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Sofia P. Corba
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Nordita, The Nordic Institute for Theoretical Physics January 18, 2026

Dear members of the selection committee,

| am writing to express my interest in a postdoctoral position within the ERC Synergy Grant COSMOMAG with Prof. Axel
Brandenburg. | am currently a Ph.D. candidate in theoretical physics at the University of Massachusetts Amherst (USA), working
with Prof. Lorenzo Sorbo, and | expect to complete my degree in the summer of 2026. My research interests lie at the intersection
of early universe cosmology, high energy theory, and gravitational wave physics.

My doctoral research has focused on the theoretical and phenomenological aspects of early universe cosmology. | have studied
gravitational wave anisotropies in axion inflation models and their cross-correlations with CMB anisotropies, with the goal of
characterizing the stochastic gravitational wave background predicted in this framework and identifying the theoretical signatures
that distinguish it from its astrophysical counterpart. Within the same context of axion inflation, | am currently examining the
backreaction effects of fermions on the inflaton dynamics. A significant part of my work has also focused on formal aspects of
renormalization in quantum field theory on curved spacetime, where | proposed an alternative prescription for the traditionally used
adiabatic renormalization and applied it to the power spectra of various inflationary models. | am currently testing this alternative
prescription by calculating the conformal anomaly. More recently, | have begun exploring the physics of dynamical black holes
during inflation in collaboration with Prof. Jennie Traschen. Prior to my Ph.D., in my master's thesis, Backreaction from
Magnetogenesis in String Inflation, supervised by Prof. Michele Cicoli, | studied primordial magnetogenesis in string-inspired
inflationary models obtained through moduli stabilization techniques in Type IIB flux compactifications.

Besides the technical and analytical skills | have developed, my research has taught me how to collaborate effectively with
colleagues throughout the scientific process, how to take initiative, and how to bring a project to publication. In particular, through
my most recent paper, which is a solo-authored manuscript, | have learned to conduct and manage independent research and to
address complex scientific challenges on my own. Through participation in collaborations, seminars, journal clubs, and conferences,
| have interacted with researchers across many areas, improving my ability to work within a research group and to present scientific
results clearly.

Alongside my research at UMass, | served as a teaching assistant for both undergraduate and graduate courses, for which | received
the Quinton Award for Excellence in Teaching in 2023. My teaching experience reflects strong communication skills and a
commitment to community building. Managing these responsibilities alongside an active research program has taught me effective
task administration, time management, and the coordination of multiple forms of work under tight deadlines. Beyond teaching, |
am an active member of the Women in Physics organization and have served on the Physics Department’s Climate Committee and
the SEA Change initiative, working to promote equity, inclusion, and diversity within the academic community.

As a postdoctoral researcher, | would like to extend my current research on gravitational wave anisotropies to more general settings,
focusing on variants of axion inflation that involve gauge field kinetic couplings, dynamical black holes, or primordial black holes.
This study of gravitational wave signatures would contribute to the broader effort to characterize the stochastic gravitational wave
background, which is essential to interpret and guide the intense current and future observational activity of ground-based (LIGO,
Virgo, KAGRA, and the proposed Cosmic Explorer and Einstein Telescope) and space-based (LISA) detectors, as well as pulsar
timing array observations expected in the coming years. At the same time, | intend to expand my work on formal aspects of
quantum field theory to test and strengthen the alternative prescription | proposed for the renormalization of observables in curved
spacetime. In this context, | plan to develop future projects on the renormalization of observables such as the electromagnetic
stress-energy tensor in inflationary models, in order to produce reliable predictions for quantities like the seed magnetic fields that
could have given rise to the observed large-scale cosmic magnetic fields. Finally, | look forward to expanding my work on black hole
physics, an area | have only recently begun to explore and am excited to develop further, as well as advancing string-theoretic
phenomenological approaches to cosmology.

| am especially excited to join the group of Prof. Axel Brandenburg, and to collaborate with Profs. Chiara Caprini, Andrii Neronov,
and Franco Vazza on COSMOMAG, a collaborative project aimed at studying the origin of cosmological magnetic fields. This
project naturally connects to my research experience and future plans, as | have previously worked on magnetogenesis in the context
of my master’s thesis, while my work on adiabatic renormalization could provide a valuable formalism for computing seed magnetic
fields originating in the primordial universe. Moreover, the high quality and impact of the research conducted at Nordita, make it
an ideal environment in which to grow scientifically and advance my academic goals. With my background in quantum field theory
in curved spacetime and early universe physics, | am confident that | can contribute meaningfully to the group's research
community. In addition, my experience with gravitational waves would allow me to contribute effectively to the more observational
aspects of the project. Thank you for your consideration, and | look forward to the opportunity to discuss my application further.

Sincerely

Sofia P. Corba
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2020-summer
2026
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2012-2016

Academic Qualifications

Ph.D. in Theoretical Physics, Department of Physics, University of Massachusetts Amherst, USA.
Supervisor: Prof. Lorenzo Sorbo.

M.Sc. in Theoretical Physics, Alma Mater Studiorum - University of Bologna, Italy.
Supervisor: Prof. Michele Cicoli. Mark: 110/110 cum laude.

B.Sc. in Physics, Alma Mater Studiorum - University of Bologna, Italy.
Supervisor: Prof. Michele Cicoli. Mark: 110/110 cum laude.

Research Experience

My research focuses on theoretical cosmology and its connections to high-energy physics, with
a particular interest in early-universe physics and inflation. More recently, my interests have also
expanded to the study of black holes.

Research on Formal Aspects of Quantum Field Theory on Curved Spacetime: Making predictions
in quantum field theory requires a consistent method for renormalizing observables. In the presence
of gravity, this process becomes more complicated than in flat spacetime due to particle creation.
My work has focused on studying the limitations of the standard method of renormalization in curved
spacetime, the adiabatic renormalization, and proposing an alternative approach to overcome them.
| have applied this approach to analyze observables such as the power spectrum in various inflationary
scenarios, and | am currently using it to calculate the conformal anomaly, whose well known result
provides a test for the method.

Research on Axion Inflation and Gravitational Waves: Axion inflation is a class of models in which
the inflaton is a pseudo-Nambu—Goldstone boson with a broken shift symmetry, allowing couplings to
gauge and fermionic fields. Within this framework, | have studied the generation of gravitational waves
and the anisotropies in the primordial stochastic background they produce. Studying these anisotropies
can help distinguish a cosmological signal from an astrophysical one, providing information about the
early universe. In the same context, | am currently analyzing aspects of backreaction of fermionic fields
on the inflaton.

Research on Black Holes during Inflation: In slow-roll inflationary cosmologies, dynamical black holes
can be studied within a metric that evolves quasi-statically through a sequence of Schwarzschild-de
Sitter like metrics, with slowly varying mass and effective cosmological constant. In this framework, both
the black hole and cosmological horizon areas grow as the inflaton rolls. | am currently working on
extending this model to better understand dynamical black holes during inflation and their cosmological
signatures.

String Theory Inflation: In my Master’s thesis, Backreaction from Magnetogenesis in String Inflation, |
studied primordial magnetogenesis in string inflationary models arising from Type IIB flux compactifi-
cations. The generated fields could serve as seeds for the large-scale magnetic fields observed today,
while their backreaction on the inflaton may help reconcile the requirement of sufficient e-foldings of
inflation with the geometric constraints imposed by the extra dimensions.
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10.

11.

12.

13.

List of Main Publications

Sofia P. Corba, Lorenzo Sorbo, "On adiabatic subtraction in an inflating Universe", arXiv:2209.14362

[hep-th] (2022), JCAP 07 (2023), 005.

Sofia P. Corba, Lorenzo Sorbo, "Correlated scalar perturbations and gravitational waves from axion

inflation”, arXiv: 2403.03338 [astro-ph.CO] (2024), JCAP 10 (2024), 024.

Sofia P. Corba, "'Gravitational wave anisotropies from axion inflation", arXiv:2504.13156 [astro-

ph.CO] (2025). Accepted for publication in JCAP (in press).

Sofia P. Corba, Lorenzo Sorbo, "Calculation of the conformal anomaly using adiabatic renormaliza-

tion". In preparation (2025).

Sofia P. Corba, Lorenzo Sorbo, "Study of backreaction from fermion production during axion

inflation". In preparation (2025).

Conferences, Schools Attended and Talks

Visitor at Kavli Institute for Cosmological Physics (SPEAKER).
University of Chicago.

December 8, 2025, Chicago (IL), USA.

Parity Violation from Home 2025 (INVITED SPEAKER).
November 18-21, 2025, Remote.

High Energy Theory Seminar (INVITED SPEAKER).
University of Pennsylvania.

November 17, 2025, Philadelphia (PA), USA.

MIT Cosmo Coffee series (SPEAKER).

Massachusetts Institute of Technology.
November 12, 2025, Cambridge (MA), USA.

COSMO-25 - 28th International Conference on Particle Physics & Cosmology (SPEAKER).

Carnegie Mellon University.

October 13-17, 2025, Pittsburgh (PA), USA.

Workshop - Primordial Black Holes: Theory Meets Experiment.
Amherst Center for Fundamental Interactions - UMass Amherst.
September 17-19, 2025, Amherst (MA), USA.

Summer School on Particle Physics 2025 (SPEAKER).
ICTP International center for fundamental physics.
June 16-27, 2025, Trieste (TS), Italy.

Invisibles School 2024 (POSTER PRESENTATION).

Alma Mater Studiorum - University of Bologna.

Jun 24-28, 2024, Bologna (BO), Italy.

DPF-Pheno 2024 (SPEAKER).

University of Pittsburgh, Carnegie Mellon University.

May 13-17, 2024, Pittsburgh (PA), USA.

Workshop - Surveying the Landscape.

Ambherst Center for Fundamental Interactions - UMass Amherst.
April 15-17, 2024, Amherst (MA), USA.

ACFI Journal Club 2024 (SPEAKER).
Ambherst Center for Fundamental Interactions - UMass Amherst.
April 10, 2024, Amherst (MA), USA.

DESY Theory Seminars - Journal Club 2022 (SPEAKER).
Deutsches Elektronen-Synchrotron (DESY).
November 10, 2022, Hamburg, Germany.

BS2019 - SEENET-MTP Balkan School on High Energy and Particle Physics:

Theory and Phenomenology. Workshop on Advances in Fields, Particles and Cosmology.

June 3-10, 2019, loannina, Greece.
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2020-present

References

Prof. Lorenzo Sorbo

Department of Physics, University of Massachusetts Amherst, USA.
email: sorbo@umass.edu

Prof. Jennie Traschen

Department of Physics, University of Massachusetts Amherst, USA.
email: traschen@umass.edu

Prof. Ben Heidenreich

Department of Physics, University of Massachusetts Amherst, USA.
email: bheidenreich@umass.edu

Prof. Michele Cicoli

Department of Physics and Astronomy, University of Bologna, Italy.

email: michele.cicoli@unibo.it

Teaching Experience

As a Teaching Assistant:

- P131 Intro Physics |, assistant of Team Based Learning (TBL) classrooms (Fall 2021, Spring 2022, Fall
2023, Spring 2024).

- Collaborated with Prof. Heath Hatch to design and co-teach P131 Intro Physics | (Fall 2024, Spring
2025).

- P131 Intro Physics |, co-instructor for Lab sessions (Spring 2024, Spring 2025).

- P151 General Physics |, assistant of TBL classrooms (Fall 2023, Fall 2025).

- P132 Intro Physics Il, assistant of TBL classrooms (Fall 2022).

- P181 Introductory Mechanics, assistant of TBL classrooms and grading (Fall 2022).

- P564 Advanced Quantum Mechanics: Assistant of the course and grading (Spring 2023).

- P602 Statistical Mechanics: Assistant of the course and grading (Fall 2024).

As an Instructor:

- P151 General Physics | (Spring 2026).

Intensive Teaching Training:

Completion of the Intensive Teaching Training program to develop skills for becoming an independent
instructor of large lecture courses, under the supervision of Prof. David Hamilton (Fall 2025).

Awards and Recognitions

Quinton Award for excellence in Teaching.
University of Massachusetts Amherst, USA (2023).

Community Involvement

Participation in the Physics Department’s Climate Committee meetings on equity, inclusion, and diversity.
Participation in Women in Physics group and events.
Participation in SEA Change group.
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Research Proposal Sofia P. Corba

| am writing to express my interest in a postdoctoral position within the ERC Synergy Grant COSMOMAG. | am
currently a Ph.D. candidate in theoretical physics at the University of Massachusetts Amherst (USA), working with
Prof. Lorenzo Sorbo, and | expect to complete my degree in the summer of 2026.

My research focuses on theoretical cosmology and its implications for fundamental interactions and physics beyond
the Standard Model, with a particular interest in the early universe. The leading paradigm of primordial cosmology
is inflation, which describes how, during the very first moments of its existence, the universe underwent a rapid,
quasi-exponential expansion, naturally reaching an extremely flat and homogeneous configuration. During this
phase, quantum fluctuations were stretched to macroscopic scales, becoming the seeds of the large-scale structure
we observe today. This mechanism, which connects microscopic quantum processes to macroscopic cosmological
observables, makes inflation a natural framework for studying quantum field theory in curved spacetime and its
connection with general relativity. This is the context in which | have developed my research.

| began studying the physics of the early universe in my master’s thesis, Backreaction from Magnetogenesis in String
Inflation, supervised by Prof. Michele Cicoli, where | analyzed string theory-inspired models of inflation and primordial
magnetogenesis. During my Ph.D., | have worked closely with Prof. Lorenzo Sorbo on both phenomenological and
formal aspects of early universe cosmology, including gravitational wave anisotropies and backreaction effects
in axion inflation models, as well as the renormalization of observables in curved spacetime. More recently, my
interests have also expanded to the study of black holes. In particular, | am currently collaborating with Prof.
Jennie Traschen on a project investigating dynamical black holes in slow-roll inflation, where the metric evolves
quasi-statically through a sequence of Schwarzschild-de Sitter metrics.

s Research on Axion Inflation and Gravitational Waves

Given the ultraviolet (UV) sensitivity of generic scalar potentials, building a robust model of inflation requires
controlling the quantum corrections arising from UV modes. One class of models addressing this problem is axion
inflation, where the inflaton is a pseudo-Nambu—Goldstone boson with a broken shift symmetry. Because of this
symmetry, the axion inflaton naturally couples to gauge fields, which are amplified during inflation and in turn source
scalar and tensor fluctuations. Consequently, this model produces two types of fluctuations: the standard vacuum
fluctuations generated by the accelerated expansion of the background and the fluctuations sourced by the amplified
gauge fields [1,2]. The same shift symmetry also allows couplings to fermionic fields.

Past and Ongoing Research

In my paper [3], published in JCAP in October 2024, | investigated the correlation between scalar and tensor
fluctuations produced in axion inflation. The correlator receives two contributions: one from gravitational waves
correlated with vacuum scalar fluctuations, and another from gravitational waves correlated with sourced scalar
fluctuations. My analysis showed that the former effect dominates, with the normalized correlator being of the order
of 1074 — 1072, Its observability, subject to instrumental noise and the intrinsic variance of the isotropic component,
depends on the amplitude of the anisotropies in the gravitational wave spectrum. In the subsequent paper [4],
accepted for publication in JCAP in November 2025, | calculated this amplitude, finding that it can reach values as
large as O(1071), thus showing that axion inflation can indeed produce observable anisotropies.

In this same context, | am currently working on a project investigating backreaction effects in axion inflation models
that include couplings to fermionic fields [5]. In particular, | am exploring whether there exist parameter values for
which particle production can occur on parametrically sub-horizon scales. This would allow the analysis to be carried
out analytically within a perturbative regime, analogously to what happens in [6].

Future Research

Going forward, | plan to expand the study of gravitational wave anisotropies from axion inflation to more general
settings. Evidence indicates that adding a kinetic coupling together with the commonly studied axial coupling could,
even if weakly, affect the gravitational wave energy density and power spectrum [7]. A key question is how such
couplings could influence the anisotropies and whether characteristic signatures might be detected by upcoming
observations.
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s Research on Formal Aspects of Quantum Field Theory on Curved Spacetime

Making predictions in quantum field theory requires a consistent method for renormalizing observables. In the
presence of gravity, this becomes more complicated than in flat spacetime due to particle creation. A significant part
of my work has focused on developing a consistent method of renormalization of observables in curved spacetime.

Past and Ongoing Research

One renormalization technique traditionally used in cosmology is adiabatic renormalization [8,9]. This leads to finite
observables by subtracting from the bare results, mode by mode, the corresponding quantities obtained using the
positive-frequency Wentzel-Kramers-Brillouin (WKB) approximation. The WKB expansion is obtained as a recursive
series, and, according to the standard prescription, the truncation order should correspond to the degree of ultraviolet
divergence of the operator being renormalized. While this method works very well in the UV regime, it often
generates infrared (IR) artifacts at finite momenta [10], due to the fact that the order of truncation is fixed.

In [11], published in JCAP in July 2023, | proposed a revision of the standard approach, recognizing that the adiabatic
expansion is generally asymptotic, and as such has an optimal truncation that gives the best approximation to the
exact solution [12]. This optimal truncation depends on the system’s parameters, including the momenta, thus
resolving the unphysical behavior at intermediate scales. In my paper, | focused on the renormalization of the power
spectrum of scalar fluctuations during and after inflation across various scenarios. Currently, | am working on a new
project that applies optimal truncation to the calculation of the conformal anomaly, the expectation value of which
is well known and can serve as a test for this approach.

Future Research

In models where the inflaton couples to gauge fields, such as axion inflation, particularly when kinetic couplings are
included, or in some string theory-inspired scenarios, primordial magnetic fields can be produced. To obtain reliable
predictions and constrain these models through observations, it is necessary to properly renormalize the magnetic
energy density. As a future project, | plan to apply the alternative prescription | introduced in [11] to renormalize the
electromagnetic stress-energy tensor. Once the optimal truncation, as a function of momentum, is determined, the
renormalized tensor is obtained from the bare one by subtracting, mode by mode (i.e., under the integral sign), the
corresponding terms obtained using the asymptotic expansion. This provides a consistent result for the generated
magnetic fields, which could then serve as seeds for the large-scale magnetic fields observed in the universe today,
potentially explaining their origin.

s Research on Black Holes during Inflation

In slow-roll inflationary cosmologies, dynamical black holes can be studied within a metric that evolves quasi-statically
through a sequence of Schwarzschild-de Sitter like metrics, with slowly varying mass and effective cosmological
constant [13]. In this framework, both the black hole and cosmological horizon areas grow as the inflaton rolls.

Ongoing Research

Recently, | have started a project with Prof. Jennie Traschen in which we translate the inflaton’'s field evolution,
together with the evolution of the black hole mass and effective cosmological constant found in the Schwarzschild-de
Sitter metric, into the language of standard inflationary cosmology in the far field. In this context, we are studying
various cosmological observables to have a clearer understanding of how dynamical black holes modify standard
inflationary dynamics and what observational signatures could confirm or rule out their existence.

Future Research

In this direction, a future project | plan to focus on is the study of dynamical black holes, described within the slowly
varying Schwarzschild-de Sitter metric, in the case where inflation is driven by an axion inflaton. A separate question
concerns primordial black holes formed after axion inflation, when the fluctuations generated during inflation re-enter
the horizon and collapse. In particular, it would be interesting to examine how the charge of these primordial black
holes is affected by the presence of the gauge fields sourced by the inflaton.

s Research on String Theory Inflation and Magnetogenesis

In all the previous topics, inflation was studied within the effective framework of quantum field theory in curved
spacetime. Another way to obtain inflationary models is through the UV-complete theory of string theory. Since string
theory is formulated in ten dimensions, deriving predictions for the four-dimensional physics, relevant to cosmology,
requires compactifying the six extra dimensions on a suitable manifold, known as a Calabi-Yau. An important
consequence of this compactification and the subsequent dimensional reduction is the emergence of a large number
of massless scalar fields, the moduli, with flat potentials that make them natural candidates to drive inflation.
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Past Research

In my Master’s thesis, | studied two string theory inflationary models arising from Type IIB flux compactifications:
Kahler Inflation and Fibre Inflation. In these models, the inflaton couples to gauge fields, which in turn backreact by
slowing the inflationary evolution. In my work, | examined two important effects: first, the generation of magnetic
fields that could explain the large-scale magnetic fields observed today, and second, the slowdown of the inflaton,
which may help alleviate the tension between the phenomenological requirement of sufficient e-foldings of inflation
and the geometric constraints imposed by the size of extra dimensions [14].

e [-yture Research Goals

The study of the gravitational wave anisotropies | carried out in [3,4] contributes to the broader effort to characterize
the cosmological stochastic gravitational wave background and to distinguish it from its astrophysical counterpart.
This line of research has gained increasing importance because of the intense current and future observational activity
of ground-based detectors (LIGO, Virgo, KAGRA, and the proposed Cosmic Explorer and Einstein Telescope) and
space-based missions (LISA), particularly following the 2023 NANOGrav detection [15]. Building on this, | aim
to develop quantitative predictions for observables such as the spectral shape, polarization, and cross-correlations
of the stochastic gravitational wave background across different early universe models, with the goal of guiding the
interpretation of upcoming observational data. At the same time, | would be interested in the opportunity to explore
areas such as black holes, with which | am only beginning to familiarize myself, as well as late-time cosmology and
string theory, as these fields can contribute to a broader understanding of the universe.

| am especially excited to join the group of Prof. Axel Brandenburg, and to collaborate with Profs. Chiara Caprini,
Andrii Neronov, and Franco Vazza on COSMOMAG, a collaborative project aimed at studying the origin of
cosmological magnetic fields. This project naturally connects to my research experience and future plans, as | have
previously worked on magnetogenesis in the context of my master's thesis, while my work on adiabatic renormalization
could provide a valuable formalism for computing seed magnetic fields originating in the primordial universe. With
my background in quantum field theory in curved spacetime and early universe physics, | am confident that | can
contribute meaningfully to the group's research community. In addition, my experience with gravitational waves would
allow me to contribute effectively to the more observational aspects of the project.
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Preparation for the Final ID 11/01/2019 3
Examination

PREPARAZIONE PROVA FINALE ID 22/02/2019 30
Relativity 1 30 e lode A(2) 10/02/2017 FIS/02 6
Relativity 2 30 B(2) 13/10/2017 FIS/02 6
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Learning activities Grade ECTS Scale Date (dd/mm/yy) SSD CFU/ECTS

Statistical Mechanics 1 30 e lode A(2) 02/02/2018 FIS/02 6

Statistical Mechanics 2 30 e lode A(2) 28/03/2018 FIS/02 6

Theoretical Physics 1 30 e lode A(2) 10/03/2017 FIS/02 6

Theoretical Physics 2 30 e lode A(2) 12/06/2017 FIS/02 6

Final examination Successfully 20/03/2019 15
Completed

USEFUL CREDITS (RECOGNISED AND/OR OBTAINED IN THE LAST DEGREE PROGRAMME): 120

Notes

@)

Final Examination taken at the School of 10 - Science

The Board evaluates the candidate through his/her study curriculum and the final examination; the Board expresses its evaluation as a mark out
of one hundred and ten. The examination is passed with a minimum score of 66/110. In the event of the maximum score being awarded
(110/110), the Board may unanimously decide to award the "cum laude" honour.

ECTS Scale Grade % of students

who have
obtained such
grade
A 110 e lode 51
C 108 - 110 23
D 101 - 107 19
E 66 - 100 7
(2

Exam taken at the School of 10 - Science
ECTS grading scale - Institutional grading system of the School of 10 - Science (second cycle degree programmes)

ECTS Scale Grade % of students
who have
obtained such
grade
A 30 e lode 15
B 30 32
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ECTS Scale Grade % of students
who have
obtained such
grade
29 9

28 16
27
26
25
24
23
22
21
20
19
18
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Passing grade for each exams or learning activity can range from 18 to 30. The highest possible grade is "30 e lode" (30L), i.e. 30 with honours.
For some exams and activities there is no grade, but only an "approved" (ID).

The percentages of students obtaining a given grade are rounded up to the nearest whole number. The highest percentage is calculated by the
difference between 100 and the sum of the percentages of the students obtaining the other grades.

1 CFU = Credit Unit = 1 ECTS = 25 working hours (teaching, independent study, examinations, tutorials)

N.A. = Not applicable in a different Faculty in the Univesity system before 1999 reform or in a different University.

SSD = Scientific field/Discipline

RC = Recognised

RP = Replaced

SO = Sobstitute
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The ltalian University System

(DM 509/99 and DM 270/2004)

Since 1999, Italian university studies have been reformed so as to meet the objectives of the "Bologna process'. The university system is now
organised in 3 cycles: the Laurea, the 1st cycle academic degree, grants access to the 2nd cycle, and the Laurea specialistica/magistrale, the main
degree of the 2nd cycle, gives access to 3rd cycle courses awarding the Dottorato di ricerca. In addition to the three sequential degrees mentioned
above, the system offers other programmes with their respective degrees.

First cycle. First cycle studies consist exclusively in Corsi di Laurea, aimed at guaranteeing students an adequate command of general scientific
methods and contents as well as specific professional skills. The general access requirement is the school leaving qualification awarded on completion
of 13 years of global schooling and after the relevant State examinations; also comparable foreign qualifications may be accepted. Admission to
individual degree courses may be subject to specific course requirements. Laurea courses last 3 years. The Laurea (1st degree) is awarded to students
who have earned 180 credits; the completion of atraining period and the defence of athesis may also be required. The Laurea grants access to
competitions for the civil service, to regulated and non-regulated professions, and to 2nd cycle courses.

Second cycle. Second cycle studies include the following typol ogies:

A) Corsi di Laurea specialistica/Corsi di Laurea magistrale; they are aimed at providing students with an advanced level of education for the exercise
of ahighly qualified activity in specific areas. Accessisusually by aLaurea or acomparable foreign degree; admission is subject to specific course
requirements determined by individual universities; workload: 120 credits; length: 2 years. The awarding of the degree, Laurea
specialistica/magistrale (2nd cycle degree of the “Bologna process’) is conditional on the defence of athesis. The change of the name from Laurea
specialistica into Laurea magistrale was decided in 2004.

A limited number of 2nd cycle programmes (dentistry, human medicine, pharmacy, veterinary medicine, architecture, law), are defined Corsi di
Laurea specialistica/magistrale a ciclo unico (one-block LS/LM courses); access is by the school leaving diploma or a comparable foreign
qualification; admission is subject to selective entrance exams; each degree course is organised in just one-block of 5 years and 300 credits (only
human medicine requires 6 years and 360 credits). All Lauree specialistiche/magistrali grant access to competitions for the civil service, to regulated
and non-regulated professions, research doctorate programmes and all the other degree courses of the 3rd cycle.

B) Corsi di Master universitario di primo livello. They consist in advanced scientific courses or higher continuing education studies open to the
holders of aLaurea or a comparable foreign degree; admission may be subject to additional conditions. Length: minimum 1 year; workload: 60
credits at least. The Master universitario di primo livello does not give accessto the 3rd cycle.

Third cycle. Third cycle studies include the following typol ogies:

A) Corsi di Dottorato di Ricerca aim at training students for very advanced scientific research; they adopt innovative teaching methodologies,
updated technologies, training periods abroad and supervised activities in specialized research centres. Admission requires a Laurea specialistica/
magistrale (or a comparable foreign degree) and to pass a specific competition; studies last aminimum of 3 years; the doctoral student must work out
an original dissertation to be defended in the final examination.

B) Corsi di specializzazione are devised to provide students with knowledge and abilities as requested in the practice of highly qualified professions;
they mainly concern medical, clinical and surgical specialities. Admission requires a Laurea specialistica/magistrale (or a comparable foreign degree)
and the passing of a competitive examination; course length variesin relation to subject fields. The final degree, Diploma di specializzazione, gives
the right to the title as Specialista.

C) Corsi di Master universitario di secondo livello consist in advanced scientific courses or higher continuing education studies, open to the holders
of an LS or acomparable foreign degree. Length: minimum 1 year; workload: 60 credits at |east.

Credits: degree courses are usualy structured in credits. A university credit generally corresponds to 25 hours of global work per student, time for
personal study included. The average workload of a full time student is conventionally fixed at 60 credits per year.

Classes of degree courses: all degree courses sharing educational objectives and teaching-learning activities are organised in groups called classi.
The content of individual degree coursesis autonomously determined by universities; however, when establishing a degree course, individual
institutions have to adopt some general requirements fixed at national level. Degrees belonging to the same class have the same legal validity.

Academic titles: the Laurea confersthe title "Dottore", the Laurea specialistica/magistrale that of Dottore magistrale, the Dottorato di ricercathat
of "Dottore di ricerca".

Joint degrees: Italian universities may establish degree courses in cooperation with foreign partner universities, on completion of integrated curricula
joint or double/multiple degrees are awarded.
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paper we review those results and we contrast them with the power spectra obtained using an
alternative prescription for adiabatic subtraction applied to quantum field theoretical systems
by Dabrowski and Dunne [3, 4]. This prescription eliminates the intermediate-wavelength
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1 Introduction

One of the key predictions of primordial inflation is that quantum fluctuations of light fields
are amplified into the seeds of the large scale structure of our Universe. As is the case
on Minkowskian backgrounds, also for quantum fields on a curved spacetime, one needs to
address the presence of ultraviolet divergences in the expressions of the physical observables.
On Minkowskian backgrounds, divergences of observables that are quadratic in the fields
(such as the total energy of a quantum field) can be subtracted “by hand”, an operation,
associated with the normal ordering of creation and annihilation operators, that is justified
by the fact that the divergent quantities are unobservable constants. Things get more subtle
in time-dependent and/or curved backgrounds.

In this article we study the renormalization of the power spectrum of a massless or light
scalar field in de Sitter and quasi-de Sitter space. We will focus on the method of adiabatic
subtraction, the original version of which was proposed by Parker [1, 2] to renormalize the
energy-momentum tensor of scalar fields in expanding universes. This method leads to finite
observables by subtracting from the bare results, mode by mode, the same quantities obtained
by replacing the mode functions with their positive-frequency Wentzel-Kramers-Brillouin
(WKB) approximation. This is a natural generalization of the subtraction of divergent
constants performed to obtain finite results on trivial backgrounds. The WKB approximation
is obtained as a recursive series, and, according to the standard prescription, the order at
which it should be evaluated is related to the degree of ultraviolet divergence of the operator
that we try to renormalize. More specifically, one is instructed [1, 2, 5-7] to truncate the
WKB series to the minimum order that allows to obtain a UV-finite result.

By considering a light scalar on (quasi) de Sitter, we can compare our study of adiabatic
subtraction with those existing in the literature. In particular, the method of adiabatic
subtraction has been applied by Parker [8] to the standard calculation of the power spectrum
73,(33S of a light (m <« H) scalar field during inflation with Hubble parameter H. In that
paper it was found that the renormalized power spectrum converges to the standard result
% for k/a < m < H, while for m < k/a < H one can evaluate it to ~ % X 3lega2
Related analyses can be found in [9-12]. While the large scale results match the standard
expectation, at intermediate scales, where causality arguments would require quasi-constant
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Figure 1. The power spectrum of a scalar field of mass m? = .1 H? on de Sitter space. The solid
line represents the non-renormalized result. The dashed line gives the renormalized result according
to eq. (18) of [8].

power spectra, the renormalized spectra show a rapid running. This behavior can be seen for
instance in figure 1, where we show the non-renormalized and the renormalized power spectra
(obtained from eq. (18) of [8]) of a scalar with mass m? = .1 H2. It is worth stressing that the
study of scalar metric perturbations during inflation, which are restricted by diffeomorphism
invariance, would require a more specific formulation than the one we are using here, and is
beyond our scope.

Several authors have discussed the result of [8]. Shortly after [8], it was pointed out
in [13] that the two-point function, being finite when computed at distinct points, should not
need renormalization.! The authors of [13], however, also noted that adiabatic regularization
of the power spectrum, a fundamental tool to renormalize the stress-energy tensor, leads to
“unpleasant features” in the regularized power spectra that persist if one considers the next
order in the WKB series. In [14] it has been noted that a time-dependent value of the Hubble
parameter makes the adiabatically subtracted component smaller at later times. This view
was restated in [15], where it was stressed that the effect of renormalization should not affect
the cosmological scales k¥ < a H. In [16], the same authors argued that these problems
are alleviated if one assumes a radiation-dominated period prior to inflation, that effectively
provides an infrared cutoff to the modes of the scalar perturbations. The paper [17] was
written in response to these objections. In [18] it was shown that adiabatic subtraction
can be recast in the form of redefinition of parameters of the Lagrangian.? Very recently,
finally, the authors of [19] have argued that the unusual behavior for superhorizon modes with
physical wavelengths shorter than m™! is eliminated by implementing adiabatic subtraction
only for modes with wavelengths shorter than an infrared cutoff.

'Reasons why the two-point function should be renormalized at all have been discussed, e.g., in [6], page 84.
We stress here that finite values for quantities of physical interest such as the stress-energy tensor of a scalar
field (T, (x)) can be obtained by computing objects such as (%@%((ﬁ(x)qb(y))) _, which are divergent

and can be renormalized using adiabatic subtraction. Then, for consistency, one should also apply adiabatic
subtraction to (¢(x)@(y)).

2In Minkowski-space renormalization, the introduction of counterterms is associated with the existence of
observables, such as the energy, sensitive to the divergent quantity under consideration. In the case of the
power spectrum, one can think of a field x interacting with ¢ through a coupling proportional to ¢?x?. In
this case the expectation value (¢*(z)) = limy—.(¢(2)¢(y)) contributes to the effective mass of x, and would
be observable by measuring x’s dispersion relation. The counterterm, in this example, appears in the bare
mass of the field x.



The result of [8] highlights a couple of undesirable features of the standard formulation
of adiabatic subtraction:

1. adiabatic subtraction leads to artifacts (significant corrections to the classical result far
from the UV regime) for modes that are not adiabatically evolving. One such example
is given by the modes with m < k/a < H, see figure 1. One can argue that this is not
so upsetting, because if the proper frequencies are not adiabatically evolving, then the
concept of particle itself becomes ill-defined. Nevertheless, it would be preferable to
(i) have a trustworthy definition of integral quantities, such as, e.g., (¢(x, t)?), that is
given as the integral on all scales of the power spectrum; and (7i) that the value of the
power spectrum takes physically sensible values at all wavelengths;

2. in the standard, textbook [5, 6] prescription for adiabatic subtraction, the order of
WKB approximation depends on the degree of ultraviolet divergence of the operator
under consideration. For instance, the calculation of (¢(x, t)?) will require subtraction
up to the second order in the WKB expansion, while to compute ((Vo(x, t))?) one
needs to go to fourth order. A prescription where the order of truncation of the WKB
expansion is independent of the operator under consideration might be preferable.

A related subtlety is that adiabaticity depends on the choice of time. For a massless
scalar in cosmic time t the proper frequency is given by w,f = k2 e 2Ht _ %H 2 that behaves
adiabatically, |dwy/dt| < |wg|? at late times ¢ — co. On the other hand, in conformal time
7, dr = e Ht dt, the proper frequency of canonically normalized modes w,% = k2 — T% does
not behave adiabatically at late times, as |dwy/d7| ~ |wg|?/v/2 for 7 — 07. The notion
of adiabaticity thus seems to depend on the choice of time. While this ambiguity can be
dealt with by considering terms such as % appearing in the proper frequency as higher order
terms in the adiabatic expansion, we will show below that this issue is resolved by assuming
a definition of time that maintains wy(#)? > 0 at all moments. Such a definition of time has
been used in the past, see for instance [7, 11].

In this paper we will explore the implications, for the calculation of power spectra, of
an alternative prescription for the order of truncation of the WKB approximation. This
prescription, based on the findings in [20-22], has been explicitly applied to quantum field
theoretical systems in [3, 4]. As we will discuss in sections 2 and 3 below, the adiabatic
expansion is generally an asymptotic expansion and as such has an optimal truncation, i.e.,
there is an order of the expansion that gives an exponentially good approximation to the exact
solution. This order has nothing to do with the degree of divergence of the operator one has
to renormalize but depends on the parameters of the system. This order is also generally
dependent on the momentum k. At least in principle, this allows us to avoid the generation
of unphysical behavior at intermediate momenta such as that observed when applying the
textbook prescription [5, 6]. Remarkably, the asymptotic behavior of the mode functions
which underlies the adiabatic solution is exactly the manifestation of the notion of particle
production, that can be evaluated analytically by focusing on the Stokes phenomenon [23].
In other words, if the WKB expansion is not asymptotic and can be resummed exactly, then
no particle production will occur.

In section 4, we apply the general results presented in the previous sections to specific
cases of inflationary spectra. We find, in agreement with the result found in [8], that the
renormalized spectrum for a massless, minimally coupled scalar in exact de Sitter space with
flat spatial slices is identically vanishing. For a light, massive field in exact de Sitter space,



on the other hand, the application of the prescription [3, 4] gives, unlike the results of [§8], a

power spectrum that is approximately constant for all scales k < aH. Finally, we apply the

general results discussed above to the case of a massless scalar in an FLRW Universe that

performs a smooth transition from a quasi-de Sitter to a radiation-dominated stage.
Section 5 contains our conclusions and a discussion of these results.

2 Bogolyubov coefficients, adiabatic subtraction

Quantum field theory is plagued with divergences. The simplest divergence that is encoun-
tered is that of the expectation value, for a free theory on a Minkowskian background, of
quadratic operators such as the energy density. Such a divergence is cured by subtracting its
(formally infinite) “vacuum contribution” by hand, or equivalently by replacing the operators
under consideration with their normal-ordered version.?

In the case in which the field is quantized on a time-dependent background, however,
the vacuum of the theory will also be generally evolving, making the concept of “vacuum
contribution” ambiguous. In this case, finite expectation values for quadratic operators are
usually obtained by applying adiabatic subtraction, i.e., by subtracting, mode by mode, from
the expectation value of the operator under consideration, the expectation value of the same
quantity evaluated in the adiabatic approximation [1].

We will now review how this prescription can also be phrased in terms of a time-
dependent normal ordering — a picture that can be traced back to [24, 25].

Consider a general system on a time-dependent background described by a scalar field
qZAJ(X, t) that we quantize as

d3k
(2%)3/2

- Pk . . A
o(x, t) = / 27 € [0k, t) an + o(k, )"l | = / Mok, t),  (21)
(2m)?/

where ¢(k, t) satisfies the equation

Ok, 1) +wi(t)? o(k, t) = 0. (2:2)
As we will discuss below, in order for the adiabatic subtraction to be well defined, we require
wr(t)? to be positive. We also assume, for the sake of presentation in this section, that
wi(t) > 0 satisfies the adiabaticity conditions |w|/wi — 0 and |g|/w} — 0 both as t — —o0
and as t — +oo, while at intermediate times wy(t) will generally evolve non adiabatically.
Under these conditions, the general solution to eq. (2.2) for ¢ — +o0 is a linear combination
of d)*(‘g)(k, t) and ¢?g)(k, t)*, with

1 —i (" Wiy (k') dt!
o) (k, t):me Jio Weon (st " Wioy(k, t) =wi(t) >0,  (2.3)
0 (K,

where the value of ¢y (as long as it is real) is irrelevant.
We choose the initial condition to be positive frequency only

¢(k, t — —o0) = 5 (k, 1), (2.4)

which implies that the operator ay (&L) annihilates (creates) quanta of ¢ at t — —oo.

3Tt is worth stressing that not all the divergences in a theory appear in the expectation values of quadratic
operators. Nevertheless, the present paper will deal only with these ones, which are relevant for observables
such as power spectra or occupation numbers.



Then we solve eq. (2.2). Since the adiabaticity condition is assumed to be satisfied at
late times, for ¢ — +o00 the solution must take the form

0k, t — +00) = alk) 1) (k, 1) + B(k) 61 (k, 1)7, (2.5)

where «(k) and B(k) are constants: the Bogolyubov coefficients. Thus, the field d(x, t) at
late times reads

d3k ikx a a
gy o) 6k ) + B0k 075 (k. 0]

+ o) o7k, 07 + B Sk, 0] a1} (26

We can therefore define the new operators

b(x, t = 400) :/

b = a(k) i+ Bk)*al
b, = a(k)* af, + Bk) d_x . 2.7)
in terms of which the field ¢(x, t) takes the form
~ d3k ikx a 7 a * 7
P(x, t = +o0) = /(27T)3/26’ 8 [Gf)(g)(k?, t) b + ¢(51)(k7 t) bT_k} : (2.8)

This equation shows that Bk is seen as an annihilation operator by an observer born at
t — +o00. In the literature [24, 25] the choice of these creation/annihilation operators is jus-
tified by the fact that these are the operators that diagonalize the Hamiltonian at late times.

Let us now evaluate, for instance, the Hamiltonian operator H (t), which is time depen-
dent since the system is on a time-dependent background. It is easy to see that

A t— —
H(t—>—oo):/d3kwk(_2>oo) (A T—i— aLak) ,

wi(t — +00) /o =~ ~t A
d3kk(2) (bubl, + B bac) (2.9)

H(t — +00) = /
whose vacuum expectation value (0|H(t — =£00)|0) is divergent. This divergence can be
eliminated by _computing the expectation value of the normal ordered Hamiltonian operator
instead, (0| : H : |0). We require that an early observer normal orders the ayx and &L operators,
whereas a late observer normal orders the Bk and I;L operators. On the other hand, since we
are working in the Heisenberg picture, the state |0) is independent of time, so that it is
annihilated by the ay operators, but not by the Bk operators.

The consequence of this prescription is that

(0] H(t — —00):10) = 0, (0] : ﬁ(t — +00) : |0) — /d?’kwk(t — +00) |B(k)|?,
(2.10)
so that, as it is well known, |3(k)|? can be interpreted as the occupation number of created
particles at late times.
We can generalize the above procedure to any quantity that is quadratic in the fields.
In particular, this can be applied to the power spectrum P,‘f, that we define through

d*k

pia KoY POty | (2.11)

(01d(x, 1)d(y, 1)[0) =




which gives 77]? (t) = % |o(k, t)[>. A straightforward calculation then shows, using eq. (2.5),
that the normal ordered power spectrum can be written, both for ¢ — —oo and for ¢ — 400, as

S { (k. t — +£00) d(k, t — +00)*}

3
27?2

Pyt — +o0) = [IW@ t — +o00)|* - ] . (212)

which can be shown to be equivalent to
]{73

Pt = £00) = 53 [I6(k. t = £00)|* — |67 (k. = 00)]?]
_ [ k, t — 4+o00)|* — L } 2.13
~or2 |¢( ) OO)| m . ( . )

The first line of this equation shows that time-dependent normal ordering amounts to sub-
tracting from the original expression the same one with the mode functions evaluated in the
adiabatic approximation. This procedure thus justifies in a natural way adiabatic subtrac-
tion as a method of subtracting the divergent part of the expectation values of operators in
time-dependent settings.

However, in the way in which it is described above, adiabatic subtraction is not always
sufficient to subtract all the UV divergences. A related issue is that one should require a
prescription for the definition of occupation numbers also at finite, even if large, times. To
deal with these questions, one modifies the above derivation to include higher orders in the
adiabatic expansion in the definition of ¢ (k, t), and to generalize eq. (2.5) to all values of
the time.

More specifically, we define the (2n)—th order adiabatic approximation <Z>(2n (k, t) to
the exact solution of eq. (2.2) as

1 —i [ Wi (k,t') dt’

_ to e 2.14
S5y (k. 1) W 5 (2.14)

where Wa,, (K, t) is found as follows.
We start by inserting into eq. (2.2) the Ansatz
1 o f:o W (k, t') dt/ 7
2W(k, t)
which implies that W (k, t) satisfies the equation

2
Wk, )2 = wi(t)? + /W (E, t)jtz (VVL”)) . (2.16)

The solution to this equation can be found iteratively by expanding it as a series in time
derivatives. Then W(y,)(k, t) is found as the truncation at the (2n)-th order of this derivative
(i.e., adiabatic) expansion:

Wy (k, 1) = w(?)

ok, t) = (2.15)

Wig)(k; 1) = wi(t) |1

“sarie (vam)|

ka 2 dt2 \/7

LVl @ (1 Vo & (1 & [ 1
Wiay (ks 8) = wi(8) 11+ 5 202 <ﬁ> Ay (t)? dt? <2wk(t)2dt2< wz&ﬂ))] ’
Wiey (O, ) — (2.17)



In particular, eq. (2.13) turns out to be valid because, under the assumption of adiabaticity
at early and late times, one has W(g,)(k, t — £00) = Wgy(k, t — +00) = wi(t — F00).

Then, we define the Bogolyubov coefficients (2, (K, ) and B(ay, (K, t), for all values of
the time t, through

¢(k t) = Q(2p) (k t) ¢(2n (k t) + B (2n) (k t) ¢(2n)(k t) (218)

It is important to stress at this point that the definition (2.18) of Bogolyubov coeffi-
cients requires (;S‘E‘g (k, t) and ¢ 2n)( t)* to be linearly independent quantities, which implies
that Wap)(k, t) should be real. Since Wy,(k, t) is an approximation of wy(t), Bogolyubov
coefficients can be consistently defined only at times for which wi(t) is real.

In principle one can also study situations where wy(t) transitions from real to imaginary
and then again to real values [26], but if we want the occupation number to be defined at all
times, we will require wg(t) to be real at all times. We will see this in particular in section 4,
where we will adopt a definition of time for which wy(t) is real also for super-horizon modes.

Finally, by requiring wi(¢)? > 0 one does not incur in the problem, found in [16], of
having to deal with an imaginary component in the spectrum in eq. (2.13).4

Eq. (2.18) does not determine sy, (k, t) and B, (k, t) uniquely, so that we need a
second prescription. Among various options that give equivalent results at ¢ — +oo, we
choose that obtained by taking the time derivative of eq. (2.18) while keeping cv(a,,)(k, t) and
Bon)(k, t) constant:

] ka t W n k’, t —i t / /
Sk 8) = an(k, 1) (—iW(Qn)(k:, - Ve y(k, 1) )6 St Wen (k,t') dt
2 W(Zn) (k, t) 2 W(Qn)( > t)
n k? t W n k, t 2 t / /
T (iW(zn)(k, 0= 57 = >€ N CAT)
2 W(Qn)(k, t) 2 W(Qn)(ka t)
Egs. (2.18) and (2.19) can be inverted to give
I A, f Wian) (k, t') dt! gb(k: t)
a(2n)(k7 t) 9 2W(2n k t [¢(k t) W2n (]{3 t) )
(2n)
1 —i [ Wi (k,t') dt! bk, )
—=./2 t — 2.2
B(2n) (kv t) 92 W(2n)(k7 t) e 0 [¢(k7 t) ’LW(Qn) (k, t) ) ( 0)
and we can thus define the time dependent creation/annihilation operators
b (1) = k, t)a k t)*al
( ) —a(Qn)( ’ )ak+/8(2n)( ) ) a_y
B (0) = o (k. 1) al + B (k, 1) i (2.21)

that are seen as annihilation/creation operators for an observer born at time ¢.

“Trying to be more sophisticated, in the case in which ws(¢) is imaginary, one might look for two linearly
independent solutions of eq. (2.2) with wk(t)2 < 0, one complex conjugate of the other, to allow for a
decomposition like that of eq. (2.1). One would then find that it is not possible for any of such decompositions
to diagonalize the Hamiltonian.



In particular, after normal ordering of the Z)l(fn) (t) and I;l((2n) (t)! operators, the power

spectrum of the field ¢(x, t) reads

1

o k?
Prl) = om C 2Wigny(k, t) |

T o2

|6k, )] (2.22)

where all the dependence on the order (2n) of the adiabatic expansion lies in the W(o,)(k, t)
at the denominator in the last term, since ¢(k, t) is the exact solution to the equation of
motion.

3 Truncation vs resummation of the adiabatic expansion

As discussed in the previous section, in order to apply adiabatic subtraction we need to
truncate the adiabatic expansion at the right adiabatic order. The next questions is then:
which order? According to [5-7], the prescription is to keep in Wg,(k, t) all the terms,
but no more, that are necessary to cancel all the UV divergences in the operator under
® While one might argue that this prescription has the advantage of being
the least intrusive way of generating UV-finite results, there are, as we have discussed in the
Introduction, a couple of reasons for concern. First, it is not clear why the order of truncation
should depend on the observable. For instance, for the same field, this prescription instructs
to use W(y)(k, t) when computing the power spectrum, and Wy (k, t) when computing the
energy density. Second, while this prescription creates a good behavior for the observables
at k — oo, it often generates artifacts (i.e. features in the observables where the subtracted
component overwhelms the bare one) at finite momenta, such as those observed in [§].

In this article we discuss an alternative approach, see [3, 4], where the order of truncation
is not related to the degree of divergence of the operator we try to renormalize. In fact, the
WXKB series is in general an asymptotic expansion and as such it has an optimal truncation
which gives the best possible approximation to the exact solution. Truncating the adiabatic
expansion to the optimal order, besides being a less arbitrary choice, also removes infrared
artifacts, as the order of the truncation generally depends on the wavenumber k and therefore
the subtracted function will not be the same in the UV and the IR regime. More importantly,
as we will see below, optimal truncation of the WKB series, at least in the regime of large
truncation order, leads to a universal functional dependence of the Bogolyubov coefficients.

The asymptotic nature of the WKB expansion is associated with the fact that the
adiabatic solutions are defined only locally, as we will now discuss.

The WKB approximation requires the adiabatic conditions || < w? and || < w} to
be satisfied. The points in the complex-¢ plane where wy, = 0 are called poles or turning points,
and each of them is surrounded by a region where the adiabatic approximation is violated.
For the sake of the presentation, let us assume that the adiabatic conditions are satisfied as
t — +o00, i.e., that the concept of particle is well defined at early and at late times. Let us also
assume that there is a path I' in the complex-t plane, see figure 2, that allows us to go from
t — —oo tot — 400 while staying arbitrarily far from the turning points (which is guaranteed

consideration.

5Moreover, the textbook prescription is to further expand W in eq. (2.22) in a derivative expansion:
1 1 Wiy — W,
~ -2B_TO (3.1)
2Wam  2Wio) 2W



Im{t}

Re{t}

Figure 2. A schematic representation of the complex-t plane. In this example the theory has four
turning points, coming in complex conjugate pairs, ¢1, t, ta, t5. Each turning point is surrounded by
a shaded area where the adiabaticity condition is violated. The path I' allows us to go from ¢ — —oo
to t — +o0o while traveling arbitrarily far from the turning points. However, along its path, it must
cross Stokes lines (marked as dotted lines), where a negative frequency component is added to the
WKB solution.

as long as the number of turning points is finite). This would imply that, starting at t — —oo

with a positive frequency solution o e~ I e dtl, and using the WKB approximation along I,
we get solutions that are only positive frequency also as t — +o0, i.e., B(k, t — +00) = 0.
Clearly there is something wrong here, since in general, if the adiabatic condition is violated
at finite times, particles should be created and 5(k, t — +00) should not vanish!

What has gone wrong? The issue is that the WKB approximation is defined only locally,
and the mode functions at initial time cannot be analytically continued through the whole
complex plane. The borders of regions of validity of such local approximations are called
Stokes lines, and the generation of a negative frequency component as one crosses a Stokes
line is known as the Stokes phenomenon [27].

The origin of the Stokes phenomenon is that in any given Stokes region the WKB per-
turbative expansion fails to capture the full expression of the solution, i.e., a part of the
solution does not appear at any order in the WKB approximation,® and as a consequence
is not generated by the simple analytical continuation to t — +oco of the positive frequency
solution. In other words, the Stokes phenomenon signals the fact that the WKB expan-
sion cannot be resummed everywhere to get the exact mode function, i.e., that the WKB
expansion is asymptotic. We thus obtain the chain of equivalences

asymptotic WKB expansion < Stokes lines < frequency mixing < particle creation.

On the other hand, if the WKB expansion can be resummed, then the exact mode
1 i [ Wk, t)

!
4 for some
QW (k, £)

functions can be written, in the entire complex-t plane, as

5This is similar to the case of a function such as f(z) = g(z) + e=1/** where g(x) can be expanded as
a Taylor series around & = 0. If we try to evaluate f(z) at finite values of x by using its Taylor expansion

—1/22

around z = 0, we will never recover the component e , irrespective to the order at which we perform the

Taylor expansion.



function W (k, t) (with boundary condition W (k, t — —o0) — wi(t — —o0)) and there is
no particle creation, 5(k, t) = 0. In this case it is apparent how the prescription [3, 4] is
radically different from that of [5-7]: while [3, 4] leads to fB(k, t) = 0 if the WKB series
can be resummed exactly, [5-7] would truncate the WKB series to a finite order, yielding
Bk, t = +00) # 0.

As we have seen above, the Stokes lines represent the boundaries of the regions with well
defined local WKB expansions. On those lines we have the greatest disparity between the
exponentials appearing in the positive and negative frequency solutions. Thus, the Stokes
lines are determined by the condition

t
Fi(t) = —Qi/t wi(t') dt’ = purely real , (3.2)

where we denoted as ¢, a turning point (wg(t.) = 0) in the complex-t plane with positive
imaginary part. Fy(t) is called the singulant variable.

Stokes [27] provided a connection formula which allows us to find the mode function
on one side of the Stokes line once we have it on the other side: in order to have the
concordance between different asymptotic representations defined in different regions of the
complex-t plane, the multiplier of the sub-dominant exponential must have a jump which is
equal to ¢ (the imaginary unit) times the multiplier of the dominant one. If we assume the
mode function at early times to be

.t N
1 e—zfto wi (t)dt

¢(k, t on one side of Stokes line) = , (3.3)
2wi (1)
then, after crossing the Stokes line, it will have the form
1 —i [ o)t —2i [P wp@dt! i [F wp(t)dt’
¢(k, t on other side of Stokes line) = 27@) e Jrg ettt —ie 2 Jig x @t e Jigwn®)at
Wi
(3.4)

A study of the microscopic structure of the Stokes phenomenon has been performed by
Dingle [20] and Berry [21, 22]. These authors have found a formula for the order n°Ptmal at
which the WKB expansion should be truncated to yield the best approximation to 5(k, t).
More importantly, they have resolved the thickness of the Stokes line, arguing that the
evolution of the multiplier of the subdominant mode function (i.e., the Bogolyubov coefficient
B(k, t)) in a neighborhood of the Stokes line has a universal and smooth form, at least as
long as n°Pmal > 1. Dunne and Dabrowsky [3, 4] have verified the consistency of those
formulae for the cases of Schwinger effect and of creation of massive scalars in a closed de
Sitter Universe.

The fact that the optimal truncation of the WKB series gives the best approximation to
the universal form of 5(k, t) is the main reason behind the proposal for adiabatic subtraction,
alternative to that of [5, 6], that we study in this paper.

Such a universal form is obtained in terms of a natural Stokes-line crossing variable
oi(t) given by

S{Fk()}
V2R{E()}
where the singulant function Fj(t) is defined in eq. (3.2). The Bogolyubov coefficient 5(k, t),
as we cross the Stokes’ line, is given by

Bk, t) ~

or(t) = (3.5)

[+ erf (og(£))] e 4 (3.6)

N | .
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that indeed ranges from 0 to ie™*% , where

o) _ . te / /
Fo/=—i | w(t)dt (3.7)
te

is the integral of wy(t) taken along the Stokes’ line between two complex conjugate turning
points, and is therefore real (and, with appropriate choice of branches, positive).
Also, the order of the optimal truncation of the WKB series is given by

poPtimal ~ Tpg [F]go) / 2} , (3.8)
which shows that this whole discussion is strictly speaking valid only as long as F] 150) >1.In

fact, the thickness of the Stokes’ line, as given by the size of the region across which 5(k, t)
accumulates most of its variation, is given by the range of ¢ for which o (t) ranges from O(—1)

to O(+1), which is shown by eq. (3.5) to scale as 1/\/F,§0). Equivalently, one can estimate
the size of the regions about t. for which the adiabaticity condition is not satisfied. To do
so, we assume that t. is a simple zero and set without loss of generality {t.} = 0. Then,
linearizing, wy,(t) ~ W (t.) x (t — t.), we obtain that W (t)| = wi(t)? for [t—t.| < 1/y/wr(te)],
so that if we want ¢, and ¢} to be distant enough that their regions of non-adiabaticity do not
overlap, we must require |t. — t¥| = O(|t.|) > 1//|wk(tc)|. Estimating the singulant for the
linearized expression of wy(t) we obtain F(t) ~ fttc Gpte) x (t —to) dt' =~ dp(te) (t —to)* =
F,E,O) ~ wi(te) t2, so that the condition that the poles are distinct, O(|t.|) > 1/y/wr(tc)] is
equivalent to F| ,20) > 1.

If the condition F, ,50) > 1 is not satisfied, then the use of the expressions discussed above
is not justified. In the absence of any specific formula for the case F,EO) = O(1), however,
we will still truncate the WKB series at the value of n for which the first local minimum of
[Wiany — Wian—2)| is reached.

4 Adiabatic subtraction for a scalar field in an inflating Universe

After having seen general prescriptions for adiabatic subtraction, our goal is to apply these
results to the case of a spatially flat (quasi) de Sitter Universe.

The action of a massive test scalar field ¢ on a spatially flat FLRW background is given
by

= &k 3L 2 k? 2 m? 2
3¢—/(27r)3 dta (2!¢<k, DI = 5z 6k OF = - [k, 1) ) (4.1)

In order to work with real frequencies at all times, we define a new time variable (this
definition of time has been used in the past, see for instance [7, 11])

dt
Y= (42
such that the action for ¢(k, t) reads
_ [ &k 1|do(k, O)> 1,5 4 5 g ,
S¢‘/(2ﬂ)3 40 (2‘619 —5(’f o' +m?a®) |o(k, ) ) . (4.3)

- 11 -



The field ¢(k, 0) is thus already canonically normalized, and the frequency of the mode with
momentum k is given by wi = Vk?a* + m? a8, that is positive definite.

Let us now consider different regimes, starting from the simplest case of a massless field
on an exact de Sitter space in flat slicing.

4.1 A massless scalar on exact de Sitter space in flat slicing
Hi

In this case wy = ka? with a(t) = e, or, using
dt 6—3Ht
do W:»@ Y —0<6<0,
k
a(8) = (—3HO) /3 wop(f) = — 4.4
(6) = (~3H0) 0) = (14)

where we have set § = —1/3H at the end of inflation, ¢ =0, a = 1.
The equation of motion for mode functions,
d2o(k, 0) k2
do? (—3H0)

4/3 ¢(k7 9) = 07 (45)
with positive frequency only solutions as § — —o0o, reads

__H (_k 1/3> ik (~3H6)"/
¢(k,9)_@(1 i (<3HB)')

H kY
= o (1 - z) elan | (4.6)

which is the well-known expression for the mode functions of a massless scalar on a de Sitter
space with flat slices.
Remarkably, this solution can be written in the form

.o
e—zf W (k,0") do’

¢(k7 9) = QW(IC, 0) )

if we choose

k3 a(6)?
W(k, ) = m. (4.8)
Since, in the case of a massless scalar on de Sitter space, the mode functions can be
written in the form (4.7), the WKB series can be resummed exactly, which implies that
the Bogolyubov coefficient §(k, t) vanishes. One could reach an analogous conclusion by
observing that by moving along the real negative #-axis, we encounter no Stokes lines in the
complex-0 plane, as w(f) has no zeros at finite 6.
We thus conclude that the prescription we are examining in this paper implies no particle
production for a massless scalar in exact de Sitter space in flat slicing.
Let us compare our result with that of the prescription of [5, 6]. In this case, one is
instructed to truncate the WKB series to second order,

2 a 2
Wi (k. 6) = ka(6)? (1 _ HkQ((’)) , (4.9)

- 12 —



so that applying eq. (2.22) with n = 1 and using eq. (4.6) we obtain

K2 > ( k2 1 )]
1+ - a(0)2 H2 ) (4-10)
( a(0)? H? a()?H? 1 _ 09367211

| 2

2

" ar?

Py (0)

where the term in the first (...) is proportional to |¢x(6)|® whereas the second term is
proportional to 1/Wy,,)(k, #). If, in the spirit of the adiabatic approximation, we expand

the second term to O(k"), we obtain that the prescription [5-7] leads to 77]? 0) = O(k™?),
which agrees with the result obtained by setting m = 0 in [8] and, more importantly, which
is the same result we obtained above using the prescription of [3, 4].

The vanishing of the power spectrum of a massless, minimally coupled scalar on de
Sitter space with flat slices deserves a couple of comments. First off, it is in agreement with
results from earlier literature. For instance, the formulae in [28], when applied to this case,
would also give a vanishing spectrum. Second, its disagreement with the usual expectation
(p(x, 1)) < H3t can be traced back to the absence of an infrared cutoff in de Sitter space
in flat slicing. The usual result {¢(x, t)) oc H3t can be indeed recovered in closed de Sitter
space, that has a natural infrared cutoff given by the wavelength of the modes that left the
horizon when the scale factor of the Universe was at its minimum [28, 29].

Finally, let us note that, even if they end up giving the same result, the (vanishing)
power spectra obtained by using the two prescriptions are qualitatively different. In the case
of the standard prescription, the final result is obtained from a truncation followed by a
Taylor expansion of the series in aH /k, which is therefore reliable only in the limit k > aH.
In the second case the vanishing renormalized spectrum is the result of a resummation of the
entire series. As we will see in the next example, the two prescriptions will give, in general,
different results.

4.2 A massive scalar on exact de Sitter space in flat slicing

In the case m # 0, with a de Sitter background, one can still find an exact solution to the
mode equation,

2
_ 7T ivm/2+in/4 pr(1) ( k ) 9 _m §H 4.11
ok ) =\ | T aey © v\awr): VEV1 @ M (1Y

which, however, cannot be written in the form (4.7) for any function W (k, 0), as we will now
discuss.

First, unlike the massless case, for m # 0 the frequency wy, = /k2 a(0)* + m? a(0)6 does
have zeros at finite values of 6 given by

i m?

SH B (4.12)

01 =

from which Stokes lines emanate. Omne of those lines crosses the real # axis at a point
Bstokes, Real determined by solving the equation

Osto es, Rea.
z/ e e \/kz a(0)* +m?a(0)6dh = real, (4.13)

0+
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i.e., changing variable back to physical time ¢ and integrating,

ks y 2y _ —2y _mm
lH [log (e +e2v + 1) Vite :|y:HtStokes,Real_log(k/m) ¥ Real, (4.14)

5o that tsiokes, Real can be found by solving numerically the equation log (ey + Ve + 1) —
V1+e % =0, yielding
HtStokes, Real =~ 411 + log(k:/m) . (4.15)

As a consequence, particle creation happens approximately when the scale factor et crosses

k/m, a consequence of the de Sitter symmetry t — t + At, k — ke At
The existence of a Stokes line shows that the WKB series is asymptotic. The singulant
reads

0
F? = z/ " VE2 a(9)t + m2a(6)6 do = z/
6_

(log(k/m)+in/2]/H

| »
[log(k/m)—im/2]/H R et — _m ’
H
(4.16)
which means that the WKB approximation will be a good one for m > H. In this case,
eq. (3.6) gives |B(k, t)|? oc e=2™/H in agreement with derivations of the rate of creation of
heavy particles based on Schwarzschild-de Sitter metric, such as that in [30].
A second, more pedestrian way to see that the series is asymptotic is to solve the
eq. (2.16) by brute force, at least for the first few terms. By using an algebraic manipulation
program we obtain

1m2a? a? H? 1m2a?
2 - 4 I 4
W (k,t)~ka <1+2 2 +0(m )>+k2 (1 12 +0(m ))
a*H* 5m?a? a8 H 217 m2a?
D ) 4 B (i 4 4.1
+k4< 5 %2 +O(m)+k6 +8 2 +0(m?) (4.17)

a® H® 3249 m?a? ) atfH1 39523 m?a? A
+ 8 (1— T 2 +0(m”) |+ 110 -1 1w +0O(m*) | +...

which shows that, while the O(m?) terms can be resummed to give the massless result (4.8),
the coefficients of the O(m?) terms are rapidly increasing, signaling the asymptotic nature
of the WKB series in the massive case.

The case m < H is the one of greatest phenomenological interest. In this case, the
formulae of [21, 22] are not strictly speaking valid, as we discussed at the end of section 3
above, and we will simply truncate the WKB series where [W(g,42) — W(ap)| displays a
minimum. In particular, we have

Wioy(k, 1) = a(t)*\/a(t)? + m?,

9m* +22m? q(t)? + 8 ¢q(t)*
Weay (ks 1) — Wik, £) = —a(t)® H? () +84(2)

(t) = —
8 (q(t)2 +m?2)°/? TN

so that both for ¢(t) < m < H and for m < q(t) < H we have [Wq)(k, t)| < [Wg)(k, t) —
W0y (K, t)|. As a consequence, for m < H and k < a H we will only keep the zeroth order of
the WKB series. This gives the power spectrum

¢_k3lﬂ

(4.18)

k™ or2 |4Ha3

k2 1
HW ()‘ - H < aH . 4.1
14 CI/H 2 /k2a4 -|-7m2a6 ) m << ) k ~Y a ( 9)
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Figure 3. The power spectrum of a scalar field of mass m? = .1H? on de Sitter space. The solid

line represents the non-renormalized result. The dashed line shows the renormalized result obtained
by using the standard prescription of adiabatic subtraction, i.e. by removing terms up to the second
adiabatic order. The dot dashed line represents the renormalized result obtained with the method of
the optimal truncation, i.e. removing, for superhorizon modes, only the zeroth order of the WKB series.

In figure 3 we show the non-renormalized power spectrum and the two versions of the
normalized one obtained by using the two different prescritions. As we can see the use of the
prescription [3, 4] eliminates the first of the “undesirable features” listed in the Introduction,
namely the fact that the standard prescription for adiabatic subtraction leads to a significant
running of the renormalized power spectrum for m < k/a < H. With the method of optimal
truncation on the other hand we get an almost constant spectrum.

4.3 A massless scalar in quasi-de Sitter, followed by radiation domination

We have shown in section 4.1 above that, by applying the prescription of [5, 6], the power
spectrum of a massless scalar in exact 3+1-dimensional de Sitter space is identically vanishing.
It is however easy to see that super-horizon modes for which k¥ < a H are not evolving
adiabatically in this system, since

1

d H
— d :2a—>>17 fork <aH. (4.20)
w

o k

It is therefore more interesting to consider the situation where at late times all modes
re-enter the horizon and are adiabatically evolving. Such a situation can be realized by
considering a background metric where a quasi-de Sitter phase is followed by a radiation
dominated Universe.

To study such a system, we consider a massless scalar field on the top of an FLRW
Universe whose scale factor evolution is given by

(1+ HA2)U4
et +2(1+ Hx2)1/4’

a(t) = 2 Mt (4.21)

which gives a de Sitter metric a(t) ~ efl* for t < —1/H and radiation dominated cosmology
a(t) ~ 2V Ht for t > 1/H. This choice of the form of a(t) also leads to H < 0 at all times,
as required by energy conditions.

~15 —



For a scale factor given by eq. (4.21), the proper frequency wi () = k a?(#) has complex
zeros at 0 = 0. and 0 = 0}, corresponding to Ht = +i, and we get

0x i
B2 = —z/ wr(0)d0 = —ik | a(t)? azitt)?’ ~ 2.88 % . (4.22)

Numerical evaluation shows that the Stokes line from 6. to 6 crosses the real axis at
a value of @ corresponding to t ~ .34 H~', which can be identified as the time at which
production of quanta of ¢ occurs.

We have computed numerically the spectrum of ¢ as a function of time. The bare
spectrum is shown, for t = 0 and ¢ = 100 H~! in figure 4. Note that, as expected, the power
spectrum converges to (H/27)? in the limit of long wavelengths, while it goes as k%/a? at
short wavelengths.

In figure 5 we show, instead, the power spectrum for the field ¢ obtained by subtracting
a regularized optimally truncated version of W (t).

The regularization is built as follows. We define the functions W(gi) (t) through

Wiam (t) = k [W(O) (t) + W(]j;(t) + W(I;‘i(t) +oot W , (4.23)
where VV(O) (t) = a(t)®. Next, we define weighted averages of ]W<2i)(t)| as
Wan(®) = [ Wt + et (4.24)
and the regularized Heaviside © functions as
Oo(t: 2m, 2n) = ~ |1 + tanh (2@ ‘%m) (®) - I?/(Q”) (t)ﬂ , (4.25)
2 Wiam) (t) + Wian) (1)

that converge to the Heaviside step function for () — oco. In our numerical evaluation we set
Q =5.

Finally, the regularized optimal truncation of W (t) is obtained as

. = i W t

reg

> ©5(t;0,2)O5(t; 4, 2) (4.26)

- Wiy (t) Wiyt
+k<W(0)(t)+ (]j;()+ fl“) Os(t; 0,2)O5(t; 2, 4) Os(t; 6, 4) +...
so that WoHmal(t) = kW) (t) for W(t) > Wy(t), and Weptimal(g) - —

k (W(O) (t) + W(,:%(t)> for W(O) (t) > W(Q)(t) and W(2) (1) < W(4) () (e, W(Q) (t) is a local

minimum of the W(QZ-) (1)), etc. ..

The weighted average W(Qi) (t) is introduced to eliminate spurious effects originating
from the fact that the functions W(Qi) (t) are generally oscillating, and therefore cross zero
and appear to be small even if they have a large amplitude, for the relevant values of time ¢.
The regularized © function is used to lead to a smooth spectrum.

As figure 5 shows, the use of this regularized optimal truncation eliminates the sin-
gularity in the power spectrum around k ~ .5 H that emerges when one uses the second
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Figure 4. The unsubtracted power spectrum (in units of (H/27)?) of a massless scalar in an expand-
ing Universe with the expression of the scale factor given by eq. (4.21). The spectrum is evaluated at
t =0 (solid line) and at ¢t = 100 H~! (dashed). Modes with k > .9 H satisfy k/a > a/a for the entire
evolution, so that they never cross the horizon. For those modes the power spectrum goes as k?/a?.
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Figure 5. The subtracted power spectra (in units of (H/27)?) of a massless scalar in an expanding
Universe with the expression of the scale factor given by eq. (4.21). The spectra are evaluated at
t = 0. Solid: the spectrum obtained by subtracting a regularized version (see the main text leading
to eq. (4.26)) of the optimally truncated expression for W (¢). Dashed: the spectrum obtained by
subtracting Wa) ().

order adiabatic subtraction, which originates from the fact that for that value of k one has
W(g)(k, t= 0) ~ 0.

On the other hand, the expression for Wlf’e%timal(t) rapidly converges to W(q)(k, t) as ¢
grows. In figure 6 we show the subtracted spectra for ¢ = 100 H~'. However, already at

t =5 H~! the two subtracted spectra are indistinguishable.

5 Conclusions and discussion
In this work we have revisited the method of adiabatic subtraction for the renormalization of

the power spectrum of a massless and light scalar field in (quasi) de Sitter space, in flat slicing.
First, we have reviewed the equivalence between adiabatic subtraction and normal ordering
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Figure 6. The subtracted power spectra (in units of (H/2m)?) of a massless scalar in an expanding
Universe with the expression of the scale factor given by eq. (4.21). The specta are evaluated at
t = 100 H~'. The spectrum obtained by subtracting Wr%%“mal(t) and that obtained by subtracting
W (t) are, for this large value of ¢, numerically equivalent.

of the time-dependent creation/annihilation operators that instantaneously diagonalize the
Hamiltonian. This requires the proper frequency of the mode functions to be real at all times,
and we have found a definition of time that guarantees this condition to be satisfied.

The main question we have tackled is to what order one should truncate the WKB ex-
pansion of the adiabatic modes that have to be subtracted to provide the renormalized result.
The standard prescription [1, 2, 5-7] to truncate the WKB series to the lowest order that
allows to cancel all divergences, while having the advantage of leading to (relatively) simple
calculations, can generate artifacts at intermediate momenta [8]. An alternative option [3, 4]
is based on the fact that the WKB approximation is generally an asymptotic one, which
naturally results into truncating the WKB series to the value that gives the closest approxi-
mation to the “actual expression” of the Bogolyubov coefficient 3, that has been argued to
take a universal form [20-22].

We applied these prescriptions to the massless and massive minimally coupled scalar
field on exact de Sitter space in flat slicing, and we have compared the resulting power
spectra. In the massless case, the fact the WKB series can be resummed implies that we do
not have particle production, and the renormalized power spectra turn out to vanish using
both prescriptions. This result, in line with those in [6, 28] is due to the fact that de Sitter
space in flat slicing, unlike de Sitter space in closed slicing, does not have a built-in infrared
cutoff, which is responsible for the growth ($(x, t)2) o< H3 .

In the massive case the results are quite different: optimal truncation requires, for
super-horizon modes k < a H, to remove only the zeroth order WKB contribution, leading
to the standard quasi scale-invariant spectrum, while the usual adiabatic renormalization
removes terms up to the second adiabatic order and leads to a significant running for scales
m < k/a < H. Subsequently, we applied our method to a more complicated system, a
massless scalar field which undergoes a phase of slow roll inflation followed by a radiation
dominated era. In this case, even though the field is massless, the power spectrum is non
vanishing and takes the standard expression ~ (H/27)? at large scales, while at shorter scales
the prescription based on the optimal truncation of the WKB series eliminates some of the
artifacts that are generated by the standard second order truncation.
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The prescription to truncate the WKB expansion at its optimal order is justified by
the consideration that the process of particle production can be identified with the Stokes
phenomenon. The connection formula that extends the WKB approximation to the whole
complex plane is referring to asymptotic series truncated at their least terms. More recently,
it has been found that truncating the WKB series at the optimal order, as long as such an
optimal order is much larger than O(1), leads to a sum that approximates well the universal
behavior across the Stokes line found by Dingle and Berry [20-22]. This theory is effective
when the regions of non-adiabaticity in the complex plane are small enough. In this work,
we used the optimal truncation of the WKB series even when it happens at a low order,
i.e., when the thickness of the Stokes lines becomes comparable with their length or when
two regions of non-adiabaticity overlap. It would be interesting to see whether this choice is
justified by an argument analogous to that of [20-22].

Acknowledgments

We thank Paolo Creminelli, John Donoghue, David Kastor, Mehrdad Mirbabayi, Marco
Peloso, Borna Salehian, Luca Santoni, Gianmassimo Tasinato and Jennie Traschen for useful

discussions. A special thanks goes to Gerald Dunne for his patient explanations. This work
is partially supported by the US-NSF grants PHY-1820675 and PHY-2112800.

References
[1] L. Parker, Quantized fields and particle creation in expanding universes. 1., Phys. Rev. 183
(1969) 1057 [INSPIRE].

. Parker, Quantized fields and particle creation in expanding universes. 2, Phys. Rev. D 3
2] L. Parker, @ d field d l d 2, Phys. Rev. D
(1971) 346 [Erratum ibid. 3 (1971) 2546] [INSPIRE].

[3] R. Dabrowski and G.V. Dunne, Superadiabatic particle number in Schwinger and de Sitter
particle production, Phys. Rev. D 90 (2014) 025021 [arXiv:1405.0302] [INSPIRE].

[4] R. Dabrowski and G.V. Dunne, Time dependence of adiabatic particle number, Phys. Rev. D
94 (2016) 065005 [arXiv:1606.00902] [INSPIRE].

[5] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press,
Cambridge, U.K. (1984) [D0I:10.1017/CB09780511622632] [INSPIRE].

[6] L.E. Parker and D. Toms, Quantum field theory in curved spacetime: quantized field and
gravity, Cambridge University Press, Cambridge, U.K. (2009) [DOI:10.1017/CB09780511813924]
[INSPIRE].

[7] L. Parker and S.A. Fulling, Adiabatic reqularization of the energy momentum tensor of a
quantized field in homogeneous spaces, Phys. Rev. D 9 (1974) 341 [INSPIRE].

[8] L. Parker, Amplitude of perturbations from inflation, hep-th/0702216 [INSPIRE].

[9] 1. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, Revising the predictions of inflation for
the cosmic microwave background anisotropies, Phys. Rev. Lett. 103 (2009) 061301
[arXiv:0901.0439] [INSPIRE].

[10] I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, Reezamination of the power spectrum in
de Sitter inflation, Phys. Rev. Lett. 101 (2008) 171301 [arXiv:0806.0034] INSPIRE].

[11] M.M. Glenz and L. Parker, Study of the spectrum of inflaton perturbations, Phys. Rev. D 80
(2009) 063534 [arXiv:0905.2624] INSPIRE].

~19 —



[12]

[13]

[14]

I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, Revising the observable consequences of
slow-roll inflation, Phys. Rev. D 81 (2010) 043514 [arXiv:0911.0961] [INSPIRE].

F. Finelli, G. Marozzi, G.P. Vacca and G. Venturi, The impact of ultraviolet reqularization on
the spectrum of curvature perturbations during inflation, Phys. Rev. D 76 (2007) 103528
[arXiv:0707.1416] [INSPIRE].

Y. Urakawa and A.A. Starobinsky, Adiabatic reqularization of primordial perturbations
generated during inflation, in the proceedings of the 19" workshop on general relativity and
gravitation in Japan, (2009) INSPIRE].

R. Durrer, G. Marozzi and M. Rinaldi, On adiabatic renormalization of inflationary
perturbations, Phys. Rev. D 80 (2009) 065024 [arXiv:0906.4772] [INSPIRE].

G. Marozzi, M. Rinaldi and R. Durrer, On infrared and ultraviolet divergences of cosmological
perturbations, Phys. Rev. D 83 (2011) 105017 [arXiv:1102.2206] [INSPIRE].

I. Agullo, J. Navarro-Salas, G.J. Olmo and L. Parker, Remarks on the renormalization of
primordial cosmological perturbations, Phys. Rev. D 84 (2011) 107304 [arXiv:1108.0949]
[INSPIRE].

T. Markkanen, Renormalization of the inflationary perturbations revisited, JCAP 05 (2018)
001 [arXiv:1712.02372] [INSPIRE].

C. Animali, P. Conzinu and G. Marozzi, On adiabatic renormalization with a physically
motivated infrared cut-off, JCAP 05 (2022) 026 [arXiv:2201.05602] INSPIRE].

R.B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press,
London, U.K. (1973).

M.V. Barry, Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. Roy. Soc. Lond. A
422 (1989) 7 [INSPIRE].

M.V. Berry, Waves near Stokes lines, Proc. Roy. Soc. Lond. A 427 (1990) 265.

C.K. Dumlu and G.V. Dunne, The Stokes phenomenon and Schwinger vacuum pair production
in time-dependent laser pulses, Phys. Rev. Lett. 104 (2010) 250402 [arXiv:1004.2509]
[INSPIRE].

A.A. Grib and S.G. Mamaev, On field theory in the friedman space, Yad. Fiz. 10 (1969) 1276
[INSPIRE].

A.A. Grib, S.G. Mamaev and V.M. Mostepanenko, Particle creation from vacuum in
homogeneous isotropic models of the universe, Gen. Rel. Grav. 7 (1976) 535 [INSPIRE].

J.F. Dufaux et al., Preheating with trilinear interactions: tachyonic resonance, JCAP 07
(2006) 006 [hep-ph/0602144] [INSPIRE].

G.G. Stokes, On the discontinuity of arbitrary constants that appear as multipliers of
semi-convergent series: a letter to the editor, Acta Math. 26 (1902) 393.

S. Habib, C. Molina-Paris and E. Mottola, Fnergy momentum tensor of particles created in an
expanding universe, Phys. Rev. D 61 (2000) 024010 [gr-qc/9906120] [INSPIRE].

B. Allen and A. Folacci, The massless minimally coupled scalar field in de Sitter space, Phys.
Rev. D 35 (1987) 3771 [INSPIRE].

G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle
creation, Phys. Rev. D 15 (1977) 2738 [InSPIRE].

—90 —



Journal of Cosmology
and Astroparticle

SISSA

Physics

PAPER You may also like
Correlated scalar perturbations and gravitational 'S%Ti?;ﬁi?‘n'eﬁ'ﬁv*;‘é'ﬁifbﬁkmm[ mon
waves from axion inflation Ogan Gzsoy and Zygmunt Lalak

- Comparative study of the strong
. . . . N backreaction regime in axion inflation: the
To cite this article: Sofia P. Corba and Lorenzo Sorbo JCAP10(2024)024 effect of the Qotg‘mia|
Joanes Lizarraga, Carmelo Lopez-
Mediavilla and Ander Urio

- A review of axion inflation in the era of
Planck
Enrico Pajer and Marco Peloso

View the article online for updates and enhancements.

This content was downloaded from IP address 65.51.176.186 on 18/01/2026 at 13:19



ournal of Cosmology and Astroparticle Physics

An IOP and SISSA journal

RECEIVED: March 21, 202/
REVISED: August 7, 2024
ACCEPTED: September 20, 202/
PUBLISHED: October 8, 2024

Correlated scalar perturbations and gravitational waves
from axion inflation

Sofia P. Corba and Lorenzo Sorbo

Ambherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts,

1126 Lederle Graduate Research Tower, Amherst, MA 01003-9337 U.S.A.

E-mail: spcorba@umass.edu, sorbo@umass.edu

ABSTRACT: The scalar and tensor fluctuations generated during inflation can be correlated, if
arising from the same underlying mechanism. In this paper we investigate such correlation in
the model of axion inflation, where the rolling inflaton produces quanta of a U(1) gauge field
which, in turn, source scalar and tensor fluctuations. We compute the primordial correlator
of the curvature perturbation, (, with the gravitational energy density, Qgw, at frequencies
probed by gravitational wave detectors. This two-point function receives two contributions:
one arising from the correlation of gravitational waves with the scalar perturbations generated
by the standard mechanism of amplification of vacuum fluctuations, and the other coming
from the correlation of gravitational waves with the scalar perturbations sourced by the gauge
field. Our analysis shows that the former effect is generally dominant. For typical values of the
parameters, the correlator, normalized by the amplitude of ¢ and by the fractional energy in
gravitational waves at interferometer frequencies, turns out to be of the order of 1074 + 1072.

KEYWORDS: axions, Inflation and CMBR, theory, physics of the early universe, primordial
gravitational waves (theory)

ARX1v EPRINT: 2403.03338

© 2024 IOP Publishing Ltd and Sissa Medialab.
All rights, including for text and data mining, Al training, https://doi.org/l().1088/1475—7516/2024/10/024

and similar technologies, are reserved.



Contents

1 Introduction 1
2 Review of scalar and tensor perturbations from axion inflation 3
3 The correlator between scalar fluctuations and gravitational waves 8

3.1 Correlation with amplified vacuum scalar fluctuations 9

3.2 Correlation with sourced scalar fluctuations 10
4 Discussion and conclusions 14
A Finding the dominant contribution to the integral in eq. (3.17) 15

1 Introduction

The theory of inflation constitutes the dominant paradigm of primordial cosmology. Besides
solving the most important problems of the standard Hot Big Bang model, it is able to provide
an explanation, in excellent agreement with observations, for the origin of the temperature
anisotropies present in the Cosmic Microwave Background (CMB) radiation and of the density
fluctuations that characterize the large scale structure of the Universe. Among the many
different inflationary scenarios, axion inflation is one of those giving a satisfying solution
to the problem of UV sensitivity of the inflaton potential. In this model, proposed for the
first time in 1990 as natural inflation [1], the inflaton is a pseudo-Nambu-Goldstone Boson
that enjoys a (softly broken) shift symmetry, i.e., a symmetry under the transformation
¢ — ¢ + const, which protects its potential against large radiative corrections.

The axionic inflaton is naturally coupled to gauge fields through the operator ¢F, WF e/,
where f is the axion decay constant. In the presence of such coupling, the rolling zero mode of
the inflaton acts as a source for the modes of the gauge field. As a result, quanta of the gauge
field are amplified into classical modes, which in turn source, through a process of inverse
decay, both scalar and tensor fluctuations. Since, due to the pseudoscalar nature of the
inflaton, only one of the two helicities of the gauge field experiences a tachyonic instability, the
spectra of the tensor modes of different helicities have different amplitudes. This scenario has
multiple phenomenological predictions, including nongaussianities [2], deviations from scale
invariance [3], formation of a population of primordial black holes [4], generation of primordial
chiral gravitational waves at CMB [5] or interferometer [6] frequencies, baryogenesis [7], as
well as the possible generation of cosmologically relevant magnetic fields [8, 9] — see [10]
for a review.

By comparing these phenomenological predictions with observations we can constrain
the relevant parameters characterizing the models of axion inflation. More specifically, there
are two significant observational lengthscales. At large scales, probed by CMB measurements,
the primary constraint arises from the non-observation of primordial nongaussianities for the
scalar fluctuations. In axion inflation the sourced scalar fluctuations are highly nongaussian.



Consequently, the model can be viable only if the sourced component of scalar modes is
subdominant compared to that generated by the standard amplification of vacuum fluctuations.
This is equivalent to stating that the amplitude of the gauge field, which sources the scalar
and tensor fluctuations, must be relatively small. Therefore, the sourced component of tensor
fluctuations is also small at this stage.

At smaller scales, corresponding to modes that left the horizon closer to the end of
inflation, the situation becomes more interesting. For simple inflationary potentials, the
inflaton’s velocity increases as inflation progresses and therefore the population of gauge
quanta, whose amplitude depends exponentially on the inflaton’s velocity, becomes more
sizable towards the end of inflation. As a consequence, sourced gravitational waves of shorter
wavelengths, which are remarkably those probed by gravitational wave experiments, can
have a much larger amplitude and might even be directly detectable [6] by a variety of
observatories. Also in this regime we need the scalar fluctuations to remain bounded to avoid
an overproduction of primordial black holes [10, 11].

A natural follow-up to the recent observational evidence [12-14] of a stochastic gravi-
tational wave background (SGWB) is the search for anisotropies, in analogy to the scalar
anisotropies observed in the CMB (see, e.g., [15] for a recent analysis of LIGO/Virgo/KAGRA
and [16] for LISA’s reach in this respect). Study of these anisotropies can allow us to
distinguish between the astrophysical and cosmological origin of the SGWB. Furthermore,
cosmological tensor anisotropies may be correlated with the scalar anisotropies of the CMB
if they arise from the same underlying mechanisms [17]. Exploring such correlations can
give important information about the cosmological background of gravitational waves, thus
providing insights about the physics of the Early Universe. Reference [18] performed a study
of the statistics of these anisotropies while [19] studied the consequences of a non-trivial
primordial scalar-tensor-tensor nongaussianity on the energy density of gravitational waves.

In this work we compute the correlation between the curvature perturbation {(x) and the
energy density Qaw (x) = hij(x) hij(x)/(12 H3) of the tensor modes within the framework of
axion inflation. The computation is conducted at frequencies tested by gravitational detectors,
and the correlator is normalized by both the square root of the scalar power spectrum and
the average value of Qg (x). The two point function receives two contributions, reflecting
the fact that scalar fluctuations are generated both from the vacuum, through the standard
amplification process, and by modes of the gauge field, through the inverse decay process.
More specifically, we will study the two following situations:

e the rolling inflaton has fluctuations that are generated by the standard mechanism of
amplification of vacuum fluctuations in an expanding Universe. The rolling inflaton
then sources quanta of the gauge field, which in turn source gravitational waves. The
fluctuations in the inflaton are thus imprinted in the fluctuations in the gravitational
waves. We study this correlator in section 3.1;

¢ the rolling inflaton sources quanta of the gauge field, which in turn source both scalar
fluctuations and gravitational waves. Since these modes are produced by the same
population of gauge modes, they are correlated. We study this correlator in section 3.2.



As we will see, due to the smallness of the amplitude of the gauge field — and therefore,
of the sourced scalar fluctuations and gravitational waves — at CMB scales, the former
effect is generally dominant over the latter, and leads to a normalized correlator of the
order of 1074 + 1072

The correlator studied in this work is the one between scalar perturbations at CMB
scales, corresponding to modes that left the horizon early during inflation and gravitational
waves at interferometer scales, which correspond to modes that left the horizon later during
inflation. Even though these gravitational waves have relatively short (i.e., non cosmological)
wavelengths, their anisotropies are at large, cosmological scales.

During the last stages of axion inflation the large amplitude acquired by the gauge modes
implies that they can have strong backreaction effects on the inflating background. The
nonperturbative inflaton-gauge field dynamics, studied in numerous papers including [20-30],
is rich, complicated, and not yet fully understood. The production of gravitational waves,
although generated during the phase of strong backreaction, is treated at the perturbative
level. Reference [28] derived spectra of gravitational waves produced during this stage keeping
into account the nonperturbative dynamics of the inflaton-gauge field system, even if it
ignored inflaton inhomogeneities. Reference [31] performed an analogous study for the case
of an SU(2) gauge sector. The results of [28] suggest that, even though strong backreaction
effects complicate significantly the dynamics of the inflaton and of the gauge quanta, if the
inflaton evolution ¢(t) is known, then the resulting gravitational wave spectra reflect quite
accurately the shape of the function ¢(t) For the scope of our calculation, since we will
formulate our results in terms of qﬁ(t) without referring to the specific dynamics that led
to that expression, our results should be valid even in the strong backreaction regime, at
least as long as the inflaton inhomogeneities are ignored. Moreover, there are reasons to
expect that our results will not change even once inflaton gradients are accounted for, since
causality will prevent the late strong dynamics from affecting physics at scales that have
left the horizon at much earlier times.

This paper is organized as follows. Section 2 contains a review of the amplification
process that quanta of gauge field undergo as the inflaton rolls down its potential, together
with the generation of curvature perturbations and of gravitational waves. Then, in section 3,
we calculate the two contributions to the correlator between scalar fluctuations and the
energy density of the gravitational waves: in subsection 3.1 we study the correlation of
gravitational waves with the amplified vacuum scalar fluctuations and in subsection 3.2 the
correlation of gravitational waves with sourced scalar fluctuations. In section 4 we discuss
our results and we conclude. Appendix A contains the details of the calculation leading
to the results in section 3.2.

2 Review of scalar and tensor perturbations from axion inflation

Our system consists of a pseudoscalar inflaton ¢ and a U(1) gauge field A, in interaction
with each other and with gravity through the action

Qb 6,ul/p>\
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where g = det(gu ), Fuw = 0uAy — 0, A, f is a constant with dimensions of mass, R is
the Ricci scalar, and e#*? is the totally antisymmetric object defined by €123 = +1. We
will not make any assumption about the shape of the potential V(¢), other than it is flat
enough to be able to support inflation.

Concerning the metric, we will assume that it is of the form of de Sitter space in flat
slicing plus tensor perturbations (repeated latin indices are understood to be summed upon)

ds® = aQ(T) [—dTQ + (035 + hij(x, 7)) dx’ d;v]} ,

1
a(r) = ~g.  hi=0ih;=0. (2.2)
We perturb the inflaton as
¢(X7 7—) = ¢0(7—) + 5¢(X7 T) ) (23)
so that the curvature perturbation is given by ( = —%&b. We will denote the derivative

with respect to conformal time 7 by a prime and that with respect to the cosmic time ¢,
defined through dt = a(7)dr, by an overdot. We set the scale factor to be equal to unity
at the end of inflation, i.e., inflation will end at 7o = —1/H.

We treat the homogeneous inflaton ¢o(7) and the scale factor a(r) as background
quantities, and we work with the following canonically normalized perturbations

Au(x, T) with Ao(x, 7) =0, 0;Ai(x,7)=0,
O(x, 7) = a(r) 0p(x, ),

Hij(x, 1) = - a(t) hij(x, 7). (2.4)

Neglecting the mass of the inflaton, our perturbed Lagrangian takes the form

"

1 ,, 1 a o 1., ., 1 a
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2 2 f
- b A A — (DA — 0 A) (95 Ax — 0 Ay)| - Fa A0 A, (2.5)

where the first line describes the free scalar and free tensor perturbations, the second line
describes the free gauge field modes, and the last line contains the interactions that lead
to processes of the form A;A; — H;; and A;A; — ®.

By varying the Lagrangian (2.5) with respect to ®, H;; and A;, we obtain the equations

of motion
"
1 ..
o — Lo V204 kA9 A =0,  (2.6)
a fa
"
1
HY - %HJ - Vi + (A A — (0 Ak — O A:) (94, — Ay =0, (27)

/
Al V24, — Q}Oez‘jk 0jAr =0. (2.8)



The solution of eq. (2.6) splits into two parts: the solution of the homogeneous equation,
denoted as Py, and the particular solution, denoted as ®g. The solution of the homogeneous
equation represents the usual vacuum fluctuations generated during inflation due to the
accelerated expansion of the background, while the particular solution is induced by the
inverse decay of the gauge fields. The homogeneous solution can be quantized through the
standard quantization of the free Lagrangian, using the first line of eq. (2.5), as

By (x, 7) —/@ff;ﬂeikx @y (k, 7) (k) + @Y (k, 7)af(~k)| ,

Oy (k, 7) = \/127{ (1 — ki) e T (2.9)

where the creation/annihilation operators af(k)/a(k) satisfy the usual commutation relations
la(k), af(a)| = d6(k - a), [a(k), a(a)] = [a'(k), af(@)] = 0.

The power spectrum of the curvature perturbation, P, defined through the two point
function

772
(c)¢a)) = 25 Pe() 60k + ), (210)

results in the sum of the power spectra corresponding to the homogeneous and the particular
solutions, denoted as P¢ v and P s, respectively.

Specifically, the homogeneous solution, corresponding to the scalar perturbations associ-
ated to the mode functions (2.9), yields, at the end of inflation and for large scales,

k3 H? 9 H*
Pev=a5—5 |Pv(k, )| — —— . (2.11)
2m2 2 k<H 472 2
An analogous discussion holds also for the tensor perturbations H;;(x, 7), whose vacuum
component gives rise to Py v = QQLMZ
) T P

In order to find the sourced components of the scalar and tensor power spectra we need
to take into account the generation of the electromagnetic field by the rolling pseudoscalar.
In order to do that, we start with the quantization of the vector field A;(x, 7):

dk Ay L ikx ~ * AT
Ai(x, 7) = / T );[ei (k) e [Ax(k, ) ax (k) + A (k, ) al (k)] . (212)
where the helicity projectors eli(E) satisfy the relations
ki ei/\(l/;) =0, 65‘(12)* = ez_A(E) = 67;/\(—12) ’ (2 13)
ieijrkied (k) = Ak e (k) e} (k)el (k) = 0y, _w - '

Inserting the decomposition (2.12) into eq. (2.8) we obtain the equation of motion for the
mode functions Ay(k, 7),

Ak, ) + (k2 - A?ék) An(k, 7) =0, (2.14)



which can be solved explicitly in terms of special functions if éo = constant. However, we
do not need the exact solution. Defining

_ %
e= (2.15)
we can rewrite eq. (2.14) as
d? Ay §
d(k )2 + (1+2)\k7_) Ax=0, (2.16)

so that, assuming £ > 0, the helicity A = —1 in eq. (2.16) has always real frequencies that are
adiabatically evolving (remember that 7 < 0). As a consequence, the mode A_ stays in its
vacuum and we will neglect it from now on. On the other hand, the positive helicity mode A
has imaginary frequencies for a range of values of k7 and is therefore exponentially amplified.

In the WKB approximation, the leading term in the solution of the tachyonic modes
of Ay reads [9]

1/4
Ak, 7) ~ \/;7; (—’;D 2V kT IE (2.17)
which is strictly speaking valid only in the range [2] 8715 S k7| S 2€ (we will assume € 2 O(1)
throughout this paper). However, since the momenta in this range dominate the contributions
to the observables we will be interested in, we will apply the expression (2.17) to the entire
range 0 < |k 7| < 0o. Eq. (2.17) shows that the A = + helicity of the gauge field is amplified
by a factor €™, which can be very large even for moderate values of &.

We are now in position to compute the leading order contribution of the amplified gauge
field to the curvature perturbation ¢. Taking the Fourier of eq. (2.6), we obtain the equation

@”(q, T) + q2q>(q7 7-) - %(I)((L 7-) —1 Iic’T ezjk/(Qi;/Q A;(pv 7-) (q - p)JAk‘(q - P 7-) =0.
(2.18)

The particular solution of this equation, ®g, which corresponds to the sourced component
of scalar fluctuations, can be found using the retarded propagator

bsa.r) =i [ Gyr. )T [ A ) @ pldila—p. 7). (219)

Given that we are assuming an exact de Sitter background, the retarded propagator can
be written explicitly as

217 sin(k (1 — 7' " —71) cos(k(r —7'
) = LT ik =) b =) el =) o,y (ag

where © denotes the Heaviside step function.

The sourced component of the scalar fluctuations induces an additional contribution
to the power spectrum of the curvature perturbation, that for £ 2 3, is well approximated
by the formula [2]
|Bs(k, 7)|> — 4.8 x 1078 o et

k<H

o5 &0

k3 H?
C?S = 5.2 9
272 ¢>(2)

(2.21)



A commonly used measure of nongaussianity is the parameter fnr,, which measures the
amplitude of the bispectrum of the curvature perturbation and is defined via

k3 + k3 + k3

3
= (2m)™2 fan(ka, ko, ks) PE (ki + ko + ks) k3 k3 k3
172 "3

(¢1) ¢ o) Clhes)) = 5

(2.22)

For single field, slow-roll inflation, the bispectrum has a small amplitude, and fni, is
of the order of the slow-roll parameters [32]. On the other hand, the sourced component
of the curvature perturbation, since it results from a 2 — 1 process, obeys an intrinsically
nongaussian statistics. Since such nongaussianities originate from some sub-horizon dynamics,
the bispectrum is peaked on equilateral configurations, i.e., for k1 = ko = k3, with [2]

5H12 6
go &7

il 7.1 % 10

(2.23)

equﬂ

for £ 2 3 and in the regime Pr g < P¢ v. In the regime of large &, where Pr g > P¢ v,
converges to a value of the order of 104, which exceeds by a O(10%) factor the constraints from
Planck. This limits severely the value {omp taken by € when Cosmic Microwave Background
scales are leaving the horizon, leading to {omp S 2.5 [33, 34].

The excited modes of the vector field are also a source of gravitational waves. To leading
order, production of gravitational waves via this process is described by the equation

2
Hi(q, 7) + ¢*Hij(a, 7) — ﬁHz‘j(q, )

= %/(2763)3/2 (AKI), T) A;'(q —p, 7) — Fie(p, 7)Fjr(q — p, 7-)) , (2.24)

where Fjj(p, 7) = ip;Aj(p,7) —ip;Ai(p, 7). As a consequence of the functional dependence
of Ay on k7 and on &, the electric field is stronger than the magnetic field by a factor ~ £ > 1.
For this reason we will neglect the term Fj(p, 7)Fjx(q — P, 7) in eq. (2.24). Using again
the Green’s function (2.20) we eventually obtain

Hiss /dT HT /(2:5;)3/2 Ai(p, 7) Aj(a—-p, 7). (2.25)

The resulting power spectrum for the tensor modes reads [5]

2H2 —8 H4 A€
Ph:Ph,V+/Ph,Sﬁm+8-7 10 56

It is worth stressing that the sourced component of the gravitational waves is almost fully chiral,

(2.26)

as a consequence of the fact that only the + helicity of the gauge field is excited. While this
fact can lead to a rich and interesting phenomenology, we will not be concerned with it here.

The constraint on the parameter ¢ coming from the limits on nongaussianities implies
that Pj, v > Pp s. This constraint, however, holds only for the value {cvp taken by & when
CMB scales left the horizon. The quantity & o ¢y /H remains approximately constant in
a slow-roll inflationary background, but it shows small time variations at higher orders in
the slow-roll parameters. Therefore, we consider it as an adiabatically evolving quantity,



i.e. we treat it as constant when studying the production of gauge fields at a particular
moment during inflation (eq. (2.17)), but we must take into account its variation, typically
an increase, when comparing two distinct stages of inflation. Since the sourced component
of the gravitational wave spectrum has an exponential dependence on &, it is possible that
at later times Pj, v is actually overwhelmed by P, 5. We will denote by {int > {cmp the
value taken by £ at this later stage, where the subscript iy refers to the fact that we are
thinking of frequencies probed by gravitational interferometers. In particular, this leads to
the possibility that gravitational waves sourced by the vector field have such large amplitude
to be directly detectable by current or future gravitational detectors [6].

In the next section we will describe two mechanisms that induce correlation between the

curvature perturbation and the gravitational waves produced in axion inflation.

3 The correlator between scalar fluctuations and gravitational waves

We define the normalized correlator of scalar fluctuations and gravitational waves as

1

QINT /prMB 272
QINT \/W 27r2

where the symbol (...)" denotes the correlator stripped of the Dirac delta associated to

Cac(k to) = / y e Qe (x-+y, 10) Sl )

Qow (k, to) C(—k, t9))’, (3.1)

momentum conservation and ty indicates the present value of cosmic time. Moreover, QINT
denotes the fractional energy in gravitational waves at interferometer frequencies, whereas
PCCMB denotes the amplitude of scalar perturbations at CMB scales. Given the weak scale
dependence of PgMB, from now on we will drop the index “™B from P¢, and will treat this
quantity as constant. On the other hand, axion inflation can lead to a strong scale dependence
of the energy in gravitational waves, which cannot be ignored in our analysis.

To proceed we observe that Qcw (k) = 3 H2 S 27r)3/2 Ik — p|phij(k — p, to)hij (P, to).
The current amplitude h;;(k, to) is related to the prlmordlal amplitude calculated at the end of
inflation h;;(k, te) through the transfer function 7 (k), which is proportional to k=1 for modes
that have re-entered the horizon during radiation domination, and to k=2 for modes that
have re-entered the horizon during matter domination. Putting everything together, we have

3 A A
Coclke 1) = o pener 753 | oy (k= PDT0)
(g0 = s t) hig (s ) S, 1)) (32

where we have defined '7'(p) = pT(p) and we have replaced the amplitude of the scalar
perturbations with its value at the end of inflation.

The correlator Co¢(k, to) receives two different contributions: the first is the result of
the correlation of gravitational waves with the amplified vacuum scalar fluctuations; the
second is due to the correlation of gravitational waves with the sourced scalar fluctuations.
Below we will examine the two cases separately.



3.1 Correlation with amplified vacuum scalar fluctuations

The spectrum Py, g of gravitational waves sourced by the gauge field depends on the values of
¢ and qb evaluated approximately at the time when the tensor modes under consideration left
the horizon, and where, in slow-roll approximation, ¢ is a function of ¢. As a consequence,
long wavelength perturbations in the values of ¢ will lead to correlated long wavelength
perturbations in the spectrum of gravitational waves.

To first order in the vacuum-amplified fluctuation d¢y of the inflaton, and in the limit in
which the wavelength of d¢y is much larger than that of h;; s, we have

Ohsj s(x, ¢o)
o

where the first term does not contribute to Cao¢. Since hij s(x, ¢o) e?™ we can also write

hij s(x, ¢(x)) = hij s(x, ¢o) + dpv(x), (3.3)

his, (%, 6(x)) = hij (%, o) (1 - 2”5;0 s CV(X)> , (3.4)

where we used d¢ = —¢ ¢ /H. We thus obtain the first contribution to the correlator between
Qaw and (v, that we denote as (Coc¢)v, and which reads

_ 1 k3 dp dq - .
(Coov =~ Gy gramt 7 | ey T (kP T —a)
i |
X 41 % waowj,s(k — P, te) hijs(P — q, te) Cv(q, te) Cv(=k, te)) . (3.5)

Assuming ¢g > 0, V' < 0, we have

| V/ M2 VI
=2 .V _ WV (3.6)
2fH 6 fH 2fV
so that
2 " 12
de__ME(VVE) ()L (57)
dog 2f \V V2 2) f
where we have defined as usual the slow-roll parameters as
M2 V/2 V//
The correlator therefore becomes
/P dp A
(CQC)V = —m p*?,f (26 - 77) T(p)2 Ph,S(p) . (3'9)

To proceed we note that, since typically the amplitude of the induced tensor modes
increases as inflation progresses, the integral in eq. (3.5) is dominated by the largest frequencies,
that are typically close to those probed by the interferometers. For those wavelengths, that
re-entered the horizon well into the radiation dominated regime, we have

T Pusp) _ Prsp)
12 H2 QINT Pp, s(pNT)

(3.10)



Using again the fact that the integral in eq. (3.5) is dominated by values of p of the order

INT

of p*, we can estimate

(Cac)v ~ —4m € AN, (2¢ — 1) /P (3.11)

where both £ and the slow-roll parameters ¢ and 7 are evaluated at the time when the scales
probed by interferometers have left the horizon. In eq. (3.11) the parameter AN, accounts for
the number of efoldings during which the tensor power spectrum is approximately constant.
Numerical simulations indicate that this is the case in the strong backreaction regime, which
usually lasts AN, ~ 10 + 30 efoldings. At this stage the parameter £ takes values that are
typically of the order of 5+ 10. The quantity (2¢ — 1) has to be smaller than unity and
is typically of the order of 1072 = 10~!. So by putting everything together we obtain that
(Cac)v is typically of the order of 107* + 1072

3.2 Correlation with sourced scalar fluctuations

In order to calculate the correlator between the sourced scalar and tensor fluctuations, that we
denote as (Co¢)g, we use eqs. (2.4), (2.19) and (2.25) to find (hap, s(k1,7) hap, s(ke, 7) (s(ks3, 7))
in terms of the canonically normalized perturbations as

(hab,s(k1,T) hap, s(ka, 7) Cs(k3, 7))
4 H(T)

TN dol ) A0 (Hap,s(k1,7) Hap,5(ka, 7) @s(ks, 7))
B A4H(T drn  dry  drs
N M ¢o(T) a3 ) f /oo a(ty) a(m2) a(r3) Gra(7:71) Gy (7, 72) Gk (7, 73)
[ e @ e 0 — ) (@) e (s — ) e () (s — ) s —

x (Al (q1,m) AL (ki — au], 1) Al (g2, 72) AL (ke — qa|, 72) A (g3, 73) Ay (ks — a3, 73)) ,
(3.12)

where we have assumed that only the positive helicity photons contribute because, from
eq. (2.14), A, is the only helicity that is amplified.

Using Wick’s theorem to decompose the last line of eq. (3.12) and inserting it back
into (3.2) we obtain

k3 H( ) / / drp  dry drs
6 HZ m2 Mp do(7) a3(1) f QDT /Pe ) (27)32 ) a(m1) a(r2) a(73)

d A
X le (7-7 7_1) sz (T’ TQ) Gk’3 (Ta T3) / ﬁ T(|k - p|) T(p) .A(q, ki — q, ko + q)

(Cac)g =

X <|k2 + q| A/Jr(qa Tl) A/Jr(’kl - q’a Tl) A/Jr(q77—2> Al+(|k1 - q‘77—3)

x A (k2 +al, 72) A+ (|k2 + ql, 73)
+ k1 —al A (¢, 1) A (¢, 72) A, (k1 —q|, 71) Ay (k1 — al,73)

A;(!k2+q!,Tz)A'+(!k2+q!,Ta)), (3.13)

,10,



where k; = k — p, ko = p and k3 = —k, and where we have collected the angular part
into the expression A:

A(ky, ko, k3) =
Sac 0pa (e (k1) e (k1) ¢ff (k) e (ko) e (k3) ef (—k3) + (a ¢ b)) + (¢ > d)).

Using the explicit form of the gauge field (2.17), the expression (3.13) becomes

(Cac)s = (3.14)
k3 HA (1) A .
3% 2978 HE M do(7) f a*(7) QDNF /Pe /dpmk ~P T

x [ dndndn & 6 VR T Gl pi(rim) Gyl ) Gi(r, )€ 66

></qu(q,k—p—q,erq)ql/z!k—p—q\1/2\p+q\1/2(\k—p—q!1/2+Ip+q!1/2)

xe 2V 26 am=2y/ =26 [k-p-a|11-2\/-2& qm—2/~2& [ptal 2—2y/~2&s [ptal a—2y/~26s [k—p-al 73

where we have also accounted for the adiabatic time variation of the parameter £, as we
are considering the entire inflationary stage, and we have denoted & = £(7;). In order to
perform the calculation we set the time at the end of inflation to be 7. = —1/H. Since
we are interested in modes that are well outside of the horizon at the end of inflation, we
will assume k/H — 0. The dependence of the integrand on eV 2an(varyik-p—dl) i
&1 > 1 implies that we can set |k — p||71| < 1 in the propagator, and we can approximate

Gy—p|(T, T1) =~ —72/(37). A similar argument applies to the other two propagators which are
approximated as G, (7, T2) ~ —75/(37) and G(7, 73) ~ —73/(37). As a consequence, the de-
pendence of the integrand on 71, 7 and 73 takes the form 715/2 e2V-2amn (‘/6+\/|k_p_q|)+27r€1,
7_25/2 o2V 26 m(vaty/Ipral) f2r g 3 o2V 287 (VIptal+y/lk—p—al) +2r&s respectively. To

proceed with the calculation, we need to know the explicit form of the model-dependent

function £(7). Without choosing a particular model, we can still estimate the integral by
assuming that £ has a weak dependence on 7. In this case we see that the integral is
dominated by values of ||, |72| and |73] belonging respectively to a relatively narrow window

around (g + vk —p—al)? (Va+Ip+al)? and (VIp+af+ VIk—p—a])% We

can therefore approximate

b=¢(r=—(va+lk—p—a) ).
e—é(r=—(va+ryp+a) ).
5325(72—(\/\p+q\+\/Ik—p—q\)_Q), (3.15)

which are now momentum-dependent. Using the expression

o0 2
/ dea" e VT = —_I(2n), (3.16)
0

a2n
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we obtain

k3 HT F(?) F(8 27!' (E14+&2+€3)
(Cadls = Sse i 2 s /d QINT / pdq
29 x 3*Hym Mpgbo Ww VP & ¢
< T(k—p|) T(p) (3.17)

Al k—p—q,p+9a)¢"/?[k—p—q|'/?|p+q|'/?

(vVa+Vik-p—d)(va+VIp+d) (VIp+al+vk-p—a])"

The computation of the remaining six-dimensional integral is complicated, again, by the
fact that the function £(7) is model dependent. Even if the time dependence is weak (i.e.,
slow-roll implies that d§/dt < H &), we cannot neglect it, because { appears in exponents.
Moreover, £ is in general increasing during inflation. The time- (and therefore p- and q-)
dependence in the exponent leads the coefficient e27(617621€3) to be an increasing function of
the integration variables. On the other hand, the factors (...)™" x (...)™7 x (...)~7 in the
denominator of eq. (3.17) give a contribution that is peaked at small values of |p| and |q|,
i.e. |p| = |q| =~ k. The result of the integral will thus depend on whether it is dominated
by |p| = |q| = k or by the largest values of |p| and |q].

To proceed with our estimates, we assume that the function &(7) is monotonically
increasing, which, as we said, is what typically happens. It will take a value (7 = —1/k) = &
when scales with comoving wavenumber k, leave the horizon, N, efoldings before the end
of inflation. In particular, we have in mind the case where k ~ kcyp, with Noyp =~ 60 (as
noted above, observations constrain {cymp S 2.5 [34]). At a later time, denoted by 7gg, i.e.
Npr = log(—Hpr) efoldings before the end of inflation, the system gets into the strong
backreaction regime, and £ takes the value £ = £&gr. The behavior of the system in this regime
is still object of active research, but it is reasonable to assume that £ will be approximately
constant for 7 > 1R, so that the integral does not receive significant contributions by the
values of p and q corresponding to scales that left the horizon after mgg.

As we show in the appendix, the integral is dominated by |p| ~ |q| = k if égr — &k < (Nk—
Npr)/(2m), and by |p| = |q| & —1/7Rr otherwise. Let us examine these two cases separately.

Ny—N
3.2.1 &pr — & S ThG R

In this case the integral is dominated by |p| ~ |q| & k, so that we can set & ~ & ~ &3 = &,
everywhere. Moreover, since we are assuming that k is at CMB scales, it corresponds to
wavenumbers that reentered the horizon during matter domination, so that we can assume
7'(/{:) ~ k2 /k, where k% = ﬁ keq Ho v/Shrad ~ (.5 Hp)?, with keq being the scale that reentered
the horizon during matter-radiation equality [35]. We are thus left with

H7F72 ];:4 Gﬂ'fk
(Cac)s = 2( )4 ) INT (3.18)
239 % 3478 HZ M do f QDN /Pe &
k;3/ dp dq Alg,k—p—q,p+q) 1/2|k p—d'?p+q|'/?
plk-pl(yi+vk—-pP—-a)" (Vi+vP+a)  (VIp+a+Vk—p—q)"’
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where the integral on the second line can be computed numerically, using

1 . o .
A(kl, ko, k3) = 4(2 + 3(1{2 . k3)2 —5ko - kg + (k1 . k3)2 + (k1 . k2)2
— ki kg + ki ko — (ki - ka) (ki - ko) — (ko - kg) (Ko - ko)

+ (kA2 . 1?3)(1?1 . l/ig) (ki - ko) (kg - k3) (ko - k) — 4 (k1 ky — ki - k3
—1/<\2-1/<g+1)6d¢ll/<\1d1/<;z‘lgl> . (3.19)
One thus obtains

H7 ]2,2 eﬁrrfk ]2,2
Hg M4 d)OfQINT PC 511;0 ﬁ :

(Cac)g (k) ~ 6 x 10712 (3.20)

After substituting \/P; ~ /P v = H?/(2n ¢o) and QNN ~ rad Pr,s(kmr) [35], with

Q0 1 ~82x107° and Ph s(kint) from (2.26), we obtain the snnple form
H?H
(CQC) ~ 8 kg 7 87 &k —4m &N éhHIT(’)]T ) (3.21)
k

Finally, if k is at CMB scales, we use eq. (2.23) together with the measured amplitude of
the scalar perturbations P¢ v ~ 2 X 10~ to obtain

H2 equily1/3  —4m(§vr—Ek) §INT
(CQC)S ~ 600 —2 3 ( N ) f ) (3.22)
k

which despite the O(103) coefficient in front, and assuming the factor ];2 ( g(iuﬂ)l/ 3 to be
of the order of the unity, is exponentially small. For instance, assuming & ~ 2.5 (which
is the largest value of & allowed by non-observation of nongaussianities in the CMB) and
&inT =~ 5, which is on the lower end of the values found in numerical studies for £ in the
strong backreaction regime, the factor e~*m (€Nt —Ex) SIZ% evaluates to approximately 107!

k
making this dimensionless, normalized correlator tiny.

3.2.2 &pr — & 2 M lem

In this case the integral is dominated by the scales that left the horizon when £ attained its
largest value at the beginning of the strong backreaction regime. Since we are interested
in largest value of the momenta, we consider only wavenumbers that reentered the horizon
during radiation domination. The integral

k—op_ 1/2 |k — 1/2 1/2
dp da Al k—-p-a,p+q)¢/*k—p—q[/*|p+dq (3.23)
(

Vi+Vvk=-p—a) (i+vp+a) (Vip+a+Vk-p-q

is estimated in the appendix, and it evaluates to O(1072)eS™¢er /3. As a consequence
we obtain the result

k3 H 27 EBR
(Cac)s (k) =~ 0(10—2>,€%Rfe€%R (3.24)

,13,



In this case the correlator contains an exponentially large factor (for typical values of
£pr ~ 5, one has e?7¢BR = O(101?)) that is however suppressed by a volume factor k3/kgy
equal to the inverse of the number of patches of size ~ k~!. Given that typically strong
backreaction kicks in only = 10 efoldings before the end of inflation (see however [28], where
this occurs as early as ~ 40 efoldings before the end of inflation), the suppression factor is
typically of the order of e71%° & 10795 (!), making this correlator, also in this regime, tiny.

4 Discussion and conclusions

An important component of current and future gravitational wave research is the detection
and characterization of the stochastic gravitational wave background. This background may
originate from astrophysical sources or have a cosmological origin. Specifically, identifying
a cosmological gravitational wave background will provide important information about
the very early universe.

A powerful approach to distinguish between astrophysical and cosmological backgrounds
involves studying their anisotropies. Notably, it has been shown that these anisotropies are
correlated with the anisotropies in the CMB [36, 37]. The exploration of such correlations
can significantly contribute to the interpretation of the CMB and SGWB measurements.

In the present paper we have investigated the correlator between the curvature per-
turbation and the energy density of the gravitational waves, computed today, within the
axion inflation model. In this model, scalar fluctuations are generated through two distinct
mechanisms: first, from the vacuum via the standard amplification process, and second, as a
consequence of the production of gauge fields through a process of inverse decay. Consequently,
the correlator exhibits two distinct components.

Our analysis shows that the dominant contribution is provided by the correlator with
the amplified vacuum fluctuations of the inflaton, that we examined in section 3.1. Our main
result, eq. (3.11), shows that the normalized correlator between Qgw and ¢ could be as large
as O(1072). The formalism of [38-40] can then be applied to derive potentially observable
quantities. The actual observability of such correlators, subject to instrumental noise as well
as to the intrinsic variance of the isotropic component [41, 42], will depend on the amplitude
of the anisotropies in the gravitational wave spectra. Such an amplitude is encoded in the
correlator (Qaw(x) Qaw(y)), whose calculation, in the model of axion inflation, includes the
evaluation of the gauge field’s eight-point function — a calculation that we leave to future work
(see however [40] for work along this direction). Anisotropies might be large. For instance, the
lattice study of [43] showed that the spectrum of gravitational waves induced by preheating
at the end of inflation display anisotropies with an amplitude of the order of ~ 1072.
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A Finding the dominant contribution to the integral in eq. (3.17)

In this appendix we discuss how to evaluate the integral in eq. (3.17)

Z(k, 7) :/dp dq e2m(§1+82+E3) (A.1)

|1/2 |1/2

Alq,k—-p-a,p+q)¢/?k—p—q/’?|p+q

Vi+vVk—-p—a)" (vVi+vp+a) (VIp+a+Vk-p—q)’

X

where the quantities &1, £ and &3 are given in eq. (3.15).

As discussed in the main body of the paper, the integral Z(k, 7) includes a factor
(containing inverse powers of p and ¢) that decreases as p and ¢ increase, and a factor
o e2m(€1+€2+83) that is, on the other hand, an increasing function of those variables. To

estimate which contribution dominates the integral we model the function £(7) as

{(7') _ {fBR—Fd]Og(TBR/T), T < TBR s (AQ)
EBR T > TBR ;

where 7gr < 0 corresponds to the time when the produced quanta of gauge field start to
backreact strongly on the inflating background. This rough modeling of the function &(7)
has the sole purpose of indicating which range of values of p and ¢ dominate the integral in
eq. (3.17). Given that in this parameterization ¢ is constant for 7 > g, the integral will
receive a subdominant contribution from momenta satisfying [psr| 2 1, |¢ TBR| 2 1, so we
will limit our integrations to p, ¢ < 1/|mBr| = kpr. Moreover, since the strong backreaction
regime will kick in relatively late during inflation, when the scales that reenter during radiation
domination are leaving the horizon, we can set 7 = constant in this regime, and thus ignore
the effects of the transfer function in this analysis.

We present here only an analysis of the contribution to Z(k, 7) given by the range of
momenta where p 2 k. We have checked that the contribution from p < k has no significant
effect. To start with, we estimate the integral in dq which is composed by three different
relevant momentum intervals

/dq—(/0k+/:+/pkm>dqq2/d9q, (A.3)

and we subsequently estimate the integrals in dp, using

ker 9
/dp :/k dpp /de. (A.4)

After performing the integrals in dg and on the solid angles d€2,, d€},;, we obtain

kBr
I(k,T)~ /k dpp*(A1 + Az + A3), (A.5)
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with

6m¢BR
A1 ~ 9 x ewpﬁﬂéi% k7/2,
kBR
6mEBR TEBR
€ 66— 7/2 _ 17/2 € 66— 7/2
AQ"L’.QX k67l'5 ™ 2(p/_k/)NWp 2p/7
BR BR

8 x 1076 ebm¢nR (
p —D
6—1/m K8

Ag:

8 x 10~6 ¢b7ésR kgr®™0 6, if 6 > 1/7, (A6)
0 —1/m| K§T0 pim=6  ifs < 1/m. '
Finally, performing the integral on p we have 7 = 71 4+ Iy + 73, with
7 5x 1072 eOmésr (k/kgr)'3/?, if 6 > 13/(127),
"T s —13/(12m)| kB (k/kgr)®™ , if 6 < 13/(127),
I~ 5% 1072 ebmémr (k/kpr)®, if § > 1/(2m),
P enl BT k/ken)™ 0 6 < 1/(2m),
3 .
3 x 10—6 667F§BR (k/(]j];R) ’ 3 lf 0> 1/7[-’
I3~ G i/a] B X 51| (k/kpr)”, if1/(27) <d<1/m, (A.7)

=y (k/ker)o™0 , if 6 < 1/(2m).

In particular, we find that for ¢ < % the correlator is proportional to the sixth power of
the amplitude of the gauge field when the scale k left the horizon, i.e. e™(¢er—0log(ksr/k) ~ Op
the other hand, for § > %, the result is proportional to the sixth power of the gauge field at
the beginning of the strong backreaction regime. From the definition (A.2) we deduce that the
integral is dominated by the value of £ when scales k leave the horizon if £&gr — &k < %,
it is dominated by the scales that left the horizon at the beginning of the strong backreaction
regime. While this result is based on the parameterization (A.2), we expect it to be generally
valid as long as {(7) monotonically increases during inflation.
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Abstract. An important prediction of inflation is the production of a primordial stochastic
gravitational wave background. Observing this background is challenging due to the weak-
ness of the signal and the simultaneous presence of an astrophysical background generated
by many unresolved late-time sources. One possible way to distinguish between the two is
to examine their anisotropies. In this paper we calculate the primordial correlation function
of gravitational wave anisotropies in the cosmological background generated by axion infla-
tion, where the inflaton is a pseudo-Nambu—Goldstone boson coupled to gauge fields. In this
scenario, tensor modes arise not only from the standard amplification of vacuum fluctuations
present in any inflationary model, but also from the inverse decay process of the produced
gauge fields. The correlator of gravitational wave anisotropies consists therefore of two main
components: the contribution from vacuum tensor modes and the contribution from tensor
modes sourced by the gauge fields. Our analysis shows that, while the former, previously
studied in the literature, is negligible, the one arising from the sourced tensor modes, normal-
ized by the fractional energy density at interferometer frequencies, can reach values as large
as O(1071). This result shows that axion inflation can generate large anisotropies with the
potential to be observed by gravitational wave detectors within a reasonable time frame.
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1 Introduction

Gravitational waves (GW) have recently received a lot of attention, especially after their
first detection in September 2015 by the LIGO/Virgo collaboration [1] and the more recent
evidence for a stochastic gravitational wave background (SGWB) reported by pulsar timing
array (PTA) measurements [2-4|. This background could be either astrophysical (AGWB),
generated from unresolved astrophysical sources in later epochs, or cosmological (CGWB),
which originates from phenomena in the early Universe such as inflation, reheating, phase
transitions, primordial black holes, or topological defects [5-7]. Investigating the CGWB
provides information about the dynamics prevalent at the time of generation of the primordial
GWs, offering a unique window into the physics of the early Universe.

In this paper we focus on cosmological gravitational waves originated from a particular
inflationary model known as axion inflation [8]. In axion inflation, the inflaton is a pseudo-
Nambu-Goldstone boson exhibiting a broken shift symmetry, i.e., a symmetry under the
transformation ¢ — ¢ + const., which protects the flatness of the potential against large
radiative corrections. In this model, proposed for the first time in 1990 as natural inflation [9],
the inflaton interacts with gauge fields through the coupling ngWFW/ f, where f is the
axion decay constant. As a consequence, the gauge field quanta get amplified and in turn



produce scalar and tensor fluctuations through a process of inverse decay. Therefore, in
axion inflation, both scalar fluctuations and gravitational waves are generated through two
distinct mechanisms: first, from the vacuum, via the standard amplification process, and
second, as a consequence of the production of gauge fields, through an inverse decay process.
Remarkably, because of the parity-violating nature of the system, only photons of a given
helicity are produced [10], implying that the sourced gravitational waves of different helicities
have different amplitudes.

The phenomenological predictions of axion inflation are multiple, including nongaus-
sianities [11], deviations from scale invariance [12], formation of primordial black holes [13],
baryogenesis [14], generation of cosmologically relevant magnetic fields |15, 16], as well as
generation of primordial chiral gravitational waves at CMB [10] or interferometer [17] frequen-
cies. In particular, we expect these gravitational waves to generate an SGWB of cosmological
origin, the characterization of which is essential for distinguishing it from its astrophysical
counterpart.

One method for characterizing the SGWB involves examining its anisotropies. In fact,
the SGWB is expected to present small spatial fluctuations analogous to the temperature
fluctuations of the CMB, the detection of which is a major challenge for the next generation
of gravitational wave detectors [18, 19]. More importantly, these anisotropies may correlate
with those of the CMB and the study of this cross-correlation provides a powerful way to
distinguish between astrophysical and cosmological origins of the background [20-25].

In the specific context of axion inflation, reference [26] analyzed the correlation be-
tween the curvature perturbation ((x) and the gravitational energy density Qaw(x) =
hij(x) hij(x)/(12 HZ). In axion inflation, both scalar fluctuations and gravitational waves
have vacuum and sourced contributions. At the same time, the expansion of the Universe
induces vacuum fluctuations in the inflaton, leading to spatial variations in the gauge field
population, which in turn generate spatial fluctuations in the sourced gravitational waves. As
a result, the sourced gravitational waves consist of two components: one that we denote as the
homogeneous component, and the other as the component of fluctuations. The homogeneous
component arises from the gauge field and depends on the zero mode of the rolling inflaton.
In contrast, the fluctuations originate from the gauge field’s inhomogeneities, which are, in
turn, imprinted by the inflaton’s fluctuations.

The correlator studied in [26] receives two contributions: one from the correlation of
the sourced gravitational waves with the vacuum scalar fluctuations, and the other from the
correlation of the sourced gravitational waves with the sourced scalar fluctuations. The former
effect is generally dominant and the correlator, normalized by the amplitude of ¢ and by the
fractional energy in sourced gravitational waves at interferometer frequencies, turned out to
be of the order of 1074 +1072. The observability of this correlation, influenced by the intrinsic
variance of the isotropic component and instrumental noise [27, 28|, depends not only on the
overall gravitational wave energy density, but also on the amplitude of anisotropies in the
gravitational wave spectra. Studies on preheating at the end of inflation and on baryogenesis
suggest that these anisotropies may be large |29, 30].

In this work, we investigate the anisotropies in the gravitational wave spectra produced
during axion inflation by computing the correlator (Qow (x)Qcw(y)) of the gravitational
wave energy densities. This correlator consists of two main contributions: one arising from
the correlation of gravitational wave energy densities generated by the vacuum tensor modes,
which we refer to as the vacuum correlator, and the other from the correlation of energy den-
sities associated with the sourced tensor modes, called sourced correlator. Since the vacuum



correlator has already been studied in the literature [19, 31, 32|, we will only present it briefly
using an analytical approach, and instead focus primarily on the sourced correlator.

The sourced correlator arises from three distinct contributions, reflecting the fact that
the sourced gravitational waves are composed of a homogeneous component and fluctuations.
The first contribution comes from the correlation of the homogeneous components, resulting
in the intrinsic correlator. The second contribution comes from the correlation between the
homogeneous components and the fluctuations, referred to as the extrinsic correlator. Finally,
the third contribution arises from the correlation of the fluctuations and represents a higher-
order contribution in the perturbations.

Our analysis shows that the sourced extrinsic correlator, normalized by the square of the
fractional energy in sourced gravitational waves at interferometer frequencies, lies in the range
O(107°—1071). In contrast, the sourced intrinsic correlator is significantly smaller, while the
correlator of the sourced fluctuations is negligible. The vacuum correlator is also found to be
small and unobservable. The relatively large value of the sourced extrinsic correlator, which
is the main result of this paper, is particularly significant, as it implies that the resulting
anisotropies lie within the observational reach of GW detectors.

The sourced gravitational waves studied in the sourced correlator are produced towards
the end of axion inflation, when the amplitude of the gauge fields becomes large and they
significantly backreact on the background inflationary evolution. Although the inflaton-gauge
field dynamics is nonperturbative [33-43], the production of gravitational waves can be con-
sidered at the perturbative level. In [41], the authors showed that although backreaction can
modify the dynamics of the system, the behavior of the sourced gravitational waves depends
only on the velocity of the inflaton field, assuming inflaton inhomogeneities are neglected.
Since our results are expressed entirely in terms of g.b(t), we assume them to remain valid even
in the strong backreaction regime.

This paper is organized as follows. In Section 2, we review the model of axion inflation,
explaining the mechanism of gauge field amplification and the resulting production of scalar
fluctuations (Subsection 2.1) and gravitational waves (Subsection 2.2). In Section 3, we define
the correlator of the gravitational wave energy densities. In Section 4, we present the sourced
correlator, while Section 5 provides a brief overview of the vacuum correlator. Finally, in
Section 6 we discuss our results and we conclude.

2 Overview of the axion inflation model

The action which describes our model of axion inflation is that of a pseudoscalar inflaton field
¢ minimally coupled to gravity and to a U(1) gauge field A,

M} 1 1 ¢ err
4 P v
S = /d Ty —4g |:2R — iaﬂgb@“(b — V(¢) — ZFPJ/ v — QﬁFHV Fp)\ s (21)
where g = det(g,), R is the Ricci scalar, F,, = 0,4, — 0,A, is the gauge field strength,
e"PX is the totally antisymmetric tensor defined by %123 = 41, f is the axion decay constant

and V(¢) is a generic inflationary potential.

The quantum scalar and tensor fluctuations produced during inflation are obtained by
adding spatially varying perturbations to the inflaton and the metric, respectively. In partic-
ular, the curvature perturbation ( = —%&zﬁ, where the overdot denotes the derivative with

respect to cosmic time ¢ (in contrast to the prime, which denotes the derivative with respect



to the conformal time 7), is related to the inflaton perturbations arising from

d(x, ) = ¢o(T) + do(x, 7). (2.2)

Gravitational waves, on the other hand, are obtained by introducing spatially varying per-
turbations in the form of transverse traceless tensor modes, i.e. h;; (x,t) with h; = Oihi; = 0,
to the de Sitter metric

ds* = a*(7) [deQ + (8ij + hij(x, 7)) da’ dxj] , (2.3)

where for repeated latin indices Einstein notation is used. The scale factor is a(7) = —1/(H 7),
and it is set to be equal to unity at the end of inflation, i.e., at 7. = —1/H.

To proceed, we expand the Lagrangian density around the background solution, identi-
fied by ¢o(7) and a(7), and then discard the terms of zeroth and first order in the perturba-
tions. By choosing the Coulomb gauge, i.e. Ap(x, 7) = 0 and 0;4;(x, 7) = 0, the perturbed
Lagrangian takes the form

1/2_, S Y m Yo m oom Y g om s aa
— OkAi i = e J A; 0k~ b AL AL — (DA — 0k A (0;A), — O A;)]
& .
_ ijk A’ 9. A 24
fae zaj k> ( )

where we have expressed the scalar and tensor perturbations d¢ and h;; in terms of their
canonically normalized versions

O(x, 7) =a(r) dp(x, 7),

Hij(X, 7') = %G(T) hij(x, T). (2.5)

By varying the Lagrangian (2.4) with respect to A;, ® and H;;, we obtain the equations
of motion that govern the dynamics of the system

/
A;/ - V2Az’ - q;.()ﬁijk 8jz4k = 0, (2.6)
a 1 .
P — —d— V2P + Telﬂk AL9; AR =0, (2.7)
a a
"
HY — “Hy — V2Hy + —— 0 A = 0= 0,40 (0,40 - A)] 0. (29

Equation (2.6) describes the evolution of the gauge fields. To study the amplification of
gauge modes due to the rolling inflaton, we promote the classical field to an operator A;(x, 7),
which we decompose into creation/annihilation operators a)\( )/ax(k), satisfying the usual

commutation relations [a) (k), ai,( =0k —q)dry, [ark), ax(a)] = [d;(k), &;/(Q)] =0,

A = [ G AR [t a9 + Ak Dl w] 29



with the helicity projectors ef‘(i;) following the relations

~

kie) k) =0, Mi)* = e (k) = e (k).

e’ =e
~ ~ [P SEEPK 2.10
ifijkkjelg\(k) =A k:ei’\(k) : ei’\(k)ei)‘ (k) = (5)\7 —\ - ( )
Inserting eq. (2.9) into eq. (2.6) and defining
o
= 2.11
e= (211)
we obtain the equation that governs the evolution of the mode functions Ay(k, 7)
d>Ay\(k, ) 9 28k
—_— k A—— | Ax(k =0. 2.12
T TR A Ak, 7) (2.12)

Depending on the sign of &, one of the two helicities, A = 1 or A = —1, develops tachyonic
instability. Assuming, without loss of generality, £ > 0 and keeping in mind that 7 < 0
throughout the entire inflationary phase, the negative helicity mode A_ has real frequencies
that evolve adiabatically for all parameter values. As a result, A_ remains in its vacuum
state and can therefore be neglected. On the other hand, the positive helicity mode A can
acquire imaginary frequencies, leading to exponential amplification.

More precisely, the solution of eq. (2.12) that reduces to positive frequency as k7 — —oo
can be explicitly expressed in terms of the regular and irregular Coulomb wave functions, Fj

and Gy, as Ay = ﬁ(z Fo(£&, —k7) + Go(££, —k7)). Under the WKB approximation, the

leading term in the solution for the tachyonic modes of Ay, in the range & S kT S 2¢
[11, 16|, assuming £ 2 O(1) throughout, takes the form

L (BTN oy

Ay(k, ) ~ oY < 2‘5) e , (2.13)
which can be generalized to the entire range 0 < |k7| < 0o, as the observables of interest
depend only on the range where the approximation is valid. The positive helicity mode of
the gauge field is therefore amplified by a factor of €™ and can become very large even for
moderate values of €.

The accelerated expansion of the background during axion inflation gives rise to the
vacuum components of the scalar and tensor fluctuations, denoted respectively as d¢yv and
hijv, generated via the standard amplification process present in any inflationary model.
The gauge fields amplified by the rolling zero mode of the inflaton are, on the other hand,
responsible for the production of sourced scalar and tensor fluctuations through an inverse
decay process, schematically represented as ¢pg — A — {dds, h?j,S}' Additionally, vacuum
scalar fluctuations of the background inflaton induce fluctuations in the population of the
produced gauge fields, resulting in fluctuations in the sourced tensor modes, schematically
d0py — 0A — dh;js. As a result of these mechanisms, analyzed in the next two Subsections,
we obtain the fluctuations

5(Z) = 5¢V + (5(Z)S and hij = hij,V + hms N (2.14)
with
hijs = h%,s +0hijs - (2.15)

The same decomposition holds also for the normalized versions of the fluctuations given
in (2.5).



2.1 Scalar fluctuations

The production of scalar fluctuations in the axion inflation model is described by eq. (2.7). The
solution of the homogeneous part of the equation corresponds to the vacuum fluctuations ®v,
generated as a result of the accelerated expansion of the background. This vacuum component
can be quantized through the standard quantization of the free Lagrangian as

dy(x, 7) = / (2:;{3/2 efkx [CIDV(k:, 7)a(k) + 0% (k, ) al (k)| , (2.16)
where
dy(k, 7) = 1% <1 — k:) e T (2.17)

On the other hand, the particular solution of eq. (2.7) corresponds to the sourced fluctuations,
®g, produced by the amplified gauge fields. This solution, determined using the retarded
propagator

1+ k277 sin(k(r — 7)) + k(7' — 7) cos(k (1 — ')
k3T7!

Gi(r,7) = ( o(r—7), (218

where © denotes the Heaviside step function, is found to be

HT' .. d
bs(a. 1) =i [drGy(r ) [ B a7 @ pda-por). (219)
f (2m)3/2
The complete solution is the sum of the two components, i.e. & = &y + Pg, which
gives rise to the curvature perturbation { = (v + (g. The power spectrum of the curvature
perturbation, P¢, defined through the two point function

272
(Ck)¢(a)) = —5 Pe(k) ok +a), (2.20)
is the sum of the power spectra corresponding to the vacuum and sourced components, de-
noted as P¢ v and P¢ g, respectively. The vacuum power spectrum associated with the mode
functions in (2.17), evaluated at the end of inflation and in the large scale limit, is given by

H4

k3 H?
Pev ey ———
k<H 472 ¢(2)

v = 272?3 |y (k, 7)|? (2.21)

while, the sourced power spectrum corresponding to (2.19), for £ 2 3, is found to be [11]

k‘S H2 9 H8 e47r§
= |®g(k — 548 x 1078 = 2.22
Pes 272 ¢% | s (k, 7e)l o H X Qbé ¢6 ( )

The CMB observations, particularly from the Planck satellite, have placed important
constraints on nongaussianities at large scales, which are consistent with the predictions of
single-field inflationary models. Specifically, the parameter fxr, used to quantify nongaussian-
ity and defined through the three-point correlation function of the curvature perturbation

3 k3 + k3 + k3
(C(k1) C(ka) C(k)) = — (2m)? fxr (K1, ko, ks) P28 (ky + ks + k3) W’
1™v2 ™3

T (2.23)



in the context of single-field, slow-roll inflation, is predicted to be of the order of the slow-roll
parameters [44]. In the model of axion inflation the sourced curvature perturbations can lead
to large nongaussianities. These perturbations arise from gauge fields through an inverse
decay process, which maximizes the nongaussian effects in the equilateral configuration, i.e.,

when k1 = ko = ks. In this configuration, the nongaussianity parameter ﬁ&uﬂ is given by [11]

. H12 6mE
1 5
N~ 7.1 %10 ¢6 & (2.24)
For large values of {omp, 1.€., the value of £ when CMB scales exit the horizon, the parameter

ﬁfiml exceeds the observational bounds on nongaussianity. In order to reproduce the obser-

vations it is necessary that {oyp S 2.5 [45]. As a result, the sourced power spectrum (2.22)
at this time is significantly suppressed and becomes subdominant compared to the vacuum
contribution, i.e. P¢g < P¢y. The constraint on { imposes a restriction on the amplitude of
the produced gauge field, which in turn must remain relatively small. Since the gauge fields
are responsible for generating the sourced tensor modes, as described in the next Subsection,
these modes will also be small at this stage.

2.2 Tensor fluctuations

A similar analysis holds also for tensor fluctuations, which correspond to gravitational waves.
In this case, the homogeneous and particular solutions of eq. (2.8) correspond, respectively,
to the vacuum fluctuations H;;y, generated by the expanding inflationary background, and
the sourced fluctuations H;jg, produced through the inverse decay of the gauge fields. The
vacuum component can be quantized once again through the standard quantization process,
starting from the free Lagrangian as

. dk * .
Hijv(x,7)= | —=5 6Z?(k) o< \ Y (k, 1) an(k) + HY (k, T)al(~k)| . (2.25)
(2m)3? =
where
1 i .
HEk 1= —— (1 - — ) et 2.2
Sz (1= ) e (226)
and
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e (k) = e ) e

) J

k). (2.27)

Using again the retarded propagator (2.18) we find the particular solution as

HT' dp

— / / !/ / / /
Hysta.7) = [0 Gyro) T [ G0 A ) A7), @28)
which has been simplified by the fact that the electric field dominates over the magnetic
field in strength. The complete solution is again the sum of the two components, i.e. H;; =

H;jv + H;jg, which give rise, respectively, to the vacuum and sourced power spectra [10]

H2 0—8 H4 A€
M4 56

2
Pn=Pnrv +Prs ~ - (2.29)



The scales relevant to the observation of gravitational waves, i.e., those measured by
gravitational wave detectors, exit the horizon much later than the CMB scales, closer to the
end of inflation. At these later times, the parameter £, which typically increases (slowly)
during inflation, reaches values larger than &cyp. Since the power spectrum of the sourced
gravitational waves depends exponentially on £, at these later times we can have Ppg >
Phv, in contrast to what occurs when the CMB modes leave the horizon. The exponential
amplification of the sourced power spectrum makes it possible for the gravitational waves to
be directly detectable by current or future GW detectors [17].

The sourced gravitational waves produced through the mechanism described above are
decomposed into a homogeneous part, which depends entirely on the background rolling
inflaton ¢g, and fluctuations, which are caused by the vacuum fluctuations d¢v, as described
in the paragraph above eq. (2.15). To first order in the vacuum-amplified inflaton fluctuations
d¢y and in the limit in which the wavelength of d¢v is much larger than that of h;;gs, the
sourced gravitational field decomposition in homogeneous part and fluctuations (2.15) takes
the form

ah?j,s (x, ¢o)

hijs(x, ¢(x)) = h%s(x) + 0hijs(x) = hgjys(x, ¢o) + 90 0Py (x). (2.30)
Since h?j’s(x, $g) o< €27, dhijs becomes
d¢ ¢ 0
Assuming ¢o > 0, V' < 0, we have
| / M2 V!
£E= o .V _ MpV (2.32)

2fH — 6fH2  2f V'

2 v ”
and using the usual slow roll parameters € = % “//—22 and n = MI%VV, the derivative of £ with
respect to the background inflaton becomes

2 " 12

df__MP<V_V>_(6_77>1‘ (2.33)

dog 2f \V V2 2/ f
Using again eq. (2.11) and considering that the parameter £ typically takes the values 2 = 5,
and that the quantity (2¢ — 7) is of the order of 1072 + 107!, we have

2ﬂ$§)?:2w(26—n)5~0(.1+3). (2.34)

We can now study the anisotropies in the gravitational wave background produced in

axion inflation by estimating the correlator of the gravitational wave energy densities. This
correlator receives two contributions: the vacuum correlator, which corresponds to the gravi-
tational wave energy densities of the vacuum tensor modes, and the sourced correlator, which
corresponds to the energy densities of the sourced tensor modes. The sourced correlator can
further be decomposed into three components: the intrinsic correlator, the extrinsic correlator
and the correlator of the fluctuations, which however will be neglected being very small. In
Section 3, we present the general form of the correlator, while in Sections 4 and 5, we analyze
the sourced and vacuum correlators, respectively.



3 The correlator of the gravitational wave energy densities

The normalized correlator of the gravitational wave energy densities is defined as

1 K _i
Conl) = 355 [ dve ™ Qawlx-+y, o) Qaw(x, 1)
Qb 2m
1k ,
=02 3.2 Sew(k, to) Qew(—k, t))", (3.1)
GW
where % is the present value of the cosmic time, Qay =~ QQ‘?Zd Pr(kinT) with Q?ad ~82x107°

is the fractional energy in gravitational waves at interferometer frequencies [6] and (...)’

represents the correlator stripped of the Dirac delta. Considering the explicit expression
d o

Qew (k, tg) = ﬁ i ﬁ |k —p|pha(k—p, to)he(p, to) for the gravitational wave energy

density, and defining 2 = 12 Hg Qaw, the correlator becomes

_ 1 K [dpidp,
a2 | @)
X (hab(k — P1, t0) hav(P1, t0) hea(—k — P2, t0) hea(P2, t0))’ (3.2)

The current gravitational wave amplitude is related to its primordial value, calculated at the
time t, when inflation ends, through the transfer function: hg(k, tg) = T'(k) hap(k, te). For
simplicity, from now on we will write hqy(k, t.) simply as hgy(k), with the understanding
that it refers to the value the tensor mode takes at the end of inflation. If we further define
T(k) = kT(k), we can eventually express the correlator as

=&§; ﬁg?T%ﬁﬂwﬂ%ﬁ%@WMhmwaMMMme,

(3.3)

Caa(k) lk — p1|p1 |k + p2| p2

Can(k)

with k1 = k — p1, ko = p1, ks = —k — ps and k4 = po. The integration must be performed
in the regime of large momenta, i.e. p > ke, Where k., is the scale that reentered the
horizon at matter-radiation equality [6], since these are the momenta to which gravitational
wave detectors are sensitive. For these modes, which exited the horizon towards the end of
inflation and reentered during radiation domination, the transfer function takes the form

~ ~ 3H0 Q?ad
Tk)y=T = ———.
(k) Vi

In the following, when we explicitly evaluate the integrals in the large-momentum regime,
we will denote the corresponding correlator with the subscript [.m.. Finally, since we are
interested in large scales, the momentum & at which we evaluate the correlator is very small
compared to the momenta over which we integrate, and is of the order of the scalar large-scale
perturbation scale, i.e. k ~ kcuvp.

(3.4)

4 Sourced correlator

For the normalized sourced correlator eq. (3.1) takes the form

1 K3 ~
CBa (i) oz [ dye ™ Qaws(x+y ) Qowsx ). (41)

=02
Qaws



with the fractional energy at interferometer scales for the sourced component being

0o 4 ) s HY eAmSiNnT
Qaw,s =~ ra Ph,S(kINT) with Ph,S(kINT) =8.7x10 T 6 , (4.2)
24 MP é.INT
and
Qs =12 HZ Qaws - (4.3)

Expression (3.3) for the sourced correlator takes the form

1 k3 dp1dp2 ,» A . .
S0 = a3 | e DU T(ke) Tks) T(ka) s (0er) s () heas (ks) heas(ka))'
¢ 2om (2m)

(4.4)

with k1 = k—p1, ko = p1, k3 = —k —p2 and k4 = po. By substituting the decomposition of
the sourced tensor modes in homogeneous part and fluctuations defined in (2.30)-(2.31) into
the four-point function present in (4.4) we obtain

(hab,s (K1) hav,s(K2) hea,s(K3) heas(ka)) = (hiy (k1) hay s(k2) hogs(ks) hogs(ka))
+ (hoy s (k1) hy g (K2) Oheas(ks) 6heas(Ka)) + (Shaps(K1) 6hap,s(k2) hdy s(Ks) hlyg(ka))

+4(hgy (k1) Shaps(ka) hog s(ks) 6heas(Ka)) + (Shaps(K1) 6haps(k2) Shegs(Ks) Sheas(ka)) -
(4.5)

Plugging eq. (4.5) back into the correlator (4.4), we identify three contributions: the intrinsic
correlator, Chq, which includes the first term in the r.h.s. of eq. (4.5) and involves only
the homogeneous components; the extrinsic correlator, CgQ, which includes the sum of the
next three terms in the r.h.s. of eq. (4.5), containing both homogeneous components and
fluctuations; and the correlator of the fluctuations, CSQ, arising from the fifth term in the
r.h.s. of eq. (4.5). The total sourced correlator of eq. (4.4) is therefore decomposed as

Cda = Cha + Ca + Cho- (4.6)
To proceed, we substitute the Fourier transform of eq. (2.31)

€ o dq

Ohijs(P) = =2m 5 @n)n hijs

(p—a)dv(a), (4.7)
which is valid, strictly speaking, when p > q. This condition is generally satisfied, as scalar
fluctuations are evaluated at CMB scales, which are much larger than the interferometer scales
at which gravitational waves are measured. Then, using eq. (2.20) for the vacuum curvature
perturbations we have

k? dp1dps - - s
5 2/ 5 L(k) T (ka) T (ks) T'(ka) (hop s (k1) hay s (ko) hog s (ks) hogs(ka))',
271205 (2m)

(4.8)

I
Con =
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2m2Q2 doo H (2m)6 v
¢ (005000) 350) 10— ) 450K+ D)
+ (hdy (k1 — P3) hiys(ka + P3) hog (k) hdys(ka))’

+ 4 (hy 5(k1) hiy (ko — P3) hoy g (ks) oy g (ks + p3)>’> , (4.9)

k? dg ¢0 dp1 dp2 dp3 dp4 ,; - - (27 )
F —_ 2 |27 T T T
o WQ%( dy H / (27)9 () T k) k) T(k) - P

3 A A
c£Q=k<2 & ¢°> / 4P1 D203 by ) Pg) k) 2 Py

X ((hgb,s(kl — p3) hiy s (ko + P3) hog (ks — pa) hly (ks + pa))’
+ 2(hoys(k1 — P3) by s (ko — Pa) hlyg(ks + P3) hiys(ks + p4)>/> : (4.10)

with k; = k — p1, ks = p1, ks = —k — ps and ky = po. The last correlator, which
corresponds to the correlator of the fluctuations, is found to be much smaller than the other
two and will therefore be neglected from now on. In order to compute the intrinsic and
extrinsic sourced correlators, we use egs. (2.5) and (2.28) to calculate the four-point function
of the homogeneous components of the sourced tensor modes, denoted as C

C('ﬂ, k2, K3, R4)

= (hiy5(K1) hiy5(K2) hdy5(K3) hdyg(ka)) =

_ 16 / Todn dry drs dmy
M3 a(t1) a(72) a(r3) a(7)

16

7} (Hyys(k1) Hyy s (K2) HY 5(k3) Hoyg(Ka))

Gy (T,71) Giy (T,72) Greg (T, 73) Gy (T,74) X T, (4.11)

with a(r) = —1/(H 1), and

- / daq dgz dqs day
(2m)6
X ef (@) ef (k1 —a1) ef (@) ¢ (k2 — a2) ed (@3) e (k3 — a3) el (@) e (k1 — qa)
x (Al (q1,m) AL (|k1 — a1|, 1) A (g2, 72) A (|k2 — qal, 72) Ay (g3, 73) A’ (|k3 — 3|, 73)
x A

(a1, 7a) Al ([ — aal, 1)) - (4.12)

Expression (4.12) has been simplified by neglecting the negative-helicity photons, as, ac-
cording to eq. (2.12), A4 is the only helicity that undergoes amplification. Using Wick’s
theorem to decompose the eight-point function of gauge fields appearing in the last two lines
of eq. (4.12), we find that the integral Z can be written as the sum of six distinct integrals,
ie. T=7Zx +Zp + Zc + Ip + Zg + Ir, the explicit expressions of which are provided
n (A.1). Substituting these integrals back into Eq. (4.11), we obtain the four-point function
of the homogeneous components of the sourced gravitational waves, expressed as the sum of
six terms

C=C4+Cg+Co+Cp+Cg+Cp, (4.13)

11 -



which can be calculated using the explicit form of the gauge field (2.13). Starting from C4
we have

4H4 T
Ca= e / dri dro drs dry (11 70 73 74) Y2 Gy (7, 71) Gy (7, 72) Gy (7, 73) Gy (7, 74)
P

—00

d
< [ (€ @) VO 12 ey 2y ol s i+ a2

x Aua(q, K1 — q, K2+ q, K2 + k4 + q) e 2V 20 TaHYIR=d]) (=2V=26 2 (Vaty ke tal)
o2V 2E(V/|k1—al+y/|katratdal) ,~2vV 28 Ta(y/ k2l k2 FRatal) §(

K1+ Ko+ K3+ Kq),
(4.14)

where & = &(7;) are the slowly growing & parameters satisfying & > 1. A4, the explicit
expression of which is given in (A.2), represents the angular part arising from the product of
the helicity projectors. We simplify the expression by recalling that the fields are calculated
at the end of inflation, i.e., at 7. = —1/H. Furthermore, since we are interested in modes
that are well outside the horizon at the end of inflation, we can take the limit k/H — 0. The

presence of exponential terms such as e~ 2V—28(Vatvisi—al)  with & > 1, implies that
k17T < 1. In the same way ko < 1, k33 < 1 and kg4 7y < 1. By Taylor expanding the
propagator (2.18) we have Gy, (1, ;) ~ —H 77/3.

To obtain the most general result, we will not assume a specific form for the £ pa-
rameter, but instead estimate the integral under the assumption of weak time dependence.
In this case, we observe that the integral is dominated by the values of |7, |m2|, |73] and
|74] belonging to relatively narrow Windows around the following expressions, respectively:

(Vat/ k1 — ,(va+yk2 +a]) 72, (Ve — al+/[k2 + ks +q] )72 and (y/|k2 + q|+
VK2 + kg + q|) 2. We can therefore approximate the & parameters present in expression
Cy as

= &' = ~(Va+ Ik —a])7?)
52 =&~ —(Va+ VIke +d])7?)
& =& = —(VIki —d + VIke + ki +d]) ),
&G =4 =~ —(VlIke +al + VIke + k1 +a]) 7). (4.15)
Finally, using the expression
[e.e]
/ dra™te VT = 7F(2n) (4.16)
0 a="
we obtain
H8T(7)* dq (&l +e+e+€d)
Ca= _
A 34236M8 /(271')6 (5145?5?5&4)3 AA(CL K1 q, kK2 +q, K2+R4+q)
x ¢ k1 —a'? |ka +al'? ke + ke + o (Va+ Ik —al) T (Va+ Vs +al)

x (VIk1 —al+ |k + ks +q|)” \/\R2+Q\+\/!"v2+ﬁ4+(ﬂ) "5(K1+ Ko+ K3 + Ka) -
(4.17)

In the same way we calculate all the other contributions to the eight-point function C in
eq. (4.13), which are given in (A.3). By substituting these expressions into egs. (4.8) and
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(4.9), we can now obtain the intrinsic and extrinsic correlators of the sourced gravitational
wave energy densities, whose computation is described in the next two Subsections.

Before proceeding with the calculation, we first parameterize the weak time dependence
of the monotonically increasing function (7). We define (7 = —1/k) = & as the value of £
when a mode with comoving wavenumber k exits the horizon, Ny e-foldings before the end
of inflation. For large momenta, i.e. p > keq, the parameter £ is close to its maximum value,
&INT ~ 5, evaluated at the time when interferometer-scale modes exit the horizon. This time
is typically close to mgRr, the time when the system enters the strong backreaction regime.
Usually, this happens around Npg ~ 10 e-foldings before the end of inflation [37], although
there are models in which it can happen earlier, i.e. Npr ~ 40 in [41].

While the behavior of £ during the regime of strong backreaction is still object of research,
lattice studies seem to suggest that this quantity stabilizes and evolves relatively slowly [40].
For this reason, we assume that £ becomes approximately constant for 7 > 7R, implying
EBr = &nT. In this case, contributions to the integrals from momenta larger than kpr are
negligible and can be safely ignored. For large momenta, the £ parameters in the denominators
of the integrals can therefore be approximated as constants, contributing an overall factor of
§]§2R. Meanwhile, the £ appearing in the exponents are approximated as

§Br + 6log(TBR/T) , T < TBR,
{(r) = { (mer /) (4.18)
$BR , T > TBR,
with 7pr = —1/kpgr, accounting for contributions to the integrals from lower momenta. The

parameter § depends on the specific model under consideration, and more precisely on the
number of e-foldings before the end of inflation at which backreaction becomes significant. In
the cases discussed above, its value lies in the range between 0.06 [37] and 0.2 [41]|. Therefore,

the exponential terms 62”51;, with L=A,B,...,F and i = 1,2, 3,4, appearing in expressions
C4 to Cp, transform as
27h
el _ ant(rh) _ 2ménn (TBLR> ' (4.19)
7i

4.1 Sourced intrinsic correlator

In order to find the intrinsic correlator of the sourced gravitational wave energy densities we
start by substituting eq. (4.11) with k1 = k1 = k — p1, ko = ko = p1, k3 = ks = —k — po,
k4 = k4 = p2 into eq. (4.8)

1 k* [ dpidp;
1 —

and we expand C using egs. (4.13), (4.17) and (A.3). Term Cp contains a tadpole, as
d(k1 + K2) = 0(ks + k4) = d(k), and can therefore be neglected. In addition, the terms
Cg and Cp become identical after resolving the delta functions. For large values of the
momenta we use (4.18) and we factor out of the integrals the £}, from the denominators, the
e8™EBE from (4.19) and the constant transfer functions (3.4). The intrinsic correlator turns
out to be

T (k1) T'(kz) T'(ks) T (ks) C(k — p1,p1, —k — p2,p2),  (4.20)

k3 H3T(7)* e3mépr T4 E\?
CL - T x I~ 9.8 x 10° () , 4.21
( QQ)I.m. Q% 2 34937 MI% (2m)? %QR I kB ( )

where in the last equality we have used (4.2), (4.3) and the integral I explicitly evaluated in
Appendix B, eq. (B.7). For typical values k ~ kcyp the factor (k/kpg)? is of the order of
e 190 which makes the intrinsic correlator very small.
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4.2 Sourced extrinsic correlator

In order to find the extrinsic correlator of the sourced gravitational wave energy densities we
substitute eq. (4.11) into the three four-point functions of eq. (4.9), obtaining

OB () = ¥ Pev (2 dwO) /dloldp?dp?’ Pl — plr>T<p1>T<k+p2>T<p2>p1§

02 dpo H (2m)6

x (C(k — p1,p1, “k — p2 — p3,p2 + P3) + C(k — p1 — p3, P1 + P3, —k — p2, p2)
+ C(k — p1,p1 — P3,—k — p2, P2+ p3))
= CsEm,l(k) + CsEm,Q(k) + Cgsz,:&(k) ; (4.22)

where we have considered the scalar vacuum power spectrum Pry ~ 2 X 1079 as a constant.

The sourced extrinsic correlator is therefore composed by three terms. In both CQQ 1 (k)
and CQQ 5(k), the term Cp corresponds to a tadpole, leading to effects similar to those found
in the intrinsic correlator. These correlators turn out to be very small due to the presence
of the factor (k/kpgr)3. In the third correlator Cgﬂ’g(k), however, Cp is no longer a tadpole,
but instead generates a significant scale-invariant term. Consequently, ng’g(k) contains,
besides the small contributions similar to those in the other two cases, denoted collectively
as 659’3(k)’ , a dominant component, which we denote as C5%5 (k). This component consti-
tutes the main result of this paper and for this reason we present its calculation separately
in the next Subsection. In Subsection 4.2.2, we show for completeness all the other small
contributions.

4.2.1 Extrinsic correlator: Scale-invariant term C3{ (k)

We now focus on calculating the scale-invariant contribution C3 (k), which comes from term
Cp of 65973 with k1 = k — p1, kK2 = p1 — p3, k3 = —k — p9, and k4 = p2 + p3. This term
is particularly important because it contains the quantity 6(k — p3), which cancels the k3
element in the prefactor, giving rise to a significantly large contribution. More specifically,

___ BT <2wd§</30

T3 @\
T(k = p1|) T(p1) T(Jk + p2|) T(p2) Ap(a1, k — p1 — QI,Q2,—k—pg—q2)
@ |k — p1 — @12 3/ |k + po + qo|V/2 2T T T )

\FWL k—p1—ai|)" (a2 + |k+p2+q2|)14(1 e i)’

2
) Pg,v/dpl dp2 dqy dqz

(4.23)

with

Gt=gt=¢(7r ~~(Va+vVk-—pi—ai])?
Gr=gl=¢#" ~—(Ve+Vk+p2+al)?) (4.24)

The angular part is

1 s PO
Ap(p,ar,s) = 1c(5+2pa+ (P@)*)(5 +2T5 + (r5)), (4.25)
which is calculated using

~ ~ 1 ~~ ~
el (k) e} (—k) = 5 (B = kikj — i Neiji Fy) (4.26)
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For large momenta, we use the parametrization (4.18) for the ¢ functions in the expo-
nents, while in the denominators we approximate them as simply £gr. The transfer function
takes the form (3.4), and we simplify the integral by neglecting the contribution of the small
k, wherever it appears. The scale-invariant correlator then takes the form

(Ci (K)),,,

H3T(7)* 87 éer T d¢ ¢o
= m——
0234234 M3 (2m)12 ¢, \ 7 dgo H

2
) PC,V X IS.I.7 (4.27)

with the integral Isy. given in (C.3). Using Pcyv ~ 2 x 1079 and equations (3.4), (4.2) and
(4.3), we eventually obtain the correlator

9.8 x 107° d¢ ¢ ?
(CB& X)), =~ e (2ﬂmf})> . (4.28)

Considering (2.34) and the fact that the parameter § takes values in the interval 0.06 + 0.2,
the sourced scale-invariant extrinsic correlator is found to lie within the range

(€55 k), ~24x107°+24x107". (4.29)

This result will constitute the only relevant component of the sourced correlator, as it is
many orders of magnitude larger than the intrinsic correlator, studied in Subsection 4.1, and
all other contributions to the extrinsic correlator, which we present for completeness in the
next Subsection.

4.2.2 Extrinsic correlator: Terms Cgﬁl(k), ng,z(k), CSQ,S(k),

In order to find all the other terms contributing to the extrinsic correlator, which we antici-
pated to be very small and unobservable, we start by expanding the terms C in (4.22) using
egs. (4.13), (4.17) and (A.3). Using again the transfer function (3.4) and the parametrization
(4.18) we find

(o) = BTN OR TPy () de g e (Y
= T ~ 5. —
Q0,1 Lm. Q% 34 936 MISD (2)12 511821% doo H E,1 L )

(Cha2(k)) BHUT) ST T P () d G 2 ‘g~ 49 x 107 ()
= T — ~ 4.
Q0,2 l.m. Q% 34 936 Mf; (2w)12 1132}2 doo H E,2 kBn )

. N

WHST() S on TPy () de do kY
CE k / _ 7 4-7 2 i I ~ 1'7 e 4.32
( QQ,S( ) )l.m. Q% 34934 Mf-, (2m)12 11321«2 Wd(bo H X Ig,3 <kBR> o )

where in the final expressions we have used (2.34), (4.2), (4.3) and the integrals Ig 1, Ip2

and Ip 3 evaluated, respectively, in (C.6), (C.9), (C.13). These correlators are all very small
because of the presence of (k/kpg)?, as in the case of the intrinsic correlator.
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5 Vacuum correlator

For the normalized vacuum correlator eq. (3.1) becomes

1 k3

Coo(k) = 5.2 / dy e ™ (Qawv(x +y, to) Qew,v (X, to)) (5.1)

Ry
QG’W,V
with the fractional energy at interferometer scales for the vacuum component being

Q D p kine) . with Py (ky) = 2
GW,V = —~= FhV(RINT Wil h,VIKINT) = —5 775 -
24 n2 M?%

(5.2)
Defining
Qv =12 H3 Qawy (5.3)

expression (3.3) for the vacuum correlator takes the form

1 k3 dpi d 7 . R
Con = ) b1 2b2 T(k1) T (ko) T(k3) T(ka) (hapv (K1) Pap v (k2) heav (k3) heav(Ka))
Y 2m (2m)3

(5.4)

with k1 = k — p1, ko = p1, k3 = —k — ps and k4 = py and T(k:) = kT(k). The four-point
function in equation (5.4) is decomposed using Wick’s theorem, and, up to a tadpole term, is

(hab,v (k1) hap, v (k2) Peav(k3) heav(ka)) = 2 (hap v (K1) hea v (k3)) (hap,v(ke) heav(ka)) -

(5.5)
Using
(hab,v (K1) hea,v (k3)) Z eay(k (—k1) d(ky + ks) |73y (k) 2, (5.6)
and the definition |k (k)| = 2,{%2 ,Pli\,\h with P}j:V = %, we eventually have
K3 H* R 9 s \2 1
G009 = 55 prgr | TIR =P T0) s < Alk—pp). (67
The angular part, calculated using (4.26), is
Ak —p,p) = Y eay(k — p) e2a(—(k — p)) 3 (B) eZ4(—D)
Ao
1 T T
— (1o PR (B (5.5)

The integral in (5.7) must be evaluated over the sensitivity range of gravitational wave
detectors, i.e., between momenta p,,;, and ppe: that correspond to the limits of the mo-
mentum interval measurable by a given detector. As previously discussed, these momenta
are much larger than the value of k ~ kcyp under consideration, which can therefore be
neglected. With this in mind, and using (3.4) and (5.2)-(5.3), the correlator takes the form

k3 34 242 Pmax 1
(Cha) Ly, (k) ~ 27r46144/ dppz/dﬂpﬁ A(-p,p)- (5.9)

Pmin
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After performing the integrals [ dQA(—p,p) = 87 and f;:‘;““ dp#

eventually becomes

~ 3%, the correlator
n

nin

(), =01x < i )3. (5.10)

Pmin

This result, similarly to the intrinsic sourced correlator and the subdominant contributions of
the extrinsic sourced correlator, is subject to a strong suppression due to the factor (k/pmin)?,
and is therefore very small and unobservable for any gravitational wave detector.

6 Discussion and conclusions

The recent evidence of a stochastic gravitational wave background reported by PTA mea-
surements has opened a promising new observational window in modern cosmology. Such a
background can arise either from the combined signals of unresolved late-time astrophysical
sources, such as supermassive binary black hole mergers, or from a cosmological origin. In
particular, a cosmological SGWB can reveal new details about the very early Universe in ways
that previous observations could not, as the gravitational waves that make it up are produced
before photon decoupling and propagate almost freely throughout the Universe after their
generation.

To extract information from the cosmological gravitational wave background, we must
distinguish it from its astrophysical counterpart. One approach is to analyze their anisotropies
and, in particular, the correlation of these anisotropies with CMB anisotropies, which is
expected to differ between the two backgrounds. In this context, the authors of [26] computed
the correlator between the curvature perturbation and the energy density of gravitational
waves within the axion inflation model.

In this paper we studied the amplitude of gravitational wave anisotropies in the axion
inflation model, by computing the correlator (Qqw(x)Qaw(y)), which provides a measure of
the observability of the correlation between scalar and tensor fluctuations. In axion inflation,
the coupling of the inflaton to gauge fields implies that fluctuations arise both from the
vacuum, through the standard amplification process, and from gauge fields via an inverse
decay process. As a result, the correlator consists of two contributions: the correlation of the
vacuum gravitational waves and the correlation of the sourced gravitational waves. Moreover,
since the sourced gravitational waves consist of one part that depends only on the zero mode
of the inflaton and another that depends on its fluctuations, the sourced correlator can be
further decomposed into three distinct contributions: the intrinsic part, the extrinsic part,
and a part containing only fluctuations.

Our analysis shows that the only relevant contribution to the correlator arises from the
scale-invariant part of the extrinsic sourced component, while all other terms are negligible.
For typical parameter values, the normalized sourced correlator is found to lie in the range
O(107° —1071) and in particular, it can reach values as large as 2.4 x 10~!. According to [19,
27, 28|, anisotropies must be relatively large to be detectable within a reasonable time frame.
Our study shows that axion inflation can indeed produce observable anisotropies. Combined
with the increased sensitivity of future gravitational wave detectors, this result motivates
further study of angular correlations in the GW background as well as cross-correlations with
CMB anisotropies in axion inflation models.
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A Sourced correlator: Full expressions

The integrals that compose Z =74 + Ip + Zc + Ip + Zg + Zp in eq. (4.12) are given by
the expressions

d
Ty = [ ooy (0 m) Ay Iy = alm) A4 . 72) AL (o + el m) 44 (1 — a7

Al (k2 + ks +ql,73) A (|k2 + a], 1) AL (|k2 + K4 + d|, 7a)
X Aa(q, K1 —q, K2 +q, Kg + kg +q) (K1 + K2 + K3 + K4) ,

dq
Ip = /(QF)@AQF(%H) A/Jr(’l’vl - Q\yTl)Aﬁr(%ﬁ) A’+(|n2 + QI,D) Al+("¢2 + QI,T:«;)

x Al (|k2 + k3 +4ql,13) A (|k1 —al,74) A, (k2 + K3+ q|,74)
x Ap(q, K1 —q, K2 +q, kg + K3 +q) (K1 + K2 + K3 + Ka)

d
IC:/(Qq) A (anl) /+(|“1*Q|a7'1)A,+(|’<53Jr(l|a7'2)A/+(|“2+53+Q|77'2)A,+(q77'3)

x Al (|ks+al,73) A (Ik1 —a], 1) A (k2 + k3 + d], )
X A (q7 K1 —Qq, K‘3+q7 '@2+’<3+Q)5(R1+H2+K3+K'4)7

dqi d
Ip = / ?2177)2‘12 Al (g1, ) AL(|k1 — ai], 1) Al (g1, 72) Al (|k1 — an, 72) Al (g2, 73)

Al (ks — a2, 13) Al (g2, 4) AL (|K3 — Q2|,74)
Ap(qi, K1 — a1, 92, kK3 — q2) 6(K1 + K2) §(K3 + Ky4),

d
/ o qu (g1, 1) A, (151 — qr ], 71) A (g2, 72) A (K2 — o, 72) A (g1, 73)

x Al (k1 — ail, 3) Al (g2, 74) AL (|k2 — q2, 7a)
A (ql) K1 —dq1, 92, K2 — QQ) 5("‘"2 + "/“’4) 5(K’1 + K’3)7

dQ1 d(h

Al (q,m) A (k1 — a1, 1) A (g2, 72) Al (|k2 — q2l, 72) A (g2, 73)

(!&2 —Q2\,T3)A+(Q1,T4)A/+(”¢1 —qil, )
X -AF((IL K1 —di, d2, K2 — q2) 0(K1 + Ka) (K2 + K3), (A.1)

where we have collected the angular parts inside the functions A:

Aa(P1, P2, P3,P4) = Ap(P1, P2, P3, Pa) = (e (P1) € (—p1) & (P2) el (—p2) e (P3)
x e (=ps) ef (P1) ef (—Pa) + (a4 b)) + (o > B)) + (c > d)) + (7 <> 6))daa O3 Sery bas »

Ac(p1,p2,P3,P1) = (e (P1) el (=P1) &f (P2) € (—P2) ef (P3) e (—P3) ¢ (Pa) ef (—pa)
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+ (a4 b)+(ae )+ (ced)+ (7 0))dan Obs dey Ods

Ap(p1, P2, P3,pa) = ((¢f (P1) e (=p1) ¢f (P2) e} (=p2) ¢/ (P3) eF (—p3) e (Pa)eg (—pa)
+ (a S ,6)) + (’}/ <~ (5))5(1@ 5b6 (507 5d57

Ag(p1, P2, P3,P1) = Ar(pP1, P2, 3, Pa) = ((ef (P1) el (—p1) & (P2) e (—p2) e (P3)
x ef (=ps) e (Pa)ej (—pa) + (¢ < d)) + (Y > 0))0aa Obp Oy Oas - (A.2)

The correlators Cp to Cp in eq. (4.13), calculated in a similar way as C4 in (4.14), take
the form

Cp =

H8T(7)* dq e2m(EP+eF+e+e7)
31236 M3 / (2m)® (P g ef el)?

x "% k1 —a|? ko +a|Y? ko + k3 + a2 (Va+ Ik —a)) T (Va+ k2 +a])”

x (k1 —d| + ke +Kk3+4q|)” (\/\R2+q\+\/!nz+ﬁ3+q\) "5(k1 + Ko + K3+ Ky),

Ap(q, K1 —q, ko +q, Ko + K3+ q)

C HET(7)* dq €260 +&5 €57 +ED) y
¢ 7 512303 / By (eereny Al m T A s ta)
x ¢% k1 — q"? ks + a7 ko + k3 +al'? (V7 +Vk—al) T (Vi + ks +al) T

x (VIk1—al+ V]k2 + k3 +4q|)” \/|H3+Q|+\/|R2+H3+Q|) T5(k1 + Ko + K3 + K4)

Cp =

HST(TA [ day dgs e27(E7+68 +69+€D)
( ) / s AD(ql) K1 —dq1, 92, K3 — q2)

326 M5 ) (2m)8 (PP el el)3

x 1%y Ik — a2 |y — oV (/@ + v/Ie1 — an]) M (V@ + Vs — aa]) M

X §(K1 + K2) (k3 + K4),

Cg =

H8T(T)Y [ dqy dqg €27 (€762 +657+E7)
3120 Mp / (2m)S (P efef ef)s

x 1”7 3" k1 — au|V? ke — a2 (Var + Ve — i) (Va2 + k2 — o] )M

X d(ke + Kq) d(K1 + K3) ,

Ag(qi, k1 — a1, 92, K2 — q2)

Cp =

H3T(7)4 da dao 27 (&5 +eb+ef+eb)
( ) / q1 aqz AF(Cll, K1 —q1, 92, K2 — q2)

312 Mp ) (2m)b (¢ el )’
1/2 1/2 _ _
< a1 0" k1 — V2 ke — @2 (var + vk — @) (V@ + ke — aof )M
X (5(!-’{,1 + K}4) 5([4)2 + I<,3) . (A3)
The parameters £& = ¢(7) have a form similar to (4.15), with the temporal variables
evaluated, in each case, at the momenta appearing in the denominators of the respective
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expressions, i.e.:

2 -2
=P =1l (Va+ ik —d) i =rf = (Va+ I+ d)

—2 -2
o= (Vik =l + VIR TR al) P = (Vikaral+ ikt R +d])
-2 -2
it = (Vike Fal+ Vima t i tdl) o =~ (vatVisatal)
—2
el (Vi —dtVim s td) . e (ViR T+ ye R )

-2
Ferfrf=rf o (VatVim-al) . =P~ (Va+ Vo)

2 -2
f=1f fift%ﬁﬂ%%*%),'@Zfﬁ%ﬁﬂ%%f@)

12

(A.4)

B Sourced intrinsic correlator: Evaluation of integrals

The integral I1 in eq. (4.21) of the sourced intrinsic correlator in the regime of large momenta
has the form

1
) /dpl dp2 dq
X( ¢"?p1 +d||p1 +p2 +4q|"? As(q,—p1 — q,P1 + 4, P1 + P2 +q)

(va+vIp1 +a))™ (/1 + al + /[Pt + P2 + a] )™ (7 7 7y 7)) 200
/2

I =

Ip1 +4||p1 +a—p2|/? Ap(d,—P1 — 4, P1 + ., P1 + 4 — P2)
\f+\/m Y (y/Ip1+dl ++/Ip1+a- P2|)14(7'117'12TIB37'14)27T6
1/2|p +a|*?|a — p2/"/* |p1 + q — pa/*/?
\/+\/Ip1+q (va+Ia—p2])7 (v/la— p2l + v/Ip1 + 4 — p2| )7

Ac(d, —p1 — 4,9 — P2, p1 + 9 — P2)
(\/Ip1 +al+ v/Ip1 +a—p2 )7 (15 75 TG 75?0
1/2 1/2

+2

p Ip1 + p2|? |p1 — d|'? Ag(p2, —P1 — P2, 4, P1 — Q) > (B.1)

(vPz + VIp1 + P2 ) (v + /Ip1 — a )1 (5 i iy )20
where we have used 7pr = —1/kpg in equation (4.19) and neglected the parameter k& wherever

it appeared, as it is small compared to the large momenta considered in the integral. The
time variables of equation (A.4) in this case take the form

A A B B
TI1=Ti2=Ti1=T[2= (f+\/\P1+Q> 7127 (f+\/|q p2)

-2
Ty =iy (\/\p1+q|+\/lp1+p2+q|) , Ty~ — (\/Iq p2|+/Ip1+q— P2|) :

TPy = TP ~ (\/\p1+q|+\/lp1+q p2|) , T =Tl ~ — (\/ +\/Ip1+p2)
—2
i = (VP ra+ VP ta-pal) Fo=rfam—(vat Ve d)

To compute the integral, we consider all possible orderings of the magnitudes of pq,
p2 and q and integrate over one momentum at a time, keeping only the dominant terms
in each expression. For example, in the case p; > ps > ¢, the expression (\/|q — p2| +

VIp1 +q — p2|)7 simplifies to pz/2, and the integration is carried out as

kBRr ) D1 ) D2 )
/dp1dp2dq=/ dp1p1/ dpzpz/ dqq /dQ, (B.2)
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with

/ a=]] / db; dg; sin(6;) . (B.3)

1=p1,p2,q

A key simplification arises when the dominant momentum appears in both square roots in a
sum. For instance, the expression (v/|p1 + d| + /|p1 +a — p2|)7, when p; is the maximum

momentum, becomes 27 pz/ 2 In such cases, the suppression factor of 27 in the denominator
makes the corresponding term negligible. Therefore, although we would theoretically need
to consider all six possible orderings of the three variables, the number of relevant cases is
reduced by focusing only on terms without the large 27 suppression.

For the first expression of (B.1) the only ordering that does not lead to a suppression is
p2 > p1 > q, for which the expression becomes

1 kpr 5 P2 soa [T
k87r6 / dp2p3 72 dplpzl1 0 4/ dqq5/2 /dQAA(qv —P17P17P2)
BR
1.4 x 10* 2 3
— for § > — . B.4
KBy T@mo+1/2)8m6-3)  °7 8x (B4)

The number 1.4 x 104 is the result of the numerical integration of the angular part over the
solid angle (B.3). The second integral in (B.1) shares the same dependence on the momenta
as the first one and therefore gives the same result. For the third integral in (B.1), there is
no ordering of the momenta that avoids the significant 27 suppression, so it can be neglected.
Finally, the last integral in (B.1) receives contributions only from the orderings p; > ¢ > p2
and p; > p2 > ¢q. Since these two orderings give rise to the same integral, we need to calculate
only one of them:

9 kBr 3 D1 D2
/ dpy p§™ 11/ dpng/Q/ dqu/Q/dQAE(p%—pl,q,pl)

G

1.8 x 103 4 3

= for 6 > —. B.5

K, 49(8to—3)" = "7 8« (B.5)
Summing all contributions, we obtain

I 8.1 x 103 N 2.9 x 102 for 6> 3 (B.6)
- r —_— . .

'k, (4ms +1/2) (876 — 3) | k3, (8m0 —3) 8

In practice, the parameter ¢ takes values in the range 0.06 — 0.2. However, since this
integral contributes to a correlator that turns out to be negligible for any value of § (due to
the suppression factor (k/kpr)?®), we can adopt the value § = 0.2 that allows us to simplify
the integrals, while still providing a reasonable estimate. For § = 0.2, the integral becomes

1.5x10% / k \°
I~ B.7
= () (8.7

that gives the result present in (4.21).
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C Sourced extrinsic correlator: Evaluation of integrals

C.1 Term: C55(k)

The integral sy in eq. (4.27) of the scale-invariant part of C5 (k) in the regime of large
momenta has the form

1
1= [ v dp2day das

1/2
@ Ip1 + a1Y2 5"% 1p2 + @22 Ap (a1, —p1 — a1, 92, —p2 — q2) 1)
(Vi + /o1 + @) (i + /P2 + @) (75 75T T
with

7_1S.I S.I.

=Sl (Jar+ Vbt a]) 2,
Sl =5~ (@ + VP2 + @] )~

The computation is done by integrating over one momentum at a time, accounting for all
possible orderings of the four variables, as done in Appendix B. However, when ¢q; > p1
or ga > po, a large suppression factor of 2'4 appears in each of the two parentheses in the
denominator. Thus, we can restrict our calculations to the cases where p; > ¢ and ps > g9,
for which the integral becomes

1 5- 5-
Is1 = kg5/dpldpqulclq2ql/2q§/2p47r B2 p T Ap(ar, —pr.ap. —p2) . (C2)

Finally, due to the symmetry of the integral under the exchanges p1 > p2 and q1 < qo, it
simplifies to

1 FoR A7d—9/2 P 5/2 ?
Is1 = s </ dpp*™® =9/ / dqq”/ ) /dQAD(Q1a_p17CI27_p2)
BR

1 2
~ 4
~ 4.4 % 10 (14m5) , (C.3)

where in df)2 we have collected the angular integrations on the polar angles of all the four

variables, i.e. dQ = dQ,, d),, dQq, dQg,.

C.2 Term: ngl(k)

The first contribution to the extrinsic correlator of the gravitational wave energy densities in
the regime of large momenta, eq. (4.30), is found by evaluating the integral

1 1
Ig1 = i /dp1 dp2 dps3 dqp

< 1/2\p1+q! Ip1+p2+ps+al? Aa(q, —p1 — 4, P1 + 49, P1 + P2 +P3 +q)

(vVa++Ip1+d)™ (V/Ip1 +dl + Ip1 + P2+ p3 +q ) (7'1:]41,1 7'11341,2 7'11341,3 Té41,4)27r6

¢"?|p1 +d||p1 + a—p2 — p3|/? Ap(q, —P1 — @, P1 + 4, P1 + 4 — P2 — P3)

(vVa+Ip1+d)"(/Ip1 +4d|++|p1+9—p2— p3| ) (TEllTI§12T€13TI§14)26
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q\/? ’1/2 ’1/2 |1/2

lIp1+d|/?|lq—p2— P3| /*|p1 +9— P2 — P3

f+\/|p1+q )7 (va++]a—p2—p3|)" (vla—p2 — P3| + VIp1 + a4 — P2 — p3])?
Ac(q,—p1 — 4,9 — P2 — P3,P1 + 4 — P2 — P3)

\/|P1+Q|+\/|P1+q p2 —p3|)” (TE117'E0127€13TE014)%5

1/2 1/2

P |p1 + p2| |P1—01|1/2«4E(P27—P1 —P2,q,p1 — q)
+2 B (C4)

(VP2 ++/Ip1 + P2 )" (Va++/Ip1 —a] ) (71511,1 TEEL2 71511,3 7151,4

where we have neglected the k terms in the sums and with the time parameters given by

Tén—T§12—71§11—7512—7E11— (Va++Ip1+dl)”

s =14~ —(/Ip1+d +/Ip1 + P2 + s +a]) 2, THo > —(va+/Ia—p2 — psl) 2
71?1,32751,42‘(\/\1’1+Q|+\/|p1+q—P2—P3|)_2, 7511*TE12— f*'m
13~ —(Vla—p2 — s+ VIp1 +a—p2—p3)) %, THs = Tha > —(Va+ /IpL—a)
7'51,42—(\/\Pl+Q\+\/\P1+q—p2—p3|)72

In order to compute (C.4), we again consider specific orderings of the momenta and
integrate over one momentum at a time keeping only the dominant terms, as done in Ap-
pendix B. Many orderings give significantly suppressed results due to the 27 factors in the
denominators whenever the largest momentum appears in both roots of a sum. As a result,
the number of contributing cases is greatly reduced. For the first expression of (C.4), there
are six cases that contribute significantly:

5.1 x 10%
k3 p (4w + 1/2) (476 + 7/2) (876 — 3)

p3 >p2>p1>4q

5.1 x 10*
k3 p (4w +1/2)2 (876 — 3)

P2 >p3 >p1>4q

7.8 x 103
k3 p (4md 4+ 7/2) (876 — 3)

p3 >p1>p2>4q

1.4 x 10%
k35 (476 + 1/2) (8w — 3)

P2 >p1 >Dp3 >4q

9.1 x 103
k3 (476 4+ 7/2) (876 — 3)

pP3 >p1>4q>p2

1.4 x 10* (1.2 x 1037%6% — 4.7 x 10*76 — 22.)
k3 o (876 — 3)2(870 + 1)2

P2 >p1>q>ps3

valid for § > %. The second expression of (C.4) has the same dependence on momenta
as the first one and so gives the same result. For the third expression of (C.4) there are
not combinations which do not suffer the suppression. Finally, for the fourth expression,
we consider all combinations where p; > ¢ and p; > ps. Although there are eight such
combinations, the symmetry between ps and ¢ in the integral ensures that swapping po and

q gives the same result. Therefore, we need to compute only four distinct cases:
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1.3 x 102

p1>p3 >q>p2 (or p1 > p3>p2 > q) K. (876 —3)
BR

2.6 x 102

p1 > q > ps > pe (or p1 > pa > ps > q) m
BR

1.3 x 10% (1.4 x 102 6 — 6.1 x 10)
k3 (80 — 3)2

p1 > q > p2 > ps (or p1 > pa > q > ps3)

9. x 102

p3 >p1 > q > pa (or p3 > p1 > po > q) K%, (370 — 3)2

valid for ¢ > 8%. Summing all contributions, we obtain

—1.4 %1024+ 1. x 1035 + 4.3 x 10262
I = x10°+1 X 02 +43x10 , ford > i (C.5)
k%p (1.2 x 1071 = 1.6)" (4. x 1072 4+ 1.4) 8w

In particular for § = 0.2 the integral takes the value

52x10% / k \?
Ipq ~ C.6

used in (4.30).

C.3 Term: 659,2 (k)

The second contribution to the extrinsic correlator of the gravitational wave energy densities
in the regime of large momenta, eq. (4.31), is found by evaluating the integral

Ig2 = s /dpl dp2 dps3 dq

% < 1/2’P1+p3+(ﬂ|P1+P2+P3+Q|1/2
(va+/Ip1+p3s+dq|)*
Ax(q,—p1 —P3 —q,P1 +P3+9,p1 + P2 +Pp3+q)
(vIp1+ps+dl+v/Ip1+p2+p3+al) (Té42,1 7'1?2,2 7'11:42,3 7é42,4)
q"%|p1 + ps + q||p1 + 4 — p2 + p3|'/?

(va++/Ip1+p3+q|)*

Ap(d,—pP1 —P3—4q,P1 +P3+49,P1 + 94— P2+ P3)
(vIp1+p3+dal+Ip1 +a—p2+p3| )™ (7'E217'17519227'}1392zl’,TEBu)zmS
q"? |p1 +p3+q|1/2|q—pz\1/2!p1 +q— p2 +p3|'/?

\f+\/|P1+p3+q )" (va++]a—p2])" (v/la—p2| + VIp1 +a—p2+p3| )7

Ac(q,—p1 —P3 — 49,9 — P2,P1 + 9 — P2 + P3)

\/|P1 +p3+q|+ \/|P1 +q-—p2+p3|)’ (TEQ17’]5227'E02371g24)2ms

2]9 2/ 1/2\131 +p2+93\1/2\P1+p3 —Q\l/zAE(pza—pl — P2 —P3,4,P1 + P3 —CI)>

(VP2 +Ip1+ P2+ P3| (/g + VIp1+ps —af )™ (7'1{332,1 7'}?2,2 752,3 TEE2,4))2W5

(C.7)

27d

_|_
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where we have neglected the k terms in the sums and with the time parameters given by

71:3421*71::422*71521*7'13322*@21* (Va++Ip1+ps+al)”
Thhs = Tia ~ —(V/IP1+Ps +a[ + V[P + P2+ ps +a])
TEBM:TEBM’:_\/|P1+P3+Q|+\/|P1+q—P2+P3‘)_27
TE22* (vVa++la—p2|)
752,32—\/Iq—p2\+\/|p1+q—p2+p3|)_2,
TE02,4’:—\/|P1+P3+Q\+\/|P1+q—P2+P3\)_2,
7'1~3Ez1—7'E22— \/>+\/|P1+p2+P3

Thas = Thoa = —(Va+VIP1+P3s — d

We perform again one integration at the time conmdering all the possible orderings of
the four momenta, i.e. 4! = 24 permutations, but neglecting all the terms suppressed by 27
factors at the denominators, as done in Appendix B. For the first expression of (C.7) the only
cases that survive are the four cases with ¢ < p; or ps and ps > p1,ps3 and q:

valid for § > &

1.4 x 10*
k3 p (4md 4+ 1/2) (876 — 3)

p2 >p1 >p3>q

7.8 x 10°
k3 p (4md 4+ 1/2) (876 — 3)

P2 >p3 >p1>q

1.4 % 10* (1.2 x 1037252 — 4.7 x 10276 — 22.)
k3 (8w — 3)2(8m6 + 1)2

P2 >p1>q>Dp3

9.1 x 10°
k3 (476 + 1/2) (8w — 3)

P2>p3>q>m

. The second expression of (C.7) has the same dependence on momenta as the

first one and so gives the same result. The third expression contains only suppressed combi-
nations. Finally, for the fourth expression, we consider all combinations where p; or p3 > ¢
and p; or p3 > po. Although there are twelve such combinations, the symmetry between po
and ¢ allow us to compute only six of them:

p1 > p3 > q > p2 (or pr > p3 > pa > q)

1.3 x 102
k3 p (876 — 3)

p1 > q > p3 > p2 (or p1 > pa > p3 > q)

2.6 x 102
k3 p (876 — 3)

p1 > q > p2 > p3 (or p1 > p2 > q > p3)

1.3 x 102 (1.4 x 10?6 — 6.1 x 10))
k3 (876 — 3)2

p3 > p1 > q > pa (or p3 > p1 > p2 > q)

9. x 10!
k3, (810 — 3)

p3 > q > p1 > pa (or p3 > pa > p1 > q)

9.7 x 10!
k3 (8m0 — 3)

p3 > q > p2 >p1 (or ps >p2 >q > p1)

1.1 x 102
k3 n (876 — 3)
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valid for & > 8 . Summing all contributions, we obtain

—26—13x10%26+1. x 10362 +4.8 x 10243 3

Igo = , ford > —. C.8
2 k%R (4.7 x1073+8.x 10726 — 1. 52)2 81 (C8)
In particular for § = 0.2 the integral takes the value
47x10% [k \°
I o ~ C.9
E,2 k3 <kBR> 5 ( )

used in (4.31).

C.4 Term: ng7g(k)’

The non scale-invariant part of the third contribution to the extrinsic correlator of the gravita-
tional wave energy densities in the regime of large momenta, eq. (4.32), is found by evaluating
the integral

1 1
Ips = ) /dpl dp2 dp3 dq —
P}

( 1/2|P +q/"?|p1 — ps + q|"/?|p1 + p2 + q|'/?
(Va++vpr+d)"(va++Ipr—ps+d)7(Ip1 +dal+/Ip1 + p2 +d)7
Aa(q,—p1 —q,p1 — P3 +q,P1 + P2 +q)

(\/|P1 3+Q|+\/’P1+P2+q,) (71331T}qu?,2TEAS37113434)27”S

¢"?|p1 +q|'?|p1 — ps + a|"?|p1 — ps — P2 + q

\f+v!p1+q (Va++Ipr—ps+a])" (v/Ip1+dl+|p1 —p3s—p2+4])”

Ap(q,—pP1 —q,P1 —P3+4,P1 —P3 —P2+q)
(\/‘Pl —p3+q|+ \/’PI ps—p2+4q|)’ (TEs 1 TEB327'1§337'1§3 4)27"5
q"?|p1 + q/*/? |q — p2|'/? |p1 — ps — p2 + q|*/?

\f+\/!p1+q )" (va+ V0a—p2])"(v/]a—p2| + VIp1 —Ps — P2 +4d])?

Ac(d,—p1 — 49,9 — P2,P1 —P3 — P2+ 4q)
(\/’P1+Q|+\/|P1 ps—p2+4g|)” (TE31T%2T€337E034)

19 2 ¢'”? |p1 + p2|'? [p1 — p3 — a|'/* Ag(P2, —P1 — P2,4, P1 — P3 — q) > (C.10)
(VP2 + V1P +P2) (V3 + VIP1 = Ps — al)™ (7 1 7 o T 5 5 4) 2™

where we have neglected the k terms in the sums and with the time parameters given by

1/2

27d

A B —2
TE51—TE31—7'E51— (Va+ |p1+q Thy g~ — (\/\P1+Q|+\/|P1 p3—p2+4q|) ",
A

TE3,2:TE3,2*_(\/>+\/|p1_p3+q ) TE32* (Va++/la—p2|)”
Té“s,gﬁ—(\/lp1+ql+\/Ip1+p2+ql)_27 5.3 ~ —(v/]a— p2| + /Ip1 — ps—p2+ql)_2,

7}3343,4 ~—(/Ip1—ps+al+/Ip1 +p2+a])?, 71{333,1 = i3 ~ —(vP2 + /IP1+p2|) 77,
T34~ —(VIPL—Ps+al+/Ip1—p3—p2+al) %, 5= .~ —(Va+V/IP1—ps—da]) 7,
i34~ —(V/Ip1+al+ /1 —p3s —p2+al)°

We perform again one integration at the time neglecting all the terms suppressed by 27
factors, as done in Appendix B. For the first expression of (C.10) the only cases that survive
are the four cases with po > p1 > ¢:
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1.4 x 10* (1.2 x 103726? — 4.7 x 10%76 — 22.)
k3 p (8w — 3)2(8m6 + 1)2

P2 >p1>q>p3

1.4 x 10*
K2, (476 + 1/2) (870 — 3)

P2 >p1 >Dp3 >4q

1.7 x 10*
k35 (2m6 + 7/2) (476 + 1/2) (876 — 3)

P2 >p3 >p1>4q

1.7 x 104
k% (270 + 7/2) (476 + 7/2) (875 — 3)

p3 >p2>p1>4q

valid for § > 8%. For the second expression, the cases that contribute are those where po is
the largest among all momenta, with p; > ¢. This condition leaves us with three possible
cases:

1.7 x 10
k3 5 (276 + 7/2) (476 + 1/2) (876 — 3)

P2 > p3 >p1>4q

1.4 x 10%
k3 p (4m6 4+ 1/2) (876 — 3)

P2 >p1>p3>q

1.4 x 10* (1.2 x 1037262 — 4.7 x 10?76 — 22.)
k3 n (8w — 3)2(8m6 + 1)2

P2 >p1>q>ps

valid for § > 8%. In the third expression, only two cases survive, i.e. p3 > p2 > p1 > ¢ and
p3 > p1 > pg > ¢, which give rise to the same result:

6.3 x 10° 3
for 6 > —. 11
k% p (276 4+ 7/2) (476 + 7/2) (876 — 3) oo g (C.11)

In the fourth expression, we have nine cases, satisfying p; > po and ¢ < p; or ps, which reduce
to five if we use the symmetry under the exchange ps <> g:

1.3 x 10% (1.4 x 102 76 — 6.1 x 10)
k3 n (876 — 3)2

p1 > p2 > q>p3 (or p1 > q > p2 > p3)

2.6 x 102

> > > >q > > —_
p1>p2>p3>q (or pr > q>ps > p2) KT (816 —3)

1.3 x 102

> p3 > > > >q> R 7T IS
p1>p3 > p2 > q (or p1 > p3 > q > p2) k%R(SW(;*?))

3. x 102
k3 (476 + 7/2) (876 — 3)

p3 > p1 >p2>q (orps>pr >q>pa)

2.1 x 103
K2, - (470) (47 + 7/2) (370 — 3)

p3>q>Dp1>p2

valid for ¢ > 8%. Summing all contributions, we obtain

1
k3,028 X107 4 1.6) (5.6 x 107! +1.4) (4.7 x 1073 + 8. x 10724 — 1.42)”

I3
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X (=5.6 x107° = 3.5 x 10716 — 2. x 101 6% 4 5.1 x 101 6* 4+ 7.4 x 10%¢*

+ 1.1 x 1036° + 2.2 x 10%6%), (C.12)
valid for ¢ > 8%. In particular for § = 0.2 the integral takes the value
4.x10 Kk \?
To o — C.13
ba= " () (©13)

used in (4.32).

References

[1] B. P. Abbott et al. [LIGO Scientific and Virgo], Phys. Rev. Lett. 116, no.6, 061102 (2016)
doi:10.1103/PhysRevLett.116.061102 [arXiv:1602.03837 [gr-qc]].

[2] G. Agazie et al. NANOGrav], Astrophys. J. Lett. 951, no.1, L8 (2023)
doi:10.3847/2041-8213 /acdac6 [arXiv:2306.16213 [astro-ph.HE]].

[3] J. Antoniadis et al. [EPTA and InPTA:], “The second data release from the European Pulsar
Timing Array - ITI. Search for gravitational wave signals,” Astron. Astrophys. 678, A50 (2023)
doi:10.1051,/0004-6361 /202346844 [arXiv:2306.16214 [astro-ph.HE]].

[4] D. J. Reardon, A. Zic, R. M. Shannon, G. B. Hobbs, M. Bailes, V. Di Marco, A. Kapur,

A. F. Rogers, E. Thrane and J. Askew, et al. “Search for an Isotropic Gravitational-wave
Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951, no.1, L6 (2023)
do0i:10.3847/2041-8213 /acdd02 [arXiv:2306.16215 [astro-ph.HE]].

[5] B. Allen, [arXiv:gr-qc/9604033 [gr-qc]].

[6] C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, no.16, 163001 (2018)
doi:10.1088/1361-6382/aac608 [arXiv:1801.04268 [astro-ph.CO]].

[7] T. Regimbau, Res. Astron. Astrophys. 11, 369-390 (2011) doi:10.1088,/1674-4527/11,/4/001
[arXiv:1101.2762 [astro-ph.CO]].

[8] E. Pajer and M. Peloso, “A review of Axion Inflation in the era of Planck,” Class. Quant. Grav.
30, 214002 (2013) doi:10.1088/0264-9381,/30,21 /214002 [arXiv:1305.3557 [hep-th]].

[9] K. Freese, J. A. Frieman and A. V. Olinto, “Natural inflation with pseudo - Nambu-Goldstone
bosons,” Phys. Rev. Lett. 65 (1990), 3233-3236 doi:10.1103/PhysRevLett.65.3233

[10] L. Sorbo, “Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton,”
JCAP 06, 003 (2011) doi:10.1088/1475-7516/2011,/06,/003 [arXiv:1101.1525 [astro-ph.CO]].

[11] N. Barnaby and M. Peloso, “Large Nongaussianity in Axion Inflation,” Phys. Rev. Lett. 106,
181301 (2011) doi:10.1103/PhysRevLett.106.181301 [arXiv:1011.1500 [hep-ph]|.

[12] R. Namba, M. Peloso, M. Shiraishi, L. Sorbo and C. Unal, “Scale-dependent gravitational
waves from a rolling axion,” JCAP 01, 041 (2016) doi:10.1088,/1475-7516,/2016,/01,/041
[arXiv:1509.07521 [astro-ph.CO]].

[13] A. Linde, S. Mooij and E. Pajer, “Gauge field production in supergravity inflation: Local
non-Gaussianity and primordial black holes,” Phys. Rev. D 87 (2013) no.10, 103506
doi:10.1103/PhysRevD.87.103506 [arXiv:1212.1693 [hep-th]].

[14] M. M. Anber and E. Sabancilar, “Hypermagnetic Fields and Baryon Asymmetry from
Pseudoscalar Inflation,” Phys. Rev. D 92, no.10, 101501 (2015)
doi:10.1103 /PhysRevD.92.101501 [arXiv:1507.00744 [hep-th]].

[15] W. D. Garretson, G. B. Field and S. M. Carroll, “Primordial magnetic fields from

pseudoGoldstone bosons,” Phys. Rev. D 46, 5346-5351 (1992) doi:10.1103/PhysRevD.46.5346
[arXiv:hep-ph/9209238 [hep-ph]].

~ 98 —



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]
31]

M. M. Anber and L. Sorbo, JCAP 10, 018 (2006) doi:10.1088/1475-7516,/2006,/10/018
[arXiv:astro-ph/0606534 [astro-ph]].

J. L. Cook and L. Sorbo, “Particle production during inflation and gravitational waves
detectable by ground-based interferometers,” Phys. Rev. D 85, 023534 (2012) [erratum: Phys.
Rev. D 86, 069901 (2012)] doi:10.1103/PhysRevD.85.023534 [arXiv:1109.0022 [astro-ph.CO]].

R. Abbott et al. [KAGRA, Virgo and LIGO Scientific], “Search for anisotropic
gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first
three observing runs,” Phys. Rev. D 104, no.2, 022005 (2021)
doi:10.1103/PhysRevD.104.022005 [arXiv:2103.08520 [gr-qc]]-

N. Bartolo et al. [LISA Cosmology Working Group|, “Probing anisotropies of the Stochastic
Gravitational Wave Background with LISA,” JCAP 11, 009 (2022)
doi:10.1088,/1475-7516,/2022,/11,/009 [arXiv:2201.08782 [astro-ph.CO].

M. Geller, A. Hook, R. Sundrum and Y. Tsai, “Primordial Anisotropies in the Gravitational
Wave Background from Cosmological Phase Transitions,” Phys. Rev. Lett. 121 (2018) no.20,
201303 doi:10.1103 /PhysRevLett.121.201303 [arXiv:1803.10780 [hep-ph]].

A. Malhotra, E. Dimastrogiovanni, M. Fasiello and M. Shiraishi, JCAP 03, 088 (2021)
doi:10.1088/1475-7516,/2021/03/088 [arXiv:2012.03498 [astro-ph.CO]].

P. Adshead, N. Afshordi, E. Dimastrogiovanni, M. Fasiello, E. A. Lim and G. Tasinato,
“Multimessenger cosmology: Correlating cosmic microwave background and stochastic

gravitational wave background measurements,” Phys. Rev. D 103, no.2, 023532 (2021)
doi:10.1103/PhysRevD.103.023532 [arXiv:2004.06619 [astro-ph.CO]].

A. Ricciardone, L. V. Dall’Armi, N. Bartolo, D. Bertacca, M. Liguori and S. Matarrese,
“Cross-Correlating Astrophysical and Cosmological Gravitational Wave Backgrounds with the
Cosmic Microwave Background,” Phys. Rev. Lett. 127 (2021) no.27, 271301
doi:10.1103/PhysRevLett.127.271301 [arXiv:2106.02591 [astro-ph.CO]].

M. Braglia and S. Kuroyanagi, “Probing prerecombination physics by the cross-correlation of
stochastic gravitational waves and CMB anisotropies,” Phys. Rev. D 104, no.12, 123547 (2021)
doi:10.1103/PhysRevD.104.123547 [arXiv:2106.03786 [astro-ph.CO]].

F. Schulze, L. Valbusa Dall’Armi, J. Lesgourgues, A. Ricciardone, N. Bartolo, D. Bertacca,
C. Fidler and S. Matarrese, “GW _CLASS: Cosmological Gravitational Wave Background in
the Cosmic Linear Anisotropy Solving System,” [arXiv:2305.01602 [gr-qc]|.

S. P. Corba and L. Sorbo, "Correlated scalar perturbations and gravitational waves from axion
inflation," Journal of Cosmology and Astroparticle Physics, vol. 2024, no. 10, p. 024, Oct. 2024.
doi:10.1088/1475-7516/2024,/10/024 | arXiv:2403.03338 [astro-ph.CO]].

G. Mentasti, C. R. Contaldi and M. Peloso, “Intrinsic Limits on the Detection of the
Anisotropies of the Stochastic Gravitational Wave Background,” Phys. Rev. Lett. 131, no.22,
221403 (2023) doi:10.1103/PhysRevLett.131.221403 [arXiv:2301.08074 [gr-qc]].

Y. Cui, S. Kumar, R. Sundrum and Y. Tsai, “Unraveling cosmological anisotropies within
stochastic gravitational wave backgrounds,” JCAP 10, 064 (2023)
doi:10.1088/1475-7516,/2023/10/064 [arXiv:2307.10360 [astro-ph.CO]].

L. Bethke, D. G. Figueroa and A. Rajantie, “Anisotropies in the Gravitational Wave
Background from Preheating,” Phys. Rev. Lett. 111, no.1, 011301 (2013)
doi:10.1103/PhysRevLett.111.011301 [arXiv:1304.2657 [astro-ph.CO]].

Y. H. Yu and S. Wang, [arXiv:2504.07838 [astro-ph.CO]].

N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto and G. Tasinato,
Phys. Rev. D 100, no.12, 121501 (2019) doi:10.1103/PhysRevD.100.121501 [arXiv:1908.00527
[astro-ph.CO]].

~ 99 —



[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto and G. Tasinato,
“Characterizing the cosmological gravitational wave background: Anisotropies and
non-Gaussianity,” Phys. Rev. D 102, no.2, 023527 (2020) doi:10.1103/PhysRevD.102.023527
[arXiv:1912.09433 [astro-ph.CO]].

S. L. Cheng, W. Lee and K. W. Ng, “Numerical study of pseudoscalar inflation with an
axion-gauge field coupling,” Phys. Rev. D 93, no. 6, 063510 (2016) [arXiv:1508.00251
[astro-ph.CO]].

A. Notari and K. Tywoniuk, Dissipative Axial Inflation,” JCAP 1612, 038 (2016)
[arXiv:1608.06223 [hep-th]].

0. O. Sobol, E. V. Gorbar and S. I. Vilchinskii, “Backreaction of electromagnetic fields and the
Schwinger effect in pseudoscalar inflation magnetogenesis,” Phys. Rev. D 100, no.6, 063523
(2019) [arXiv:1907.10443 [astro-ph.CO]].

G. Dall’Agata, S. Gonzalez-Martin, A. Papageorgiou and M. Peloso, “Warm dark energy,”
JCAP 08, 032 (2020) [arXiv:1912.09950 [hep-th]].

V. Domcke, V. Guidetti, Y. Welling and A. Westphal, “Resonant backreaction in axion
inflation,” JCAP 09, 009 (2020) [arXiv:2002.02952 [astro-ph.CO]].

A. Caravano, E. Komatsu, K. D. Lozanov and J. Weller, “Lattice simulations of axion-U(1)
inflation,” Phys. Rev. D 108, no.4, 043504 (2023) doi:10.1103/PhysRevD.108.043504
[arXiv:2204.12874 [astro-ph.CO]].

M. Peloso and L. Sorbo, “Instability in axion inflation with strong backreaction from gauge
modes,” JCAP 01, 038 (2023) doi:10.1088/1475-7516,/2023,/01 /038 [arXiv:2209.08131
[astro-ph.CO]].

D. G. Figueroa, J. Lizarraga, A. Urio and J. Urrestilla, “Strong Backreaction Regime in Axion
Inflation,” Phys. Rev. Lett. 131, no.15, 151003 (2023) doi:10.1103 /PhysRevLett.131.151003
[arXiv:2303.17436 [astro-ph.CO]].

J. Garcia-Bellido, A. Papageorgiou, M. Peloso and L. Sorbo, “A flashing beacon in axion
inflation: recurring bursts of gravitational waves in the strong backreaction regime,”
[arXiv:2303.13425 [astro-ph.CO]].

R. von Eckardstein, M. Peloso, K. Schmitz, O. Sobol and L. Sorbo, “Axion inflation in the
strong-backreaction regime: decay of the Anber-Sorbo solution,” JHEP 11, 183 (2023)
doi:10.1007/JHEP11(2023)183 [arXiv:2309.04254 [hep-ph]].

A. Caravano and M. Peloso, [arXiv:2407.13405 [astro-ph.CO]].

J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field inflationary
models,” JHEP 05, 013 (2003) doi:10.1088,/1126-6708,/2003/05/013 [arXiv:astro-ph/0210603
[astro-ph]].

N. Barnaby, R. Namba and M. Peloso, “Phenomenology of a Pseudo-Scalar Inflaton: Naturally
Large Nongaussianity,” JCAP 04, 009 (2011) doi:10.1088/1475-7516,/2011,/04,/009
[arXiv:1102.4333 [astro-ph.CO]].

— 30 —



	SU FV-4638-25-22 - Sofia Panagiota Corbà
	     Personligt brev
	     CV
	     Forskningsplan
	     Doktorsbevis
	     Bifogade publikationer
	     Bifogade publikationer
	     Bifogade publikationer

