes of the poloidal and toroidal magnetic fields produced by the BMRs235

are larger by about ten percent of their values in the mean-field global axisymmetric236

dynamo model without BMRs for the same α-effect parameter Cαβ.237
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Depending on the mutual phase of E1 and E2, the sign of Cαβ and the employed boundary con-238

ditions, we can distinguish several interesting cases for the study. We assume that the emergence239

phase, which is associated with magnetic buoyancy, E2, can start either after the action of E1 or240

simultaneously with it. When E1 precedes E2, it results in the rise of a twisted bipolar magnetic field241

structure. The simultaneous action of E1 and E2 produces a tilted and twisted BMR. We can vary242

the sign and phase of E1 to generate the different signs of twist and tilt. We list the cases in Table 1.243

For the source of the BMR initiation, we considered the toroidal magnetic field in the upper part of244

the convection zone at the growing stage of the dynamo cycle, where the condition for the magnetic245

buoyancy instability is satisfied (Pipin et al. 2023). Snapshots of the large-scale magnetic field and246

its helicity density distributions before and after the BMR’s emergence are shown in Figure 1, as an247

example. In the model, the large-scale magnetic field is almost antisymmetric about the248

equator. This is because the dynamo model employs the mean-field alpha effect, which249

is slightly above the dynamo instability threshold when the quadrupolar modes are still250

subcritical. The nonlinear dynamo processes, as well as spontaneous BMR formation251

can break the parity of the magnetic field during the solar cycle. This can also affect the252

helicity fluxes. Here, we ignore these effects and consider the magnetic helicity parame-253

ters for a particular stage of the solar cycle with an almost antisymmetric configuration254

of the large-scale magnetic field. The latitude of the initial perturbation shown by the255

black circle is fixed at 20◦. Inside the convection zone, the helicity density shows oppo-256

site signs at low and high latitudes. These signs propagate out of the dynamo region.257

We made one of the runs using setup E6 (Table 1) and taking into account the full258

axisymmetric magnetic field. Figures 1(b and c) show snapshots of the axisymmetric259

magnetic field helicity density at the beginning and at the end of the run. This run260

(E6) employs the harmonic boundary conditions. In the northern hemisphere we see the261

injection of the positive helicity that at the end of the run. Also, the helicity density in262

the low corona changes in the near-equatorial regions. Similarly to the results of War-263

necke et al. (2011); Bonanno (2016); Bourdin et al. (2018), the magnetic helicity density264
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E1 E2 E6

Figure 2. The top row shows the snapshots of the magnetic field distribution in a bipolar magnetic region

(BMR) at the beginning of its emergence at the surface. The bottom row shows the same for the final stage

of the simulation. The columns marked E1, E2, and E6 correspond to the cases listed in Table 1. The color

image shows the radial magnetic field. The online version contains an animation of this Figure. The

animation illustrates the magnetic field evolution of BMRs, spanning 2 to 19 days, during the

evolution of the active regions.

of the axisymmetric magnetic field shows an inversion of sign at radius r ≈ 1.7R⊙. This265

effect was found in the analysis of solar wind observations by Brandenburg et al. (2011).266

We leave a detailed study of this problem for another paper. To exclude the effects of267

interaction of the magnetic field of BMR with the axisymmetric poloidal magnetic field268

that may exist before the BMR’s emergence, we set the initial axisymmetric poloidal269

magnetic field strength. For models E5 and E6, we make additional runs varying the270

initiation latitude of the BMR initiation in the range ±40◦.271272
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Table 1. Parameters of the runs.

Case Type BC E1 E2 Cαβ Cαβ

BMR (α-effect) (buoyancy) ’tilt’ ’twist’

E1 tilted potential 0 < t < δt 0 < t < δt 1 0

E2 twisted harmonic 0 < t < δt/3 δt/3 < t < δt 0 1

E3 twisted-tilted potential 0 < t < δt/3 δt/3 < t < δt 1 1

E4 tilted harmonic 0 < t < δt 0 < t < δt -1 0

E5 tilted harmonic 0 < t < δt 0 < t < δt 1 0

E6 twisted-tilted harmonic 0 < t < δt 0 < t < δt 1 1

Note— We set the initial axisymmetric poloidal magnetic field strength to zero.

For the runs E5 and E6 we vary the range the BMR’s initiation latitude from

-40◦ to 40◦. For the run E6 we made the additional run with initiation at 20◦

latitude and the initial axisymmetric poloidal magnetic field geometry as shown

in Figure 1.

For the simultaneous action of E1 and E2, in the case E1, we obtain a tilted BMR illustrated in273

Figure 2. The tilt of the BMR does not change much during emergence in this case. The figure274

illustrates two other situations. Case E2 employs the boundary conditions of the harmonic magnetic275

field (Appendix B). In this case, E I acts during the pre-emergence stage, then it is turned off, and the276

BMR starts to rise due to the action of E2. This model run shows the clockwise rotation of 180◦ of277

BMR during the emerging phase. Case E6 is the same as E1, but with the harmonic magnetic field278

boundary conditions. In run E6, the magnetic polarities rotate anticlockwise by approximately 135◦.279

These effects qualitatively correspond to observational results (e.g., Tian et al. 2005; Sturrock et al.280

2015; Grigoryev & Ermakova 2025). In both cases, E2 and E6, we find that the polarity pattern is281

slightly more elongated along the polarity inversion line than in cases E1 and E4.282283

Using our analytical expressions for the mean electromotive force (Appendix A), we introduce the284

following definition for the helicity density flux outward of the dynamo region:285

FΩ=2 ⟨B⟩r ⟨A⟩ϕ ⟨U⟩ϕ , (19)286
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FU =2 ⟨B⟩r ⟨A⟩θ ⟨U⟩θ , (20)287

F ⟨ab⟩
r =−ηχ (r̂ · ∇) ⟨a · b⟩ , (21)288

where the small-scale helicity density is estimated from Eq. (18). To estimate the effect of the BMR’s289

twist, tilt, and the effect of the turbulent diffusion, we take into account the isotropic structure of the290

hydrodynamic α-effect and turbulent diffusion near the solar surface. We define the helicity density291

flux from the mean electromotive force as follows, FE = Fαβ + Fη, where Fαβ determines the flux292

from the magnetic field twist and tilt of the BMR rising from the depth of the convection zone,293

Fαβ = 2
(
αϕϕ + αBMR

β

) (
⟨B⟩ϕ ⟨A⟩θ − ⟨B⟩θ ⟨A⟩ϕ

)
− 2Vβ

(
⟨B⟩θ ⟨A⟩θ + ⟨B⟩ϕ ⟨A⟩ϕ

)
, (22)294

where we see that only the horizontal components of the magnetic field and vector potentials con-295

tribute to Fαβ. The effect of the turbulent diffusion has three contributions:296

Fη = −2ηT r̂·(⟨A⟩ × ⟨J⟩) = −2ηT (r̂ · ∇) (⟨A⟩ · ⟨B⟩)+2ηT (⟨A⟩ · ∇) ⟨B⟩r+2ηT (⟨B⟩ ·∇) ⟨A⟩r , (23)297

where the first term shows the same type of helicity flux as the diffusive flux of turbulent magnetic298

helicity in Eq. (21).299

4. RESULTS300

4.1. Evolution of magnetic helicity fluxes and tilt and twist of emerging BMR301

Figure 3 shows the snapshots of the magnetic field configuration and helicity flux distributions after302

the BMR emergence for the cases E1, E2, E4, and E5 at the middle stage of the BMR evolution.303

From these model runs, we see that the magnitude and sign of the helicity flux distribution signifi-304

cantly depends on the boundary conditions, the sign of the tilt, and the mutual phase of the initial305

perturbations, ξ1 and ξ2 in Eq. (16). The runs with the harmonic magnetic field boundary conditions,306

e.g., E2, E4, and E5, show higher magnitudes of the surface magnetic helicity density and the helicity307

flux initiated by the α-effect, and magnetic buoyancy, Fαβ, than the run E1. Similarly to the analysis308

of Pariat et al. (2005), we see that the emergence of the BMR induces specific polarity patterns for309

each mechanism of the magnetic helicity flux. The results for the helicity density flux distributions310
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E1

E2

E4

E5

Figure 3. Snapshots of the magnetic field, the magnetic helicity density, and the helicity density fluxes at

the middle state of the active region evolution: (a) the surface magnetic field; (b) the total magnetic helicity

density, A · B; the panels (c), (d), (e) (f) and (g) show the density of the magnetic helicity flux distributions

Fαβ , FΩ, FU , Fηχ, and Fη. The rectangle indicates the area used for calculating the BMR helicity flux.

due to the effects of the differential rotation and meridional circulations are qualitatively in agree-311

ment with the patterns discussed in the paper mentioned above. Also, we see that the flux, Fαβ,312

which stems from the α-effect and the helicity density initiated by the BMR rise, is similar to the313

flux from the rotational motions of the magnetic polarities relative to each other (see, Pariat et al.314

2005; Yamamoto 2011).315316

Figure 4 shows the evolution of the integral parameters: the total unsigned radial magnetic field317

flux, the surface helicity density, the total helicity flux, and the tilt of the BMR, calculated following318

the procedure accepted in the SHARP routine (Liu et al. 2014; Sun et al. 2024). The total magnetic319

flux and other integral parameters are calculated in the area marked by the dashed line in Figure320

3. Some part of this flux further contributes to the large-scale dynamo in the solar convection321

zone. It is noteworthy that restricting the area of the integral neglects the effect of the large-scale,322

nonaxisymmetric magnetic field in the helicity flux. The total helicity flux in cases E2, E4, E5, and323

E6 sharply increases at the beginning of the BMR emergence because of the helicity transport by324

the twisted magnetic field rising from the convection zone. At the end of emergence, the largest325
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contribution to the helicity flux is due to the effect of differential rotation. We find that if we326

integrate the flux over the whole surface, the sharp increase of the flux, which is seen in Figure 4b327

at the beginning phase of BMR evolution, disappears. This tells about the importance of the large-328

scale nonaxisymmetric magnetic field contribution to the helicity flux. The BMR’s tilt can evolve in329

a different way, which depends on whether the BMR was twisted before emergence. For example, for330

case E1, the BMR’s tilt decreases continuously until ≈ 5◦ and then it shows some variations about331

this value caused by the BMR’s evolution. The twisted BMRs show the anti-Hale direction of the332

tilt at the beginning of their emergence.333

The surface magnetic helicity density shows sign variations. For all cases, except E4, we find the334

predominantly negative helicity density of the magnetic field during the model runs. In the case of335

the negative tilt, case E4, the BMR shows an inversion of the helicity sign from positive to negative336

at the end of this model run. This is caused by the differential rotation effect. Further results that337

support this conclusion are shown in Figure 6. The runs, which employ the harmonic boundary338

conditions, show a positive helicity density at the very beginning of the BMR’s emergence.339

Figure 5 shows the evolution of the integral parameters of the magnetic helicity flux. The helicity340

flux rate is higher than the magnetic flux rate. This agrees with the analysis of observations made by341

Liu et al. (2014); Norton et al. (2023); Sun et al. (2024). The interesting finding is that the helicity342

flux due to the turbulent diffusion in the radial direction, FηV , dominates the contribution from the343

diffusion in the horizontal direction FηH . In other words, in the expression of the turbulent diffusion344

helicity flux:345

Fη=FηV + FηH , (24)346

FηV =−2ηT∇ (⟨A⟩ · ⟨B⟩) + 2ηT (⟨B⟩ · ∇) ⟨A⟩ , (25)347

FηH =2ηT (⟨A⟩ ·∇) ⟨B⟩ , (26)348

we should take the radial components of the fluxes into account. Using the identity r̂ · ⟨A⟩(p) = 0, we349

see that the second term in FηV is zero. The contribution FηV dominates FηH . Moreover, because350

of the condition ∇ · ⟨A⟩(p) = 0, the total surface integral of contribution FηH is close to zero. The351
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a)

[day]c) [day]d)

b)

Figure 4. Evolution of the BMR’s parameters during emergence: a) the total unsigned radial magnetic

field flux on from BMR’s area marked by the dash line in Figure 3; b) the total helicity flux from BMR; c)

evolution of the BMR’s tilt; d) the total surface magnetic helicity density.

comparison of Figures 5(c) and(g) shows that FηV is approximately 4 orders of magnitude higher352

than FηH .353

Comparing Figures 5 (c) and (d), we see that the diffusive decay of the BMR is an order of354

magnitude larger than the diffusive flux of the small-scale magnetic helicity (Eq. 11). This is because355

the magnitude of the turbulent diffusion of the magnetic field is by an order of magnitude larger than356

the turbulent diffusion.357

We compute the distributions of the current helicity density
〈
B∥
〉
(∇× ⟨B⟩)∥ and the total current358

helicity. Here ⟨B∥⟩ = sin θ⟨Br⟩ + cos θ⟨Bθ⟩ is the line-of-sight magnetic field. For the potential359

boundary conditions, the radial component of current is zero, (∇× ⟨B⟩)r = 0. Nevertheless, the360

projection effects can result in nonzero values of
〈
B∥
〉
(∇× ⟨B⟩)∥. Following Hagino & Sakurai361

(2004), we calculated the weighted values of the force-free parameter α, using the average over the362
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c)

a) b)

f) [day]

d)

[day]g)

Figure 5. Evolution of the BMR’s helicity flux during emergence: a) the evolution of the helicity flux due

to the differential rotation, FΩ; b) the helicity flux by the BMRs’ tilt/twist, Fαβ ; c) the flux initiated by

BMRs’ decay due to the turbulent diffusion, Fη; d) the diffusive flux of the small-scale magnetic helicity; e)

the helicity flux by the meridional circulation, FU ; f) the flux initiated by BMRs’ decay due to the horizontal

turbulent diffusion, FηH .

active region amplitudes of the electric currents and magnetic field:363

αav=

´ 〈
B∥
〉
(∇× ⟨B⟩)∥ dS´ 〈
B∥
〉2

dS
, (27)364

αff =

´
⟨B⟩ · (∇× ⟨B⟩) dS´

⟨B⟩2 dS
, (28)365

αavr=

´
⟨Br⟩ (∇× ⟨B⟩)r dS´

⟨Br⟩2 dS
, (29)366
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a) [day] b) [day] c) [day]

Figure 6. Evolution of the parameters αavr (a), αav (b), and αff (c). The green dashed line shows results

for the run E4′ with the neglected effect of the differential rotation.

Figure 6 shows the results. The maximum amplitude of the twist parameters, αavr, αav and the total367

twist parameter αff , are by an order of magnitude larger than αbest in observations (e.g., Tian et al.368

2005; Kuzanyan et al. 2006). The state-of-the convective magnetic flux emergence simulations of369

Toriumi et al. (2024) for a kink-unstable magnetic tube showed the same magnitude of αff as in our370

models. We made the additional run for the setup E4, where we skipped the effect of the differential371

rotation on the magnetic field evolution (case E4′ in Figure 6). It shows that shortly after emergence372

(after day 5), the magnitude and sign of αav are determined by the effect of the differential rotation373

on the meridional component of the magnetic field. The runs with the potential boundary conditions374

show αff ≫ αav because (∇× ⟨B⟩)r = 0. This means that in such a situation, the twist of the375

magnetic field in the horizontal direction dominates the twist in the vertical direction.376377

4.2. The hemispheric helicity rule378

We compute the latitudinal variations of the current helicity parameter αav and the total helicity379

flux to see how well the theoretically studied active regions fit into the hemispheric helicity rule.380

Figure 7 shows these parameters together with the latitudinal variation of tilt for the E5 and E6381

model setups. Model E6 shows an angle of inclination about twice that of the tilt angle profile382

of model E5. In addition, the scatter of the latitudinal profiles of αav and the total helicity flux383

is higher in model E6. We find that for these types of active regions, the hemispheric rule changes384

during evolution. In the final state, the hemispheric rule is determined by the effect of the differential385

rotation.386
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Figure 7. Latitudinal dependence of the tilt (a), the parameter αff∥(b) and the total flux (c) for the model

setup E5. The red circles show the value at the beginning of the BMR emergence, and the blue circles

show the same for the final stage of the run. The second column with panels d), e), and f) shows the

same parameters for the model setup E6. The vertical scale in panel (d) is linear in the range of ±10◦ and

logarithmic outside this range.

Using the helicity flux calculations, we compute the total helicity that is transported through the387

area of the BMRs marked by a rectangle in Figure 3 (Toriumi et al. 2024; Sun et al. 2024),388

∆H =

ˆ
∂H

∂t
dt (30)389

The data drawn in Figure 8a show a power-law dependence, ∆H ∼ 0.02Φ2, where Φ the maximum390

total flux of the radial magnetic field. The results of Sun et al. (2024) suggested a similar power391
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exponent. Such a value of the power exponent shows that the magnetic field configuration is topolog-392

ically close to a simple linkage of two close magnetic loops around each other. In contrast to Sun393

et al. (2024), our model shows some increase in the linkage parameter with the amount394

of magnetic flux. This difference is probably because of the different definitions for the395

helicity flux. The paper of Sun et al. (2024) employs the relative magnetic helicity.396

5. DISCUSSION AND CONCLUSIONS397

In this study, we modeled some typical configurations of magnetic bipolar active regions (BMR)398

using the previously developed 3D non-linear mean-field MHD solar dynamo model, which includes399

the emergence of BMRs due to a magnetic buoyancy instability (Pipin et al. 2023). In this model,400

the turbulent hydrodynamic and magnetic helicity (the α-effect), acting locally on the unstable parts401

of the toroidal magnetic field that form the bipolar active region, produces the twist and tilt of the402

magnetic field inside the BMRs. We calculated the magnetic helicity flux from the dynamo region to403

the outer layers initiated by the BMR’s emergence. Starting from Fan (2001), similar studies were404

done previously using simulations of the kink-unstable magnetic flux tube in the convective media in405

a number of papers (see, e.g.,Prior & Yeates 2014; Prior & MacTaggart 2019; Toriumi & Wang 2019;406

Toriumi et al. 2024). Similarly to these papers, in our simulations, we did not take into account407

the non-axisymmetric hydrodynamic motions and heat transport around the BMR. However, the408

dynamo model describes the non-linear magnetic effects on the axisymmetric flow and the convective409

heat transport. Our approach to modeling the evolution of the photospheric BMR is rather simple.410

Nevertheless, this model is a step toward a consistent picture of the large-scale convection zone411

dynamo describing important parameters of the active regions on the solar surface such as the tilt412

and twist of the magnetic field.413414

In the standard surface flux-transport model (hereafter SFT, e.g., Yeates et al. 2023), a solar active415

region is approximated by a simple bipolar magnetic structure, which is tilted according to Joy’s416

law. In SFT models, the hemispheric helicity rule can result from the differential rotation effect on417

the surface evolution of BMRs (Prior & Yeates 2014). Hawkes & Yeates (2019) utilized the SFT to418

estimate the helicity flux initiated by the emergence and evolution of the BMRs. Their expression419
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Figure 8. a) The helicity ∆H =
´
∂tHdt accumulated in the BMRs versus the maximum total flux of the

radial magnetic field, Φ; the black circles show results for the model setup E5, and blue squares show the

same for the model setup E6; b) the same for the normalized value, ∆H/Φ.

of the helicity flux employs the effects of the global flow, including the differential rotation and420

meridional circulation, and the effect of the surface turbulent diffusion. The mean-field formalism,421

which is employed here to model both the large-scale dynamo and the BMRs, allows us to estimate422

the possible effect of the tilt and twist of the rising active regions on the helicity flux and evolution423

of the mean twist of the solar active regions. We also take into account the radial structure of the424

magnetic field below the surface. For the first time, such calculations are performed using a large-425

scale 3D solar dynamo model, consistent with helioseismic and surface observations (Pipin et al. 2023;426

Mandal et al. 2024).427

We see that the action of the α-effect on the rising part of the large-scale toroidal magnetic field428

can result in a complicated evolution of the magnetic flux in the emerging BMRs. Similarly to the429

numerical model of the twisted magnetic tubes subjected to the kink instability (Fan 2001), our430

model, e.g., the runs E2, E3, and E6, show a rotation of the BMR when the α-effect is applied before431

the rising stage of the BMR evolution. Rotation of BMRs is often observed in the evolution of the432

solar active regions (Tian et al. 2005).433

The model shows a monotonic increase in the magnetic flux before the end of the emerging stage.434

The helicity flux can grow sharply at the beginning because of the rise of the twisted magnetic field.435

This agrees with the results of the observations of Liu et al. (2014); Sun et al. (2024) and with the436

state-of-the-art model of Toriumi et al. (2024). Similarly to the observational results, we find that at437
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the end of the BMR evolution, the major effect in the helicity flux is due to the differential rotation.438

Another interesting finding is that our model shows a significant helicity flux induced by the radial439

gradient of the magnetic helicity of the BMRs. This flux was theoretically suggested by Mitra et al.440

(2011); Kleeorin & Rogachevskii (2022); Gopalakrishnan & Subramanian (2023). The mean-field441

models showed that it can significantly affect the dynamo solution (Guerrero et al. 2010). Here,442

we calculated this contribution to the helicity flux for the BMR. We plan to study its effect on the443

dynamo cycles in our future studies.444

The model shows that, unlike the magnetic helicity flux, the twist parameters, such as αavr and αav445

(Eqs 27 – 29) can develop quickly during the initial phase of BMR emergence. This reflects both the446

effect of the current preexisting before the magnetic field emerges at the surface and the evolution447

of the magnetic field topology inside the BMR during the rising phase. In our model, the result of448

this evolution depends on the initial and surface boundary conditions. In observations (e.g., Leka449

et al. 1996), this behavior is often interpreted as a sign that the magnetic field is twisted before450

it emerges. In runs E2 and E6 (Table 1), the initial positive sign of αavr and αav corresponds to451

the sign of the mean electromotive force applied to the toroidal magnetic field before the BMR rise.452

These parameters quickly change to negative (Figure 4b) because of the dynamic response of the453

magnetic configuration to the conservation of total magnetic helicity. This result is consistent with454

interpretations of the helicity of the solar active regions suggested by the mean-field dynamo models455

(Sokoloff et al. 2006). Yet, our results show that after the BMR emergence, the helicity of the solar456

active regions is quickly modified by the effect of the differential rotation. In the final stage, the457

BMR’s twist parameter αav shows the hemispheric helicity rule. In the model, the small magnitude458

of twist is supported by the effect of differential rotation. It is noteworthy that the hemispheric459

helicity rule can depend on the phase of the magnetic cycle (e.g., Zhang et al. 2010). Here, we do not460

consider this effect. The helicity flux shows the hemispheric helicity rule as well. Our results agree461

with the results of Berger & Ruzmaikin (2000) and Hawkes & Yeates (2019) in this regard.462

In this paper, we discussed the helicity flux from the dynamo region into the corona463

caused by the BMR’s emergence. Injection of the BMRs also has to produce fluxes464
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in the latitudinal direction. Such fluxes can affect the parity of the dynamo solution465

(Mitra et al. 2010). We postpone discussion of this effect to another study.466

Let us summarize our findings. Using the mean-field MHD formalism, we estimated the influence467

of BMR’s tilt and twist on the helicity flux. Our model shows that the action of the α-effect before468

and during the BMR emergence results in a complex evolution of magnetic configuration, affecting469

variations of the twist and tilt of the emergent BMR. Such variations are caused by the magnetic470

helicity conservation, large-scale flows, and turbulent diffusion of the magnetic field. The findings471

highlight the differential rotation as a key driver of helicity flux, with significant effects induced472

by radial magnetic helicity gradients. While the twist parameters evolve quickly during the BMR473

emergence, influenced by initial and surface conditions, the differential rotation strongly impacts474

helicity flux consistency with the hemispheric helicity rule. We conclude that BMR twists and475

helicity quickly adapt to the post-emergence state. Further research is needed to understand the476

impacts of active region helicity fluxes on the dynamo cycles.477
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APPENDIX483

A. MAGNETIC HELICITY BUDGET IN THE DYNAMO MODEL.484

The details of our model can be found in the paper of Pipin et al. (2023). Here, we review the485

parts of the model that are directly related to the subject of the paper.486

The dynamo model employs the mean electromotive force, E , as follows.487

Ei = (αij + γij) ⟨B⟩j − ηijk∇j ⟨B⟩k + E (BMR)
i , (A1)488
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where E (BMR) represents the contribution, which prescribes the generation of the bipolar active re-489

gions, αij describes the turbulent generation by the hydrodynamic and magnetic helicity, γij is the490

turbulent pumping and ηijk - the eddy magnetic diffusivity tensor. In particular, the α-effect ten-491

sor includes the effect of magnetic helicity conservation (Kleeorin & Ruzmaikin 1982; Kleeorin &492

Rogachevskii 1999),493

αij=Cαψα(β)α
K
ij + αM

ijψα(β)
⟨a · b⟩ τc
4πρℓ2c

. (A2)494

Here Cα is the dynamo parameter characterizing the magnitude of the hydrodynamic α-effect, and495

αK
ij and αM

ij describe the anisotropic properties of the kinetic and magnetic α-effect (Pipin 2008;496

Pipin & Kosovichev 2019; Brandenburg et al. 2023). The radial profiles of αH
ij and αM

ij depend on the497

mean density stratification and the spatial profiles of the convective velocity uc, and on the Coriolis498

number,499

Co = 2Ω0τc, (A3)500

where Ω0 is the global angular velocity of the star, and τc is the convective turnover time. The501

magnetic quenching function ψα(β) depends on the parameter β = |⟨B⟩|/
√

4πρu2c (Pipin & Koso-502

vichev 2019). We used the analytical expressions of the coefficients of E given by Pipin (2008). The503

initiation of the bipolar magnetic regions is determined by E (BMR)
i , see Section 3 and for more details504

in Pipin et al. (2023):505

E (BMR) = αBMR
β ⟨B⟩+ Vβ (r̂ × ⟨B⟩) , (A4)506

where the first term takes into account the BMR’s tilt/twist and the second term models the emer-507

gence of the surface magnetic region in the bipolar form. The induction equation (Eq. 12) describes508

the evolution of both the large-scale magnetic field and the evolution of the BMRs. It is noteworthy509

that the longitudinal averaging of E (BMR) results in the additional generation effect of510

the large-scale axisymmetric magnetic field and the additional sources of the magnetic511

flux loss Pipin (2022). Therefore, the critical threshold of the mean field parameter Cα512

decreases in the presence of E (BMR). Presumably, the mean-field dynamo can operate513

with the BMR electromotive force E (BMR) alone, starting from a quite large amount of514
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toroidal magnetic flux inside the convection zone, i.e., due to the non-linear dynamo515

instability (Ferriz-Mas et al. 1994). Such dynamo instability can depend on the param-516

eters of the BMR’s injection functions, see Appendix C. However, we have not studied517

this issue.518

Uncurling the induction equation for ⟨B⟩, we obtain the evolution equation for the mean vector-519

potential,520

∂ ⟨A⟩
∂t

= (E + ⟨U⟩ × ⟨B⟩) +∇h, (A5)521

where h is an arbitrary scalar function.522

Before proceeding further, we discuss the problem of the gauge. We decompose the large-scale523

magnetic field and flows into the sum of axisymmetric and nonaxisymmetric parts:524

⟨B⟩=
〈
B
〉
+
〈
B̃
〉
,525

⟨A⟩=
〈
A
〉
+
〈
Ã
〉
,526

Moreover, the nonaxisymmetric part is decomposed into a sum of the poloidal and toroidal superpo-527

tentials:528 〈
B̃
〉
= ∇× rT̃ (r, t) +∇×∇× rS̃ (r, t) , (A6)529

where r is the radius vector in the spherical coordinate system; S̃ and T̃ are the scalar poten-530

tials(Krause & Rädler 1980). It is noteworthy that the axisymmetric field can be decomposed into531

the sum of the poloidal and toroidal parts as well:532 〈
B
〉
= Beϕ +∇×

(
Aeϕ

r sin θ

)
(A7)533

where the scalars B and A are the functions of time, r is the radius, θ is the co-latitude (the polar534

angle), and eϕ is the unit vector along the azimuth. In our notations, we can write,535 〈
A
〉
≡ A

r sin θ
eϕ536 〈

Ã
〉
=rT̃ (r, t) +∇× rS̃ (r, t) +∇g,537

Following Krause & Rädler (1980), we note that the arbitrarily chosen scalar h is a function of538

the radial coordinate, r, and the same is true for g. This uncertainty can be removed if we consider539
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the integrals of the scalars T̃ and S̃ over the solid angle normalized to zero, i.e.
´ 2π
0

´ 1
−1
S̃dµdϕ =540

´ 2π
0

´ 1
−1
T̃dµdϕ = 0, where µ = cos θ. This gauge is valid by default for

〈
A
〉

because it satisfies the541

Coulomb gauge, ∇ ·
〈
A
〉
≡ 0. Assuming the above normalization procedure and decompositions of542

the large-scale field given by Equations (A6) and (A7), we can omit the contribution ∇h from the543

equation for the mean vector-potential evolution. After some algebra, we get the evolution equation544

for the helicity density of the mean magnetic field,545

∂ ⟨A⟩ · ⟨B⟩
∂t

+∇ · (⟨U⟩ ⟨A⟩ · ⟨B⟩)=2E · ⟨B⟩+ 2∇ · (E × ⟨A⟩) (A8)546

+2∇ · ⟨B⟩ (⟨A⟩ · ⟨U⟩)−∇ · ⟨U⟩ (⟨A⟩ · ⟨B⟩)547

−2η ⟨B⟩ · ⟨J⟩+∇ ·
(
2η ⟨A⟩ × ⟨J⟩+ ⟨A⟩ × ∂ ⟨A⟩

∂t

)
(A9)548

where we use the following identities549

∂ ⟨A⟩ · ⟨B⟩
∂t

= ⟨A⟩ · ∂ ⟨B⟩
∂t

+∇× ⟨A⟩ · ∂ ⟨A⟩
∂t

= 2 ⟨A⟩ · ∂ ⟨B⟩
∂t

+∇ ·
(
⟨A⟩ × ∂ ⟨A⟩

∂t

)
, (A10)550

Subtracting Equation (A8) from the total magnetic helicity balance equation (Eq. 10), we get551

d

dt

ˆ
⟨a·b⟩ dV = −2

ˆ
(E · ⟨B⟩) dV −

ˆ
⟨a·b⟩
Rmτc

dV (A11)552

−
˛
dS · F ⟨ab⟩ +

˛
dS · ⟨U⟩ (⟨A⟩ · ⟨B⟩)553

−2

˛
dS · (E × ⟨A⟩)− 2

˛
dS · ⟨B⟩ (⟨A⟩ · ⟨U⟩) .554

Its differential form reads555

d

dt
⟨a·b⟩=−2E · ⟨B⟩ − ⟨a·b⟩

Rmτc
−∇ · F ⟨ab⟩ +∇ · ⟨U⟩ (⟨A⟩ · ⟨B⟩) (A12)556

−2∇ · (E × ⟨A⟩)− 2∇ · ⟨B⟩ (⟨A⟩ · ⟨U⟩) .557

This equation shows that the large-scale dynamo produces the magnetic helicity in the bulk of the558

convection zone by means of the turbulent electromotive force, i.e., due to the source term − (E · ⟨B⟩).559

This term potentially leads to the so-called catastrophic quenching problem because of the magnetic560

helicity contribution to the α-effect (Frisch et al. 1975). The other terms of Equation (A12) describe561

the decay of the magnetic helicity due to the microscopic diffusion and the helicity fluxes because562
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of the turbulent processes, i.e., F ⟨ab⟩, and due to effects of the large-scale dynamo evolution. From563

previous studies, we know that the turbulent fluxes of the small-scale magnetic helicity alleviate the564

catastrophic quenching of the α-effect.565

To calculate the helicity fluxes at the top of the dynamo domain, we employ the isotropic expression566

for the turbulent diffusion, i.e., ηijk = ηT εijk∇j, where εijk is fully antisymmetric Levi-Chevita567

symbol, and for the alpha effect as well. For presentation, we denote the different contributions of568

the helicity flux density as follows:569

FH =FΩ + FU + F ⟨ab⟩ + FE , (A13)570

and further decompose FE = Fαβ + Fη, where571

FΩ=2 ⟨B⟩r ⟨A⟩ϕ ⟨U⟩ϕ , (A14)572

FU =2 ⟨B⟩r ⟨A⟩θ ⟨U⟩θ , (A15)573

F ⟨ab⟩
r =−ηχ∇r ⟨a · b⟩ , (A16)574

Fαβ=2
(
αϕϕ + αBMR

β

)
(⟨Bϕ⟩ ⟨Aθ⟩ − ⟨Bθ⟩ ⟨Aϕ⟩)− 2Vβ (⟨Bθ⟩ ⟨Aθ⟩+ ⟨Bϕ⟩ ⟨Aϕ⟩) (A17)575

Fη=−2ηT (⟨A⟩ × ∇ × ⟨B⟩) (A18)576

=−2ηT∇ (⟨A⟩ · ⟨B⟩) + 2ηT (⟨A⟩ · ∇) ⟨Br⟩+ 2ηT (⟨B⟩ · ∇) ⟨A⟩r ,577

where we take into account the isotropic structure of the hydrodynamic α-effect and turbulent diffu-578

sion near the solar surface. Here, we see that the turbulent diffusion of the dynamo-generated mag-579

netic field, including the bipolar active regions, produces the same type of helicity flux as the diffusive580

flux of the turbulent magnetic helicity, F ⟨ab⟩ = −ηχ∇ ⟨a·b⟩. The part of Fη , i.e., 2ηT (⟨A⟩ · ∇) ⟨B⟩581

was included in the study of Hawkes & Yeates (2019). However, the term 2ηT∇ (⟨A⟩ · ⟨B⟩) is much582

larger by magnitude, see Fig.5. Also, in our study, we assume r̂ · dS = dS. Therefore, the change583

rate of the magnetic helicity is related to the helicity change inside the dynamo domain (Berger &584

Ruzmaikin 2000).585
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B. BOUNDARY CONDITIONS586

In the solar dynamo models, it is common to employ the vacuum (potential field) boundary con-587

ditions at the top Krause & Rädler (1980). Therefore, in this case, we have
〈
Bϕ

〉
= 0, T̃ = 0 at588

the top, the vector-potential is ⟨A⟩ ≡ ⟨A⟩(p), where ⟨A⟩(p) is the vector-potential of the potential589

part of the magnetic field. It satisfies the conditions r̂ · ⟨A⟩(p) = 0, and ∇ · ⟨A⟩(p) = 0, at the top590

boundary. For such boundary conditions, the contribution of the helicity flux that stems from the591

twist and tilt magnetic field of BMRs, Fαβ ≈ 0. It is noteworthy that in the axisymmetric part of592

the vector potential
〈
A
〉
θ
= 0. Therefore, in the axisymmetric dynamo, the only components of the593

helicity flux are due to the turbulent diffusion, F η = ηT

〈
Aϕ

〉
r

∂r
〈
Bϕ

〉
∂r

and due to the differential594

rotation, FΩ. Nevertheless, the impact of this flux on the outer layer is zero because the helicity of595

the modeled external magnetic field is zero. The same is true when we employ a boundary condition596

for the penetration of the toroidal magnetic field to the top, e.g., like in the dynamo model of Pipin597

& Kosovichev (2024). The consistent study of the helicity flux requires including the coronal mag-598

netic field and stellar wind in the dynamo simulations, e.g., similar to simulations of Warnecke et al.599

(2011); Jakab & Brandenburg (2021); Perri et al. (2021).600

The less computationally expensive solution can be to consider the harmonic magnetic601

field approximation for the outer magnetic field (Bonanno 2016), i.e.,602

(
∇2 + k2

)
⟨B⟩ = 0, (B19)603

for the region rt < r < 2.5R and the radial magnetic field for r ≥ 2.5R. We use kR = 0.1604

as suggested by the results of the above-cited paper. To connect the external magnetic605

field with the dynamo region, we employ the continuity of the normal component of the606

magnetic field and the tangential component of the mean electromotive force. For this607

boundary condition, the continuity of the tangential component of the mean electromo-608

tive force determines the magnitude of the toroidal magnetic field at the surface. For609

the axisymmetric vector potential outside the dynamo domain, we seek a solution in the610

form of the decomposition of a product of the spherical Bessel functions and associated611
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Legendre polynomials as follows (cf Bonanno 2016),612

A (x, θ, t) =
∑

A(n) (t)

(
γ(n)jn (xξ) + yn (xξ)

)
(γ(n)jn (xeξ) + yn (xeξ))

sin θP 1
n (θ) , (B20)613

where x = r/R, ξ = kR and xe = 0.99 is the external boundary of the dynamo domain;614

the constants A(n) (t) and γ(n) are determined by the condition of continuity of the radial615

magnetic field at xe:616

∂A

∂x
=
∑

sin θP 1
n (θ)A

(n) (t)

(
n

xe
− ξ

(
γ(n)jn+1 (xeξ) + yn+1 (xeξ)

)
(γ(n)jn (xeξ) + yn (xeξ))

)
, (B21)617

and the coronal magnetic field boundary condition, for instance, the pure radial mag-618

netic field at the radius of the source surface. We put this point at xs = 2.5, where we619

define γ(n):620

n

xs
− ξ

(
γ(n)jn+1 (xsξ) + yn+1 (xsξ)

)
(γ(n)jn (xeξ) + yn (xeξ))

= 0.621

For the axisymmetric toroidal component, the external magnetic field decomposition is622

similar to Eq(B20):623

B (x, θ, t) =
∑

B(n) (t)

(
ζ(n)jn (xξ) + yn (xξ)

)
(ζ(n)jn (xeξ) + yn (xeξ))

P 1
n (θ) , (B22)624

where ζ(n) is deduced from the condition at xs, B (xs, θ, t) = 0. At the top of the dynamo625

domain, we require continuity of [Eθ]x=xe
= 0 and the same for the toroidal magnetic626

field. This results in the following boundary condition627

ηT
∂xB

∂x
= η

(+)
T

∑
P 1
n (θ)B

(n) (t)

(
(n+ 1)− ξxe

(
ζ(n)jn+1 (xeξ) + yn+1 (xeξ)

)
(ζ(n)jn (xeξ) + yn (xeξ))

)
, (B23)628

where η
(+)
T is the effective turbulent diffusion in the corona surrounding the dynamo629

domain. For the case η+T ≫ ηT and ξ, k = 0 , we return to the case of the vacuum boundary630

conditions. Bonanno (2016) considered the case η+T = ηT for the advection-dominated631

dynamo regime with the α effect concentrated near the bottom of the convection zone.632

In our model, the turbulent generation is distributed over the bulk of the convection633

zone. For the case η+T = ηT , our model shows a strong surface toroidal magnetic field634
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of about 200 G magnitude. Solar observations show that in Solar Cycle 24 the surface635

axisymmetric toroidal magnetic field was about 1 G (Vidotto et al. 2018). The model636

runs in this paper employ the ratio η+T /ηT = 200, which results in the magnitude of637

the surface toroidal magnetic field about 10 G. Additional studies show that the ratio638

η+T /ηT affects the dynamo instability threshold for the α effect, and the increase of η+T /ηT639

shifts the dynamo threshold close to the model with the vacuum boundary condition.640

We hope to publish the results of that study separately. The boundary conditions for641

the superpotentials S̃ and T̃ are considered in the same way as for the axisymmetric642

magnetic field components.643

C. BMR GENERATION FUNCTIONS644

.645

The functions ξ1,2 determine the spatial-temporal properties of the emergence of the BMR. They646

are defined in the same way as Pipin et al. (2023):647

ξ1,2 (r, t, t1,2)=Cβtanh

(
t

τ0

)
exp

(
−mβ

(
sin2

(
ϕ− ϕm

2

)
(C24)648

+sin2

(
θ − θm

2

)))
ψ(r, rm, d1,2), 0 < t < t1 ∨ t1 < t < δt649

=0, t > t1 ∨ t2 > δt650

where ψ is a kink-type function of radius,651

ψ(r, rm, d)=
1

4

(
1+erf

(
100

(r − rm)

R

))
(C25)652

×
(
1−erf

(
100

(r − (rm + d))

R

))
, (C26)653

where rm and θm are the radius and the co-latitude of the BMR’s initiations in the convection zone.654

We set, t1 = δt/3, where δt = 5 days and the emergence rate τ0 = 1 day. For the two-stage process,655

the emergence time will be 2
3
δt = 4 days; this corresponds roughly to the emergence parameters of656

the large solar active regions (Norton et al. 2023). The parameter Cβ controls the magnitude of the657

magnetic flux inside BMR; for Cβ = 250, we get the simulated BMR’s flux of 4 · 1022 Mx, when the658
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original toroidal magnetic field at rm and θm is of the strength 1.5 kG. For the source of the initiation659

of BMR, we take the toroidal magnetic field in the upper part of the convection zone at the growing660

stage of the dynamo cycle, where the condition for the magnetic buoyancy instability is satisfied661

(Pipin et al. 2023).662
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