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Sofia P. Corbà

UNIVERSITY OF MASSACHUSETTS AMHERST
Lederle Graduate Research Tower, Office: 426

# spcorba@umass.edu, sofiap.corba@gmail.com
� sites.google.com/view/spcswebpage/home-page

Nordita, The Nordic Institute for Theoretical Physics January 18, 2026

Dear members of the selection committee,

I am writing to express my interest in a postdoctoral position within the ERC Synergy Grant COSMOMAG with Prof. Axel
Brandenburg. I am currently a Ph.D. candidate in theoretical physics at the University of Massachusetts Amherst (USA), working
with Prof. Lorenzo Sorbo, and I expect to complete my degree in the summer of 2026. My research interests lie at the intersection
of early universe cosmology, high energy theory, and gravitational wave physics.

My doctoral research has focused on the theoretical and phenomenological aspects of early universe cosmology. I have studied
gravitational wave anisotropies in axion inflation models and their cross-correlations with CMB anisotropies, with the goal of
characterizing the stochastic gravitational wave background predicted in this framework and identifying the theoretical signatures
that distinguish it from its astrophysical counterpart. Within the same context of axion inflation, I am currently examining the
backreaction effects of fermions on the inflaton dynamics. A significant part of my work has also focused on formal aspects of
renormalization in quantum field theory on curved spacetime, where I proposed an alternative prescription for the traditionally used
adiabatic renormalization and applied it to the power spectra of various inflationary models. I am currently testing this alternative
prescription by calculating the conformal anomaly. More recently, I have begun exploring the physics of dynamical black holes
during inflation in collaboration with Prof. Jennie Traschen. Prior to my Ph.D., in my master’s thesis, Backreaction from

Magnetogenesis in String Inflation, supervised by Prof. Michele Cicoli, I studied primordial magnetogenesis in string-inspired
inflationary models obtained through moduli stabilization techniques in Type IIB flux compactifications.

Besides the technical and analytical skills I have developed, my research has taught me how to collaborate effectively with
colleagues throughout the scientific process, how to take initiative, and how to bring a project to publication. In particular, through
my most recent paper, which is a solo-authored manuscript, I have learned to conduct and manage independent research and to
address complex scientific challenges on my own. Through participation in collaborations, seminars, journal clubs, and conferences,
I have interacted with researchers across many areas, improving my ability to work within a research group and to present scientific
results clearly.

Alongside my research at UMass, I served as a teaching assistant for both undergraduate and graduate courses, for which I received
the Quinton Award for Excellence in Teaching in 2023. My teaching experience reflects strong communication skills and a
commitment to community building. Managing these responsibilities alongside an active research program has taught me effective
task administration, time management, and the coordination of multiple forms of work under tight deadlines. Beyond teaching, I
am an active member of the Women in Physics organization and have served on the Physics Department’s Climate Committee and
the SEA Change initiative, working to promote equity, inclusion, and diversity within the academic community.

As a postdoctoral researcher, I would like to extend my current research on gravitational wave anisotropies to more general settings,
focusing on variants of axion inflation that involve gauge field kinetic couplings, dynamical black holes, or primordial black holes.
This study of gravitational wave signatures would contribute to the broader effort to characterize the stochastic gravitational wave
background, which is essential to interpret and guide the intense current and future observational activity of ground-based (LIGO,
Virgo, KAGRA, and the proposed Cosmic Explorer and Einstein Telescope) and space-based (LISA) detectors, as well as pulsar
timing array observations expected in the coming years. At the same time, I intend to expand my work on formal aspects of
quantum field theory to test and strengthen the alternative prescription I proposed for the renormalization of observables in curved
spacetime. In this context, I plan to develop future projects on the renormalization of observables such as the electromagnetic
stress-energy tensor in inflationary models, in order to produce reliable predictions for quantities like the seed magnetic fields that
could have given rise to the observed large-scale cosmic magnetic fields. Finally, I look forward to expanding my work on black hole
physics, an area I have only recently begun to explore and am excited to develop further, as well as advancing string-theoretic
phenomenological approaches to cosmology.

I am especially excited to join the group of Prof. Axel Brandenburg, and to collaborate with Profs. Chiara Caprini, Andrii Neronov,
and Franco Vazza on COSMOMAG, a collaborative project aimed at studying the origin of cosmological magnetic fields. This
project naturally connects to my research experience and future plans, as I have previously worked on magnetogenesis in the context
of my master’s thesis, while my work on adiabatic renormalization could provide a valuable formalism for computing seed magnetic
fields originating in the primordial universe. Moreover, the high quality and impact of the research conducted at Nordita, make it
an ideal environment in which to grow scientifically and advance my academic goals. With my background in quantum field theory
in curved spacetime and early universe physics, I am confident that I can contribute meaningfully to the group’s research
community. In addition, my experience with gravitational waves would allow me to contribute effectively to the more observational
aspects of the project. Thank you for your consideration, and I look forward to the opportunity to discuss my application further.

Sincerely

Sofia P. Corbà
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Academic Qualifications

2020-summer
2026

Ph.D. in Theoretical Physics, Department of Physics, University of Massachusetts Amherst, USA.
Supervisor: Prof. Lorenzo Sorbo.

2016-2019 M.Sc. in Theoretical Physics, Alma Mater Studiorum - University of Bologna, Italy.
Supervisor: Prof. Michele Cicoli. Mark: 110/110 cum laude.

2012-2016 B.Sc. in Physics, Alma Mater Studiorum - University of Bologna, Italy.
Supervisor: Prof. Michele Cicoli. Mark: 110/110 cum laude.

Research Experience

My research focuses on theoretical cosmology and its connections to high-energy physics, with
a particular interest in early-universe physics and inflation. More recently, my interests have also
expanded to the study of black holes.

1. Research on Formal Aspects of Quantum Field Theory on Curved Spacetime: Making predictions
in quantum field theory requires a consistent method for renormalizing observables. In the presence
of gravity, this process becomes more complicated than in flat spacetime due to particle creation.
My work has focused on studying the limitations of the standard method of renormalization in curved
spacetime, the adiabatic renormalization, and proposing an alternative approach to overcome them.
I have applied this approach to analyze observables such as the power spectrum in various inflationary
scenarios, and I am currently using it to calculate the conformal anomaly, whose well known result
provides a test for the method.

2. Research on Axion Inflation and Gravitational Waves: Axion inflation is a class of models in which
the inflaton is a pseudo-Nambu–Goldstone boson with a broken shift symmetry, allowing couplings to
gauge and fermionic fields. Within this framework, I have studied the generation of gravitational waves

and the anisotropies in the primordial stochastic background they produce. Studying these anisotropies
can help distinguish a cosmological signal from an astrophysical one, providing information about the
early universe. In the same context, I am currently analyzing aspects of backreaction of fermionic fields
on the inflaton.

3. Research on Black Holes during Inflation: In slow-roll inflationary cosmologies, dynamical black holes

can be studied within a metric that evolves quasi-statically through a sequence of Schwarzschild-de

Sitter like metrics, with slowly varying mass and effective cosmological constant. In this framework, both
the black hole and cosmological horizon areas grow as the inflaton rolls. I am currently working on
extending this model to better understand dynamical black holes during inflation and their cosmological

signatures.

4. String Theory Inflation: In my Master’s thesis, Backreaction from Magnetogenesis in String Inflation, I
studied primordial magnetogenesis in string inflationary models arising from Type IIB flux compactifi-
cations. The generated fields could serve as seeds for the large-scale magnetic fields observed today,
while their backreaction on the inflaton may help reconcile the requirement of sufficient e-foldings of
inflation with the geometric constraints imposed by the extra dimensions.
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List of Main Publications

1. Sofia P. Corbà, Lorenzo Sorbo, "On adiabatic subtraction in an inflating Universe", arXiv:2209.14362
[hep-th] (2022), JCAP 07 (2023), 005.

2. Sofia P. Corbà, Lorenzo Sorbo, "Correlated scalar perturbations and gravitational waves from axion

inflation", arXiv: 2403.03338 [astro-ph.CO] (2024), JCAP 10 (2024), 024.

3. Sofia P. Corbà, "Gravitational wave anisotropies from axion inflation", arXiv:2504.13156 [astro-
ph.CO] (2025). Accepted for publication in JCAP (in press).

4. Sofia P. Corbà, Lorenzo Sorbo, "Calculation of the conformal anomaly using adiabatic renormaliza-

tion". In preparation (2025).

5. Sofia P. Corbà, Lorenzo Sorbo, "Study of backreaction from fermion production during axion

inflation". In preparation (2025).

Conferences, Schools Attended and Talks

1. Visitor at Kavli Institute for Cosmological Physics (SPEAKER).
University of Chicago.
December 8, 2025, Chicago (IL), USA.

2. Parity Violation from Home 2025 (INVITED SPEAKER).
November 18-21, 2025, Remote.

3. High Energy Theory Seminar (INVITED SPEAKER).
University of Pennsylvania.
November 17, 2025, Philadelphia (PA), USA.

4. MIT Cosmo Coffee series (SPEAKER).
Massachusetts Institute of Technology.
November 12, 2025, Cambridge (MA), USA.

5. COSMO-25 - 28th International Conference on Particle Physics & Cosmology (SPEAKER).
Carnegie Mellon University.
October 13-17, 2025, Pittsburgh (PA), USA.

6. Workshop - Primordial Black Holes: Theory Meets Experiment.
Amherst Center for Fundamental Interactions - UMass Amherst.
September 17-19, 2025, Amherst (MA), USA.

7. Summer School on Particle Physics 2025 (SPEAKER).
ICTP International center for fundamental physics.
June 16-27, 2025, Trieste (TS), Italy.

8. Invisibles School 2024 (POSTER PRESENTATION).
Alma Mater Studiorum - University of Bologna.
Jun 24-28, 2024, Bologna (BO), Italy.

9. DPF-Pheno 2024 (SPEAKER).
University of Pittsburgh, Carnegie Mellon University.
May 13-17, 2024, Pittsburgh (PA), USA.

10. Workshop - Surveying the Landscape.
Amherst Center for Fundamental Interactions - UMass Amherst.
April 15-17, 2024, Amherst (MA), USA.

11. ACFI Journal Club 2024 (SPEAKER).
Amherst Center for Fundamental Interactions - UMass Amherst.
April 10, 2024, Amherst (MA), USA.

12. DESY Theory Seminars - Journal Club 2022 (SPEAKER).
Deutsches Elektronen-Synchrotron (DESY).
November 10, 2022, Hamburg, Germany.

13. BS2019 - SEENET-MTP Balkan School on High Energy and Particle Physics:
Theory and Phenomenology. Workshop on Advances in Fields, Particles and Cosmology.
June 3-10, 2019, Ioannina, Greece.
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Department of Physics, University of Massachusetts Amherst, USA.

email: sorbo@umass.edu

2. Prof. Jennie Traschen

Department of Physics, University of Massachusetts Amherst, USA.

email: traschen@umass.edu

3. Prof. Ben Heidenreich

Department of Physics, University of Massachusetts Amherst, USA.

email: bheidenreich@umass.edu

4. Prof. Michele Cicoli

Department of Physics and Astronomy, University of Bologna, Italy.

email: michele.cicoli@unibo.it

Teaching Experience

2020-present As a Teaching Assistant:

- P131 Intro Physics I, assistant of Team Based Learning (TBL) classrooms (Fall 2021, Spring 2022, Fall
2023, Spring 2024).
- Collaborated with Prof. Heath Hatch to design and co-teach P131 Intro Physics I (Fall 2024, Spring
2025).
- P131 Intro Physics I, co-instructor for Lab sessions (Spring 2024, Spring 2025).
- P151 General Physics I, assistant of TBL classrooms (Fall 2023, Fall 2025).
- P132 Intro Physics II, assistant of TBL classrooms (Fall 2022).
- P181 Introductory Mechanics, assistant of TBL classrooms and grading (Fall 2022).
- P564 Advanced Quantum Mechanics: Assistant of the course and grading (Spring 2023).
- P602 Statistical Mechanics: Assistant of the course and grading (Fall 2024).
As an Instructor:

- P151 General Physics I (Spring 2026).
Intensive Teaching Training:

Completion of the Intensive Teaching Training program to develop skills for becoming an independent
instructor of large lecture courses, under the supervision of Prof. David Hamilton (Fall 2025).

Awards and Recognitions

Quinton Award for excellence in Teaching.

University of Massachusetts Amherst, USA (2023).

Community Involvement

1. Participation in the Physics Department’s Climate Committee meetings on equity, inclusion, and diversity.

2. Participation in Women in Physics group and events.

3. Participation in SEA Change group.
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Research Proposal Sofia P. Corbà

I am writing to express my interest in a postdoctoral position within the ERC Synergy Grant COSMOMAG. I am
currently a Ph.D. candidate in theoretical physics at the University of Massachusetts Amherst (USA), working with
Prof. Lorenzo Sorbo, and I expect to complete my degree in the summer of 2026.

Overview

My research focuses on theoretical cosmology and its implications for fundamental interactions and physics beyond
the Standard Model, with a particular interest in the early universe. The leading paradigm of primordial cosmology
is inflation, which describes how, during the very first moments of its existence, the universe underwent a rapid,
quasi-exponential expansion, naturally reaching an extremely flat and homogeneous configuration. During this
phase, quantum fluctuations were stretched to macroscopic scales, becoming the seeds of the large-scale structure
we observe today. This mechanism, which connects microscopic quantum processes to macroscopic cosmological
observables, makes inflation a natural framework for studying quantum field theory in curved spacetime and its
connection with general relativity. This is the context in which I have developed my research.

I began studying the physics of the early universe in my master’s thesis, Backreaction from Magnetogenesis in String
Inflation, supervised by Prof. Michele Cicoli, where I analyzed string theory-inspired models of inflation and primordial
magnetogenesis. During my Ph.D., I have worked closely with Prof. Lorenzo Sorbo on both phenomenological and
formal aspects of early universe cosmology, including gravitational wave anisotropies and backreaction effects
in axion inflation models, as well as the renormalization of observables in curved spacetime. More recently, my
interests have also expanded to the study of black holes. In particular, I am currently collaborating with Prof.
Jennie Traschen on a project investigating dynamical black holes in slow-roll inflation, where the metric evolves
quasi-statically through a sequence of Schwarzschild-de Sitter metrics.

Research on Axion Inflation and Gravitational Waves

Given the ultraviolet (UV) sensitivity of generic scalar potentials, building a robust model of inflation requires
controlling the quantum corrections arising from UV modes. One class of models addressing this problem is axion
inflation, where the inflaton is a pseudo-Nambu–Goldstone boson with a broken shift symmetry. Because of this
symmetry, the axion inflaton naturally couples to gauge fields, which are amplified during inflation and in turn source
scalar and tensor fluctuations. Consequently, this model produces two types of fluctuations: the standard vacuum
fluctuations generated by the accelerated expansion of the background and the fluctuations sourced by the amplified
gauge fields [1, 2]. The same shift symmetry also allows couplings to fermionic fields.

Past and Ongoing Research
In my paper [3], published in JCAP in October 2024, I investigated the correlation between scalar and tensor
fluctuations produced in axion inflation. The correlator receives two contributions: one from gravitational waves
correlated with vacuum scalar fluctuations, and another from gravitational waves correlated with sourced scalar
fluctuations. My analysis showed that the former effect dominates, with the normalized correlator being of the order
of 10−4 − 10−2. Its observability, subject to instrumental noise and the intrinsic variance of the isotropic component,
depends on the amplitude of the anisotropies in the gravitational wave spectrum. In the subsequent paper [4],
accepted for publication in JCAP in November 2025, I calculated this amplitude, finding that it can reach values as
large as O(10−1), thus showing that axion inflation can indeed produce observable anisotropies.

In this same context, I am currently working on a project investigating backreaction effects in axion inflation models
that include couplings to fermionic fields [5]. In particular, I am exploring whether there exist parameter values for
which particle production can occur on parametrically sub-horizon scales. This would allow the analysis to be carried
out analytically within a perturbative regime, analogously to what happens in [6].

Future Research
Going forward, I plan to expand the study of gravitational wave anisotropies from axion inflation to more general
settings. Evidence indicates that adding a kinetic coupling together with the commonly studied axial coupling could,
even if weakly, affect the gravitational wave energy density and power spectrum [7]. A key question is how such
couplings could influence the anisotropies and whether characteristic signatures might be detected by upcoming
observations.
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Research on Formal Aspects of Quantum Field Theory on Curved Spacetime

Making predictions in quantum field theory requires a consistent method for renormalizing observables. In the
presence of gravity, this becomes more complicated than in flat spacetime due to particle creation. A significant part
of my work has focused on developing a consistent method of renormalization of observables in curved spacetime.

Past and Ongoing Research
One renormalization technique traditionally used in cosmology is adiabatic renormalization [8, 9]. This leads to finite
observables by subtracting from the bare results, mode by mode, the corresponding quantities obtained using the
positive-frequency Wentzel-Kramers-Brillouin (WKB) approximation. The WKB expansion is obtained as a recursive
series, and, according to the standard prescription, the truncation order should correspond to the degree of ultraviolet
divergence of the operator being renormalized. While this method works very well in the UV regime, it often
generates infrared (IR) artifacts at finite momenta [10], due to the fact that the order of truncation is fixed.

In [11], published in JCAP in July 2023, I proposed a revision of the standard approach, recognizing that the adiabatic
expansion is generally asymptotic, and as such has an optimal truncation that gives the best approximation to the
exact solution [12]. This optimal truncation depends on the system’s parameters, including the momenta, thus
resolving the unphysical behavior at intermediate scales. In my paper, I focused on the renormalization of the power
spectrum of scalar fluctuations during and after inflation across various scenarios. Currently, I am working on a new
project that applies optimal truncation to the calculation of the conformal anomaly, the expectation value of which
is well known and can serve as a test for this approach.

Future Research
In models where the inflaton couples to gauge fields, such as axion inflation, particularly when kinetic couplings are
included, or in some string theory-inspired scenarios, primordial magnetic fields can be produced. To obtain reliable
predictions and constrain these models through observations, it is necessary to properly renormalize the magnetic
energy density. As a future project, I plan to apply the alternative prescription I introduced in [11] to renormalize the
electromagnetic stress-energy tensor. Once the optimal truncation, as a function of momentum, is determined, the
renormalized tensor is obtained from the bare one by subtracting, mode by mode (i.e., under the integral sign), the
corresponding terms obtained using the asymptotic expansion. This provides a consistent result for the generated
magnetic fields, which could then serve as seeds for the large-scale magnetic fields observed in the universe today,
potentially explaining their origin.

Research on Black Holes during Inflation

In slow-roll inflationary cosmologies, dynamical black holes can be studied within a metric that evolves quasi-statically
through a sequence of Schwarzschild-de Sitter like metrics, with slowly varying mass and effective cosmological
constant [13]. In this framework, both the black hole and cosmological horizon areas grow as the inflaton rolls.

Ongoing Research
Recently, I have started a project with Prof. Jennie Traschen in which we translate the inflaton’s field evolution,
together with the evolution of the black hole mass and effective cosmological constant found in the Schwarzschild-de
Sitter metric, into the language of standard inflationary cosmology in the far field. In this context, we are studying
various cosmological observables to have a clearer understanding of how dynamical black holes modify standard
inflationary dynamics and what observational signatures could confirm or rule out their existence.

Future Research
In this direction, a future project I plan to focus on is the study of dynamical black holes, described within the slowly
varying Schwarzschild-de Sitter metric, in the case where inflation is driven by an axion inflaton. A separate question
concerns primordial black holes formed after axion inflation, when the fluctuations generated during inflation re-enter
the horizon and collapse. In particular, it would be interesting to examine how the charge of these primordial black
holes is affected by the presence of the gauge fields sourced by the inflaton.

Research on String Theory Inflation and Magnetogenesis

In all the previous topics, inflation was studied within the effective framework of quantum field theory in curved
spacetime. Another way to obtain inflationary models is through the UV-complete theory of string theory. Since string
theory is formulated in ten dimensions, deriving predictions for the four-dimensional physics, relevant to cosmology,
requires compactifying the six extra dimensions on a suitable manifold, known as a Calabi-Yau. An important
consequence of this compactification and the subsequent dimensional reduction is the emergence of a large number
of massless scalar fields, the moduli, with flat potentials that make them natural candidates to drive inflation.
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Past Research
In my Master’s thesis, I studied two string theory inflationary models arising from Type IIB flux compactifications:
Kähler Inflation and Fibre Inflation. In these models, the inflaton couples to gauge fields, which in turn backreact by
slowing the inflationary evolution. In my work, I examined two important effects: first, the generation of magnetic
fields that could explain the large-scale magnetic fields observed today, and second, the slowdown of the inflaton,
which may help alleviate the tension between the phenomenological requirement of sufficient e-foldings of inflation
and the geometric constraints imposed by the size of extra dimensions [14].

Future Research Goals

The study of the gravitational wave anisotropies I carried out in [3,4] contributes to the broader effort to characterize
the cosmological stochastic gravitational wave background and to distinguish it from its astrophysical counterpart.
This line of research has gained increasing importance because of the intense current and future observational activity
of ground-based detectors (LIGO, Virgo, KAGRA, and the proposed Cosmic Explorer and Einstein Telescope) and
space-based missions (LISA), particularly following the 2023 NANOGrav detection [15]. Building on this, I aim
to develop quantitative predictions for observables such as the spectral shape, polarization, and cross-correlations
of the stochastic gravitational wave background across different early universe models, with the goal of guiding the
interpretation of upcoming observational data. At the same time, I would be interested in the opportunity to explore
areas such as black holes, with which I am only beginning to familiarize myself, as well as late-time cosmology and
string theory, as these fields can contribute to a broader understanding of the universe.

I am especially excited to join the group of Prof. Axel Brandenburg, and to collaborate with Profs. Chiara Caprini,
Andrii Neronov, and Franco Vazza on COSMOMAG, a collaborative project aimed at studying the origin of
cosmological magnetic fields. This project naturally connects to my research experience and future plans, as I have
previously worked on magnetogenesis in the context of my master’s thesis, while my work on adiabatic renormalization
could provide a valuable formalism for computing seed magnetic fields originating in the primordial universe. With
my background in quantum field theory in curved spacetime and early universe physics, I am confident that I can
contribute meaningfully to the group’s research community. In addition, my experience with gravitational waves would
allow me to contribute effectively to the more observational aspects of the project.
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1 Introduction

One of the key predictions of primordial inflation is that quantum fluctuations of light fields
are amplified into the seeds of the large scale structure of our Universe. As is the case
on Minkowskian backgrounds, also for quantum fields on a curved spacetime, one needs to
address the presence of ultraviolet divergences in the expressions of the physical observables.
On Minkowskian backgrounds, divergences of observables that are quadratic in the fields
(such as the total energy of a quantum field) can be subtracted “by hand”, an operation,
associated with the normal ordering of creation and annihilation operators, that is justified
by the fact that the divergent quantities are unobservable constants. Things get more subtle
in time-dependent and/or curved backgrounds.

In this article we study the renormalization of the power spectrum of a massless or light
scalar field in de Sitter and quasi-de Sitter space. We will focus on the method of adiabatic
subtraction, the original version of which was proposed by Parker [1, 2] to renormalize the
energy-momentum tensor of scalar fields in expanding universes. This method leads to finite
observables by subtracting from the bare results, mode by mode, the same quantities obtained
by replacing the mode functions with their positive-frequency Wentzel-Kramers-Brillouin
(WKB) approximation. This is a natural generalization of the subtraction of divergent
constants performed to obtain finite results on trivial backgrounds. The WKB approximation
is obtained as a recursive series, and, according to the standard prescription, the order at
which it should be evaluated is related to the degree of ultraviolet divergence of the operator
that we try to renormalize. More specifically, one is instructed [1, 2, 5–7] to truncate the
WKB series to the minimum order that allows to obtain a UV-finite result.

By considering a light scalar on (quasi) de Sitter, we can compare our study of adiabatic
subtraction with those existing in the literature. In particular, the method of adiabatic
subtraction has been applied by Parker [8] to the standard calculation of the power spectrum

Pφ
k of a light (m � H) scalar field during inflation with Hubble parameter H. In that

paper it was found that the renormalized power spectrum converges to the standard result
H2

4π2 for k/a � m � H, while for m � k/a . H one can evaluate it to ∼ H2

4π2 × 3 m2 a2

4 k2 .
Related analyses can be found in [9–12]. While the large scale results match the standard
expectation, at intermediate scales, where causality arguments would require quasi-constant

– 1 –
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Figure 1. The power spectrum of a scalar field of mass m2 = .1 H2 on de Sitter space. The solid
line represents the non-renormalized result. The dashed line gives the renormalized result according
to eq. (18) of [8].

power spectra, the renormalized spectra show a rapid running. This behavior can be seen for
instance in figure 1, where we show the non-renormalized and the renormalized power spectra
(obtained from eq. (18) of [8]) of a scalar with mass m2 = .1 H2. It is worth stressing that the
study of scalar metric perturbations during inflation, which are restricted by diffeomorphism
invariance, would require a more specific formulation than the one we are using here, and is
beyond our scope.

Several authors have discussed the result of [8]. Shortly after [8], it was pointed out
in [13] that the two-point function, being finite when computed at distinct points, should not
need renormalization.1 The authors of [13], however, also noted that adiabatic regularization
of the power spectrum, a fundamental tool to renormalize the stress-energy tensor, leads to
“unpleasant features” in the regularized power spectra that persist if one considers the next
order in the WKB series. In [14] it has been noted that a time-dependent value of the Hubble
parameter makes the adiabatically subtracted component smaller at later times. This view
was restated in [15], where it was stressed that the effect of renormalization should not affect
the cosmological scales k � a H. In [16], the same authors argued that these problems
are alleviated if one assumes a radiation-dominated period prior to inflation, that effectively
provides an infrared cutoff to the modes of the scalar perturbations. The paper [17] was
written in response to these objections. In [18] it was shown that adiabatic subtraction
can be recast in the form of redefinition of parameters of the Lagrangian.2 Very recently,
finally, the authors of [19] have argued that the unusual behavior for superhorizon modes with
physical wavelengths shorter than m−1 is eliminated by implementing adiabatic subtraction
only for modes with wavelengths shorter than an infrared cutoff.

1Reasons why the two-point function should be renormalized at all have been discussed, e.g., in [6], page 84.
We stress here that finite values for quantities of physical interest such as the stress-energy tensor of a scalar
field 〈Tµν(x)〉 can be obtained by computing objects such as

(

∂
∂xµ

∂
∂yν 〈φ(x)φ(y)〉

)

y=x
, which are divergent

and can be renormalized using adiabatic subtraction. Then, for consistency, one should also apply adiabatic
subtraction to 〈φ(x)φ(y)〉.

2In Minkowski-space renormalization, the introduction of counterterms is associated with the existence of
observables, such as the energy, sensitive to the divergent quantity under consideration. In the case of the
power spectrum, one can think of a field χ interacting with φ through a coupling proportional to φ2χ2. In
this case the expectation value 〈φ2(x)〉 = limy→x〈φ(x)φ(y)〉 contributes to the effective mass of χ, and would
be observable by measuring χ’s dispersion relation. The counterterm, in this example, appears in the bare
mass of the field χ.

– 2 –
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The result of [8] highlights a couple of undesirable features of the standard formulation
of adiabatic subtraction:

1. adiabatic subtraction leads to artifacts (significant corrections to the classical result far
from the UV regime) for modes that are not adiabatically evolving. One such example
is given by the modes with m . k/a . H, see figure 1. One can argue that this is not
so upsetting, because if the proper frequencies are not adiabatically evolving, then the
concept of particle itself becomes ill-defined. Nevertheless, it would be preferable to
(i) have a trustworthy definition of integral quantities, such as, e.g., 〈φ(x, t)2〉, that is
given as the integral on all scales of the power spectrum; and (ii) that the value of the
power spectrum takes physically sensible values at all wavelengths;

2. in the standard, textbook [5, 6] prescription for adiabatic subtraction, the order of
WKB approximation depends on the degree of ultraviolet divergence of the operator
under consideration. For instance, the calculation of 〈φ(x, t)2〉 will require subtraction
up to the second order in the WKB expansion, while to compute 〈(∇φ(x, t))2〉 one
needs to go to fourth order. A prescription where the order of truncation of the WKB
expansion is independent of the operator under consideration might be preferable.

A related subtlety is that adiabaticity depends on the choice of time. For a massless
scalar in cosmic time t the proper frequency is given by ω2

k = k2 e−2Ht − 9
4H2, that behaves

adiabatically, |dωk/dt| � |ωk|2 at late times t → ∞. On the other hand, in conformal time
τ , dτ = e−Ht dt, the proper frequency of canonically normalized modes ω2

k = k2 − 2
τ2 does

not behave adiabatically at late times, as |dωk/dτ | ' |ωk|2/
√

2 for τ → 0−. The notion
of adiabaticity thus seems to depend on the choice of time. While this ambiguity can be
dealt with by considering terms such as ä

a appearing in the proper frequency as higher order
terms in the adiabatic expansion, we will show below that this issue is resolved by assuming
a definition of time that maintains ωk(t)2 > 0 at all moments. Such a definition of time has
been used in the past, see for instance [7, 11].

In this paper we will explore the implications, for the calculation of power spectra, of
an alternative prescription for the order of truncation of the WKB approximation. This
prescription, based on the findings in [20–22], has been explicitly applied to quantum field
theoretical systems in [3, 4]. As we will discuss in sections 2 and 3 below, the adiabatic
expansion is generally an asymptotic expansion and as such has an optimal truncation, i.e.,
there is an order of the expansion that gives an exponentially good approximation to the exact
solution. This order has nothing to do with the degree of divergence of the operator one has
to renormalize but depends on the parameters of the system. This order is also generally
dependent on the momentum k. At least in principle, this allows us to avoid the generation
of unphysical behavior at intermediate momenta such as that observed when applying the
textbook prescription [5, 6]. Remarkably, the asymptotic behavior of the mode functions
which underlies the adiabatic solution is exactly the manifestation of the notion of particle
production, that can be evaluated analytically by focusing on the Stokes phenomenon [23].
In other words, if the WKB expansion is not asymptotic and can be resummed exactly, then
no particle production will occur.

In section 4, we apply the general results presented in the previous sections to specific
cases of inflationary spectra. We find, in agreement with the result found in [8], that the
renormalized spectrum for a massless, minimally coupled scalar in exact de Sitter space with
flat spatial slices is identically vanishing. For a light, massive field in exact de Sitter space,
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on the other hand, the application of the prescription [3, 4] gives, unlike the results of [8], a
power spectrum that is approximately constant for all scales k . aH. Finally, we apply the
general results discussed above to the case of a massless scalar in an FLRW Universe that
performs a smooth transition from a quasi-de Sitter to a radiation-dominated stage.

Section 5 contains our conclusions and a discussion of these results.

2 Bogolyubov coefficients, adiabatic subtraction

Quantum field theory is plagued with divergences. The simplest divergence that is encoun-
tered is that of the expectation value, for a free theory on a Minkowskian background, of
quadratic operators such as the energy density. Such a divergence is cured by subtracting its
(formally infinite) “vacuum contribution” by hand, or equivalently by replacing the operators
under consideration with their normal-ordered version.3

In the case in which the field is quantized on a time-dependent background, however,
the vacuum of the theory will also be generally evolving, making the concept of “vacuum
contribution” ambiguous. In this case, finite expectation values for quadratic operators are
usually obtained by applying adiabatic subtraction, i.e., by subtracting, mode by mode, from
the expectation value of the operator under consideration, the expectation value of the same
quantity evaluated in the adiabatic approximation [1].

We will now review how this prescription can also be phrased in terms of a time-
dependent normal ordering — a picture that can be traced back to [24, 25].

Consider a general system on a time-dependent background described by a scalar field
φ̂(x, t) that we quantize as

φ̂(x, t) =

∫

d3k

(2π)3/2
eikx

[

φ(k, t) âk + φ(k, t)∗ â†
−k

]

≡
∫

d3k

(2π)3/2
eikx φ̂(k, t) , (2.1)

where φ(k, t) satisfies the equation

φ̈(k, t) + ωk(t)2 φ(k, t) = 0 . (2.2)

As we will discuss below, in order for the adiabatic subtraction to be well defined, we require
ωk(t)2 to be positive. We also assume, for the sake of presentation in this section, that
ωk(t) ≥ 0 satisfies the adiabaticity conditions |ω̇k|/ω2

k → 0 and |ω̈k|/ω3
k → 0 both as t → −∞

and as t → +∞, while at intermediate times ωk(t) will generally evolve non adiabatically.
Under these conditions, the general solution to eq. (2.2) for t → ±∞ is a linear combination
of φad

(0)(k, t) and φad
(0)(k, t)∗, with

φad
(0)(k, t) =

1
√

2 W(0)(k, t)
e

−i
∫ t

t0
W(0)(k, t′) dt′

, W(0)(k, t) ≡ ωk(t) ≥ 0 , (2.3)

where the value of t0 (as long as it is real) is irrelevant.
We choose the initial condition to be positive frequency only

φ(k, t → −∞) = φad
(0)(k, t) , (2.4)

which implies that the operator âk (â†
k) annihilates (creates) quanta of φ at t → −∞.

3It is worth stressing that not all the divergences in a theory appear in the expectation values of quadratic
operators. Nevertheless, the present paper will deal only with these ones, which are relevant for observables
such as power spectra or occupation numbers.
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Then we solve eq. (2.2). Since the adiabaticity condition is assumed to be satisfied at
late times, for t → +∞ the solution must take the form

φ(k, t → +∞) = α(k) φad
(0)(k, t) + β(k) φad

(0)(k, t)∗ , (2.5)

where α(k) and β(k) are constants: the Bogolyubov coefficients. Thus, the field φ̂(x, t) at
late times reads

φ̂(x, t → +∞) =

∫

d3k

(2π)3/2
eikx

{[

α(k) φad
(0)(k, t) + β(k) φad

(0)(k, t)∗
]

âk

+
[

α(k)∗ φad
(0)(k, t)∗ + β(k)∗ φad

(0)(k, t)
]

â†
−k

}

. (2.6)

We can therefore define the new operators

b̂k ≡ α(k) âk + β(k)∗ â†
−k ,

b̂†
k ≡ α(k)∗ â†

k + β(k) â−k , (2.7)

in terms of which the field φ̂(x, t) takes the form

φ̂(x, t → +∞) =

∫

d3k

(2π)3/2
eikx

[

φad
(0)(k, t) b̂k + φad

(0)(k, t)∗ b̂†
−k

]

. (2.8)

This equation shows that b̂k is seen as an annihilation operator by an observer born at
t → +∞. In the literature [24, 25] the choice of these creation/annihilation operators is jus-
tified by the fact that these are the operators that diagonalize the Hamiltonian at late times.

Let us now evaluate, for instance, the Hamiltonian operator Ĥ(t), which is time depen-
dent since the system is on a time-dependent background. It is easy to see that

Ĥ(t → −∞) =

∫

d3k
ωk(t → −∞)

2

(

âk â†
k + â†

k âk

)

,

Ĥ(t → +∞) =

∫

d3k
ωk(t → +∞)

2

(

b̂k b̂†
k + b̂†

k b̂k

)

, (2.9)

whose vacuum expectation value 〈0|Ĥ(t → ±∞)|0〉 is divergent. This divergence can be
eliminated by computing the expectation value of the normal ordered Hamiltonian operator
instead, 〈0| : Ĥ : |0〉. We require that an early observer normal orders the âk and â†

k operators,

whereas a late observer normal orders the b̂k and b̂†
k operators. On the other hand, since we

are working in the Heisenberg picture, the state |0〉 is independent of time, so that it is
annihilated by the âk operators, but not by the b̂k operators.

The consequence of this prescription is that

〈0| : Ĥ(t → −∞) : |0〉 → 0 , 〈0| : Ĥ(t → +∞) : |0〉 →
∫

d3k ωk(t → +∞) |β(k)|2 ,

(2.10)
so that, as it is well known, |β(k)|2 can be interpreted as the occupation number of created
particles at late times.

We can generalize the above procedure to any quantity that is quadratic in the fields.
In particular, this can be applied to the power spectrum Pφ

k , that we define through

〈0|φ̂(x, t)φ̂(y, t)|0〉 =

∫

d3k

4π k3
eik(x−y) Pφ

k (t) , (2.11)
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which gives Pφ
k (t) = k3

2π2 |φ(k, t)|2. A straightforward calculation then shows, using eq. (2.5),
that the normal ordered power spectrum can be written, both for t → −∞ and for t → +∞, as

Pφ
k (t → ±∞) =

k3

2π2



|φ(k, t → ±∞)|2 −
=
{

φ(k, t → ±∞) φ̇(k, t → ±∞)∗
}

W(0)(k, t → ±∞)



 , (2.12)

which can be shown to be equivalent to

Pφ
k (t → ±∞) =

k3

2π2

[

|φ(k, t → ±∞)|2 − |φad
(0)(k, t → ±∞)|2

]

=
k3

2π2

[

|φ(k, t → ±∞)|2 − 1

2 ωk(t → ±∞)

]

. (2.13)

The first line of this equation shows that time-dependent normal ordering amounts to sub-
tracting from the original expression the same one with the mode functions evaluated in the
adiabatic approximation. This procedure thus justifies in a natural way adiabatic subtrac-
tion as a method of subtracting the divergent part of the expectation values of operators in
time-dependent settings.

However, in the way in which it is described above, adiabatic subtraction is not always
sufficient to subtract all the UV divergences. A related issue is that one should require a
prescription for the definition of occupation numbers also at finite, even if large, times. To
deal with these questions, one modifies the above derivation to include higher orders in the
adiabatic expansion in the definition of φad(k, t), and to generalize eq. (2.5) to all values of
the time.

More specifically, we define the (2n)−th order adiabatic approximation φad
(2n)(k, t) to

the exact solution of eq. (2.2) as

φad
(2n)(k, t) =

1
√

2 W(2n)(k, t)
e

−i
∫ t

t0
W(2n)(k, t′) dt′

, (2.14)

where W(2n)(k, t) is found as follows.
We start by inserting into eq. (2.2) the Ansatz

φ(k, t) =
1

√

2 W (k, t)
e

−i
∫ t

t0
W (k, t′) dt′

, (2.15)

which implies that W (k, t) satisfies the equation

W (k, t)2 = ωk(t)2 +
√

W (k, t)
d2

dt2

(

1
√

W (k, t)

)

. (2.16)

The solution to this equation can be found iteratively by expanding it as a series in time
derivatives. Then W(2n)(k, t) is found as the truncation at the (2n)-th order of this derivative
(i.e., adiabatic) expansion:

W(0)(k, t) = ωk(t) ,

W(2)(k, t) = ωk(t)

[

1 +

√

ωk(t)

2 ωk(t)2

d2

dt2

(

1
√

ωk(t)

)]

,

W(4)(k, t) = ωk(t)

[

1 +

√

ωk(t)

2 ωk(t)2

d2

dt2

(

1
√

ωk(t)

)

−
√

ωk(t)

4 ωk(t)2

d2

dt2

(

1

2ωk(t)2

d2

dt2

(

1
√

ωk(t)

))]

,

W(6)(k, t) = . . . . (2.17)
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In particular, eq. (2.13) turns out to be valid because, under the assumption of adiabaticity
at early and late times, one has W(2n)(k, t → ±∞) → W(0)(k, t → ±∞) = ωk(t → ±∞).

Then, we define the Bogolyubov coefficients α(2n)(k, t) and β(2n)(k, t), for all values of
the time t, through

φ(k, t) = α(2n)(k, t) φad
(2n)(k, t) + β(2n)(k, t) φad

(2n)(k, t)∗ . (2.18)

It is important to stress at this point that the definition (2.18) of Bogolyubov coeffi-
cients requires φad

(2n)(k, t) and φad
(2n)(k, t)∗ to be linearly independent quantities, which implies

that W(2n)(k, t) should be real. Since W(2n)(k, t) is an approximation of ωk(t), Bogolyubov
coefficients can be consistently defined only at times for which ωk(t) is real.

In principle one can also study situations where ωk(t) transitions from real to imaginary
and then again to real values [26], but if we want the occupation number to be defined at all
times, we will require ωk(t) to be real at all times. We will see this in particular in section 4,
where we will adopt a definition of time for which ωk(t) is real also for super-horizon modes.

Finally, by requiring ωk(t)2 ≥ 0 one does not incur in the problem, found in [16], of
having to deal with an imaginary component in the spectrum in eq. (2.13).4

Eq. (2.18) does not determine α(2n)(k, t) and β(2n)(k, t) uniquely, so that we need a
second prescription. Among various options that give equivalent results at t → ±∞, we
choose that obtained by taking the time derivative of eq. (2.18) while keeping α(2n)(k, t) and
β(2n)(k, t) constant:

φ̇(k, t) =
α(2n)(k, t)

√

2 W(2n)(k, t)

(

−iW(2n)(k, t) −
Ẇ(2n)(k, t)

2 W(2n)(k, t)

)

e
−i
∫ t

t0
W(2n)(k, t′) dt′

+
β(2n)(k, t)

√

2 W(2n)(k, t)

(

iW(2n)(k, t) −
Ẇ(2n)(k, t)

2 W(2n)(k, t)

)

e
i
∫ t

t0
W(2n)(k, t′) dt′

. (2.19)

Eqs. (2.18) and (2.19) can be inverted to give

α(2n)(k, t) =
1

2

√

2 W(2n)(k, t) e
i
∫ t

t0
W(2n)(k, t′) dt′

[

φ(k, t) + i
φ̇(k, t)

W(2n)(k, t)

]

,

β(2n)(k, t) =
1

2

√

2 W(2n)(k, t) e
−i
∫ t

t0
W(2n)(k, t′) dt′

[

φ(k, t) − i
φ̇(k, t)

W(2n)(k, t)

]

, (2.20)

and we can thus define the time dependent creation/annihilation operators

b̂
(2n)
k (t) ≡ α(2n)(k, t) âk + β(2n)(k, t)∗ â†

−k ,

b̂
(2n)
k (t)† ≡ α(2n)(k, t)∗ â†

k + β(2n)(k, t) â−k . (2.21)

that are seen as annihilation/creation operators for an observer born at time t.

4Trying to be more sophisticated, in the case in which ωk(t) is imaginary, one might look for two linearly
independent solutions of eq. (2.2) with ωk(t)2 < 0, one complex conjugate of the other, to allow for a
decomposition like that of eq. (2.1). One would then find that it is not possible for any of such decompositions
to diagonalize the Hamiltonian.
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In particular, after normal ordering of the b̂
(2n)
k (t) and b̂

(2n)
k (t)† operators, the power

spectrum of the field φ̂(x, t) reads

Pφ
k (t) =

k3

2π2

[

|φ(k, t)|2 − 1

2 W(2n)(k, t)

]

, (2.22)

where all the dependence on the order (2n) of the adiabatic expansion lies in the W(2n)(k, t)
at the denominator in the last term, since φ(k, t) is the exact solution to the equation of
motion.

3 Truncation vs resummation of the adiabatic expansion

As discussed in the previous section, in order to apply adiabatic subtraction we need to
truncate the adiabatic expansion at the right adiabatic order. The next questions is then:
which order? According to [5–7], the prescription is to keep in W(2n)(k, t) all the terms,
but no more, that are necessary to cancel all the UV divergences in the operator under
consideration.5 While one might argue that this prescription has the advantage of being
the least intrusive way of generating UV-finite results, there are, as we have discussed in the
Introduction, a couple of reasons for concern. First, it is not clear why the order of truncation
should depend on the observable. For instance, for the same field, this prescription instructs
to use W(2)(k, t) when computing the power spectrum, and W(4)(k, t) when computing the
energy density. Second, while this prescription creates a good behavior for the observables
at k → ∞, it often generates artifacts (i.e. features in the observables where the subtracted
component overwhelms the bare one) at finite momenta, such as those observed in [8].

In this article we discuss an alternative approach, see [3, 4], where the order of truncation
is not related to the degree of divergence of the operator we try to renormalize. In fact, the
WKB series is in general an asymptotic expansion and as such it has an optimal truncation
which gives the best possible approximation to the exact solution. Truncating the adiabatic
expansion to the optimal order, besides being a less arbitrary choice, also removes infrared
artifacts, as the order of the truncation generally depends on the wavenumber k and therefore
the subtracted function will not be the same in the UV and the IR regime. More importantly,
as we will see below, optimal truncation of the WKB series, at least in the regime of large
truncation order, leads to a universal functional dependence of the Bogolyubov coefficients.

The asymptotic nature of the WKB expansion is associated with the fact that the
adiabatic solutions are defined only locally, as we will now discuss.

The WKB approximation requires the adiabatic conditions |ω̇k| � ω2
k and |ω̈k| � ω3

k to
be satisfied. The points in the complex-t plane where ωk = 0 are called poles or turning points,
and each of them is surrounded by a region where the adiabatic approximation is violated.
For the sake of the presentation, let us assume that the adiabatic conditions are satisfied as
t → ±∞, i.e., that the concept of particle is well defined at early and at late times. Let us also
assume that there is a path Γ in the complex-t plane, see figure 2, that allows us to go from
t → −∞ to t → +∞ while staying arbitrarily far from the turning points (which is guaranteed

5Moreover, the textbook prescription is to further expand 1
2 W(2n)(k, t)

in eq. (2.22) in a derivative expansion:

1

2 W(2n)

'
1

2 W(0)

−
W(2) − W(0)

2 W 2
(0)

+ . . . . (3.1)
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Im{t}

Re{t}

t1

t1*

t2

t2*

Γ

Figure 2. A schematic representation of the complex-t plane. In this example the theory has four
turning points, coming in complex conjugate pairs, t1, t∗

1, t2, t∗

2. Each turning point is surrounded by
a shaded area where the adiabaticity condition is violated. The path Γ allows us to go from t → −∞
to t → +∞ while traveling arbitrarily far from the turning points. However, along its path, it must
cross Stokes lines (marked as dotted lines), where a negative frequency component is added to the
WKB solution.

as long as the number of turning points is finite). This would imply that, starting at t → −∞
with a positive frequency solution ∝ e−i

∫ t
ωk dt′

, and using the WKB approximation along Γ,
we get solutions that are only positive frequency also as t → +∞, i.e., β(k, t → +∞) = 0.
Clearly there is something wrong here, since in general, if the adiabatic condition is violated
at finite times, particles should be created and β(k, t → +∞) should not vanish!

What has gone wrong? The issue is that the WKB approximation is defined only locally,
and the mode functions at initial time cannot be analytically continued through the whole
complex plane. The borders of regions of validity of such local approximations are called
Stokes lines, and the generation of a negative frequency component as one crosses a Stokes
line is known as the Stokes phenomenon [27].

The origin of the Stokes phenomenon is that in any given Stokes region the WKB per-
turbative expansion fails to capture the full expression of the solution, i.e., a part of the
solution does not appear at any order in the WKB approximation,6 and as a consequence
is not generated by the simple analytical continuation to t → +∞ of the positive frequency
solution. In other words, the Stokes phenomenon signals the fact that the WKB expan-
sion cannot be resummed everywhere to get the exact mode function, i.e., that the WKB
expansion is asymptotic. We thus obtain the chain of equivalences

asymptotic WKB expansion ⇔ Stokes lines ⇔ frequency mixing ⇔ particle creation.

On the other hand, if the WKB expansion can be resummed, then the exact mode

functions can be written, in the entire complex-t plane, as 1√
2W (k, t)

e−i
∫ t

W (k, t′) dt′

for some

6This is similar to the case of a function such as f(x) = g(x) + e−1/x2

where g(x) can be expanded as
a Taylor series around x = 0. If we try to evaluate f(x) at finite values of x by using its Taylor expansion

around x = 0, we will never recover the component e−1/x2

, irrespective to the order at which we perform the
Taylor expansion.
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function W (k, t) (with boundary condition W (k, t → −∞) → ωk(t → −∞)) and there is
no particle creation, β(k, t) = 0. In this case it is apparent how the prescription [3, 4] is
radically different from that of [5–7]: while [3, 4] leads to β(k, t) = 0 if the WKB series
can be resummed exactly, [5–7] would truncate the WKB series to a finite order, yielding
β(k, t → +∞) 6= 0.

As we have seen above, the Stokes lines represent the boundaries of the regions with well
defined local WKB expansions. On those lines we have the greatest disparity between the
exponentials appearing in the positive and negative frequency solutions. Thus, the Stokes
lines are determined by the condition

Fk(t) ≡ −2i

∫ t

tc

ωk(t′) dt′ = purely real , (3.2)

where we denoted as tc a turning point (ωk(tc) = 0) in the complex-t plane with positive
imaginary part. Fk(t) is called the singulant variable.

Stokes [27] provided a connection formula which allows us to find the mode function
on one side of the Stokes line once we have it on the other side: in order to have the
concordance between different asymptotic representations defined in different regions of the
complex-t plane, the multiplier of the sub-dominant exponential must have a jump which is
equal to i (the imaginary unit) times the multiplier of the dominant one. If we assume the
mode function at early times to be

φ(k, t on one side of Stokes line) =
1

√

2ωk(t)
e

−i
∫ t

t0
ωk(t′)dt′

, (3.3)

then, after crossing the Stokes line, it will have the form

φ(k, t on other side of Stokes line) =
1

√

2ωk(t)

[

e
−i
∫ t

t0
ωk(t′)dt′

− ie
−2i
∫ tc

t0
ωk(t′)dt′

e
i
∫ t

t0
ωk(t′)dt′

]

.

(3.4)
A study of the microscopic structure of the Stokes phenomenon has been performed by

Dingle [20] and Berry [21, 22]. These authors have found a formula for the order noptimal at
which the WKB expansion should be truncated to yield the best approximation to β(k, t).
More importantly, they have resolved the thickness of the Stokes line, arguing that the
evolution of the multiplier of the subdominant mode function (i.e., the Bogolyubov coefficient
β(k, t)) in a neighborhood of the Stokes line has a universal and smooth form, at least as
long as noptimal � 1. Dunne and Dabrowsky [3, 4] have verified the consistency of those
formulae for the cases of Schwinger effect and of creation of massive scalars in a closed de
Sitter Universe.

The fact that the optimal truncation of the WKB series gives the best approximation to
the universal form of β(k, t) is the main reason behind the proposal for adiabatic subtraction,
alternative to that of [5, 6], that we study in this paper.

Such a universal form is obtained in terms of a natural Stokes-line crossing variable
σk(t) given by

σk(t) ≡ ={Fk(t)}
√

2 <{Fk(t)}
, (3.5)

where the singulant function Fk(t) is defined in eq. (3.2). The Bogolyubov coefficient β(k, t),
as we cross the Stokes’ line, is given by

β(k, t) ' i

2
[1 + erf (σk(t))] e−F

(0)
k , (3.6)
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that indeed ranges from 0 to i e−F
(0)
k , where

F
(0)
k = −i

∫ t∗

c

tc

ωk(t′) dt′ (3.7)

is the integral of ωk(t) taken along the Stokes’ line between two complex conjugate turning
points, and is therefore real (and, with appropriate choice of branches, positive).

Also, the order of the optimal truncation of the WKB series is given by

noptimal ' Int
[

F
(0)
k /2

]

, (3.8)

which shows that this whole discussion is strictly speaking valid only as long as F
(0)
k � 1. In

fact, the thickness of the Stokes’ line, as given by the size of the region across which β(k, t)
accumulates most of its variation, is given by the range of t for which σk(t) ranges from O(−1)

to O(+1), which is shown by eq. (3.5) to scale as 1/
√

F
(0)
k . Equivalently, one can estimate

the size of the regions about tc for which the adiabaticity condition is not satisfied. To do
so, we assume that tc is a simple zero and set without loss of generality <{tc} = 0. Then,
linearizing, ωk(t) ' ω̇k(tc)×(t − tc), we obtain that |ω̇k(t)| & ωk(t)2 for |t−tc| . 1/

√

|ω̇k(tc)|,
so that if we want tc and t∗

c to be distant enough that their regions of non-adiabaticity do not
overlap, we must require |tc − t∗

c | = O(|tc|) � 1/
√

|ω̇k(tc)|. Estimating the singulant for the
linearized expression of ωk(t) we obtain Fk(t) ≈

∫ t
tc

ω̇k(tc) × (t′ − tc) dt′ ≈ ω̇k(tc) (t − tc)
2 ⇒

F
(0)
k ≈ ω̇k(tc) t2

c , so that the condition that the poles are distinct, O(|tc|) � 1/
√

|ω̇k(tc)| is

equivalent to F
(0)
k � 1.

If the condition F
(0)
k � 1 is not satisfied, then the use of the expressions discussed above

is not justified. In the absence of any specific formula for the case F
(0)
k = O(1), however,

we will still truncate the WKB series at the value of n for which the first local minimum of
|W(2n) − W(2n−2)| is reached.

4 Adiabatic subtraction for a scalar field in an inflating Universe

After having seen general prescriptions for adiabatic subtraction, our goal is to apply these
results to the case of a spatially flat (quasi) de Sitter Universe.

The action of a massive test scalar field φ on a spatially flat FLRW background is given
by

Sφ =

∫

d3k

(2π)3
dt a3

(

1

2
|φ̇(k, t)|2 − k2

2 a2
|φ(k, t)|2 − m2

2
|φ(k, t)|2

)

. (4.1)

In order to work with real frequencies at all times, we define a new time variable (this
definition of time has been used in the past, see for instance [7, 11])

dθ =
dt

a(t)3
, (4.2)

such that the action for φ(k, t) reads

Sφ =

∫

d3k

(2π)3
dθ

(

1

2

∣

∣

∣

∣

dφ(k, θ)

dθ

∣

∣

∣

∣

2

− 1

2

(

k2 a4 + m2 a6
)

|φ(k, θ)|2
)

. (4.3)
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The field φ(k, θ) is thus already canonically normalized, and the frequency of the mode with
momentum k is given by ωk =

√
k2 a4 + m2 a6, that is positive definite.

Let us now consider different regimes, starting from the simplest case of a massless field
on an exact de Sitter space in flat slicing.

4.1 A massless scalar on exact de Sitter space in flat slicing

In this case ωk = k a2 with a(t) = eHt, or, using

dθ =
dt

a(t)3
⇒ θ = −e−3Ht

3 H
, −∞ < θ < 0 ,

a(θ) = (−3Hθ)−1/3 , ωk(θ) =
k

(−3Hθ)2/3
, (4.4)

where we have set θ = −1/3H at the end of inflation, t = 0, a = 1.
The equation of motion for mode functions,

d2φ(k, θ)

dθ2
+

k2

(−3Hθ)4/3
φ(k, θ) = 0 , (4.5)

with positive frequency only solutions as θ → −∞, reads

φ(k, θ) =
H√
2k3

(

1 − i
k

H
(−3Hθ)1/3

)

ei k
H

(−3Hθ)1/3

=
H√
2k3

(

1 − i
k

a H

)

ei k
a H , (4.6)

which is the well-known expression for the mode functions of a massless scalar on a de Sitter
space with flat slices.

Remarkably, this solution can be written in the form

φ(k, θ) =
e−i

∫ θ
W (k, θ′) dθ′

√

2W (k, θ)
, (4.7)

if we choose

W (k, θ) =
k3 a(θ)2

k2 + H2 a(θ)2
. (4.8)

Since, in the case of a massless scalar on de Sitter space, the mode functions can be
written in the form (4.7), the WKB series can be resummed exactly, which implies that
the Bogolyubov coefficient β(k, t) vanishes. One could reach an analogous conclusion by
observing that by moving along the real negative θ-axis, we encounter no Stokes lines in the
complex-θ plane, as ω(θ) has no zeros at finite θ.

We thus conclude that the prescription we are examining in this paper implies no particle
production for a massless scalar in exact de Sitter space in flat slicing.

Let us compare our result with that of the prescription of [5, 6]. In this case, one is
instructed to truncate the WKB series to second order,

W(2)(k, θ) = k a(θ)2

(

1 − H2 a(θ)2

k2

)

, (4.9)
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so that applying eq. (2.22) with n = 1 and using eq. (4.6) we obtain

Pφ
k (θ) =

H2

4π2





(

1 +
k2

a(θ)2 H2

)

−




k2

a(θ)2 H2

1

1 − a(θ)2 H2

k2







 , (4.10)

where the term in the first (. . .) is proportional to |φk(θ)|2 whereas the second term is
proportional to 1/W(2n)(k, θ). If, in the spirit of the adiabatic approximation, we expand

the second term to O(k0), we obtain that the prescription [5–7] leads to Pφ
k (θ) = O(k−2),

which agrees with the result obtained by setting m = 0 in [8] and, more importantly, which
is the same result we obtained above using the prescription of [3, 4].

The vanishing of the power spectrum of a massless, minimally coupled scalar on de
Sitter space with flat slices deserves a couple of comments. First off, it is in agreement with
results from earlier literature. For instance, the formulae in [28], when applied to this case,
would also give a vanishing spectrum. Second, its disagreement with the usual expectation
〈φ(x, t)〉 ∝ H3 t can be traced back to the absence of an infrared cutoff in de Sitter space
in flat slicing. The usual result 〈φ(x, t)〉 ∝ H3 t can be indeed recovered in closed de Sitter
space, that has a natural infrared cutoff given by the wavelength of the modes that left the
horizon when the scale factor of the Universe was at its minimum [28, 29].

Finally, let us note that, even if they end up giving the same result, the (vanishing)
power spectra obtained by using the two prescriptions are qualitatively different. In the case
of the standard prescription, the final result is obtained from a truncation followed by a
Taylor expansion of the series in aH/k, which is therefore reliable only in the limit k � aH.
In the second case the vanishing renormalized spectrum is the result of a resummation of the
entire series. As we will see in the next example, the two prescriptions will give, in general,
different results.

4.2 A massive scalar on exact de Sitter space in flat slicing

In the case m 6= 0, with a de Sitter background, one can still find an exact solution to the
mode equation,

φ(k, θ) =

√

π

4 H a(θ)3
eiνπ/2+iπ/4 H(1)

ν

(

k

a(θ) H

)

, ν ≡
√

9

4
− m2

H2
, m <

3

2
H , (4.11)

which, however, cannot be written in the form (4.7) for any function W (k, θ), as we will now
discuss.

First, unlike the massless case, for m 6= 0 the frequency ωk =
√

k2 a(θ)4 + m2 a(θ)6 does
have zeros at finite values of θ given by

θ± = ± i

3H

m3

k3
, (4.12)

from which Stokes lines emanate. One of those lines crosses the real θ axis at a point
θStokes, Real determined by solving the equation

i

∫ θStokes, Real

θ+

√

k2 a(θ)4 + m2 a(θ)6 dθ = real , (4.13)
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i.e., changing variable back to physical time t and integrating,

i
m

H

[

log
(

ey +
√

e2y + 1
)

−
√

1 + e−2y
]

y=HtStokes, Real−log(k/m)
− π m

2 H
= Real , (4.14)

so that tStokes, Real can be found by solving numerically the equation log
(

ey +
√

e2y + 1
)

−√
1 + e−2y = 0, yielding

HtStokes, Real ' .411 + log(k/m) . (4.15)

As a consequence, particle creation happens approximately when the scale factor eHt crosses
k/m, a consequence of the de Sitter symmetry t → t + ∆t, k → k e−H ∆t.

The existence of a Stokes line shows that the WKB series is asymptotic. The singulant
reads

F
(0)
k = i

∫ θ+

θ−

√

k2 a(θ)4 + m2 a(θ)6 dθ = i

∫ [log(k/m)−iπ/2]/H

[log(k/m)+iπ/2]/H

√

k2 e−2Ht + m2 dt = π
m

H
,

(4.16)
which means that the WKB approximation will be a good one for m � H. In this case,
eq. (3.6) gives |β(k, t)|2 ∝ e−2πm/H in agreement with derivations of the rate of creation of
heavy particles based on Schwarzschild-de Sitter metric, such as that in [30].

A second, more pedestrian way to see that the series is asymptotic is to solve the
eq. (2.16) by brute force, at least for the first few terms. By using an algebraic manipulation
program we obtain

W (k,t)∼ka2

[(

1+
1

2

m2a2

k2
+O(m4)

)

+
a2H2

k2

(

−1− 1

4

m2a2

k2
+O(m4)

)

+
a4H4

k4

(

1− 5

2

m2a2

k2
+O(m4)

)

+
a6H6

k6

(

−1+
217

8

m2a2

k2
+O(m4)

)

(4.17)

+
a8H8

k8

(

1− 3249

8

m2a2

k2
+O(m4)

)

+
a10H10

k10

(

−1+
39523

4

m2a2

k2
+O(m4)

)

+...

]

,

which shows that, while the O(m0) terms can be resummed to give the massless result (4.8),
the coefficients of the O(m2) terms are rapidly increasing, signaling the asymptotic nature
of the WKB series in the massive case.

The case m � H is the one of greatest phenomenological interest. In this case, the
formulae of [21, 22] are not strictly speaking valid, as we discussed at the end of section 3
above, and we will simply truncate the WKB series where |W(2n+2) − W(2n)| displays a
minimum. In particular, we have

W(0)(k, t) = a(t)3
√

q(t)2 + m2 ,

W(2)(k, t) − W(0)(k, t) = −a(t)3 H2 9 m4 + 22 m2 q(t)2 + 8 q(t)4

8 (q(t)2 + m2)5/2
, q(t) ≡ k

a(t)
, (4.18)

so that both for q(t) � m � H and for m � q(t) . H we have |W(0)(k, t)| � |W(2)(k, t) −
W(0)(k, t)|. As a consequence, for m � H and k . a H we will only keep the zeroth order of
the WKB series. This gives the power spectrum

Pφ
k =

k3

2π2

[

π

4Ha3

∣

∣

∣

∣

H(1)
ν

(

k

aH

)∣

∣

∣

∣

2

− 1

2
√

k2a4 + m2a6

]

, m � H , k . aH . (4.19)
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Figure 3. The power spectrum of a scalar field of mass m2 = .1H2 on de Sitter space. The solid
line represents the non-renormalized result. The dashed line shows the renormalized result obtained
by using the standard prescription of adiabatic subtraction, i.e. by removing terms up to the second
adiabatic order. The dot dashed line represents the renormalized result obtained with the method of
the optimal truncation, i.e. removing, for superhorizon modes, only the zeroth order of the WKB series.

In figure 3 we show the non-renormalized power spectrum and the two versions of the
normalized one obtained by using the two different prescritions. As we can see the use of the
prescription [3, 4] eliminates the first of the “undesirable features” listed in the Introduction,
namely the fact that the standard prescription for adiabatic subtraction leads to a significant
running of the renormalized power spectrum for m � k/a . H. With the method of optimal
truncation on the other hand we get an almost constant spectrum.

4.3 A massless scalar in quasi-de Sitter, followed by radiation domination

We have shown in section 4.1 above that, by applying the prescription of [5, 6], the power
spectrum of a massless scalar in exact 3+1-dimensional de Sitter space is identically vanishing.
It is however easy to see that super-horizon modes for which k � a H are not evolving
adiabatically in this system, since

1

ω2

∣

∣

∣

∣

dω

dθ

∣

∣

∣

∣

= 2
aH

k
� 1 , for k � a H . (4.20)

It is therefore more interesting to consider the situation where at late times all modes
re-enter the horizon and are adiabatically evolving. Such a situation can be realized by
considering a background metric where a quasi-de Sitter phase is followed by a radiation
dominated Universe.

To study such a system, we consider a massless scalar field on the top of an FLRW
Universe whose scale factor evolution is given by

a(t) = 2 eHt (1 + H2t2)1/4

eHt + 2 (1 + H2t2)1/4
, (4.21)

which gives a de Sitter metric a(t) ∼ eHt for t � −1/H and radiation dominated cosmology
a(t) ∼ 2

√
Ht for t � 1/H. This choice of the form of a(t) also leads to Ḣ < 0 at all times,

as required by energy conditions.
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For a scale factor given by eq. (4.21), the proper frequency ωk(θ) = k a2(θ) has complex
zeros at θ = θc and θ = θ∗

c , corresponding to Ht = ±i, and we get

F
(0)
k = −i

∫ θ∗

c

θc

ωk(θ) dθ = −i k

∫ i

−i
a(t)2 dt

a(t)3
' 2.88

k

H
. (4.22)

Numerical evaluation shows that the Stokes line from θc to θ∗
c crosses the real axis at

a value of θ corresponding to t ' .34 H−1, which can be identified as the time at which
production of quanta of φ occurs.

We have computed numerically the spectrum of φ as a function of time. The bare
spectrum is shown, for t = 0 and t = 100 H−1 in figure 4. Note that, as expected, the power
spectrum converges to (H/2π)2 in the limit of long wavelengths, while it goes as k2/a2 at
short wavelengths.

In figure 5 we show, instead, the power spectrum for the field φ obtained by subtracting
a regularized optimally truncated version of W (t).

The regularization is built as follows. We define the functions W̃(2i)(t) through

W(2n)(t) = k

[

W̃(0)(t) +
W̃(2)(t)

k2
+

W̃(4)(t)

k4
+ . . . +

W̃(2n)(t)

k2n

]

, (4.23)

where W̃(0)(t) = a(t)2. Next, we define weighted averages of |W̃(2i)(t)| as

Ŵ(2i)(t) =

∫ ∞

−∞
|W̃(2i)(t + t1)| e−H2t2

1 dt1 , (4.24)

and the regularized Heaviside Θ functions as

ΘQ(t; 2m, 2n) =
1

2

[

1 + tanh

(

2Q
Ŵ(2m)(t) − Ŵ(2n)(t)

Ŵ(2m)(t) + Ŵ(2n)(t)

)]

, (4.25)

that converge to the Heaviside step function for Q → ∞. In our numerical evaluation we set
Q = 5.

Finally, the regularized optimal truncation of W (t) is obtained as

W optimal
reg (t) = k W̃(0)(t)Θ5(t; 2, 0)+k

(

W̃(0)(t)+
W̃(2)(t)

k2

)

Θ5(t; 0, 2)Θ5(t; 4, 2) (4.26)

+k

(

W̃(0)(t)+
W̃(2)(t)

k2
+

W̃(4)(t)

k4

)

Θ5(t; 0, 2)Θ5(t; 2, 4)Θ5(t; 6, 4)+ . . .

so that W optimal
reg (t) = k W̃(0)(t) for Ŵ(2)(t) � Ŵ(0)(t), and W optimal

reg (t) =

k

(

W̃(0)(t) +
W̃(2)(t)

k2

)

for Ŵ(0)(t) � Ŵ(2)(t) and Ŵ(2)(t) � Ŵ(4)(t) (i.e., Ŵ(2)(t) is a local

minimum of the Ŵ(2i)(t)), etc. . .

The weighted average Ŵ(2i)(t) is introduced to eliminate spurious effects originating

from the fact that the functions W̃(2i)(t) are generally oscillating, and therefore cross zero
and appear to be small even if they have a large amplitude, for the relevant values of time t.
The regularized Θ function is used to lead to a smooth spectrum.

As figure 5 shows, the use of this regularized optimal truncation eliminates the sin-
gularity in the power spectrum around k ' .5 H that emerges when one uses the second
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Figure 4. The unsubtracted power spectrum (in units of (H/2π)2) of a massless scalar in an expand-
ing Universe with the expression of the scale factor given by eq. (4.21). The spectrum is evaluated at
t = 0 (solid line) and at t = 100 H−1 (dashed). Modes with k & .9 H satisfy k/a > ȧ/a for the entire
evolution, so that they never cross the horizon. For those modes the power spectrum goes as k2/a2.

1 2 3
k/H

-3

-2
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1

4π 2

H
2

Pk
ϕ

Figure 5. The subtracted power spectra (in units of (H/2π)2) of a massless scalar in an expanding
Universe with the expression of the scale factor given by eq. (4.21). The spectra are evaluated at
t = 0. Solid: the spectrum obtained by subtracting a regularized version (see the main text leading
to eq. (4.26)) of the optimally truncated expression for W (t). Dashed: the spectrum obtained by
subtracting W(2)(t).

order adiabatic subtraction, which originates from the fact that for that value of k one has
W(2)(k, t = 0) ' 0.

On the other hand, the expression for W optimal
reg (t) rapidly converges to W(2)(k, t) as t

grows. In figure 6 we show the subtracted spectra for t = 100 H−1. However, already at
t = 5 H−1 the two subtracted spectra are indistinguishable.

5 Conclusions and discussion

In this work we have revisited the method of adiabatic subtraction for the renormalization of
the power spectrum of a massless and light scalar field in (quasi) de Sitter space, in flat slicing.
First, we have reviewed the equivalence between adiabatic subtraction and normal ordering
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Figure 6. The subtracted power spectra (in units of (H/2π)2) of a massless scalar in an expanding
Universe with the expression of the scale factor given by eq. (4.21). The specta are evaluated at
t = 100 H−1. The spectrum obtained by subtracting W optimal

reg (t) and that obtained by subtracting
W(2)(t) are, for this large value of t, numerically equivalent.

of the time-dependent creation/annihilation operators that instantaneously diagonalize the
Hamiltonian. This requires the proper frequency of the mode functions to be real at all times,
and we have found a definition of time that guarantees this condition to be satisfied.

The main question we have tackled is to what order one should truncate the WKB ex-
pansion of the adiabatic modes that have to be subtracted to provide the renormalized result.
The standard prescription [1, 2, 5–7] to truncate the WKB series to the lowest order that
allows to cancel all divergences, while having the advantage of leading to (relatively) simple
calculations, can generate artifacts at intermediate momenta [8]. An alternative option [3, 4]
is based on the fact that the WKB approximation is generally an asymptotic one, which
naturally results into truncating the WKB series to the value that gives the closest approxi-
mation to the “actual expression” of the Bogolyubov coefficient β, that has been argued to
take a universal form [20–22].

We applied these prescriptions to the massless and massive minimally coupled scalar
field on exact de Sitter space in flat slicing, and we have compared the resulting power
spectra. In the massless case, the fact the WKB series can be resummed implies that we do
not have particle production, and the renormalized power spectra turn out to vanish using
both prescriptions. This result, in line with those in [6, 28] is due to the fact that de Sitter
space in flat slicing, unlike de Sitter space in closed slicing, does not have a built-in infrared
cutoff, which is responsible for the growth 〈φ(x, t)2〉 ∝ H3 t.

In the massive case the results are quite different: optimal truncation requires, for
super-horizon modes k . a H, to remove only the zeroth order WKB contribution, leading
to the standard quasi scale-invariant spectrum, while the usual adiabatic renormalization
removes terms up to the second adiabatic order and leads to a significant running for scales
m � k/a . H. Subsequently, we applied our method to a more complicated system, a
massless scalar field which undergoes a phase of slow roll inflation followed by a radiation
dominated era. In this case, even though the field is massless, the power spectrum is non
vanishing and takes the standard expression ∼ (H/2π)2 at large scales, while at shorter scales
the prescription based on the optimal truncation of the WKB series eliminates some of the
artifacts that are generated by the standard second order truncation.
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The prescription to truncate the WKB expansion at its optimal order is justified by
the consideration that the process of particle production can be identified with the Stokes
phenomenon. The connection formula that extends the WKB approximation to the whole
complex plane is referring to asymptotic series truncated at their least terms. More recently,
it has been found that truncating the WKB series at the optimal order, as long as such an
optimal order is much larger than O(1), leads to a sum that approximates well the universal
behavior across the Stokes line found by Dingle and Berry [20–22]. This theory is effective
when the regions of non-adiabaticity in the complex plane are small enough. In this work,
we used the optimal truncation of the WKB series even when it happens at a low order,
i.e., when the thickness of the Stokes lines becomes comparable with their length or when
two regions of non-adiabaticity overlap. It would be interesting to see whether this choice is
justified by an argument analogous to that of [20–22].
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1 Introduction

The theory of inflation constitutes the dominant paradigm of primordial cosmology. Besides

solving the most important problems of the standard Hot Big Bang model, it is able to provide

an explanation, in excellent agreement with observations, for the origin of the temperature

anisotropies present in the Cosmic Microwave Background (CMB) radiation and of the density

fluctuations that characterize the large scale structure of the Universe. Among the many

different inflationary scenarios, axion inflation is one of those giving a satisfying solution

to the problem of UV sensitivity of the inflaton potential. In this model, proposed for the

first time in 1990 as natural inflation [1], the inflaton is a pseudo-Nambu-Goldstone Boson

that enjoys a (softly broken) shift symmetry, i.e., a symmetry under the transformation

ϕ → ϕ + const, which protects its potential against large radiative corrections.

The axionic inflaton is naturally coupled to gauge fields through the operator ϕFµνF̃ µν/f ,

where f is the axion decay constant. In the presence of such coupling, the rolling zero mode of

the inflaton acts as a source for the modes of the gauge field. As a result, quanta of the gauge

field are amplified into classical modes, which in turn source, through a process of inverse

decay, both scalar and tensor fluctuations. Since, due to the pseudoscalar nature of the

inflaton, only one of the two helicities of the gauge field experiences a tachyonic instability, the

spectra of the tensor modes of different helicities have different amplitudes. This scenario has

multiple phenomenological predictions, including nongaussianities [2], deviations from scale

invariance [3], formation of a population of primordial black holes [4], generation of primordial

chiral gravitational waves at CMB [5] or interferometer [6] frequencies, baryogenesis [7], as

well as the possible generation of cosmologically relevant magnetic fields [8, 9] — see [10]

for a review.

By comparing these phenomenological predictions with observations we can constrain

the relevant parameters characterizing the models of axion inflation. More specifically, there

are two significant observational lengthscales. At large scales, probed by CMB measurements,

the primary constraint arises from the non-observation of primordial nongaussianities for the

scalar fluctuations. In axion inflation the sourced scalar fluctuations are highly nongaussian.
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Consequently, the model can be viable only if the sourced component of scalar modes is

subdominant compared to that generated by the standard amplification of vacuum fluctuations.

This is equivalent to stating that the amplitude of the gauge field, which sources the scalar

and tensor fluctuations, must be relatively small. Therefore, the sourced component of tensor

fluctuations is also small at this stage.

At smaller scales, corresponding to modes that left the horizon closer to the end of

inflation, the situation becomes more interesting. For simple inflationary potentials, the

inflaton’s velocity increases as inflation progresses and therefore the population of gauge

quanta, whose amplitude depends exponentially on the inflaton’s velocity, becomes more

sizable towards the end of inflation. As a consequence, sourced gravitational waves of shorter

wavelengths, which are remarkably those probed by gravitational wave experiments, can

have a much larger amplitude and might even be directly detectable [6] by a variety of

observatories. Also in this regime we need the scalar fluctuations to remain bounded to avoid

an overproduction of primordial black holes [10, 11].

A natural follow-up to the recent observational evidence [12–14] of a stochastic gravi-

tational wave background (SGWB) is the search for anisotropies, in analogy to the scalar

anisotropies observed in the CMB (see, e.g., [15] for a recent analysis of LIGO/Virgo/KAGRA

and [16] for LISA’s reach in this respect). Study of these anisotropies can allow us to

distinguish between the astrophysical and cosmological origin of the SGWB. Furthermore,

cosmological tensor anisotropies may be correlated with the scalar anisotropies of the CMB

if they arise from the same underlying mechanisms [17]. Exploring such correlations can

give important information about the cosmological background of gravitational waves, thus

providing insights about the physics of the Early Universe. Reference [18] performed a study

of the statistics of these anisotropies while [19] studied the consequences of a non-trivial

primordial scalar-tensor-tensor nongaussianity on the energy density of gravitational waves.

In this work we compute the correlation between the curvature perturbation ζ(x) and the

energy density ΩGW (x) = ḣij(x) ḣij(x)/(12 H2
0 ) of the tensor modes within the framework of

axion inflation. The computation is conducted at frequencies tested by gravitational detectors,

and the correlator is normalized by both the square root of the scalar power spectrum and

the average value of ΩGW (x). The two point function receives two contributions, reflecting

the fact that scalar fluctuations are generated both from the vacuum, through the standard

amplification process, and by modes of the gauge field, through the inverse decay process.

More specifically, we will study the two following situations:

• the rolling inflaton has fluctuations that are generated by the standard mechanism of

amplification of vacuum fluctuations in an expanding Universe. The rolling inflaton

then sources quanta of the gauge field, which in turn source gravitational waves. The

fluctuations in the inflaton are thus imprinted in the fluctuations in the gravitational

waves. We study this correlator in section 3.1;

• the rolling inflaton sources quanta of the gauge field, which in turn source both scalar

fluctuations and gravitational waves. Since these modes are produced by the same

population of gauge modes, they are correlated. We study this correlator in section 3.2.
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As we will see, due to the smallness of the amplitude of the gauge field — and therefore,

of the sourced scalar fluctuations and gravitational waves — at CMB scales, the former

effect is generally dominant over the latter, and leads to a normalized correlator of the

order of 10−4 ÷ 10−2.

The correlator studied in this work is the one between scalar perturbations at CMB

scales, corresponding to modes that left the horizon early during inflation and gravitational

waves at interferometer scales, which correspond to modes that left the horizon later during

inflation. Even though these gravitational waves have relatively short (i.e., non cosmological)

wavelengths, their anisotropies are at large, cosmological scales.

During the last stages of axion inflation the large amplitude acquired by the gauge modes

implies that they can have strong backreaction effects on the inflating background. The

nonperturbative inflaton-gauge field dynamics, studied in numerous papers including [20–30],

is rich, complicated, and not yet fully understood. The production of gravitational waves,

although generated during the phase of strong backreaction, is treated at the perturbative

level. Reference [28] derived spectra of gravitational waves produced during this stage keeping

into account the nonperturbative dynamics of the inflaton-gauge field system, even if it

ignored inflaton inhomogeneities. Reference [31] performed an analogous study for the case

of an SU(2) gauge sector. The results of [28] suggest that, even though strong backreaction

effects complicate significantly the dynamics of the inflaton and of the gauge quanta, if the

inflaton evolution ϕ(t) is known, then the resulting gravitational wave spectra reflect quite

accurately the shape of the function ϕ̇(t). For the scope of our calculation, since we will

formulate our results in terms of ϕ̇(t) without referring to the specific dynamics that led

to that expression, our results should be valid even in the strong backreaction regime, at

least as long as the inflaton inhomogeneities are ignored. Moreover, there are reasons to

expect that our results will not change even once inflaton gradients are accounted for, since

causality will prevent the late strong dynamics from affecting physics at scales that have

left the horizon at much earlier times.

This paper is organized as follows. Section 2 contains a review of the amplification

process that quanta of gauge field undergo as the inflaton rolls down its potential, together

with the generation of curvature perturbations and of gravitational waves. Then, in section 3,

we calculate the two contributions to the correlator between scalar fluctuations and the

energy density of the gravitational waves: in subsection 3.1 we study the correlation of

gravitational waves with the amplified vacuum scalar fluctuations and in subsection 3.2 the

correlation of gravitational waves with sourced scalar fluctuations. In section 4 we discuss

our results and we conclude. Appendix A contains the details of the calculation leading

to the results in section 3.2.

2 Review of scalar and tensor perturbations from axion inflation

Our system consists of a pseudoscalar inflaton ϕ and a U(1) gauge field Aµ in interaction

with each other and with gravity through the action

S =

∫
d4x

√−g

[
M2

P

2
R − 1

2
∂µϕ ∂µϕ − V (ϕ) − 1

4
Fµν F µν − ϕ

8 f

ϵµνρλ

√−g
Fµν Fρλ

]
, (2.1)
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where g = det(gµν), Fµν = ∂µAν − ∂νAµ, f is a constant with dimensions of mass, R is

the Ricci scalar, and ϵµνρλ is the totally antisymmetric object defined by ϵ0123 = +1. We

will not make any assumption about the shape of the potential V (ϕ), other than it is flat

enough to be able to support inflation.

Concerning the metric, we will assume that it is of the form of de Sitter space in flat

slicing plus tensor perturbations (repeated latin indices are understood to be summed upon)

ds2 = a2(τ)
[
−dτ2 + (δij + hij(x, τ)) dxi dxj

]
,

a(τ) = − 1

H τ
, hii = ∂ihij = 0 . (2.2)

We perturb the inflaton as

ϕ(x, τ) ≡ ϕ0(τ) + δϕ(x, τ) , (2.3)

so that the curvature perturbation is given by ζ ≡ − H
φ̇0

δϕ. We will denote the derivative

with respect to conformal time τ by a prime and that with respect to the cosmic time t,

defined through dt = a(τ) dτ , by an overdot. We set the scale factor to be equal to unity

at the end of inflation, i.e., inflation will end at τe = −1/H.

We treat the homogeneous inflaton ϕ0(τ) and the scale factor a(τ) as background

quantities, and we work with the following canonically normalized perturbations

Aµ(x, τ) with A0(x, τ) = 0 , ∂iAi(x, τ) = 0 ,

Φ(x, τ) ≡ a(τ) δϕ(x, τ) ,

Hij(x, τ) ≡ MP

2
a(τ) hij(x, τ) . (2.4)

Neglecting the mass of the inflaton, our perturbed Lagrangian takes the form

L =

(
1

2
Φ′2 − 1

2
∂kΦ ∂kΦ +

a′′

2 a
Φ2
)

+

(
1

2
H ′

ij H ′
ij − 1

2
∂kHij ∂kHij +

a′′

2 a
Hij Hij

)

+

(
1

2
A′

i A′
i − 1

2
∂kAi ∂kAi − ϕ0

f
ϵijk A′

i ∂jAk

)

− Hij

a MP

[
A′

i A′
j − (∂iAk − ∂kAi) (∂jAk − ∂kAj)

]
− Φ

f a
ϵijk A′

i ∂jAk , (2.5)

where the first line describes the free scalar and free tensor perturbations, the second line

describes the free gauge field modes, and the last line contains the interactions that lead

to processes of the form AiAj → Hij and AiAj → Φ.

By varying the Lagrangian (2.5) with respect to Φ, Hij and Ai, we obtain the equations

of motion

Φ′′ − a′′

a
Φ − ∇2Φ +

1

f a
ϵijk A′

i ∂jAk = 0 , (2.6)

H ′′
ij − a′′

a
Hij − ∇2Hij +

1

a MP

[
A′

i A′
j − (∂iAk − ∂kAi) (∂jAk − ∂kAj)

]
= 0 , (2.7)

A′′
i − ∇2Ai − ϕ′

0

f
ϵijk ∂jAk = 0 . (2.8)
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The solution of eq. (2.6) splits into two parts: the solution of the homogeneous equation,

denoted as ΦV, and the particular solution, denoted as ΦS. The solution of the homogeneous

equation represents the usual vacuum fluctuations generated during inflation due to the

accelerated expansion of the background, while the particular solution is induced by the

inverse decay of the gauge fields. The homogeneous solution can be quantized through the

standard quantization of the free Lagrangian, using the first line of eq. (2.5), as

ΦV(x, τ) =

∫
dk

(2π)3/2
eikx

[
ΦV(k, τ) â(k) + Φ∗

V(k, τ) â†(−k)
]

,

ΦV(k, τ) ≡ 1√
2k

(
1 − i

kτ

)
e−ikτ , (2.9)

where the creation/annihilation operators â†(k)/â(k) satisfy the usual commutation relations[
â(k), â†(q)

]
= δ(k − q), [â(k), â(q)] =

[
â†(k), â†(q)

]
= 0.

The power spectrum of the curvature perturbation, Pζ , defined through the two point

function

⟨ζ(k) ζ(q)⟩ ≡ 2π2

k3
Pζ(k) δ(k + q) , (2.10)

results in the sum of the power spectra corresponding to the homogeneous and the particular

solutions, denoted as Pζ, V and Pζ, S, respectively.

Specifically, the homogeneous solution, corresponding to the scalar perturbations associ-

ated to the mode functions (2.9), yields, at the end of inflation and for large scales,

Pζ, V =
k3

2π2

H2

ϕ̇2
0

|ΦV(k, τe)|2 −−−→
k≪H

H4

4π2 ϕ̇2
0

. (2.11)

An analogous discussion holds also for the tensor perturbations Hij(x, τ), whose vacuum

component gives rise to Ph, V = 2 H2

π2 M2

P
.

In order to find the sourced components of the scalar and tensor power spectra we need

to take into account the generation of the electromagnetic field by the rolling pseudoscalar.

In order to do that, we start with the quantization of the vector field Ai(x, τ):

Ai(x, τ) =

∫
dk

(2π)3/2

∑

λ=±
e λ

i (k̂) eikx
[
Aλ(k, τ) âλ(k) + A∗

λ(k, τ) â†
λ(−k)

]
, (2.12)

where the helicity projectors e±
i (k̂) satisfy the relations

ki e λ
i (k̂) = 0 , e λ

i (k̂)∗ = e−λ
i (k̂) = e λ

i (−k̂) ,

iϵijkkje λ
k (k̂) = λ k e λ

i (k̂) , e λ
i (k̂)e λ′

i (k̂) = δλ, −λ′ .
(2.13)

Inserting the decomposition (2.12) into eq. (2.8) we obtain the equation of motion for the

mode functions Aλ(k, τ),

A′′
λ(k, τ) +

(
k2 − λ

ϕ′
0

f
k

)
Aλ(k, τ) = 0 , (2.14)
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which can be solved explicitly in terms of special functions if ϕ̇0 = constant. However, we

do not need the exact solution. Defining

ξ ≡ ϕ̇0

2 f H
, (2.15)

we can rewrite eq. (2.14) as

d2 Aλ

d(k τ)2
+

(
1 + 2 λ

ξ

k τ

)
Aλ = 0 , (2.16)

so that, assuming ξ > 0, the helicity λ = −1 in eq. (2.16) has always real frequencies that are

adiabatically evolving (remember that τ < 0). As a consequence, the mode A− stays in its

vacuum and we will neglect it from now on. On the other hand, the positive helicity mode A+

has imaginary frequencies for a range of values of kτ and is therefore exponentially amplified.

In the WKB approximation, the leading term in the solution of the tachyonic modes

of A+ reads [9]

A+(k, τ) ≃ 1√
2 k

(
−k τ

2 ξ

)1/4

e−2
√

−2ξkτ+π ξ , (2.17)

which is strictly speaking valid only in the range [2] 1
8 ξ ≲ |k τ | ≲ 2 ξ (we will assume ξ ≳ O(1)

throughout this paper). However, since the momenta in this range dominate the contributions

to the observables we will be interested in, we will apply the expression (2.17) to the entire

range 0 < |k τ | < ∞. Eq. (2.17) shows that the λ = + helicity of the gauge field is amplified

by a factor eπξ, which can be very large even for moderate values of ξ.

We are now in position to compute the leading order contribution of the amplified gauge

field to the curvature perturbation ζ. Taking the Fourier of eq. (2.6), we obtain the equation

Φ′′(q, τ) + q2Φ(q, τ) − 2

τ2
Φ(q, τ) − i

Hτ

f
ϵijk

∫
dp

(2π)3/2
A′

i(p, τ) (q − p)jAk(q − p, τ) = 0 .

(2.18)

The particular solution of this equation, ΦS, which corresponds to the sourced component

of scalar fluctuations, can be found using the retarded propagator

ΦS(q, τ) ≡ i

∫
dτ ′ Gq(τ, τ ′)

Hτ ′

f
ϵijk

∫
dp

(2π)3/2
A′

i(p, τ ′) (q − p)jAk(q − p, τ ′) . (2.19)

Given that we are assuming an exact de Sitter background, the retarded propagator can

be written explicitly as

Gk(τ, τ ′) =
(1 + k2 τ τ ′) sin(k (τ − τ ′)) + k (τ ′ − τ) cos(k (τ − τ ′))

k3 τ τ ′ Θ(τ − τ ′) , (2.20)

where Θ denotes the Heaviside step function.

The sourced component of the scalar fluctuations induces an additional contribution

to the power spectrum of the curvature perturbation, that for ξ ≳ 3, is well approximated

by the formula [2]

Pζ, S =
k3

2π2

H2

ϕ̇2
0

|ΦS(k, τe)|2 −−−→
k≪H

4.8 × 10−8 H8

ϕ̇4
0

e4πξ

ξ6
. (2.21)
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A commonly used measure of nongaussianity is the parameter fNL, which measures the

amplitude of the bispectrum of the curvature perturbation and is defined via

⟨ζ(k1) ζ(k2) ζ(k3)⟩ =
3

10
(2π)5/2 fNL(k1, k2, k3) P2

ζ δ(k1 + k2 + k3)
k3

1 + k3
2 + k3

3

k3
1 k3

2 k3
3

. (2.22)

For single field, slow-roll inflation, the bispectrum has a small amplitude, and fNL is

of the order of the slow-roll parameters [32]. On the other hand, the sourced component

of the curvature perturbation, since it results from a 2 → 1 process, obeys an intrinsically

nongaussian statistics. Since such nongaussianities originate from some sub-horizon dynamics,

the bispectrum is peaked on equilateral configurations, i.e., for k1 = k2 = k3, with [2]

f equil
NL ≃ 7.1 × 105 H12

ϕ̇6

e6πξ

ξ9
, (2.23)

for ξ ≳ 3 and in the regime Pζ, S ≪ Pζ, V. In the regime of large ξ, where Pζ, S ≫ Pζ, V, f equil
NL

converges to a value of the order of 104, which exceeds by a O(103) factor the constraints from

Planck. This limits severely the value ξCMB taken by ξ when Cosmic Microwave Background

scales are leaving the horizon, leading to ξCMB ≲ 2.5 [33, 34].

The excited modes of the vector field are also a source of gravitational waves. To leading

order, production of gravitational waves via this process is described by the equation

H ′′
ij(q, τ) + q2Hij(q, τ) − 2

τ2
Hij(q, τ)

=
H τ

MP

∫
dp

(2π)3/2

(
A′

i(p, τ) A′
j(q − p, τ) − Fik(p, τ)Fjk(q − p, τ)

)
, (2.24)

where Fij(p, τ) ≡ i piAj(p, τ) − i pjAi(p, τ). As a consequence of the functional dependence

of A+ on k τ and on ξ, the electric field is stronger than the magnetic field by a factor ∼ ξ ≳ 1.

For this reason we will neglect the term Fik(p, τ)Fjk(q − p, τ) in eq. (2.24). Using again

the Green’s function (2.20) we eventually obtain

Hij, S(q, τ) ≡
∫

dτ ′ Gq(τ, τ ′)
H τ ′

MP

∫
dp

(2π)3/2
A′

i(p, τ ′) A′
j(q − p, τ ′) . (2.25)

The resulting power spectrum for the tensor modes reads [5]

Ph = Ph, V + Ph, S ≃ 2 H2

π2 M2
P

+ 8.7 × 10−8 H4

M4
P

e4πξ

ξ6
. (2.26)

It is worth stressing that the sourced component of the gravitational waves is almost fully chiral,

as a consequence of the fact that only the + helicity of the gauge field is excited. While this

fact can lead to a rich and interesting phenomenology, we will not be concerned with it here.

The constraint on the parameter ξ coming from the limits on nongaussianities implies

that Ph, V ≫ Ph, S. This constraint, however, holds only for the value ξCMB taken by ξ when

CMB scales left the horizon. The quantity ξ ∝ ϕ̇0/H remains approximately constant in

a slow-roll inflationary background, but it shows small time variations at higher orders in

the slow-roll parameters. Therefore, we consider it as an adiabatically evolving quantity,

– 7 –



J
C
A
P
1
0
(
2
0
2
4
)
0
2
4

i.e. we treat it as constant when studying the production of gauge fields at a particular

moment during inflation (eq. (2.17)), but we must take into account its variation, typically

an increase, when comparing two distinct stages of inflation. Since the sourced component

of the gravitational wave spectrum has an exponential dependence on ξ, it is possible that

at later times Ph, V is actually overwhelmed by Ph, S. We will denote by ξINT > ξCMB the

value taken by ξ at this later stage, where the subscript INT refers to the fact that we are

thinking of frequencies probed by gravitational interferometers. In particular, this leads to

the possibility that gravitational waves sourced by the vector field have such large amplitude

to be directly detectable by current or future gravitational detectors [6].

In the next section we will describe two mechanisms that induce correlation between the

curvature perturbation and the gravitational waves produced in axion inflation.

3 The correlator between scalar fluctuations and gravitational waves

We define the normalized correlator of scalar fluctuations and gravitational waves as

CΩζ(k, t0) ≡ 1

ΩINT
GW

√
PCMB

ζ

k3

2π2

∫
dy e−iky⟨ΩGW (x + y, t0) ζ(x, t0)⟩

=
1

ΩINT
GW

√
PCMB

ζ

k3

2π2
⟨ΩGW (k, t0) ζ(−k, t0)⟩′ , (3.1)

where the symbol ⟨. . .⟩′ denotes the correlator stripped of the Dirac delta associated to

momentum conservation and t0 indicates the present value of cosmic time. Moreover, ΩINT
GW

denotes the fractional energy in gravitational waves at interferometer frequencies, whereas

PCMB
ζ denotes the amplitude of scalar perturbations at CMB scales. Given the weak scale

dependence of PCMB
ζ , from now on we will drop the index CMB from Pζ , and will treat this

quantity as constant. On the other hand, axion inflation can lead to a strong scale dependence

of the energy in gravitational waves, which cannot be ignored in our analysis.

To proceed we observe that ΩGW (k) = 1
12 H2

0

∫ dp

(2π)3/2
|k − p| p hij(k − p, t0)hij(p, t0).

The current amplitude hij(k, t0) is related to the primordial amplitude calculated at the end of

inflation hij(k, te) through the transfer function T (k), which is proportional to k−1 for modes

that have re-entered the horizon during radiation domination, and to k−2 for modes that

have re-entered the horizon during matter domination. Putting everything together, we have

CΩζ(k, t0) =
1

12 H2
0 ΩINT

GW

√Pζ

k3

2π2

∫
dp

(2π)3/2
T̂ (|k − p|) T̂ (p)

× ⟨hij(k − p, te) hij(p, te) ζ(−k, te)⟩′ , (3.2)

where we have defined T̂ (p) ≡ p T (p) and we have replaced the amplitude of the scalar

perturbations with its value at the end of inflation.

The correlator CΩζ(k, t0) receives two different contributions: the first is the result of

the correlation of gravitational waves with the amplified vacuum scalar fluctuations; the

second is due to the correlation of gravitational waves with the sourced scalar fluctuations.

Below we will examine the two cases separately.
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3.1 Correlation with amplified vacuum scalar fluctuations

The spectrum Ph, S of gravitational waves sourced by the gauge field depends on the values of

ϕ and ϕ̇ evaluated approximately at the time when the tensor modes under consideration left

the horizon, and where, in slow-roll approximation, ϕ̇ is a function of ϕ. As a consequence,

long wavelength perturbations in the values of ϕ will lead to correlated long wavelength

perturbations in the spectrum of gravitational waves.

To first order in the vacuum-amplified fluctuation δϕV of the inflaton, and in the limit in

which the wavelength of δϕV is much larger than that of hij, S, we have

hij, S(x, ϕ(x)) = hij, S(x, ϕ0) +
∂hij, S(x, ϕ0)

∂ϕ0
δϕV(x) , (3.3)

where the first term does not contribute to CΩζ . Since hij, S(x, ϕ0) ∝ e2πξ, we can also write

hij, S(x, ϕ(x)) = hij, S(x, ϕ0)

(
1 − 2π

d ξ

dϕ0

ϕ̇0

H
ζV(x)

)
, (3.4)

where we used δϕ = −ϕ̇0 ζ/H. We thus obtain the first contribution to the correlator between

ΩGW and ζV, that we denote as (CΩζ)V, and which reads

(CΩζ)V = − 1

12 H2
0 ΩINT

GW

√Pζ

k3

2π2

∫
dp dq

(2π)3
T̂ (|k − p|) T̂ (|p − q|)

× 4π
ϕ̇0

H

d ξ

dϕ0
⟨hij, S(k − p, te) hij, S(p − q, te) ζV(q, te) ζV(−k, te)⟩′ . (3.5)

Assuming ϕ̇0 > 0, V ′ < 0, we have

ξ ≡ ϕ̇0

2 fH
≃ − V ′

6 fH2
= −M2

P

2 f

V ′

V
, (3.6)

so that

dξ

dϕ0
= −M2

P

2 f

(
V ′′

V
− V ′2

V 2

)
=

(
ϵ − η

2

)
1

f
, (3.7)

where we have defined as usual the slow-roll parameters as

ϵ =
M2

P

2

V ′2

V 2
, η = M2

P

V ′′

V
. (3.8)

The correlator therefore becomes

(CΩζ)V = −
√Pζ

12 H2
0 ΩINT

GW

∫
dp

p3
ξ (2ϵ − η) T̂ (p)2 Ph, S(p) . (3.9)

To proceed we note that, since typically the amplitude of the induced tensor modes

increases as inflation progresses, the integral in eq. (3.5) is dominated by the largest frequencies,

that are typically close to those probed by the interferometers. For those wavelengths, that

re-entered the horizon well into the radiation dominated regime, we have

T̂ (p)2 Ph, S(p)

12 H2
0 ΩINT

GW

=
Ph, S(p)

Ph, S(pINT)
. (3.10)
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Using again the fact that the integral in eq. (3.5) is dominated by values of p of the order

of pINT, we can estimate

(CΩζ)V ≃ −4π ξ ∆N∗ (2ϵ − η)
√

Pζ , (3.11)

where both ξ and the slow-roll parameters ϵ and η are evaluated at the time when the scales

probed by interferometers have left the horizon. In eq. (3.11) the parameter ∆N∗ accounts for

the number of efoldings during which the tensor power spectrum is approximately constant.

Numerical simulations indicate that this is the case in the strong backreaction regime, which

usually lasts ∆N∗ ≃ 10 ÷ 30 efoldings. At this stage the parameter ξ takes values that are

typically of the order of 5 ÷ 10. The quantity (2ϵ − η) has to be smaller than unity and

is typically of the order of 10−2 ÷ 10−1. So by putting everything together we obtain that

(CΩζ)V is typically of the order of 10−4 ÷ 10−2.

3.2 Correlation with sourced scalar fluctuations

In order to calculate the correlator between the sourced scalar and tensor fluctuations, that we

denote as (CΩζ)S, we use eqs. (2.4), (2.19) and (2.25) to find ⟨hab, S(k1, τ) hab, S(k2, τ) ζS(k3, τ)⟩
in terms of the canonically normalized perturbations as

⟨hab, S(k1, τ) hab, S(k2, τ) ζS(k3, τ)⟩

= − 4 H(τ)

M2
P ϕ̇0(τ) a3(τ)

⟨Hab, S(k1, τ) Hab, S(k2, τ) ΦS(k3, τ)⟩

=
4 H(τ)

M4
P ϕ̇0(τ) a3(τ) f

∫ τ

−∞

dτ1

a(τ1)

dτ2

a(τ2)

dτ3

a(τ3)
Gk1

(τ, τ1) Gk2
(τ, τ2) Gk3

(τ, τ3)

×
∫

dq1 dq2 dq3

(2π)9/2
e+

a (q̂1) e+
b (k̂1 − q1) e+

a (q̂2) e+
b (k̂2 − q2) e+

i (q̂3) e+
i (k̂3 − q3) |k3 − q3|

× ⟨A′
+(q1, τ1) A′

+(|k1 − q1|, τ1) A′
+(q2, τ2) A′

+(|k2 − q2|, τ2) A′
+(q3, τ3) A+(|k3 − q3|, τ3)⟩ ,

(3.12)

where we have assumed that only the positive helicity photons contribute because, from

eq. (2.14), A+ is the only helicity that is amplified.

Using Wick’s theorem to decompose the last line of eq. (3.12) and inserting it back

into (3.2) we obtain

(CΩζ)S =
k3 H(τ)

6 H2
0 π2 M4

P ϕ̇0(τ) a3(τ) f ΩINT
GW

√Pζ

∫
dp

(2π)3/2

∫ τ

−∞

dτ1

a(τ1)

dτ2

a(τ2)

dτ3

a(τ3)

× Gk1
(τ, τ1) Gk2

(τ, τ2) Gk3
(τ, τ3)

∫
dq

(2π)9/2
T̂ (|k − p|) T̂ (p) A(q, k1 − q, k2 + q)

×
(

|k2 + q| A′
+(q, τ1) A′

+(|k1 − q|, τ1) A′
+(q, τ2) A′

+(|k1 − q|, τ3)

× A′
+(|k2 + q|, τ2) A+(|k2 + q|, τ3)

+ |k1 − q| A′
+(q, τ1) A′

+(q, τ2) A′
+(|k1 − q|, τ1) A+(|k1 − q|, τ3)

× A′
+(|k2 + q|, τ2) A′

+(|k2 + q|, τ3)

)
, (3.13)
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where k1 = k − p, k2 = p and k3 = −k, and where we have collected the angular part

into the expression A:

A(k1, k2, k3) =

δac δbd ((e+
a (k̂1) e+

c (−̂k1) e+
b (k̂2) e+

i (−̂k2) e+
d (k̂3) e+

i (−̂k3) + (a ↔ b)) + (c ↔ d)) .

Using the explicit form of the gauge field (2.17), the expression (3.13) becomes

(CΩζ)S = (3.14)

− k3 H4(τ)

3 × 29 π8 H2
0 M4

P ϕ̇0(τ) f a3(τ) ΩINT
GW

√Pζ

∫
dp T̂ (|k − p|) T̂ (p)

×
∫ τ

−∞
dτ1 dτ2 dτ3 ξ

1/2
1 ξ

1/2
2

√
τ1 τ2 τ3 G|k−p|(τ, τ1) Gp(τ, τ2) Gk(τ, τ3)e2π(ξ1+ξ2+ξ3)

×
∫

dq A(q, k − p − q, p + q)q1/2 |k − p − q|1/2 |p + q|1/2(|k − p − q|1/2 + |p + q|1/2)

×e−2
√

−2 ξ1 q τ1−2
√

−2 ξ1 |k−p−q| τ1−2
√

−2 ξ2 q τ2−2
√

−2 ξ2 |p+q| τ2−2
√

−2 ξ3 |p+q| τ3−2
√

−2 ξ3 |k−p−q| τ3 ,

where we have also accounted for the adiabatic time variation of the parameter ξ, as we

are considering the entire inflationary stage, and we have denoted ξi ≡ ξ(τi). In order to

perform the calculation we set the time at the end of inflation to be τe = −1/H. Since

we are interested in modes that are well outside of the horizon at the end of inflation, we

will assume k/H → 0. The dependence of the integrand on e−2
√

−2 ξ1 τ1

(√
q+

√
|k−p−q|

)
with

ξ1 ≫ 1 implies that we can set |k − p| |τ1| ≪ 1 in the propagator, and we can approximate

G|k−p|(τ, τ1) ≃ −τ2
1 /(3 τ). A similar argument applies to the other two propagators which are

approximated as Gp(τ, τ2) ≃ −τ2
2 /(3 τ) and Gk(τ, τ3) ≃ −τ2

3 /(3 τ). As a consequence, the de-

pendence of the integrand on τ1, τ2 and τ3 takes the form τ
5/2
1 e−2

√
−2 ξ1 τ1

(√
q+

√
|k−p−q|

)
+2πξ1 ,

τ
5/2
2 e−2

√
−2 ξ2 τ2

(√
q+

√
|p+q|

)
+2πξ2 and τ3

3 e−2
√

−2 ξ3 τ3

(√
|p+q|+

√
|k−p−q|

)
+2πξ3 respectively. To

proceed with the calculation, we need to know the explicit form of the model-dependent

function ξ(τ). Without choosing a particular model, we can still estimate the integral by

assuming that ξ has a weak dependence on τ . In this case we see that the integral is

dominated by values of |τ1|, |τ2| and |τ3| belonging respectively to a relatively narrow window

around (
√

q +
√

|k − p − q|)−2, (
√

q +
√

|p + q|)−2 and (
√

|p + q| +
√

|k − p − q|)−2. We

can therefore approximate

ξ1 = ξ
(
τ ≃ −

(√
q +

√
|k − p − q|

)−2)
,

ξ2 = ξ
(
τ ≃ −

(√
q +

√
|p + q|

)−2)
,

ξ3 = ξ
(
τ ≃ −

(√
|p + q| +

√
|k − p − q|

)−2)
, (3.15)

which are now momentum-dependent. Using the expression

∫ ∞

0
dx xn−1 e−a

√
x =

2

a2n
Γ(2n) , (3.16)
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we obtain

(CΩζ)S =
k3 H7 Γ(7)2 Γ(8)

239 × 34 H2
0 π8 M4

P ϕ̇0(τ) f ΩINT
GW

√Pζ

∫
dp dq

e2π(ξ1+ξ2+ξ3)

ξ3
1 ξ3

2 ξ4
3

× T̂ (|k − p|) T̂ (p) (3.17)

× A(q, k − p − q, p + q) q1/2 |k − p − q|1/2 |p + q|1/2

(
√

q +
√

|k − p − q| )7 (
√

q +
√

|p + q| )7 (
√

|p + q| +
√

|k − p − q| )7
.

The computation of the remaining six-dimensional integral is complicated, again, by the

fact that the function ξ(τ) is model dependent. Even if the time dependence is weak (i.e.,

slow-roll implies that dξ/dt ≪ H ξ), we cannot neglect it, because ξ appears in exponents.

Moreover, ξ is in general increasing during inflation. The time- (and therefore p- and q-)

dependence in the exponent leads the coefficient e2π(ξ1+ξ2+ξ3) to be an increasing function of

the integration variables. On the other hand, the factors (. . .)−7 × (. . .)−7 × (. . .)−7 in the

denominator of eq. (3.17) give a contribution that is peaked at small values of |p| and |q|,
i.e. |p| ≈ |q| ≈ k. The result of the integral will thus depend on whether it is dominated

by |p| ≈ |q| ≈ k or by the largest values of |p| and |q|.
To proceed with our estimates, we assume that the function ξ(τ) is monotonically

increasing, which, as we said, is what typically happens. It will take a value ξ(τ = −1/k) ≡ ξk

when scales with comoving wavenumber k, leave the horizon, Nk efoldings before the end

of inflation. In particular, we have in mind the case where k ≃ kCMB, with NCMB ≃ 60 (as

noted above, observations constrain ξCMB ≲ 2.5 [34]). At a later time, denoted by τBR, i.e.

NBR = log(−HτBR) efoldings before the end of inflation, the system gets into the strong

backreaction regime, and ξ takes the value ξ = ξBR. The behavior of the system in this regime

is still object of active research, but it is reasonable to assume that ξ will be approximately

constant for τ > τBR, so that the integral does not receive significant contributions by the

values of p and q corresponding to scales that left the horizon after τBR.

As we show in the appendix, the integral is dominated by |p| ≈ |q| ≈ k if ξBR−ξk ≲ (Nk−
NBR)/(2π), and by |p| ≈ |q| ≈ −1/τBR otherwise. Let us examine these two cases separately.

3.2.1 ξBR − ξk ≲ Nk−NBR

2π

In this case the integral is dominated by |p| ≈ |q| ≈ k, so that we can set ξ1 ≃ ξ2 ≃ ξ3 ≡ ξk

everywhere. Moreover, since we are assuming that k is at CMB scales, it corresponds to

wavenumbers that reentered the horizon during matter domination, so that we can assume

T̂ (k) ≃ k̄2/k, where k̄2 ≡ 3
4
√

2
keq H0

√
Ωrad ≃ (.5 H0)2, with keq being the scale that reentered

the horizon during matter-radiation equality [35]. We are thus left with

(CΩζ)S =
H7 Γ(7)2 Γ(8) k̄4

239 × 34 π8 H2
0 M4

P ϕ̇0 f ΩINT
GW

√Pζ

e6πξk

ξ10
k

(3.18)

× k3
∫

dp dq

p |k − p|
A(q, k − p − q, p + q) q1/2 |k − p − q|1/2 |p + q|1/2

(
√

q +
√

k − p − q)7 (
√

q +
√

p + q)7 (
√

|p + q| +
√

|k − p − q)7
,
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where the integral on the second line can be computed numerically, using

A(k1, k2, k3) =
1

4

(
2 + 3 (k̂2 · k̂3)2 − 5 k̂2 · k̂3 + (k̂1 · k̂3)2 + (k̂1 · k̂2)2

− k̂1 · k̂3 + k̂1 · k̂2 − (k̂1 · k̂3)(k̂1 · k̂2) − (k̂2 · k̂3)(k̂1 · k̂2)

+ (k̂2 · k̂3)(k̂1 · k̂3) − (k̂1 · k̂2)(k̂1 · k̂3)(k̂2 · k̂3) − i (k̂1 · k̂2 − k̂1 · k̂3

− k̂2 · k̂3 + 1) ϵdil k̂1d k̂2i k̂3l

)
. (3.19)

One thus obtains

(CΩζ)S (k) ≃ 6 × 10−12 H7 k̄2

H2
0 M4

P ϕ̇0 f ΩINT
GW

√Pζ

e6π ξk

ξ10
k

k̄2

k2
. (3.20)

After substituting
√Pζ ≃ √Pζ, V = H2/(2π ϕ̇0) and ΩINT

GW ≃ Ω0

rad

24 Ph,S(kINT) [35], with

Ω0
rad ≃ 8.2 × 10−5 and Ph,S(kINT) from (2.26), we obtain the simple form

(CΩζ)S ≃ 8
H2

0

k2

H

f
e6π ξk−4π ξINT

ξ6
INT

ξ10
k

. (3.21)

Finally, if k is at CMB scales, we use eq. (2.23) together with the measured amplitude of

the scalar perturbations Pζ, V ≃ 2 × 10−9 to obtain

(CΩζ)S ≃ 600
H2

0

k2
(f equil

NL )1/3 e−4π(ξINT−ξk) ξ6
INT

ξ6
k

, (3.22)

which despite the O(103) coefficient in front, and assuming the factor k̄2

k2 (f equil
NL )1/3 to be

of the order of the unity, is exponentially small. For instance, assuming ξk ≃ 2.5 (which

is the largest value of ξk allowed by non-observation of nongaussianities in the CMB) and

ξINT ≃ 5, which is on the lower end of the values found in numerical studies for ξ in the

strong backreaction regime, the factor e−4π(ξINT−ξk) ξ6

INT

ξ6

k
evaluates to approximately 10−11,

making this dimensionless, normalized correlator tiny.

3.2.2 ξBR − ξk ≳ Nk−NBR

2π

In this case the integral is dominated by the scales that left the horizon when ξ attained its

largest value at the beginning of the strong backreaction regime. Since we are interested

in largest value of the momenta, we consider only wavenumbers that reentered the horizon

during radiation domination. The integral

∫
dp dq

A(q, k − p − q, p + q) q1/2 |k − p − q|1/2 |p + q|1/2

(
√

q +
√

k − p − q)7 (
√

q +
√

p + q)7 (
√

|p + q| +
√

|k − p − q)7
, (3.23)

is estimated in the appendix, and it evaluates to O(10−2) e6π ξBR/k3
BR. As a consequence

we obtain the result

(CΩζ)S (k) ≃ O(10−2)
k3

k3
BR

H

f

e2π ξBR

ξ4
BR

. (3.24)
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In this case the correlator contains an exponentially large factor (for typical values of

ξBR ≈ 5, one has e2π ξBR = O(1013)) that is however suppressed by a volume factor k3/k3
BR

equal to the inverse of the number of patches of size ∼ k−1. Given that typically strong

backreaction kicks in only ≈ 10 efoldings before the end of inflation (see however [28], where

this occurs as early as ≈ 40 efoldings before the end of inflation), the suppression factor is

typically of the order of e−150 ≈ 10−65 (!), making this correlator, also in this regime, tiny.

4 Discussion and conclusions

An important component of current and future gravitational wave research is the detection

and characterization of the stochastic gravitational wave background. This background may

originate from astrophysical sources or have a cosmological origin. Specifically, identifying

a cosmological gravitational wave background will provide important information about

the very early universe.

A powerful approach to distinguish between astrophysical and cosmological backgrounds

involves studying their anisotropies. Notably, it has been shown that these anisotropies are

correlated with the anisotropies in the CMB [36, 37]. The exploration of such correlations

can significantly contribute to the interpretation of the CMB and SGWB measurements.

In the present paper we have investigated the correlator between the curvature per-

turbation and the energy density of the gravitational waves, computed today, within the

axion inflation model. In this model, scalar fluctuations are generated through two distinct

mechanisms: first, from the vacuum via the standard amplification process, and second, as a

consequence of the production of gauge fields through a process of inverse decay. Consequently,

the correlator exhibits two distinct components.

Our analysis shows that the dominant contribution is provided by the correlator with

the amplified vacuum fluctuations of the inflaton, that we examined in section 3.1. Our main

result, eq. (3.11), shows that the normalized correlator between ΩGW and ζ could be as large

as O(10−2). The formalism of [38–40] can then be applied to derive potentially observable

quantities. The actual observability of such correlators, subject to instrumental noise as well

as to the intrinsic variance of the isotropic component [41, 42], will depend on the amplitude

of the anisotropies in the gravitational wave spectra. Such an amplitude is encoded in the

correlator ⟨ΩGW(x) ΩGW(y)⟩, whose calculation, in the model of axion inflation, includes the

evaluation of the gauge field’s eight-point function — a calculation that we leave to future work

(see however [40] for work along this direction). Anisotropies might be large. For instance, the

lattice study of [43] showed that the spectrum of gravitational waves induced by preheating

at the end of inflation display anisotropies with an amplitude of the order of ∼ 10−2.
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A Finding the dominant contribution to the integral in eq. (3.17)

In this appendix we discuss how to evaluate the integral in eq. (3.17)

I(k, τ) =

∫
dp dq e2π(ξ1+ξ2+ξ3) (A.1)

× A(q, k − p − q, p + q) q1/2 |k − p − q|1/2 |p + q|1/2

(
√

q +
√

k − p − q)7 (
√

q +
√

p + q)7 (
√

|p + q| +
√

|k − p − q)7
,

where the quantities ξ1, ξ2 and ξ3 are given in eq. (3.15).

As discussed in the main body of the paper, the integral I(k, τ) includes a factor

(containing inverse powers of p and q) that decreases as p and q increase, and a factor

∝ e2π(ξ1+ξ2+ξ3) that is, on the other hand, an increasing function of those variables. To

estimate which contribution dominates the integral we model the function ξ(τ) as

ξ(τ) =

{
ξBR + δ log(τBR/τ) , τ < τBR ,

ξBR , τ > τBR ,
(A.2)

where τBR < 0 corresponds to the time when the produced quanta of gauge field start to

backreact strongly on the inflating background. This rough modeling of the function ξ(τ)

has the sole purpose of indicating which range of values of p and q dominate the integral in

eq. (3.17). Given that in this parameterization ξ is constant for τ > τBR, the integral will

receive a subdominant contribution from momenta satisfying |p τBR| ≳ 1, |q τBR| ≳ 1, so we

will limit our integrations to p, q ≲ 1/|τBR| ≡ kBR. Moreover, since the strong backreaction

regime will kick in relatively late during inflation, when the scales that reenter during radiation

domination are leaving the horizon, we can set T̂ = constant in this regime, and thus ignore

the effects of the transfer function in this analysis.

We present here only an analysis of the contribution to I(k, τ) given by the range of

momenta where p ≳ k. We have checked that the contribution from p ≲ k has no significant

effect. To start with, we estimate the integral in dq which is composed by three different

relevant momentum intervals

∫
dq =

(∫ k

0
+

∫ p

k
+

∫ kBR

p

)
dq q2

∫
dΩq , (A.3)

and we subsequently estimate the integrals in dp, using

∫
dp =

∫ kBR

k
dp p2

∫
dΩp . (A.4)

After performing the integrals in dq and on the solid angles dΩp, dΩq, we obtain

I(k, τ) ≃
∫ kBR

k
dp p2(A1 + A2 + A3) , (A.5)
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with

A1 ≃ .9 × e6πξBR

k6πδ
BR

p6πδ− 19

2 k7/2 ,

A2 ≃ .9 × e6πξBR

k6πδ
BR

p6πδ− 19

2 (p7/2 − k7/2) ∼ e6πξBR

k6πδ
BR

p6πδ− 19

2 p7/2 ,

A3 ≃ 8 × 10−6

δ − 1/π

e6πξBR

k6πδ
BR

(−p6πδ−6 + kBR
6πδ−6)

∼ 8 × 10−6

|δ − 1/π|
e6πξBR

k6πδ
BR

×
{

kBR
6πδ−6 , if δ > 1/π ,

p6πδ−6 , if δ < 1/π .
(A.6)

Finally, performing the integral on p we have I = I1 + I2 + I3, with

I1 ≃ 5 × 10−2

|δ − 13/(12π)|
e6π ξBR

k3
×
{

(k/kBR)13/2 , if δ > 13/(12π) ,

(k/kBR)6πδ , if δ < 13/(12π) ,

I2 ≃ 5 × 10−2

|δ − 1/(2π)|
e6π ξBR

k3
×
{

(k/kBR)3 , if δ > 1/(2π),

(k/kBR)6π δ , if δ < 1/(2π) ,

I3 ≃ 3 × 10−6

|δ − 1/π|
e6π ξBR

k3
×





(k/kBR)3 , if δ > 1/π,
0.2

|δ−1/(2π)| (k/kBR)3 , if 1/(2π) < δ < 1/π,
0.2

|δ−1/(2π)| (k/kBR)6π δ , if δ < 1/(2π) .

(A.7)

In particular, we find that for δ < 1
2π the correlator is proportional to the sixth power of

the amplitude of the gauge field when the scale k left the horizon, i.e. eπ(ξBR−δ log(kBR/k). On

the other hand, for δ > 1
2π , the result is proportional to the sixth power of the gauge field at

the beginning of the strong backreaction regime. From the definition (A.2) we deduce that the

integral is dominated by the value of ξ when scales k leave the horizon if ξBR − ξk ≲ Nk−NBR

2π ,

it is dominated by the scales that left the horizon at the beginning of the strong backreaction

regime. While this result is based on the parameterization (A.2), we expect it to be generally

valid as long as ξ(τ) monotonically increases during inflation.
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Abstract. An important prediction of inflation is the production of a primordial stochastic
gravitational wave background. Observing this background is challenging due to the weak-
ness of the signal and the simultaneous presence of an astrophysical background generated
by many unresolved late-time sources. One possible way to distinguish between the two is
to examine their anisotropies. In this paper we calculate the primordial correlation function
of gravitational wave anisotropies in the cosmological background generated by axion infla-
tion, where the inflaton is a pseudo-Nambu–Goldstone boson coupled to gauge fields. In this
scenario, tensor modes arise not only from the standard amplification of vacuum fluctuations
present in any inflationary model, but also from the inverse decay process of the produced
gauge fields. The correlator of gravitational wave anisotropies consists therefore of two main
components: the contribution from vacuum tensor modes and the contribution from tensor
modes sourced by the gauge fields. Our analysis shows that, while the former, previously
studied in the literature, is negligible, the one arising from the sourced tensor modes, normal-
ized by the fractional energy density at interferometer frequencies, can reach values as large
as O(10−1). This result shows that axion inflation can generate large anisotropies with the
potential to be observed by gravitational wave detectors within a reasonable time frame.
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1 Introduction

Gravitational waves (GW) have recently received a lot of attention, especially after their
first detection in September 2015 by the LIGO/Virgo collaboration [1] and the more recent
evidence for a stochastic gravitational wave background (SGWB) reported by pulsar timing
array (PTA) measurements [2–4]. This background could be either astrophysical (AGWB),
generated from unresolved astrophysical sources in later epochs, or cosmological (CGWB),
which originates from phenomena in the early Universe such as inflation, reheating, phase
transitions, primordial black holes, or topological defects [5–7]. Investigating the CGWB
provides information about the dynamics prevalent at the time of generation of the primordial
GWs, offering a unique window into the physics of the early Universe.

In this paper we focus on cosmological gravitational waves originated from a particular
inflationary model known as axion inflation [8]. In axion inflation, the inflaton is a pseudo-
Nambu-Goldstone boson exhibiting a broken shift symmetry, i.e., a symmetry under the
transformation ϕ → ϕ + const., which protects the flatness of the potential against large
radiative corrections. In this model, proposed for the first time in 1990 as natural inflation [9],
the inflaton interacts with gauge fields through the coupling ϕFµνF̃

µν/f , where f is the
axion decay constant. As a consequence, the gauge field quanta get amplified and in turn
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produce scalar and tensor fluctuations through a process of inverse decay. Therefore, in
axion inflation, both scalar fluctuations and gravitational waves are generated through two
distinct mechanisms: first, from the vacuum, via the standard amplification process, and
second, as a consequence of the production of gauge fields, through an inverse decay process.
Remarkably, because of the parity-violating nature of the system, only photons of a given
helicity are produced [10], implying that the sourced gravitational waves of different helicities
have different amplitudes.

The phenomenological predictions of axion inflation are multiple, including nongaus-
sianities [11], deviations from scale invariance [12], formation of primordial black holes [13],
baryogenesis [14], generation of cosmologically relevant magnetic fields [15, 16], as well as
generation of primordial chiral gravitational waves at CMB [10] or interferometer [17] frequen-
cies. In particular, we expect these gravitational waves to generate an SGWB of cosmological
origin, the characterization of which is essential for distinguishing it from its astrophysical
counterpart.

One method for characterizing the SGWB involves examining its anisotropies. In fact,
the SGWB is expected to present small spatial fluctuations analogous to the temperature
fluctuations of the CMB, the detection of which is a major challenge for the next generation
of gravitational wave detectors [18, 19]. More importantly, these anisotropies may correlate
with those of the CMB and the study of this cross-correlation provides a powerful way to
distinguish between astrophysical and cosmological origins of the background [20–25].

In the specific context of axion inflation, reference [26] analyzed the correlation be-
tween the curvature perturbation ζ(x) and the gravitational energy density ΩGW (x) =
ḣij(x) ḣij(x)/(12H

2
0 ). In axion inflation, both scalar fluctuations and gravitational waves

have vacuum and sourced contributions. At the same time, the expansion of the Universe
induces vacuum fluctuations in the inflaton, leading to spatial variations in the gauge field
population, which in turn generate spatial fluctuations in the sourced gravitational waves. As
a result, the sourced gravitational waves consist of two components: one that we denote as the
homogeneous component, and the other as the component of fluctuations. The homogeneous
component arises from the gauge field and depends on the zero mode of the rolling inflaton.
In contrast, the fluctuations originate from the gauge field’s inhomogeneities, which are, in
turn, imprinted by the inflaton’s fluctuations.

The correlator studied in [26] receives two contributions: one from the correlation of
the sourced gravitational waves with the vacuum scalar fluctuations, and the other from the
correlation of the sourced gravitational waves with the sourced scalar fluctuations. The former
effect is generally dominant and the correlator, normalized by the amplitude of ζ and by the
fractional energy in sourced gravitational waves at interferometer frequencies, turned out to
be of the order of 10−4÷10−2. The observability of this correlation, influenced by the intrinsic
variance of the isotropic component and instrumental noise [27, 28], depends not only on the
overall gravitational wave energy density, but also on the amplitude of anisotropies in the
gravitational wave spectra. Studies on preheating at the end of inflation and on baryogenesis
suggest that these anisotropies may be large [29, 30].

In this work, we investigate the anisotropies in the gravitational wave spectra produced
during axion inflation by computing the correlator ⟨ΩGW(x)ΩGW(y)⟩ of the gravitational
wave energy densities. This correlator consists of two main contributions: one arising from
the correlation of gravitational wave energy densities generated by the vacuum tensor modes,
which we refer to as the vacuum correlator, and the other from the correlation of energy den-
sities associated with the sourced tensor modes, called sourced correlator. Since the vacuum
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correlator has already been studied in the literature [19, 31, 32], we will only present it briefly
using an analytical approach, and instead focus primarily on the sourced correlator.

The sourced correlator arises from three distinct contributions, reflecting the fact that
the sourced gravitational waves are composed of a homogeneous component and fluctuations.
The first contribution comes from the correlation of the homogeneous components, resulting
in the intrinsic correlator. The second contribution comes from the correlation between the
homogeneous components and the fluctuations, referred to as the extrinsic correlator. Finally,
the third contribution arises from the correlation of the fluctuations and represents a higher-
order contribution in the perturbations.

Our analysis shows that the sourced extrinsic correlator, normalized by the square of the
fractional energy in sourced gravitational waves at interferometer frequencies, lies in the range
O(10−5−10−1). In contrast, the sourced intrinsic correlator is significantly smaller, while the
correlator of the sourced fluctuations is negligible. The vacuum correlator is also found to be
small and unobservable. The relatively large value of the sourced extrinsic correlator, which
is the main result of this paper, is particularly significant, as it implies that the resulting
anisotropies lie within the observational reach of GW detectors.

The sourced gravitational waves studied in the sourced correlator are produced towards
the end of axion inflation, when the amplitude of the gauge fields becomes large and they
significantly backreact on the background inflationary evolution. Although the inflaton-gauge
field dynamics is nonperturbative [33–43], the production of gravitational waves can be con-
sidered at the perturbative level. In [41], the authors showed that although backreaction can
modify the dynamics of the system, the behavior of the sourced gravitational waves depends
only on the velocity of the inflaton field, assuming inflaton inhomogeneities are neglected.
Since our results are expressed entirely in terms of ϕ̇(t), we assume them to remain valid even
in the strong backreaction regime.

This paper is organized as follows. In Section 2, we review the model of axion inflation,
explaining the mechanism of gauge field amplification and the resulting production of scalar
fluctuations (Subsection 2.1) and gravitational waves (Subsection 2.2). In Section 3, we define
the correlator of the gravitational wave energy densities. In Section 4, we present the sourced
correlator, while Section 5 provides a brief overview of the vacuum correlator. Finally, in
Section 6 we discuss our results and we conclude.

2 Overview of the axion inflation model

The action which describes our model of axion inflation is that of a pseudoscalar inflaton field
ϕ minimally coupled to gravity and to a U(1) gauge field Aµ

S =

∫
d4x

√−g

[
M2

P

2
R− 1

2
∂µϕ∂µϕ− V (ϕ)− 1

4
Fµν F

µν − ϕ

8 f

ϵµνρλ√−g
Fµν Fρλ

]
, (2.1)

where g = det(gµν), R is the Ricci scalar, Fµν = ∂µAν − ∂νAµ is the gauge field strength,
ϵµνρλ is the totally antisymmetric tensor defined by ϵ0123 = +1, f is the axion decay constant
and V (ϕ) is a generic inflationary potential.

The quantum scalar and tensor fluctuations produced during inflation are obtained by
adding spatially varying perturbations to the inflaton and the metric, respectively. In partic-
ular, the curvature perturbation ζ ≡ −H

φ̇0

δϕ, where the overdot denotes the derivative with

respect to cosmic time t (in contrast to the prime, which denotes the derivative with respect
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to the conformal time τ), is related to the inflaton perturbations arising from

ϕ(x, τ) = ϕ0(τ) + δϕ(x, τ) . (2.2)

Gravitational waves, on the other hand, are obtained by introducing spatially varying per-
turbations in the form of transverse traceless tensor modes, i.e. hij(x, t) with hii = ∂ihij = 0,
to the de Sitter metric

ds2 = a2(τ)
[
−dτ2 + (δij + hij(x, τ)) dx

i dxj
]
, (2.3)

where for repeated latin indices Einstein notation is used. The scale factor is a(τ) = −1/(H τ),
and it is set to be equal to unity at the end of inflation, i.e., at τe = −1/H.

To proceed, we expand the Lagrangian density around the background solution, identi-
fied by ϕ0(τ) and a(τ), and then discard the terms of zeroth and first order in the perturba-
tions. By choosing the Coulomb gauge, i.e. A0(x, τ) = 0 and ∂iAi(x, τ) = 0, the perturbed
Lagrangian takes the form

L =
1

2
Φ′2 − 1

2
∂kΦ ∂kΦ+

a′′

2 a
Φ2 +

1

2
H ′

ij H
′
ij −

1

2
∂kHij ∂kHij +

a′′

2 a
Hij Hij +

1

2
A′

iA
′
i

− 1

2
∂kAi ∂kAi −

ϕ0

f
ϵijk A′

i ∂jAk −
Hij

aMP

[
A′

iA
′
j − (∂iAk − ∂kAi) (∂jAk − ∂kAj)

]

− Φ

f a
ϵijk A′

i ∂jAk , (2.4)

where we have expressed the scalar and tensor perturbations δϕ and hij in terms of their
canonically normalized versions

Φ(x, τ) = a(τ) δϕ(x, τ) ,

Hij(x, τ) =
MP

2
a(τ)hij(x, τ) . (2.5)

By varying the Lagrangian (2.4) with respect to Ai, Φ and Hij , we obtain the equations
of motion that govern the dynamics of the system

A′′
i −∇2Ai −

ϕ′
0

f
ϵijk ∂jAk = 0 , (2.6)

Φ′′ − a′′

a
Φ−∇2Φ+

1

f a
ϵijk A′

i ∂jAk = 0 , (2.7)

H ′′
ij −

a′′

a
Hij −∇2Hij +

1

aMP

[
A′

iA
′
j − (∂iAk − ∂kAi) (∂jAk − ∂kAj)

]
= 0 . (2.8)

Equation (2.6) describes the evolution of the gauge fields. To study the amplification of
gauge modes due to the rolling inflaton, we promote the classical field to an operator Âi(x, τ),

which we decompose into creation/annihilation operators â†λ(k)/âλ(k), satisfying the usual

commutation relations [âλ(k), â
†
λ′(q)] = δ(k− q) δλ,λ′ , [âλ(k), âλ′(q)] = [â†λ(k), â

†
λ′(q)] = 0 ,

Âi(x, τ) =

∫
dk

(2π)3/2

∑

λ=±
eλ
i (k̂) e

ikx
[
Aλ(k, τ) âλ(k) +A∗

λ(k, τ) â
†
λ(−k)

]
, (2.9)
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with the helicity projectors eλi (k̂) following the relations

ki e
λ
i (k̂) = 0 , eλ

i (k̂)
∗ = e−λ

i (k̂) = eλ
i (−k̂) ,

iϵijkkje
λ
k (k̂) = λ k eλ

i (k̂) , eλ
i (k̂)e

λ′

i (k̂) = δλ,−λ′ .
(2.10)

Inserting eq. (2.9) into eq. (2.6) and defining

ξ ≡ ϕ̇0

2 f H
, (2.11)

we obtain the equation that governs the evolution of the mode functions Aλ(k, τ)

d2Aλ(k, τ)

dτ2
+

(
k2 + λ

2 ξ k

τ

)
Aλ(k, τ) = 0 . (2.12)

Depending on the sign of ξ, one of the two helicities, λ = 1 or λ = −1, develops tachyonic
instability. Assuming, without loss of generality, ξ > 0 and keeping in mind that τ < 0
throughout the entire inflationary phase, the negative helicity mode A− has real frequencies
that evolve adiabatically for all parameter values. As a result, A− remains in its vacuum
state and can therefore be neglected. On the other hand, the positive helicity mode A+ can
acquire imaginary frequencies, leading to exponential amplification.

More precisely, the solution of eq. (2.12) that reduces to positive frequency as kτ → −∞
can be explicitly expressed in terms of the regular and irregular Coulomb wave functions, F0

and G0, as A± = 1√
2 k

(i F0(±ξ,−kτ) + G0(±ξ,−kτ)). Under the WKB approximation, the

leading term in the solution for the tachyonic modes of A+, in the range 1
8 ξ ≲ |k τ | ≲ 2 ξ

[11, 16], assuming ξ ≳ O(1) throughout, takes the form

A+(k, τ) ≃
1√
2 k

(
−k τ

2 ξ

)1/4

e−2
√
−2ξkτ+π ξ , (2.13)

which can be generalized to the entire range 0 < |k τ | < ∞, as the observables of interest
depend only on the range where the approximation is valid. The positive helicity mode of
the gauge field is therefore amplified by a factor of eπξ and can become very large even for
moderate values of ξ.

The accelerated expansion of the background during axion inflation gives rise to the
vacuum components of the scalar and tensor fluctuations, denoted respectively as δϕV and
hij,V, generated via the standard amplification process present in any inflationary model.
The gauge fields amplified by the rolling zero mode of the inflaton are, on the other hand,
responsible for the production of sourced scalar and tensor fluctuations through an inverse
decay process, schematically represented as ϕ0 → A → {δϕS, h

0
ij,S}. Additionally, vacuum

scalar fluctuations of the background inflaton induce fluctuations in the population of the
produced gauge fields, resulting in fluctuations in the sourced tensor modes, schematically
δϕV → δA → δhij,S. As a result of these mechanisms, analyzed in the next two Subsections,
we obtain the fluctuations

δϕ = δϕV + δϕS and hij = hij,V + hij,S , (2.14)

with

hij,S = h0ij,S + δhij,S . (2.15)

The same decomposition holds also for the normalized versions of the fluctuations given
in (2.5).
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2.1 Scalar fluctuations

The production of scalar fluctuations in the axion inflation model is described by eq. (2.7). The
solution of the homogeneous part of the equation corresponds to the vacuum fluctuations ΦV,
generated as a result of the accelerated expansion of the background. This vacuum component
can be quantized through the standard quantization of the free Lagrangian as

Φ̂V(x, τ) =

∫
dk

(2π)3/2
eikx

[
ΦV(k, τ) â(k) + Φ∗

V(k, τ) â
†(−k)

]
, (2.16)

where

ΦV(k, τ) ≡
1√
2k

(
1− i

kτ

)
e−ikτ . (2.17)

On the other hand, the particular solution of eq. (2.7) corresponds to the sourced fluctuations,
ΦS, produced by the amplified gauge fields. This solution, determined using the retarded
propagator

Gk(τ, τ
′) =

(1 + k2 τ τ ′) sin(k (τ − τ ′)) + k (τ ′ − τ) cos(k (τ − τ ′))
k3 τ τ ′

Θ(τ − τ ′) , (2.18)

where Θ denotes the Heaviside step function, is found to be

ΦS(q, τ) ≡ i

∫
dτ ′Gq(τ, τ

′)
Hτ ′

f
ϵijk

∫
dp

(2π)3/2
A′

i(p, τ
′) (q− p)jAk(q− p, τ ′) . (2.19)

The complete solution is the sum of the two components, i.e. Φ = ΦV + ΦS , which
gives rise to the curvature perturbation ζ = ζV + ζS . The power spectrum of the curvature
perturbation, Pζ , defined through the two point function

⟨ζ(k) ζ(q)⟩ = 2π2

k3
Pζ(k) δ(k+ q) , (2.20)

is the sum of the power spectra corresponding to the vacuum and sourced components, de-
noted as Pζ,V and Pζ,S, respectively. The vacuum power spectrum associated with the mode
functions in (2.17), evaluated at the end of inflation and in the large scale limit, is given by

Pζ,V =
k3

2π2

H2

ϕ̇2
0

|ΦV(k, τe)|2 −−−→
k≪H

H4

4π2 ϕ̇2
0

, (2.21)

while, the sourced power spectrum corresponding to (2.19), for ξ ≳ 3, is found to be [11]

Pζ,S =
k3

2π2

H2

ϕ̇2
0

|ΦS(k, τe)|2 −−−→
k≪H

4.8× 10−8 H
8

ϕ̇4
0

e4πξ

ξ6
. (2.22)

The CMB observations, particularly from the Planck satellite, have placed important
constraints on nongaussianities at large scales, which are consistent with the predictions of
single-field inflationary models. Specifically, the parameter fNL used to quantify nongaussian-
ity and defined through the three-point correlation function of the curvature perturbation

⟨ζ(k1) ζ(k2) ζ(k3)⟩ =
3

10
(2π)5/2 fNL(k1, k2, k3)P2

ζ δ(k1 + k2 + k3)
k31 + k32 + k33

k31 k
3
2 k

3
3

, (2.23)

– 6 –



in the context of single-field, slow-roll inflation, is predicted to be of the order of the slow-roll
parameters [44]. In the model of axion inflation the sourced curvature perturbations can lead
to large nongaussianities. These perturbations arise from gauge fields through an inverse
decay process, which maximizes the nongaussian effects in the equilateral configuration, i.e.,
when k1 = k2 = k3. In this configuration, the nongaussianity parameter f equil

NL is given by [11]

f equil
NL ≃ 7.1× 105

H12

ϕ̇6

e6πξ

ξ9
. (2.24)

For large values of ξCMB, i.e., the value of ξ when CMB scales exit the horizon, the parameter
f equil
NL exceeds the observational bounds on nongaussianity. In order to reproduce the obser-

vations it is necessary that ξCMB ≲ 2.5 [45]. As a result, the sourced power spectrum (2.22)
at this time is significantly suppressed and becomes subdominant compared to the vacuum
contribution, i.e. Pζ,S ≪ Pζ,V. The constraint on ξ imposes a restriction on the amplitude of
the produced gauge field, which in turn must remain relatively small. Since the gauge fields
are responsible for generating the sourced tensor modes, as described in the next Subsection,
these modes will also be small at this stage.

2.2 Tensor fluctuations

A similar analysis holds also for tensor fluctuations, which correspond to gravitational waves.
In this case, the homogeneous and particular solutions of eq. (2.8) correspond, respectively,
to the vacuum fluctuations Hij,V, generated by the expanding inflationary background, and
the sourced fluctuations Hij,S, produced through the inverse decay of the gauge fields. The
vacuum component can be quantized once again through the standard quantization process,
starting from the free Lagrangian as

Ĥij,V(x, τ) =

∫
dk

(2π)3/2

∑

λ=±
eλ
ij(k̂) e

ikx
[
Hλ

V(k, τ) âλ(k) +Hλ
V
∗
(k, τ) â†λ(−k)

]
, (2.25)

where

H±
V (k, τ) ≡ 1√

2k

(
1− i

kτ

)
e−ikτ , (2.26)

and

eλ
ij(k̂) = eλ

i (k̂) e
λ
j (k̂). (2.27)

Using again the retarded propagator (2.18) we find the particular solution as

Hij,S(q, τ) ≡
∫

dτ ′Gq(τ, τ
′)
H τ ′

MP

∫
dp

(2π)3/2
A′

i(p, τ
′)A′

j(q− p, τ ′) , (2.28)

which has been simplified by the fact that the electric field dominates over the magnetic
field in strength. The complete solution is again the sum of the two components, i.e. Hij =
Hij,V +Hij,S, which give rise, respectively, to the vacuum and sourced power spectra [10]

Ph = Ph,V + Ph,S ≃ 2H2

π2M2
P

+ 8.7× 10−8 H4

M4
P

e4πξ

ξ6
. (2.29)
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The scales relevant to the observation of gravitational waves, i.e., those measured by
gravitational wave detectors, exit the horizon much later than the CMB scales, closer to the
end of inflation. At these later times, the parameter ξ, which typically increases (slowly)
during inflation, reaches values larger than ξCMB. Since the power spectrum of the sourced
gravitational waves depends exponentially on ξ, at these later times we can have Ph,S >
Ph,V, in contrast to what occurs when the CMB modes leave the horizon. The exponential
amplification of the sourced power spectrum makes it possible for the gravitational waves to
be directly detectable by current or future GW detectors [17].

The sourced gravitational waves produced through the mechanism described above are
decomposed into a homogeneous part, which depends entirely on the background rolling
inflaton ϕ0, and fluctuations, which are caused by the vacuum fluctuations δϕV, as described
in the paragraph above eq. (2.15). To first order in the vacuum-amplified inflaton fluctuations
δϕV and in the limit in which the wavelength of δϕV is much larger than that of hij,S, the
sourced gravitational field decomposition in homogeneous part and fluctuations (2.15) takes
the form

hij,S(x, ϕ(x)) = h0ij,S(x) + δhij,S(x) ≡ h0ij,S(x, ϕ0) +
∂h0ij,S(x, ϕ0)

∂ϕ0
δϕV(x) . (2.30)

Since h0ij,S(x, ϕ0) ∝ e2πξ, δhij,S becomes

δhij,S(x) = −2π
d ξ

dϕ0

ϕ̇0

H
ζV(x)h

0
ij,S(x) . (2.31)

Assuming ϕ̇0 > 0, V ′ < 0, we have

ξ ≡ ϕ̇0

2 fH
≃ − V ′

6 fH2
= −M2

P

2 f

V ′

V
, (2.32)

and using the usual slow roll parameters ϵ =
M2

P
2

V ′2

V 2 and η = M2
P

V ′′

V , the derivative of ξ with
respect to the background inflaton becomes

dξ

dϕ0
= −M2

P

2 f

(
V ′′

V
− V ′2

V 2

)
=
(
ϵ− η

2

) 1

f
. (2.33)

Using again eq. (2.11) and considering that the parameter ξ typically takes the values 2÷ 5,
and that the quantity (2ϵ− η) is of the order of 10−2 ÷ 10−1, we have

2π
d ξ

dϕ0

ϕ̇0

H
= 2π (2 ϵ− η) ξ ∼ O (.1÷ 3) . (2.34)

We can now study the anisotropies in the gravitational wave background produced in
axion inflation by estimating the correlator of the gravitational wave energy densities. This
correlator receives two contributions: the vacuum correlator, which corresponds to the gravi-
tational wave energy densities of the vacuum tensor modes, and the sourced correlator, which
corresponds to the energy densities of the sourced tensor modes. The sourced correlator can
further be decomposed into three components: the intrinsic correlator, the extrinsic correlator
and the correlator of the fluctuations, which however will be neglected being very small. In
Section 3, we present the general form of the correlator, while in Sections 4 and 5, we analyze
the sourced and vacuum correlators, respectively.
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3 The correlator of the gravitational wave energy densities

The normalized correlator of the gravitational wave energy densities is defined as

CΩΩ(k) =
1

Ω 2
GW

k3

2π2

∫
dy e−iky ⟨ΩGW (x+ y, t0) ΩGW (x, t0)⟩

=
1

Ω 2
GW

k3

2π2
⟨ΩGW (k, t0) ΩGW (−k, t0)⟩′ , (3.1)

where t0 is the present value of the cosmic time, ΩGW ≃ Ω0

rad

24 Ph(kINT) with Ω0
rad ≃ 8.2×10−5

is the fractional energy in gravitational waves at interferometer frequencies [6] and ⟨. . . ⟩′
represents the correlator stripped of the Dirac delta. Considering the explicit expression
ΩGW (k, t0) =

1
12H2

0

∫ dp
(2π)3/2

|k−p| p hab(k−p, t0)hab(p, t0) for the gravitational wave energy

density, and defining Ω = 12H2
0 ΩGW , the correlator becomes

CΩΩ(k) =
1

Ω2

k3

2π2

∫
dp1 dp2

(2π)3
|k− p1| p1 |k+ p2| p2

× ⟨hab(k− p1, t0)hab(p1, t0)hcd(−k− p2, t0)hcd(p2, t0)⟩′ . (3.2)

The current gravitational wave amplitude is related to its primordial value, calculated at the
time te when inflation ends, through the transfer function: hab(k, t0) = T (k)hab(k, te). For
simplicity, from now on we will write hab(k, te) simply as hab(k), with the understanding
that it refers to the value the tensor mode takes at the end of inflation. If we further define
T̂ (k) = k T (k), we can eventually express the correlator as

CΩΩ(k) =
1

Ω2

k3

2π2

∫
dp1 dp2

(2π)3
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4) ⟨hab(k1)hab(k2)hcd(k3)hcd(k4)⟩′ ,

(3.3)

with k1 = k− p1, k2 = p1, k3 = −k− p2 and k4 = p2. The integration must be performed
in the regime of large momenta, i.e. p ≫ keq, where keq is the scale that reentered the
horizon at matter-radiation equality [6], since these are the momenta to which gravitational
wave detectors are sensitive. For these modes, which exited the horizon towards the end of
inflation and reentered during radiation domination, the transfer function takes the form

T̂ (k) = T̂r =
3H0

√
Ω0
rad

4
√
2

. (3.4)

In the following, when we explicitly evaluate the integrals in the large-momentum regime,
we will denote the corresponding correlator with the subscript l.m.. Finally, since we are
interested in large scales, the momentum k at which we evaluate the correlator is very small
compared to the momenta over which we integrate, and is of the order of the scalar large-scale
perturbation scale, i.e. k ∼ kCMB.

4 Sourced correlator

For the normalized sourced correlator eq. (3.1) takes the form

CS
ΩΩ(k) =

1

Ω 2
GW,S

k3

2π2

∫
dy e−iky ⟨ΩGW,S(x+ y, t0) ΩGW,S(x, t0)⟩ , (4.1)
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with the fractional energy at interferometer scales for the sourced component being

ΩGW,S ≃ Ω0
rad

24
Ph,S(kINT) with Ph,S(kINT) = 8.7× 10−8 H4

M4
P

e4πξINT

ξ6INT

, (4.2)

and

ΩS = 12H2
0 ΩGW,S . (4.3)

Expression (3.3) for the sourced correlator takes the form

CS
ΩΩ =

1

Ω2
S

k3

2π2

∫
dp1 dp2

(2π)3
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4) ⟨hab,S(k1)hab,S(k2)hcd,S(k3)hcd,S(k4)⟩′ ,

(4.4)

with k1 = k−p1, k2 = p1, k3 = −k−p2 and k4 = p2. By substituting the decomposition of
the sourced tensor modes in homogeneous part and fluctuations defined in (2.30)-(2.31) into
the four-point function present in (4.4) we obtain

⟨hab,S(k1)hab,S(k2)hcd,S(k3)hcd,S(k4)⟩ = ⟨h0ab,S(k1)h
0
ab,S(k2)h

0
cd,S(k3)h

0
cd,S(k4)⟩

+ ⟨h0ab,S(k1)h
0
ab,S(k2) δhcd,S(k3) δhcd,S(k4)⟩+ ⟨δhab,S(k1) δhab,S(k2)h

0
cd,S(k3)h

0
cd,S(k4)⟩

+4⟨h0ab,S(k1) δhab,S(k2)h
0
cd,S(k3) δhcd,S(k4)⟩+ ⟨δhab,S(k1) δhab,S(k2) δhcd,S(k3) δhcd,S(k4)⟩ .

(4.5)

Plugging eq. (4.5) back into the correlator (4.4), we identify three contributions: the intrinsic
correlator, CI

ΩΩ, which includes the first term in the r.h.s. of eq. (4.5) and involves only
the homogeneous components; the extrinsic correlator, CE

ΩΩ, which includes the sum of the
next three terms in the r.h.s. of eq. (4.5), containing both homogeneous components and
fluctuations; and the correlator of the fluctuations, CF

ΩΩ, arising from the fifth term in the
r.h.s. of eq. (4.5). The total sourced correlator of eq. (4.4) is therefore decomposed as

CS
ΩΩ = CI

ΩΩ + CE
ΩΩ + CF

ΩΩ. (4.6)

To proceed, we substitute the Fourier transform of eq. (2.31)

δhij,S(p) = −2π
dξ

dϕ0

ϕ̇0

H

∫
dq

(2π)3/2
hij,S(p− q) ζV(q) , (4.7)

which is valid, strictly speaking, when p ≫ q. This condition is generally satisfied, as scalar
fluctuations are evaluated at CMB scales, which are much larger than the interferometer scales
at which gravitational waves are measured. Then, using eq. (2.20) for the vacuum curvature
perturbations we have

CI
ΩΩ =

k3

2π2Ω2
S

∫
dp1 dp2

(2π)3
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4)⟨h0ab,S(k1)h

0
ab,S(k2)h

0
cd,S(k3)h

0
cd,S(k4)⟩′ ,

(4.8)
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CE
ΩΩ =

k3

2π2Ω2
S

(
2π

dξ

dϕ0

ϕ̇0

H

)2 ∫
dp1 dp2 dp3

(2π)6
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4)

2π2

p33
Pζ,V

×
(
⟨h0ab,S(k1)h

0
ab,S(k2)h

0
cd,S(k3 − p3)h

0
cd,S(k4 + p3)⟩′

+ ⟨h0ab,S(k1 − p3)h
0
ab,S(k2 + p3)h

0
cd,S(k3)h

0
cd,S(k4)⟩′

+ 4 ⟨h0ab,S(k1)h
0
ab,S(k2 − p3)h

0
cd,S(k3)h

0
cd,S(k4 + p3)⟩′

)
, (4.9)

CF
ΩΩ =

k3

2π2Ω2
S

(
2π

dξ

dϕ0

ϕ̇0

H

)4 ∫
dp1 dp2 dp3 dp4

(2π)9
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4)

(2π2)2

p33 p
3
4

P2
ζ,V

×
(
⟨h0ab,S(k1 − p3)h

0
ab,S(k2 + p3)h

0
cd,S(k3 − p4)h

0
cd,S(k4 + p4)⟩′

+ 2 ⟨h0ab,S(k1 − p3)h
0
ab,S(k2 − p4)h

0
cd,S(k3 + p3)h

0
cd,S(k4 + p4)⟩′

)
, (4.10)

with k1 = k − p1, k2 = p1, k3 = −k − p2 and k4 = p2. The last correlator, which
corresponds to the correlator of the fluctuations, is found to be much smaller than the other
two and will therefore be neglected from now on. In order to compute the intrinsic and
extrinsic sourced correlators, we use eqs. (2.5) and (2.28) to calculate the four-point function
of the homogeneous components of the sourced tensor modes, denoted as C

C(κ1,κ2,κ3,κ4)

= ⟨h0ab,S(κ1)h
0
ab,S(κ2)h

0
cd,S(κ3)h

0
cd,S(κ4)⟩ =

16

M4
P

⟨H0
ab,S(κ1)H

0
ab,S(κ2)H

0
cd,S(κ3)H

0
cd,S(κ4)⟩

=
16

M8
P

∫ τ

−∞

dτ1
a(τ1)

dτ2
a(τ2)

dτ3
a(τ3)

dτ4
a(τ4)

Gκ1
(τ, τ1)Gκ2

(τ, τ2)Gκ3
(τ, τ3)Gκ4

(τ, τ4)× I , (4.11)

with a(τ) = −1/(H τ), and

I =

∫
dq1 dq2 dq3 dq4

(2π)6

× e+a (q̂1) e
+
b (κ̂1 − q1) e

+
a (q̂2) e

+
b (κ̂2 − q2) e

+
c (q̂3) e

+
d (κ̂3 − q3) e

+
c (q̂4) e

+
d (κ̂4 − q4)

× ⟨A′
+(q1, τ1)A

′
+(|κ1 − q1|, τ1)A′

+(q2, τ2)A
′
+(|κ2 − q2|, τ2)A′

+(q3, τ3)A
′
+(|κ3 − q3|, τ3)

× A′
+(q4, τ4)A

′
+(|κ4 − q4|, τ4)⟩ . (4.12)

Expression (4.12) has been simplified by neglecting the negative-helicity photons, as, ac-
cording to eq. (2.12), A+ is the only helicity that undergoes amplification. Using Wick’s
theorem to decompose the eight-point function of gauge fields appearing in the last two lines
of eq. (4.12), we find that the integral I can be written as the sum of six distinct integrals,
i.e. I = IA + IB + IC + ID + IE + IF , the explicit expressions of which are provided
in (A.1). Substituting these integrals back into Eq. (4.11), we obtain the four-point function
of the homogeneous components of the sourced gravitational waves, expressed as the sum of
six terms

C = CA + CB + CC + CD + CE + CF , (4.13)
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which can be calculated using the explicit form of the gauge field (2.13). Starting from CA

we have

CA =
4H4

M8
P

∫ τ

−∞
dτ1 dτ2 dτ3 dτ4 (τ1 τ2 τ3 τ4)

1/2Gκ1
(τ, τ1)Gκ2

(τ, τ2)Gκ3
(τ, τ3) Gκ4

(τ, τ4)

×
∫

dq

(2π)6
(ξ1 ξ2 ξ3 ξ4)

1/2 e2π(ξ1+ξ2+ξ3+ξ4) q1/2 |κ1 − q|1/2 |κ2 + q|1/2 |κ2 + κ4 + q|1/2

× AA(q, κ1 − q, κ2 + q, κ2 + κ4 + q) e−2
√
−2 ξ1 τ1(

√
q+
√

|κ1−q| ) e−2
√
−2 ξ2 τ2(

√
q+
√

|κ2+q| )

× e−2
√
−2 ξ3 τ3(

√
|κ1−q|+

√
|κ2+κ4+q| ) e−2

√
−2 ξ4 τ4(

√
|κ2+q|+

√
|κ2+κ4+q| ) δ(κ1 + κ2 + κ3 + κ4) ,

(4.14)

where ξi ≡ ξ(τi) are the slowly growing ξ parameters satisfying ξi ≫ 1. AA, the explicit
expression of which is given in (A.2), represents the angular part arising from the product of
the helicity projectors. We simplify the expression by recalling that the fields are calculated
at the end of inflation, i.e., at τe = −1/H. Furthermore, since we are interested in modes
that are well outside the horizon at the end of inflation, we can take the limit k/H → 0. The

presence of exponential terms such as e−2
√
−2 ξ1 τ1(

√
q+
√

|κ1−q| ), with ξ1 ≫ 1, implies that
κ1 τ1 ≪ 1. In the same way κ2 τ2 ≪ 1, κ3 τ3 ≪ 1 and κ4 τ4 ≪ 1. By Taylor expanding the
propagator (2.18) we have Gκi(τ, τi) ≃ −H τ2i /3.

To obtain the most general result, we will not assume a specific form for the ξ pa-
rameter, but instead estimate the integral under the assumption of weak time dependence.
In this case, we observe that the integral is dominated by the values of |τ1|, |τ2|, |τ3| and
|τ4| belonging to relatively narrow windows around the following expressions, respectively:
(
√
q+
√
|κ1 − q| )−2, (

√
q+
√
|κ2 + q| )−2, (

√
|κ1 − q|+

√
|κ2 + κ4 + q| )−2 and (

√
|κ2 + q|+√

|κ2 + κ4 + q| )−2. We can therefore approximate the ξ parameters present in expression
CA as

ξA1 = ξ(τA1 ≃ −(
√
q +

√
|κ1 − q| )−2) ,

ξA2 = ξ(τA2 ≃ −(
√
q +

√
|κ2 + q| )−2) ,

ξA3 = ξ(τA3 ≃ −(
√

|κ1 − q|+
√
|κ2 + κ4 + q| )−2) ,

ξA4 = ξ(τA4 ≃ −(
√

|κ2 + q|+
√
|κ2 + κ4 + q| )−2) . (4.15)

Finally, using the expression
∫ ∞

0
dx xn−1 e−a

√
x =

2

a2n
Γ(2n) , (4.16)

we obtain

CA =
H8 Γ(7)4

34 236M8
P

∫
dq

(2π)6
e2π(ξ

A
1
+ξA

2
+ξA

3
+ξA

4
)

(ξA1 ξA2 ξA3 ξA4 )
3

AA(q, κ1 − q, κ2 + q, κ2 + κ4 + q)

× q1/2 |κ1 − q|1/2 |κ2 + q|1/2 |κ2 + κ4 + q|1/2 (√q +
√

|κ1 − q| )−7 (
√
q +

√
|κ2 + q| )−7

× (
√

|κ1 − q|+
√
|κ2 + κ4 + q| )−7(

√
|κ2 + q|+

√
|κ2 + κ4 + q| )−7δ(κ1 + κ2 + κ3 + κ4) .

(4.17)

In the same way we calculate all the other contributions to the eight-point function C in
eq. (4.13), which are given in (A.3). By substituting these expressions into eqs. (4.8) and
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(4.9), we can now obtain the intrinsic and extrinsic correlators of the sourced gravitational
wave energy densities, whose computation is described in the next two Subsections.

Before proceeding with the calculation, we first parameterize the weak time dependence
of the monotonically increasing function ξ(τ). We define ξ(τ = −1/k) ≡ ξk as the value of ξ
when a mode with comoving wavenumber k exits the horizon, Nk e-foldings before the end
of inflation. For large momenta, i.e. p ≫ keq, the parameter ξ is close to its maximum value,
ξINT ≃ 5, evaluated at the time when interferometer-scale modes exit the horizon. This time
is typically close to τBR, the time when the system enters the strong backreaction regime.
Usually, this happens around NBR ≃ 10 e-foldings before the end of inflation [37], although
there are models in which it can happen earlier, i.e. NBR ≃ 40 in [41].

While the behavior of ξ during the regime of strong backreaction is still object of research,
lattice studies seem to suggest that this quantity stabilizes and evolves relatively slowly [40].
For this reason, we assume that ξ becomes approximately constant for τ > τBR, implying
ξBR ≃ ξINT. In this case, contributions to the integrals from momenta larger than kBR are
negligible and can be safely ignored. For large momenta, the ξ parameters in the denominators
of the integrals can therefore be approximated as constants, contributing an overall factor of
ξ12BR. Meanwhile, the ξ appearing in the exponents are approximated as

ξ(τ) =

{
ξBR + δ log(τBR/τ) , τ < τBR ,
ξBR , τ > τBR ,

(4.18)

with τBR = −1/kBR, accounting for contributions to the integrals from lower momenta. The
parameter δ depends on the specific model under consideration, and more precisely on the
number of e-foldings before the end of inflation at which backreaction becomes significant. In
the cases discussed above, its value lies in the range between 0.06 [37] and 0.2 [41]. Therefore,

the exponential terms e2πξ
L
i , with L = A,B, . . . , F and i = 1, 2, 3, 4, appearing in expressions

CA to CF , transform as

e2πξ
L
i = e2πξ(τ

L
i ) = e2πξBR

(
τBR

τLi

)2πδ

. (4.19)

4.1 Sourced intrinsic correlator

In order to find the intrinsic correlator of the sourced gravitational wave energy densities we
start by substituting eq. (4.11) with κ1 = k1 = k − p1, κ2 = k2 = p1, κ3 = k3 = −k − p2,
κ4 = k4 = p2 into eq. (4.8)

CI
ΩΩ(k) =

1

Ω2
S

k3

2π2

∫
dp1 dp2

(2π)3
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4)C(k− p1,p1,−k− p2,p2) , (4.20)

and we expand C using eqs. (4.13), (4.17) and (A.3). Term CD contains a tadpole, as
δ(κ1 + κ2) = δ(κ3 + κ4) = δ(k), and can therefore be neglected. In addition, the terms
CE and CF become identical after resolving the delta functions. For large values of the
momenta we use (4.18) and we factor out of the integrals the ξ12BR from the denominators, the
e8πξBR from (4.19) and the constant transfer functions (3.4). The intrinsic correlator turns
out to be

(
CI
ΩΩ

)
l.m.

=
k3H8 Γ(7)4 e8π ξBR T̂ 4

r

Ω2
S π

2 34 237M8
P (2π)9 ξ12BR

× II ≃ 9.8× 106
(

k

kBR

)3

, (4.21)

where in the last equality we have used (4.2), (4.3) and the integral II explicitly evaluated in
Appendix B, eq. (B.7). For typical values k ∼ kCMB the factor (k/kBR)

3 is of the order of
e−150, which makes the intrinsic correlator very small.
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4.2 Sourced extrinsic correlator

In order to find the extrinsic correlator of the sourced gravitational wave energy densities we
substitute eq. (4.11) into the three four-point functions of eq. (4.9), obtaining

CE
ΩΩ(k) =

k3 Pζ,V

Ω2
S

(
2π

dξ

dϕ0

ϕ̇0

H

)2 ∫
dp1 dp2 dp3

(2π)6
T̂ (|k− p1|) T̂ (p1) T̂ (|k+ p2) T̂ (p2)

1

p33

× (C(k− p1,p1,−k− p2 − p3,p2 + p3) + C(k− p1 − p3,p1 + p3,−k− p2,p2)

+ C(k− p1,p1 − p3,−k− p2,p2 + p3))

= CE
ΩΩ,1(k) + CE

ΩΩ,2(k) + CE
ΩΩ,3(k) , (4.22)

where we have considered the scalar vacuum power spectrum Pζ,V ≃ 2× 10−9 as a constant.
The sourced extrinsic correlator is therefore composed by three terms. In both CE

ΩΩ,1(k)

and CE
ΩΩ,2(k), the term CD corresponds to a tadpole, leading to effects similar to those found

in the intrinsic correlator. These correlators turn out to be very small due to the presence
of the factor (k/kBR)

3. In the third correlator CE
ΩΩ,3(k), however, CD is no longer a tadpole,

but instead generates a significant scale-invariant term. Consequently, CE
ΩΩ,3(k) contains,

besides the small contributions similar to those in the other two cases, denoted collectively
as CE

ΩΩ,3(k)
′, a dominant component, which we denote as CS.I.

ΩΩ (k). This component consti-
tutes the main result of this paper and for this reason we present its calculation separately
in the next Subsection. In Subsection 4.2.2, we show for completeness all the other small
contributions.

4.2.1 Extrinsic correlator: Scale-invariant term CS.I.
ΩΩ (k)

We now focus on calculating the scale-invariant contribution CS.I.
ΩΩ (k), which comes from term

CD of CE
ΩΩ,3 with κ1 = k − p1, κ2 = p1 − p3, κ3 = −k − p2, and κ4 = p2 + p3. This term

is particularly important because it contains the quantity δ(k − p3), which cancels the k3

element in the prefactor, giving rise to a significantly large contribution. More specifically,

CS.I
ΩΩ(k) =

H8 Γ(7)4

Ω2
S 3

4 234M8
P (2π)12

(
2π

dξ

dϕ0

ϕ̇0

H

)2

Pζ,V

∫
dp1 dp2 dq1 dq2

× T̂ (|k− p1|) T̂ (p1) T̂ (|k+ p2|) T̂ (p2)AD(q1,k− p1 − q1,q2,−k− p2 − q2)

× q
1/2
1 |k− p1 − q1|1/2 q1/22 |k+ p2 + q2|1/2 e2π(ξ

S.I.
1

+ξS.I.
2

+ξS.I.
3

+ξS.I.
4

)

(
√
q1 +

√
|k− p1 − q1| )14 (

√
q2 +

√
|k+ p2 + q2| )14(ξS.I.1 ξS.I.2 ξS.I.3 ξS.I.4 )3

, (4.23)

with

ξS.I.1 = ξS.I.2 = ξ(τS.I.1 ≃ −(
√
q1 +

√
|k− p1 − q1| )−2) ,

ξS.I.3 = ξS.I.4 = ξ(τS.I.3 ≃ −(
√
q2 +

√
|k+ p2 + q2| )−2) . (4.24)

The angular part is

AD(p,q, r, s) =
1

16
(5 + 2 p̂ q̂+ (p̂ q̂)2)(5 + 2 r̂ ŝ+ (r̂ ŝ)2) , (4.25)

which is calculated using

eλ
i (k̂) e

λ
j (−k̂) =

1

2
(δij − k̂i k̂j − i λ ϵijk k̂k) . (4.26)
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For large momenta, we use the parametrization (4.18) for the ξ functions in the expo-
nents, while in the denominators we approximate them as simply ξBR. The transfer function
takes the form (3.4), and we simplify the integral by neglecting the contribution of the small
k, wherever it appears. The scale-invariant correlator then takes the form

(
CS.I.
ΩΩ (k)

)
l.m.

=
H8 Γ(7)4 e8π ξBR T̂ 4

r

Ω2
S 3

4 234M8
P (2π)12 ξ12BR

(
2π

dξ

dϕ0

ϕ̇0

H

)2

Pζ,V × IS.I. , (4.27)

with the integral IS.I. given in (C.3). Using Pζ,V ≃ 2 × 10−9 and equations (3.4), (4.2) and
(4.3), we eventually obtain the correlator

(
CS.I.
ΩΩ (k)

)
l.m.

≃ 9.8× 10−5

δ2

(
2π

dξ

dϕ0

ϕ̇0

H

)2

. (4.28)

Considering (2.34) and the fact that the parameter δ takes values in the interval 0.06 ÷ 0.2,
the sourced scale-invariant extrinsic correlator is found to lie within the range

(
CS.I.
ΩΩ (k)

)
l.m.

≃ 2.4× 10−5 ÷ 2.4× 10−1 . (4.29)

This result will constitute the only relevant component of the sourced correlator, as it is
many orders of magnitude larger than the intrinsic correlator, studied in Subsection 4.1, and
all other contributions to the extrinsic correlator, which we present for completeness in the
next Subsection.

4.2.2 Extrinsic correlator: Terms CE
ΩΩ,1(k), CE

ΩΩ,2(k), CE
ΩΩ,3(k)

′

In order to find all the other terms contributing to the extrinsic correlator, which we antici-
pated to be very small and unobservable, we start by expanding the terms C in (4.22) using
eqs. (4.13), (4.17) and (A.3). Using again the transfer function (3.4) and the parametrization
(4.18) we find

(
CE
ΩΩ,1(k)

)
l.m.

=
k3H8 Γ(7)4 e8π ξBR T̂ 4

r Pζ,V

Ω2
S 3

4 236M8
P (2π)12 ξ12BR

(
2π

dξ

dϕ0

ϕ̇0

H

)2

× IE,1 ≃ 5.5× 10−1

(
k

kBR

)3

,

(4.30)

(
CE
ΩΩ,2(k)

)
l.m.

=
k3H8 Γ(7)4 e8π ξBR T̂ 4

r Pζ,V

Ω2
S 3

4 236M8
P (2π)12 ξ12BR

(
2π

dξ

dϕ0

ϕ̇0

H

)2

× IE,2 ≃ 4.9× 10−1

(
k

kBR

)3

,

(4.31)

(
CE
ΩΩ,3(k)

′)
l.m.

=
k3H8 Γ(7)4 e8π ξBR T̂ 4

r Pζ,V

Ω2
S 3

4 234M8
P (2π)12 ξ12BR

(
2π

dξ

dϕ0

ϕ̇0

H

)2

× IE,3 ≃ 1.7

(
k

kBR

)3

, (4.32)

where in the final expressions we have used (2.34), (4.2), (4.3) and the integrals IE,1, IE,2

and IE,3 evaluated, respectively, in (C.6), (C.9), (C.13). These correlators are all very small
because of the presence of (k/kBR)

3, as in the case of the intrinsic correlator.

– 15 –



5 Vacuum correlator

For the normalized vacuum correlator eq. (3.1) becomes

CV
ΩΩ(k) =

1

Ω 2
GW,V

k3

2π2

∫
dy e−iky ⟨ΩGW,V(x+ y, t0) ΩGW,V(x, t0)⟩ , (5.1)

with the fractional energy at interferometer scales for the vacuum component being

ΩGW,V ≃ Ω0
rad

24
Ph,V(kINT) , with Ph,V(kINT) =

2H2

π2M2
P

. (5.2)

Defining

ΩV = 12H2
0 ΩGW,V , (5.3)

expression (3.3) for the vacuum correlator takes the form

CV
ΩΩ =

1

Ω2
V

k3

2π2

∫
dp1 dp2

(2π)3
T̂ (k1) T̂ (k2) T̂ (k3) T̂ (k4) ⟨hab,V(k1)hab,V(k2)hcd,V(k3)hcd,V(k4)⟩′ ,

(5.4)

with k1 = k − p1, k2 = p1, k3 = −k − p2 and k4 = p2 and T̂ (k) = k T (k). The four-point
function in equation (5.4) is decomposed using Wick’s theorem, and, up to a tadpole term, is

⟨hab,V(k1)hab,V(k2)hcd,V(k3)hcd,V(k4)⟩ = 2 ⟨hab,V(k1)hcd,V(k3)⟩ ⟨hab,V(k2) hcd,V(k4)⟩ .
(5.5)

Using

⟨hab,V(k1)hcd,V(k3)⟩ =
∑

λ=±
eλab(k̂1) e

λ
cd(−k̂1) δ(k1 + k3) |hλV(k1)|2 , (5.6)

and the definition |hλV(k)|2 = 2π2

k3
Pλ
h,V, with P±

h,V = H2

π2 M2

P
, we eventually have

CV
ΩΩ(k) =

k3H4

2π5M4
P Ω2

V

∫
dp T̂ (|k− p|)2 T̂ (p)2 1

|k− p|3 p3 × A(k− p,p) . (5.7)

The angular part, calculated using (4.26), is

A(k− p,p) =
∑

λ,σ

eλab(k̂− p) eλcd(− ̂(k− p)) eσab(p̂) e
σ
cd(−p̂)

=
1

4

(
1 + 6( ̂(k− p)p̂)2 + ( ̂(k− p)p̂)4

)
. (5.8)

The integral in (5.7) must be evaluated over the sensitivity range of gravitational wave
detectors, i.e., between momenta pmin and pmax that correspond to the limits of the mo-
mentum interval measurable by a given detector. As previously discussed, these momenta
are much larger than the value of k ∼ kCMB under consideration, which can therefore be
neglected. With this in mind, and using (3.4) and (5.2)-(5.3), the correlator takes the form

(
CV
ΩΩ

)
l.m.

(k) ≃ k3 34 242

2π 46 144

∫ pmax

pmin

dp p2
∫

dΩ
1

p6
A(−p,p) . (5.9)

– 16 –



After performing the integrals
∫
dΩA(−p,p) = 8π and

∫ pmax

pmin
dp 1

p4
≃ 1

3 p3min
, the correlator

eventually becomes

(
CV
ΩΩ

)
l.m.

= 0.1×
(

k

pmin

)3

. (5.10)

This result, similarly to the intrinsic sourced correlator and the subdominant contributions of
the extrinsic sourced correlator, is subject to a strong suppression due to the factor (k/pmin)

3,
and is therefore very small and unobservable for any gravitational wave detector.

6 Discussion and conclusions

The recent evidence of a stochastic gravitational wave background reported by PTA mea-
surements has opened a promising new observational window in modern cosmology. Such a
background can arise either from the combined signals of unresolved late-time astrophysical
sources, such as supermassive binary black hole mergers, or from a cosmological origin. In
particular, a cosmological SGWB can reveal new details about the very early Universe in ways
that previous observations could not, as the gravitational waves that make it up are produced
before photon decoupling and propagate almost freely throughout the Universe after their
generation.

To extract information from the cosmological gravitational wave background, we must
distinguish it from its astrophysical counterpart. One approach is to analyze their anisotropies
and, in particular, the correlation of these anisotropies with CMB anisotropies, which is
expected to differ between the two backgrounds. In this context, the authors of [26] computed
the correlator between the curvature perturbation and the energy density of gravitational
waves within the axion inflation model.

In this paper we studied the amplitude of gravitational wave anisotropies in the axion
inflation model, by computing the correlator ⟨ΩGW(x)ΩGW(y)⟩, which provides a measure of
the observability of the correlation between scalar and tensor fluctuations. In axion inflation,
the coupling of the inflaton to gauge fields implies that fluctuations arise both from the
vacuum, through the standard amplification process, and from gauge fields via an inverse
decay process. As a result, the correlator consists of two contributions: the correlation of the
vacuum gravitational waves and the correlation of the sourced gravitational waves. Moreover,
since the sourced gravitational waves consist of one part that depends only on the zero mode
of the inflaton and another that depends on its fluctuations, the sourced correlator can be
further decomposed into three distinct contributions: the intrinsic part, the extrinsic part,
and a part containing only fluctuations.

Our analysis shows that the only relevant contribution to the correlator arises from the
scale-invariant part of the extrinsic sourced component, while all other terms are negligible.
For typical parameter values, the normalized sourced correlator is found to lie in the range
O(10−5−10−1) and in particular, it can reach values as large as 2.4×10−1. According to [19,
27, 28], anisotropies must be relatively large to be detectable within a reasonable time frame.
Our study shows that axion inflation can indeed produce observable anisotropies. Combined
with the increased sensitivity of future gravitational wave detectors, this result motivates
further study of angular correlations in the GW background as well as cross-correlations with
CMB anisotropies in axion inflation models.
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A Sourced correlator: Full expressions

The integrals that compose I = IA + IB + IC + ID + IE + IF in eq. (4.12) are given by
the expressions

IA =

∫
dq

(2π)6
A′

+(q, τ1)A
′
+(|κ1 − q|, τ1)A′

+(q, τ2)A
′
+(|κ2 + q|, τ2)A′

+(|κ1 − q|, τ3)

× A′
+(|κ2 + κ4 + q|, τ3)A′

+(|κ2 + q|, τ4)A′
+(|κ2 + κ4 + q|, τ4)

×AA(q, κ1 − q, κ2 + q, κ2 + κ4 + q) δ(κ1 + κ2 + κ3 + κ4) ,

IB =

∫
dq

(2π)6
A′

+(q, τ1)A
′
+(|κ1 − q|, τ1)A′

+(q, τ2)A
′
+(|κ2 + q|, τ2)A′

+(|κ2 + q|, τ3)

× A′
+(|κ2 + κ3 + q|, τ3)A′

+(|κ1 − q|, τ4)A′
+(|κ2 + κ3 + q|, τ4)

× AB(q, κ1 − q, κ2 + q, κ2 + κ3 + q) δ(κ1 + κ2 + κ3 + κ4) ,

IC =

∫
dq

(2π)6
A′

+(q, τ1)A
′
+(|κ1 − q|, τ1)A′

+(|κ3 + q|, τ2)A′
+(|κ2 + κ3 + q|, τ2)A′

+(q, τ3)

× A′
+(|κ3 + q|, τ3)A′

+(|κ1 − q|, τ4)A′
+(|κ2 + κ3 + q|, τ4)

× AC(q, κ1 − q, κ3 + q, κ2 + κ3 + q) δ(κ1 + κ2 + κ3 + κ4) ,

ID =

∫
dq1 dq2

(2π)6
A′

+(q1, τ1)A
′
+(|κ1 − q1|, τ1)A′

+(q1, τ2)A
′
+(|κ1 − q1|, τ2)A′

+(q2, τ3)

× A′
+(|κ3 − q2|, τ3)A′

+(q2, τ4)A
′
+(|κ3 − q2|, τ4)

× AD(q1, κ1 − q1, q2, κ3 − q2) δ(κ1 + κ2) δ(κ3 + κ4) ,

IE =

∫
dq1 dq2

(2π)6
A′

+(q1, τ1)A
′
+(|κ1 − q1|, τ1)A′

+(q2, τ2)A
′
+(|κ2 − q2|, τ2)A′

+(q1, τ3)

× A′
+(|κ1 − q1|, τ3)A′

+(q2, τ4)A
′
+(|κ2 − q2|, τ4)

× AE(q1, κ1 − q1, q2, κ2 − q2) δ(κ2 + κ4) δ(κ1 + κ3) ,

IF =

∫
dq1 dq2

(2π)6
A′

+(q1, τ1)A
′
+(|κ1 − q1|, τ1)A′

+(q2, τ2)A
′
+(|κ2 − q2|, τ2)A′

+(q2, τ3)

× A′
+(|κ2 − q2|, τ3)A′

+(q1, τ4)A
′
+(|κ1 − q1|, τ4)

× AF (q1, κ1 − q1, q2, κ2 − q2) δ(κ1 + κ4) δ(κ2 + κ3) , (A.1)

where we have collected the angular parts inside the functions A:

AA(p1,p2,p3,p4) = AB(p1,p2,p3,p4) = ((((e+a (p̂1) e
+
β (−̂p1) e

+
b (p̂2) e

+
c (−̂p2) e

+
α (p̂3)

× e+γ (−̂p3) e
+
δ (p̂4) e

+
d (−̂p4) + (a ↔ b)) + (α ↔ β)) + (c ↔ d)) + (γ ↔ δ))δaα δbβ δcγ δdδ ,

AC(p1,p2,p3,p4) = ((((e+a (p̂1) e
+
c (−̂p1) e

+
b (p̂2) e

+
γ (−̂p2) e

+
d (p̂3) e

+
α (−̂p3) e

+
β (p̂4) e

+
δ (−̂p4)
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+ (a ↔ b)) + (α ↔ β)) + (c ↔ d)) + (γ ↔ δ))δaα δbβ δcγ δdδ ,

AD(p1,p2,p3,p4) = ((e+a (p̂1) e
+
α (−̂p1) e

+
b (p̂2) e

+
β (−̂p2) e

+
c (p̂3) e

+
γ (−̂p3) e

+
d (p̂4)e

+
δ (−̂p4)

+ (α ↔ β)) + (γ ↔ δ))δaα δbβ δcγ δdδ ,

AE(p1,p2,p3,p4) = AF (p1,p2,p3,p4) = ((e+a (p̂1) e
+
c (−̂p1) e

+
b (p̂2) e

+
d (−̂p2) e

+
α (p̂3)

× e+γ (−̂p3) e
+
β (p̂4)e

+
δ (−̂p4) + (c ↔ d)) + (γ ↔ δ))δaα δbβ δcγ δdδ . (A.2)

The correlators CB to CF in eq. (4.13), calculated in a similar way as CA in (4.14), take
the form

CB =
H8 Γ(7)4

34 236M8
P

∫
dq

(2π)6
e2π(ξ

B
1
+ξB

2
+ξB

3
+ξB

4
)

(ξB1 ξB2 ξB3 ξB4 )
3

AB(q, κ1 − q, κ2 + q, κ2 + κ3 + q)

× q1/2 |κ1 − q|1/2 |κ2 + q|1/2 |κ2 + κ3 + q|1/2 (√q +
√

|κ1 − q| )−7 (
√
q +

√
|κ2 + q| )−7

× (
√

|κ1 − q|+
√
|κ2 + κ3 + q| )−7(

√
|κ2 + q|+

√
|κ2 + κ3 + q| )−7δ(κ1 + κ2 + κ3 + κ4) ,

CC =
H8 Γ(7)4

34 236M8
P

∫
dq

(2π)6
e2π(ξ

C
1
+ξC

2
+ξC

3
+ξC

4
)

(ξC1 ξC2 ξC3 ξC4 )
3

AC(q, κ1 − q, κ3 + q, κ2 + κ3 + q)

× q1/2 |κ1 − q|1/2 |κ3 + q|1/2 |κ2 + κ3 + q|1/2 (√q +
√

|κ1 − q| )−7 (
√
q +

√
|κ3 + q| )−7

× (
√

|κ1 − q|+
√
|κ2 + κ3 + q| )−7(

√
|κ3 + q|+

√
|κ2 + κ3 + q| )−7δ(κ1 + κ2 + κ3 + κ4) ,

CD =
H8 Γ(7)4

34 236M8
P

∫
dq1 dq2

(2π)6
e2π(ξ

D
1
+ξD

2
+ξD

3
+ξD

4
)

(ξD1 ξD2 ξD3 ξD4 )3
AD(q1, κ1 − q1, q2, κ3 − q2)

× q
1/2
1 q

1/2
2 |κ1 − q1|1/2 |κ3 − q2|1/2 (

√
q1 +

√
|κ1 − q1| )−14 (

√
q2 +

√
|κ3 − q2| )−14

× δ(κ1 + κ2) δ(κ3 + κ4) ,

CE =
H8 Γ(7)4

34 236M8
P

∫
dq1 dq2

(2π)6
e2π(ξ

E
1
+ξE

2
+ξE

3
+ξE

4
)

(ξE1 ξE2 ξE3 ξE4 )
3

AE(q1, κ1 − q1, q2, κ2 − q2)

× q
1/2
1 q

1/2
2 |κ1 − q1|1/2 |κ2 − q2|1/2 (

√
q1 +

√
|κ1 − q1| )−14 (

√
q2 +

√
|κ2 − q2| )−14

× δ(κ2 + κ4) δ(κ1 + κ3) ,

CF =
H8 Γ(7)4

34 236M8
P

∫
dq1 dq2

(2π)6
e2π(ξ

F
1
+ξF

2
+ξF

3
+ξF

4
)

(ξF1 ξF2 ξF3 ξF4 )
3

AF (q1, κ1 − q1, q2, κ2 − q2)

× q
1/2
1 q

1/2
2 |κ1 − q1|1/2 |κ2 − q2|1/2 (

√
q1 +

√
|κ1 − q1| )−14 (

√
q2 +

√
|κ2 − q2| )−14

× δ(κ1 + κ4) δ(κ2 + κ3) . (A.3)

The parameters ξLi = ξ(τLi ) have a form similar to (4.15), with the temporal variables
evaluated, in each case, at the momenta appearing in the denominators of the respective
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expressions, i.e.:

τA
1

= τB
1

= τC
1

≃ −
(√

q +
√
|κ1 − q|

)
−2

, τA
2

= τB
2

≃ −
(√

q +
√

|κ2 + q|
)
−2

,

τA
3

≃ −
(√

|κ1 − q|+
√
|κ2 + κ4 + q|

)
−2

, τB
4

≃ −
(√

|κ2 + q|+
√
|κ2 + κ3 + q|

)
−2

,

τA
4

≃ −
(√

|κ2 + q|+
√
|κ2 + κ4 + q|

)
−2

, τC
2

≃ −
(√

q +
√

|κ3 + q|
)
−2

,

τB
3

= τC
3

≃ −
(√

|κ1 − q|+
√
|κ2 + κ3 + q|

)
−2

, τC
4

≃ −
(√

|κ3 + q|+
√
|κ2 + κ3 + q|

)
−2

,

τE
1

= τE
2

= τF
1

= τF
2

≃ −
(√

q1 +
√

|κ1 − q1|
)
−2

, τD
1

= τD
2

≃ −
(√

q1 +
√
|κ1 − q1|

)
−2

,

τE
3

= τE
4

= τF
3

= τF
4

≃ −
(√

q2 +
√

|κ2 − q2|
)
−2

, τD
3

= τD
4

≃ −
(√

q2 +
√
|κ3 − q2|

)
−2

.

(A.4)

B Sourced intrinsic correlator: Evaluation of integrals

The integral II in eq. (4.21) of the sourced intrinsic correlator in the regime of large momenta
has the form

II =
1

k8πδBR

∫
dp1 dp2 dq

×
(

q1/2 |p1 + q| |p1 + p2 + q|1/2AA(q,−p1 − q,p1 + q,p1 + p2 + q)

(
√
q +

√
|p1 + q| )14 (

√
|p1 + q|+

√
|p1 + p2 + q| )14 (τAI,1 τAI,2 τAI,3 τAI,4)2πδ

+
q1/2 |p1 + q| |p1 + q− p2|1/2AB(q,−p1 − q,p1 + q,p1 + q− p2)

(
√
q +

√
|p1 + q| )14 (

√
|p1 + q|+

√
|p1 + q− p2| )14 (τBI,1 τBI,2 τBI,3 τBI,4)2πδ

+
q1/2 |p1 + q|1/2 |q− p2|1/2 |p1 + q− p2|1/2

(
√
q +

√
|p1 + q| )7 (√q +

√
|q− p2| )7 (

√
|q− p2|+

√
|p1 + q− p2| )7

× AC(q,−p1 − q,q− p2,p1 + q− p2)

(
√

|p1 + q|+
√
|p1 + q− p2| )7 (τCI,1 τCI,2 τCI,3 τCI,4)2πδ

+ 2
p
1/2
2 q1/2 |p1 + p2|1/2 |p1 − q|1/2AE(p2,−p1 − p2,q,p1 − q)

(
√
p2 +

√
|p1 + p2| )14 (

√
q +

√
|p1 − q| )14 (τEI,1 τEI,2 τEI,3 τEI,4)2πδ

)
, (B.1)

where we have used τBR = −1/kBR in equation (4.19) and neglected the parameter k wherever
it appeared, as it is small compared to the large momenta considered in the integral. The
time variables of equation (A.4) in this case take the form

τ
A
I,1 = τ

A
I,2 = τ

B
I,1 = τ

B
I,2 = τ

C
I,1 ≃ −

(√
q +

√
|p1 + q|

)
−2

, τ
C
I,2 ≃ −

(√
q +

√
|q− p2|

)
−2

,

τ
A
I,3 = τ

A
I,4 ≃ −

(√
|p1 + q|+

√
|p1 + p2 + q|

)
−2

, τ
C
I,3 ≃ −

(√
|q− p2|+

√
|p1 + q− p2|

)
−2

,

τ
B
I,3 = τ

B
I,4 ≃ −

(√
|p1 + q|+

√
|p1 + q− p2|

)
−2

, τ
E
I,1 = τ

E
I,2 ≃ −

(√
p2 +

√
|p1 + p2|

)
−2

,

τ
C
I,4 ≃ −

(√
|p1 + q|+

√
|p1 + q− p2|

)
−2

, τ
E
I,3 = τ

E
I,4 ≃ −

(√
q +

√
|p1 − q|

)
−2

.

To compute the integral, we consider all possible orderings of the magnitudes of p1,
p2 and q and integrate over one momentum at a time, keeping only the dominant terms
in each expression. For example, in the case p1 > p2 > q, the expression (

√
|q− p2| +√

|p1 + q− p2|)7 simplifies to p
7/2
1 , and the integration is carried out as

∫
dp1 dp2 dq =

∫ kBR

dp1 p
2
1

∫ p1

dp2 p
2
2

∫ p2

dq q2
∫

dΩ , (B.2)
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with
∫

dΩ =
∏

i=p1,p2,q

∫
dθi dϕi sin(θi) . (B.3)

A key simplification arises when the dominant momentum appears in both square roots in a
sum. For instance, the expression (

√
|p1 + q|+

√
|p1 + q− p2|)7, when p1 is the maximum

momentum, becomes 27 p
7/2
1 . In such cases, the suppression factor of 27 in the denominator

makes the corresponding term negligible. Therefore, although we would theoretically need
to consider all six possible orderings of the three variables, the number of relevant cases is
reduced by focusing only on terms without the large 27 suppression.

For the first expression of (B.1) the only ordering that does not lead to a suppression is
p2 > p1 > q, for which the expression becomes

1

k8πδBR

∫ kBR

dp2 p
4πδ−9/2
2

∫ p2

dp1 p
4πδ−4
1

∫ p1

dq q5/2
∫

dΩAA(q,−p1,p1,p2)

=
1.4× 104

k3BR

2

7 (4πδ + 1/2) (8πδ − 3)
, for δ >

3

8π
. (B.4)

The number 1.4× 104 is the result of the numerical integration of the angular part over the
solid angle (B.3). The second integral in (B.1) shares the same dependence on the momenta
as the first one and therefore gives the same result. For the third integral in (B.1), there is
no ordering of the momenta that avoids the significant 27 suppression, so it can be neglected.
Finally, the last integral in (B.1) receives contributions only from the orderings p1 > q > p2
and p1 > p2 > q. Since these two orderings give rise to the same integral, we need to calculate
only one of them:

2

k8πδBR

∫ kBR

dp1 p
8πδ−11
1

∫ p1

dp2 p
5/2
2

∫ p2

dq q5/2
∫

dΩAE(p2,−p1,q,p1)

=
1.8× 103

k3BR

4

49 (8πδ − 3)
, for δ >

3

8π
. (B.5)

Summing all contributions, we obtain

II =
8.1× 103

k3BR (4πδ + 1/2) (8πδ − 3)
+

2.9× 102

k3BR (8πδ − 3)
, for δ >

3

8π
. (B.6)

In practice, the parameter δ takes values in the range 0.06 − 0.2. However, since this
integral contributes to a correlator that turns out to be negligible for any value of δ (due to
the suppression factor (k/kBR)

3), we can adopt the value δ = 0.2 that allows us to simplify
the integrals, while still providing a reasonable estimate. For δ = 0.2, the integral becomes

II ≃
1.5× 103

k3

(
k

kBR

)3

, (B.7)

that gives the result present in (4.21).
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C Sourced extrinsic correlator: Evaluation of integrals

C.1 Term: CS.I.
ΩΩ (k)

The integral IS.I. in eq. (4.27) of the scale-invariant part of CE
ΩΩ,3(k) in the regime of large

momenta has the form

IS.I. =
1

k8πδBR

∫
dp1 dp2 dq1 dq2

× q
1/2
1 |p1 + q1|1/2 q1/22 |p2 + q2|1/2AD(q1,−p1 − q1,q2,−p2 − q2)

(
√
q1 +

√
|p1 + q1| )14 (

√
q2 +

√
|p2 + q2| )14 (τS.I.1 τS.I.2 τS.I.3 τS.I.4 )2πδ

, (C.1)

with

τS.I.1 = τS.I.2 ≃ −(
√
q1 +

√
|p1 + q1| )−2 ,

τS.I.3 = τS.I.4 ≃ −(
√
q2 +

√
|p2 + q2| )−2 .

The computation is done by integrating over one momentum at a time, accounting for all
possible orderings of the four variables, as done in Appendix B. However, when q1 > p1
or q2 > p2, a large suppression factor of 214 appears in each of the two parentheses in the
denominator. Thus, we can restrict our calculations to the cases where p1 > q1 and p2 > q2,
for which the integral becomes

IS.I. =
1

k8πδBR

∫
dp1 dp2 dq1 dq2 q

1/2
1 q

1/2
2 p

4πδ−13/2
1 p

4πδ−13/2
2 AD(q1,−p1,q2,−p2) . (C.2)

Finally, due to the symmetry of the integral under the exchanges p1 ↔ p2 and q1 ↔ q2, it
simplifies to

IS.I. =
1

k8πδBR

(∫ kBR

dp p4πδ−9/2

∫ p

dq q5/2
)2 ∫

dΩAD(q1,−p1,q2,−p2)

≃ 4.4× 104
(

1

14πδ

)2

, (C.3)

where in dΩ we have collected the angular integrations on the polar angles of all the four
variables, i.e. dΩ = dΩp1 dΩp2 dΩq1 dΩq2 .

C.2 Term: CE
ΩΩ,1(k)

The first contribution to the extrinsic correlator of the gravitational wave energy densities in
the regime of large momenta, eq. (4.30), is found by evaluating the integral

IE,1 =
1

k8πδBR

∫
dp1 dp2 dp3 dq

1

p33

×
(

q1/2 |p1 + q| |p1 + p2 + p3 + q|1/2AA(q,−p1 − q,p1 + q,p1 + p2 + p3 + q)

(
√
q +

√
|p1 + q| )14 (

√
|p1 + q|+

√
|p1 + p2 + p3 + q| )14 (τAE1,1 τAE1,2 τAE1,3 τAE1,4)2πδ

+
q1/2 |p1 + q| |p1 + q− p2 − p3|1/2AB(q,−p1 − q,p1 + q,p1 + q− p2 − p3)

(
√
q +

√
|p1 + q| )14 (

√
|p1 + q|+

√
|p1 + q− p2 − p3| )14 (τBE1,1 τBE1,2 τBE1,3 τBE1,4)2πδ
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+
q1/2 |p1 + q|1/2 |q− p2 − p3|1/2 |p1 + q− p2 − p3|1/2

(
√
q +

√
|p1 + q| )7 (√q +

√
|q− p2 − p3| )7 (

√
|q− p2 − p3|+

√
|p1 + q− p2 − p3| )7

× AC(q,−p1 − q,q− p2 − p3,p1 + q− p2 − p3)

(
√

|p1 + q|+
√
|p1 + q− p2 − p3| )7 (τCE1,1 τCE1,2 τCE1,3 τCE1,4)2πδ

+ 2
p
1/2
2 q1/2 |p1 + p2|1/2 |p1 − q|1/2AE(p2,−p1 − p2,q,p1 − q)

(
√
p2 +

√
|p1 + p2| )14 (

√
q +

√
|p1 − q| )14 (τEE1,1 τEE1,2 τEE1,3 τEE1,4)2πδ

)
, (C.4)

where we have neglected the k terms in the sums and with the time parameters given by

τ
A
E1,1 = τ

A
E1,2 = τ

B
E1,1 = τ

B
E1,2 = τ

C
E1,1 ≃ −(

√
q +

√
|p1 + q|)−2

,

τ
A
E1,3 = τ

A
E1,4 ≃ −(

√
|p1 + q|+

√
|p1 + p2 + p3 + q|)−2

, τ
C
E1,2 ≃ −(

√
q +

√
|q− p2 − p3|)−2

,

τ
B
E1,3 = τ

B
E1,4 ≃ −(

√
|p1 + q|+

√
|p1 + q− p2 − p3|)−2

, τ
E
E1,1 = τ

E
E1,2 ≃ −(

√
p2 +

√
|p1 + p2|)−2

,

τ
C
E1,3 ≃ −(

√
|q− p2 − p3|+

√
|p1 + q− p2 − p3|)−2

, τ
E
E1,3 = τ

E
E1,4 ≃ −(

√
q +

√
|p1 − q|)−2

,

τ
C
E1,4 ≃ −(

√
|p1 + q|+

√
|p1 + q− p2 − p3|)−2

.

In order to compute (C.4), we again consider specific orderings of the momenta and
integrate over one momentum at a time keeping only the dominant terms, as done in Ap-
pendix B. Many orderings give significantly suppressed results due to the 27 factors in the
denominators whenever the largest momentum appears in both roots of a sum. As a result,
the number of contributing cases is greatly reduced. For the first expression of (C.4), there
are six cases that contribute significantly:

p3 > p2 > p1 > q
5.1× 104

k3BR (4πδ + 1/2) (4πδ + 7/2) (8πδ − 3)

p2 > p3 > p1 > q
5.1× 104

k3BR (4πδ + 1/2)2 (8πδ − 3)

p3 > p1 > p2 > q
7.8× 103

k3BR (4πδ + 7/2) (8πδ − 3)

p2 > p1 > p3 > q
1.4× 104

k3BR (4πδ + 1/2) (8πδ − 3)

p3 > p1 > q > p2
9.1× 103

k3BR (4πδ + 7/2) (8πδ − 3)

p2 > p1 > q > p3
1.4× 104

(
1.2× 103π2δ2 − 4.7× 102πδ − 22.

)

k3BR (8πδ − 3)2(8πδ + 1)2

valid for δ > 3
8π . The second expression of (C.4) has the same dependence on momenta

as the first one and so gives the same result. For the third expression of (C.4) there are
not combinations which do not suffer the suppression. Finally, for the fourth expression,
we consider all combinations where p1 > q and p1 > p2. Although there are eight such
combinations, the symmetry between p2 and q in the integral ensures that swapping p2 and
q gives the same result. Therefore, we need to compute only four distinct cases:
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p1 > p3 > q > p2 (or p1 > p3 > p2 > q)
1.3× 102

k3BR (8πδ − 3)

p1 > q > p3 > p2 (or p1 > p2 > p3 > q)
2.6× 102

k3BR (8πδ − 3)

p1 > q > p2 > p3 (or p1 > p2 > q > p3)
1.3× 102 (1.4× 102 πδ − 6.1× 10)

k3BR (8πδ − 3)2

p3 > p1 > q > p2 (or p3 > p1 > p2 > q)
9.× 102

k3BR (8πδ − 3)2

valid for δ > 3
8π . Summing all contributions, we obtain

IE,1 =
−1.4× 102 + 1.× 103 δ + 4.3× 102 δ2

k3BR (1.2× 10−1 − 1. δ)2 (4.× 10−2 + 1. δ)
, for δ >

3

8π
. (C.5)

In particular for δ = 0.2 the integral takes the value

IE,1 ≃
5.2× 104

k3

(
k

kBR

)3

, (C.6)

used in (4.30).

C.3 Term: CE
ΩΩ,2(k)

The second contribution to the extrinsic correlator of the gravitational wave energy densities
in the regime of large momenta, eq. (4.31), is found by evaluating the integral

IE,2 =
1

k8πδBR

∫
dp1 dp2 dp3 dq

1

p33

×
(
q1/2 |p1 + p3 + q| |p1 + p2 + p3 + q|1/2

(
√
q +

√
|p1 + p3 + q| )14

× AA(q,−p1 − p3 − q,p1 + p3 + q,p1 + p2 + p3 + q)

(
√

|p1 + p3 + q|+
√

|p1 + p2 + p3 + q| )14 (τAE2,1 τAE2,2 τAE2,3 τAE2,4)2πδ

+
q1/2 |p1 + p3 + q| |p1 + q− p2 + p3|1/2

(
√
q +

√
|p1 + p3 + q| )14

× AB(q,−p1 − p3 − q,p1 + p3 + q,p1 + q− p2 + p3)

(
√

|p1 + p3 + q|+
√

|p1 + q− p2 + p3| )14 (τBE2,1 τBE2,2 τBE2,3 τBE2,4)2πδ

+
q1/2 |p1 + p3 + q|1/2 |q− p2|1/2 |p1 + q− p2 + p3|1/2

(
√
q +

√
|p1 + p3 + q| )7 (√q +

√
|q− p2| )7 (

√
|q− p2|+

√
|p1 + q− p2 + p3| )7

× AC(q,−p1 − p3 − q,q− p2,p1 + q− p2 + p3)

(
√
|p1 + p3 + q|+

√
|p1 + q− p2 + p3| )7 (τCE2,1 τCE2,2 τCE2,3 τCE2,4)2πδ

+ 2
p
1/2
2 q1/2 |p1 + p2 + p3|1/2 |p1 + p3 − q|1/2AE(p2,−p1 − p2 − p3,q,p1 + p3 − q)

(
√
p2 +

√
|p1 + p2 + p3| )14 (

√
q +

√
|p1 + p3 − q| )14 (τEE2,1 τEE2,2 τEE2,3 τEE2,4))2πδ

)
,

(C.7)
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where we have neglected the k terms in the sums and with the time parameters given by

τA
E2,1 = τA

E2,2 = τB
E2,1 = τB

E2,2 = τC
E2,1 ≃ −(

√
q +

√
|p1 + p3 + q| )−2 ,

τA
E2,3 = τA

E2,4 ≃ −(
√
|p1 + p3 + q|+

√
|p1 + p2 + p3 + q| )−2 ,

τB
E2,3 = τB

E2,4 ≃ −(
√

|p1 + p3 + q|+
√

|p1 + q− p2 + p3| )−2 ,

τC
E2,2 ≃ −(

√
q +

√
|q− p2| )−2 ,

τC
E2,3 ≃ −(

√
|q− p2|+

√
|p1 + q− p2 + p3| )−2 ,

τC
E2,4 ≃ −(

√
|p1 + p3 + q|+

√
|p1 + q− p2 + p3| )−2 ,

τE
E2,1 = τE

E2,2 ≃ −(
√
p2 +

√
|p1 + p2 + p3| )−2 ,

τE
E2,3 = τE

E2,4 ≃ −(
√
q +

√
|p1 + p3 − q| )−2 .

We perform again one integration at the time considering all the possible orderings of
the four momenta, i.e. 4! = 24 permutations, but neglecting all the terms suppressed by 27

factors at the denominators, as done in Appendix B. For the first expression of (C.7) the only
cases that survive are the four cases with q < p1 or p3 and p2 > p1, p3 and q:

p2 > p1 > p3 > q
1.4× 104

k3BR (4πδ + 1/2) (8πδ − 3)

p2 > p3 > p1 > q
7.8× 103

k3BR (4πδ + 1/2) (8πδ − 3)

p2 > p1 > q > p3
1.4× 104

(
1.2× 103π2δ2 − 4.7× 102πδ − 22.

)

k3BR (8πδ − 3)2(8πδ + 1)2

p2 > p3 > q > p1
9.1× 103

k3BR (4πδ + 1/2) (8πδ − 3)

valid for δ > 3
8π . The second expression of (C.7) has the same dependence on momenta as the

first one and so gives the same result. The third expression contains only suppressed combi-
nations. Finally, for the fourth expression, we consider all combinations where p1 or p3 > q
and p1 or p3 > p2. Although there are twelve such combinations, the symmetry between p2
and q allow us to compute only six of them:

p1 > p3 > q > p2 (or p1 > p3 > p2 > q)
1.3× 102

k3BR (8πδ − 3)

p1 > q > p3 > p2 (or p1 > p2 > p3 > q)
2.6× 102

k3BR (8πδ − 3)

p1 > q > p2 > p3 (or p1 > p2 > q > p3)
1.3× 102 (1.4× 102 πδ − 6.1× 10))

k3BR (8πδ − 3)2

p3 > p1 > q > p2 (or p3 > p1 > p2 > q)
9.× 101

k3BR (8πδ − 3)

p3 > q > p1 > p2 (or p3 > p2 > p1 > q)
9.7× 101

k3BR (8πδ − 3)

p3 > q > p2 > p1 (or p3 > p2 > q > p1)
1.1× 102

k3BR (8πδ − 3)
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valid for δ > 3
8π . Summing all contributions, we obtain

IE,2 =
−2.6− 1.3× 102 δ + 1.× 103 δ2 + 4.8× 102 δ3

k3BR (4.7× 10−3 + 8.× 10−2 δ − 1. δ2)2
, for δ >

3

8π
. (C.8)

In particular for δ = 0.2 the integral takes the value

IE,2 ≃
4.7× 104

k3

(
k

kBR

)3

, (C.9)

used in (4.31).

C.4 Term: CE
ΩΩ,3(k)

′

The non scale-invariant part of the third contribution to the extrinsic correlator of the gravita-
tional wave energy densities in the regime of large momenta, eq. (4.32), is found by evaluating
the integral

IE,3 =
1

k8πδBR

∫
dp1 dp2 dp3 dq

1

p33

×
(

q1/2 |p1 + q|1/2 |p1 − p3 + q|1/2 |p1 + p2 + q|1/2
(
√
q +

√
|p1 + q| )7 (√q +

√
|p1 − p3 + q| )7 (

√
|p1 + q|+

√
|p1 + p2 + q| )7

× AA(q,−p1 − q,p1 − p3 + q,p1 + p2 + q)

(
√
|p1 − p3 + q|+

√
|p1 + p2 + q| )7 (τAE3,1 τAE3,2 τAE3,3 τAE3,4)2πδ

+
q1/2 |p1 + q|1/2 |p1 − p3 + q|1/2 |p1 − p3 − p2 + q|1/2

(
√
q +

√
|p1 + q| )7 (√q +

√
|p1 − p3 + q| )7 (

√
|p1 + q|+

√
|p1 − p3 − p2 + q| )7

× AB(q,−p1 − q,p1 − p3 + q,p1 − p3 − p2 + q)

(
√
|p1 − p3 + q|+

√
|p1 − p3 − p2 + q| )7 (τBE3,1 τBE3,2 τBE3,3 τBE3,4)2πδ

+
q1/2 |p1 + q|1/2 |q− p2|1/2 |p1 − p3 − p2 + q|1/2

(
√
q +

√
|p1 + q| )7 (√q +

√
|q− p2| )7 (

√
|q− p2|+

√
|p1 − p3 − p2 + q| )7

× AC(q,−p1 − q,q− p2,p1 − p3 − p2 + q)

(
√

|p1 + q|+
√
|p1 − p3 − p2 + q| )7 (τCE3,1 τCE3,2 τCE3,3 τCE3,4)2πδ

+ 2
p
1/2
2 q1/2 |p1 + p2|1/2 |p1 − p3 − q|1/2AE(p2,−p1 − p2,q,p1 − p3 − q)

(
√
p2 +

√
|p1 + p2| )14 (

√
q +

√
|p1 − p3 − q| )14 (τEE3,1 τEE3,2 τEE3,3 τEE3,4)2πδ

)
, (C.10)

where we have neglected the k terms in the sums and with the time parameters given by

τ
A
E3,1 = τ

B
E3,1 = τ

C
E3,1 ≃ −(

√
q +

√
|p1 + q| )−2

, τ
B
E3,3 ≃ −(

√
|p1 + q|+

√
|p1 − p3 − p2 + q| )−2

,

τ
A
E3,2 = τ

B
E3,2 ≃ −(

√
q +

√
|p1 − p3 + q| )−2

, τ
C
E3,2 ≃ −(

√
q +

√
|q− p2| )−2

,

τ
A
E3,3 ≃ −(

√
|p1 + q|+

√
|p1 + p2 + q| )−2

, τ
C
E3,3 ≃ −(

√
|q− p2|+

√
|p1 − p3 − p2 + q| )−2

,

τ
A
E3,4 ≃ −(

√
|p1 − p3 + q|+

√
|p1 + p2 + q| )−2

, τ
E
E3,1 = τ

E
E3,2 ≃ −(

√
p2 +

√
|p1 + p2| )−2

,

τ
B
E3,4 ≃ −(

√
|p1 − p3 + q|+

√
|p1 − p3 − p2 + q| )−2

, τ
E
E3,3 = τ

E
E3,4 ≃ −(

√
q +

√
|p1 − p3 − q| )−2

,

τ
C
E3,4 ≃ −(

√
|p1 + q|+

√
|p1 − p3 − p2 + q| )−2

.

We perform again one integration at the time neglecting all the terms suppressed by 27

factors, as done in Appendix B. For the first expression of (C.10) the only cases that survive
are the four cases with p2 > p1 > q:
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p2 > p1 > q > p3
1.4× 104

(
1.2× 103π2δ2 − 4.7× 102πδ − 22.

)

k3BR (8πδ − 3)2(8πδ + 1)2

p2 > p1 > p3 > q
1.4× 104

k3BR (4πδ + 1/2) (8πδ − 3)

p2 > p3 > p1 > q
1.7× 104

k3BR (2πδ + 7/2) (4πδ + 1/2) (8πδ − 3)

p3 > p2 > p1 > q
1.7× 104

k3BR (2πδ + 7/2) (4πδ + 7/2) (8πδ − 3)

valid for δ > 3
8π . For the second expression, the cases that contribute are those where p2 is

the largest among all momenta, with p1 > q. This condition leaves us with three possible
cases:

p2 > p3 > p1 > q
1.7× 104

k3BR (2πδ + 7/2) (4πδ + 1/2) (8πδ − 3)

p2 > p1 > p3 > q
1.4× 104

k3BR (4πδ + 1/2) (8πδ − 3)

p2 > p1 > q > p3
1.4× 104

(
1.2× 103π2δ2 − 4.7× 102πδ − 22.

)

k3BR (8πδ − 3)2(8πδ + 1)2

valid for δ > 3
8π . In the third expression, only two cases survive, i.e. p3 > p2 > p1 > q and

p3 > p1 > p2 > q, which give rise to the same result:

6.3× 103

k3BR (2πδ + 7/2) (4πδ + 7/2) (8πδ − 3)
, for δ >

3

8π
. (C.11)

In the fourth expression, we have nine cases, satisfying p1 > p2 and q < p1 or p3, which reduce
to five if we use the symmetry under the exchange p2 ↔ q:

p1 > p2 > q > p3 (or p1 > q > p2 > p3)
1.3× 102 (1.4× 102 πδ − 6.1× 10)

k3BR (8πδ − 3)2

p1 > p2 > p3 > q (or p1 > q > p3 > p2)
2.6× 102

k3BR (8πδ − 3)

p1 > p3 > p2 > q (or p1 > p3 > q > p2)
1.3× 102

k3BR (8πδ − 3)

p3 > p1 > p2 > q (or p3 > p1 > q > p2 )
3.× 102

k3BR (4πδ + 7/2) (8πδ − 3)

p3 > q > p1 > p2
2.1× 103

k3BR (4πδ) (4πδ + 7/2) (8πδ − 3)

valid for δ > 3
8π . Summing all contributions, we obtain

IE,3 =
1

k3BR δ (2.8× 10−1 + 1. δ) (5.6× 10−1 + 1. δ) (4.7× 10−3 + 8.× 10−2 δ − 1. δ2)2
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× (−5.6× 10−5 − 3.5× 10−1 δ − 2.× 101 δ2 + 5.1× 101 δ3 + 7.4× 102 δ4

+ 1.1× 103 δ5 + 2.2× 102 δ6) , (C.12)

valid for δ > 3
8π . In particular for δ = 0.2 the integral takes the value

IE,3 =
4.× 104

k3

(
k

kBR

)3

, (C.13)

used in (4.32).
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