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Dear Members of the Search Committee,

I would like to submit my application for the postdoctoral position within the ERC Synergy Grant
COSMOMAG. I am currently a postdoctoral researcher at the Theoretical High Energy Physics Labora-
tory (LPTHE) at Sorbonne Université in Paris. I completed my PhD at IFAE, UAB, in Barcelona, under
the supervision of Dr. M. Quirés, following a master’s degree at EPFL in Switzerland, in the group of
Prof. M. Shaposhnikov.

The scientific expertise and prior work of Profs. A. Brandenburg, C. Caprini, A. Neronov and F. Vazza,
which underpin the COSMOMAG project, are closely aligned with my own work. Indeed, a significant
part of my research focuses on the generation, evolution and phenomenology of primordial magnetic fields.
In particular, I have studied the production of helical (hyper)magnetic fields during inflation through
Chern-Simons couplings, and analyzed their survival up to the electroweak phase transition in order to
make predictions on baryogenesis. In parallel, I have investigated the non-linear dynamics of gauge-
field production during and after inflation, including backreaction effects on the inflaton and fermionic
production via the Schwinger effect, with a specific emphasis on preheating. More recently, I carried
out a comprehensive analysis of preheating in the R2-Higgs inflation model, including the full Standard
Model SU(2) x U(1) gauge sector at linear order, showing that the energy transfer during preheating can
be dominated by Goldstone modes and identifying the regions of parameter space compatible with the

observed baryon asymmetry of the Universe.

All this research has given me a strong familiarity with the magnetohydrodynamic and cosmological
framework underlying primordial magnetic fields, from chiral plasma effects and inverse-cascade dynamics
to the treatment of primordial fluctuations and their observational signatures. This work relied on the
development of an extensive and modular numerical code library I have written to compute multi-field
background dynamics, electroweak particle production and Schwinger effects, which I see as a flexible
tool that could naturally interface with the theoretical and numerical framework developed within COS-
MOMAG.
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to contribute meaningfully to early-Universe cosmology, while also developing new lines of inquiry at
the interface of magnetohydrodynamics, particle physics and cosmology. I would be keen to contribute
to COSMOMAG wherever my expertise can be most useful, with a particular interest in the study of
primordial magnetic fields at the electroweak scale and their possible observational signatures, including
gravitational waves, while remaining fully open to other directions within the project. It would allow me
to leverage my experience in particle production in the early-Universe while at the same time giving me
the opportunity to interact with researchers outside my current field and to further diversify my research

agenda.

I look forward to the possibility of joining your project and pursuing research within the Nordita and

Swedish theoretical physics communities. Thank you very much for your consideration.
Yours sincerely,

Yann Cado
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RESEARCH STATEMENT

Yann Cado
December 12, 2025

In this document, I give an overview on my past research, carried out during my Master thesis at
the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland (2017), my doctoral studies at
the Institut de Fisica d’Altes Energies (IFAE) in Barcelona (2019-2023), and my postdoctoral years of
research at the Laboratoire de Physique Théorique et Hautes Energies (LPTHE) in Paris (since 2023).
By now, my work has led to eight papers [1-8], published either by the Journal of Cosmology and
Astroparticle Physics (JCAP) or by the American Physical Society in Physical Review D (PRD) and to
a PhD thesis [9].

This document is organized as follows. I begin by providing historical context and an introduction to
the problematic, highlighting the main puzzles addressed by my research, namely baryogenesis, inflation
and related subjects such as reheating and Higgs physics. Then I briefly explain how helical fields can be
generated from inflation, highlighting the main constraints such as the Schwinger effect. This introduction
is followed by a discussion of the various models I have developed that connect the inflation paradigm to

the need of baryogenesis. I also comment about the light inflaton phenomenology and preheating.

Introduction

The so-called ACDM model is today the most elegant and complete model of modern Cosmology. It
complements the previous standard model of the Universe’s evolution by postulating the existence of
Cold Dark Matter (CDM) that accounts for the dynamics of large-scale structures and by adding a tiny
cosmological constant A that accounts for the actual accelerated expansion detected in 1998 [10,11]. The
theory of Big Bang Nucleosynthesis (BBN), accounting for the birth of the lightest elements, is embedded
in this model as well as the description of the Cosmic Microwave Background (CMB) radiation. Last, this
model includes a period of tremendous accelerated expansion prior the BBN in order to solve the initial
condition problems of the standard model of cosmology and seeds the primordial density perturbations
giving rise to the large-scale structure of the Universe that we see today. Denoted as inflation, the
paradigm was developed in the late 1970s and is today a active field of research [12-17].

By definition the Universe expands adiabatically, therefore a dazzling accelerated expansion, such as
inflation, cools it down to absolute zero which is inconsistent with the historic timeline of the Universe as
inflation is eventually followed by a thermal plasma leading to BBN. Thus, any inflation model shall come
with an explanation on how the Universe reheats afterwards. The reheating details are often overlooked
but they can constrain the inflationary model, especially in the perturbative case as it relates the high
energy physics of the Universe to the collider phenomenology. If the reheating is non-perturbative, i.e.
through an energy transfer that happens at the classical level in the equation of motion before the inflaton
decay, we referred to as preheating. The inflaton will eventually decay, but in the case of preheating the
thermal bath can have much higher temperature that can allow for specific new physics, such as primordial
black holes [18], Dark Matter (DM) [19,20] or baryogenesis [21,22]. For all these reasons, both reheating
and preheating mechanism are nowadays the subject of numerous studies [23-28].

From the point of view of particle physics, the Standard Model (SM) accurately describes particle

interactions but does not explain the origin of its content. Its gauge structure implies equal amounts



of matter and antimatter, yet observations show a clear matter dominance. This discrepancy suggests
a dynamical early-Universe mechanism creating a matter—antimatter asymmetry, known as baryogene-
sis [29-35].

If the SM Higgs field does not itself play the role of the inflaton, any additional scalar field introduced
to drive inflation will generically couple to the Higgs sector, either explicitly at tree level or unavoidably
through radiative corrections. As a result, the Higgs field cannot be consistently neglected when studying
the cosmological dynamics. This motivates an analysis of inflationary and post-inflationary evolution
that includes the Higgs field, while remaining compatible with constraints from collider experiments. In
this context, preheating is intrinsically a multi-field phenomenon: interactions between scalar degrees of
freedom, including possible non-minimal couplings to gravity, can lead to highly efficient energy transfer
after inflation. This remains true even in so-called pure Higgs inflation scenarios, since the dynamics of
the Higgs Goldstone modes cannot be ignored, see e.g. Ref. [25].

Therefore, the Higgs field either drives inflation directly, a scenario referred to as Higgs Inflation (HI),
or participate in the inflationary dynamics alongside other fields like in one of the best-fitting models
of current data [42] which is the R?-Higgs inflation model where the presence of the R? term makes
another scalar degree of freedom dynamical and restores up the pure HI model perturbative unitarity to
the Planck scale [43-50]. In any case, the models need to address the Higgs vacuum instability problem
as our current (low-energy) understanding of the Higgs interaction predicts a true vacuum of its potential
at an energy scale of ~ 10'* GeV that could lead the entire Universe to an unphysical phase. To prevent
this catastrophe at such scale, one shall introduce new high-energy physics in the Higgs sector to correct
the self-coupling running.

Until now, my research has mainly focused on the computation of the (hyper)magnetic fields gen-
erated in such inflationary contexts, either numerically or by simplifying the model to make analytical
approximations, in order to find windows of the parameter space for baryogenesis to occur by taking into

account the newest observational data and every known constraints.

Baryogenesis during electroweak crossover

It has been shown that a coupling between a pseudoscalar and a gauge field of the form quFWFW
generates a magnetic field that is maximally helical at the end of inflation [25,51-54]. On the other hand,
helicity in the hypercharge sector can be converted into baryon asymmetry during electroweak (EW)
crossover thanks to the chiral anomaly of the SM [55-59]. Putting the pieces together, the observed
baryon asymmetry of the Universe (BAU) can be sourced from a CP-violating interaction between the
inflaton and the gauge sector. This idea was elaborated in a number of papers, see e.g. [60,61]. In Ref. [1],
we apply this mechanism simultaneously to baryonic matter and DM making use of the Asymmetric DM
paradigm [62]. We found that both visible and Dark matter present day abundances can be achieved for
a wide range of the parameters involved.

Then, in order to stress the possible role of the Higgs in the mechanism of baryogenesis, we coupled,
in Refs. [2,5], the Higgs doublet H to the ordinary electromagnetic (EM) fields as |H|?F,, F** and we
studied the magnetic field generation capabilities during [5] and after [2] inflation. In the former we did a
full analytical derivation taking into account the Schwinger effect (see below) and all the other contraints.

In the latter, the computation was done numerically in a radiation dominated Universe.

Magnetohydrodynamics

In any case, we must make sure that the helicity produced at the end of inflation survives until the
generation of BAU at the electroweak crossover. Soon after inflation, the Universe reheats and a thermal

plasma is generated by the decay of the inflaton into the SM particles. Consequently the EW symmetry is



restored until the EW crossover by the appearance of thermal masses and any helicity in the EM sector get
converted into hypermagnetic helicity (that will source the chiral anomaly at EW crossover). The latter
then interacts with the thermal plasma which, in turn, backreacts on the gauge fields. This system can be
described by the so-called magnetohydrodynamics equations [63-65] in which the physical quantities of
interest (amplitudes, energy densities, correlation length and helicity) do not scale adiabatically in such
an environment, or equivalently their comoving quantities are not constant. Therefore there can be a
magnetic diffusion effect leading to the decay of the helicity. If, on the other hand, the magnetic induction
is the leading effect, then the helicity can be conserved until the EW crossover and the baryogenesis
mechanism can take place. This effect is measured by the magnetic Reynolds number and it is enough
to require it bigger than unity at reheating for the helicity to be conserved until the EW crossover.
In addition we also have to prevent the chiral plasma instability and the non-Gausiannity issues. The

interested reader can find all the constraints and details in Sec. 7 of [3].

The Schwinger effect

The last phenomenon to be under consideration before addressing properly the generation of the BAU is
the Schwinger effect. In the presence of strong gauge fields, light fermions charged under the gauge group
are produced by the backreaction of gauge fields which source the fermion equations of motion [66-68].
The corresponding currents can then, in turn, backreact on the produced gauge fields. The Schwinger
effect hence acts as a damping force in the explosive production of helical gauge fields, and many of the
conclusions from the gauge field production should be revised in its presence. In Ref. [3], we considered two
semi-analytical methods, namely the Schwinger mazimal estimate and equilibrium estimate [61,66,69],
and gave the parameter space for successful baryogenesis in both cases. We found a wide range in the
axion to gauge field coupling and the reheating temperature for the BAU to be achieved at EWPT.

In a subsequent work, Ref. [4], we performed a deep study of the Schwinger effect by using some
numerical methods. We used the fourth order Runge-Kutta algorithm to solve a non trivial integro-
differential system that takes into account the backreaction of the produced gauge fields on the inflationary
equations of motion, and that of the Schwinger effect on the gauge field production. Our results show that
we recover previous analytical results in the slow roll inflation regime by making the same approximations
required by an analytical resolution. We then solved the full solution for two classes of inflationary
potential, namely the a-attractor and hilltop potentials, and we observed as expected a dampening in
the energy density and helicity production. Note that this outcome does not necessarily jeopardize the
BAU generation, as a successful baryogenesis does depend on a delicate equilibrium between the amount
of helicity, magnetic energy density and magnetic correlation length. Actually, we have found there is still
a window in the parameter space for baryogenesis to happen. However, our numerical estimates suggest
that the Schwinger effect significantly reduces the share of electromagnetic energy for the considered
models and gauge preheating is unlikely to occur. These two comments should be viewed as hints for
future studies that address the production of gauge fields at the end of inflation. Of course, a full lattice

simulation of the Schwinger effect involving fermions remains to be done.

Light inflaton phenomenology

In Ref. [3] we study a two-field inflation model involving the physical Higgs h and a new scalar ¢ coupled
to each other as pugh?. Like in the Higgs inflation model, where the non-minimal coupling £h?R induces a
flat potential required for slow roll inflation, we study in this work the implication of the coupling g¢>R,
where R is the Ricci scalar. We show that we can then achieve a slow roll inflation for ¢ < 1 while
preventing the Higgs true vacuum catastrophe at h ~ 10'' GeV. Indeed, at low energy scale, when ¢ is

integrated out, the Higgs 8 function gets modified such that a negative self-coupling can be avoided for a



range of values of 1 and mg. On the other hand, at high energy scale, the inflaton dynamics and density
perturbation are controlled by the ¢ quartic self-coupling.

An interesting feature of Ref. [3] is that the the mixing ¢—h can provide a light inflaton candidate that
could be detected at the HE-LHC while satisfying all observational constraint and providing a sucessfully
inflation epoch. This is because the inflaton mass mg is decoupled from the inflationary dynamics.
With mg ~ 1 TeV, the interaction between both fields, besides solving the vacuum instability, predicts
modifications on the trilinear and quartic couplings that could be explored at the HE-LHC, as well as at
future colliders, and allows for direct ¢ production at the LHC. Using present results of inclusive cross
sections for o(pp — H) for the leading mechanism of gluon-gluon fusion from CMS and ATLAS (where
H stands for the heavy scalar production: in our case the inflaton field), we found a mild bound as
mg 2 0.55 TeV at 95% C.L. [70-73], to be improved in the future.

In a subsequent paper [8], we investigated how the interaction pu¢h? constrains the reheating tem-
perature Ty,. We performed a renormalization group analysis to determine the relative values of u and
mg such that the Higgs potential remains stable (and perturbative) at high energy. Taking into account
the running of the Higgs quartic self-coupling and the experimental constraints from the LHC via the
HiggsTools public code, we found that 3.4 x 10° GeV < Ty, < 3.9 x 102 GeV.

Gravity assisted baryogenesis in R>-Higgs inflation

In a similar way to prior cases, helical hypermagnetic fields, and therefore the BAU, can also be generated
by the dimension-six operator (R/ AQ)BWE‘“’ in the context of f(R) theories.

In Ref. [6] we adopted the doubly-covariant formalism [23,25,74,75] for both inflationary dynamics and
the production of helical gauge fields to show that when the R2-Higgs inflation model is supplemented
by this CP-violating term, the BAU can be obtained for A ~ 2 x 1075 Mp; with and without the
Schwinger effect included. We have primarily focused on the Starobinsky-like (R?) regime in our linear
order analysis. The reheating temperature was left as an open parameter.

In Ref. [7] we studied the implications of the preheating on that model by explicitly computing, for the
first time, the reheating time, temperature, and energy without taking them as effective parameters in the
model. In addition to the progress done in Ref. [6], we derived the equations of motion and energy densities
for the relevant perturbations at linear order which includes the inflationary fields, the W* and Z bosons,
the photon, and the three Goldstone fields. The Coulomb gauge was used, as the unitary gauge becomes
ill-defined at Higgs zero-crossings, making the Goldstone bosons dynamical. Self-resonance is governed
by effective masses that scale differently with non-minimal couplings and evolve over time, influenced by
the field-space manifold, metric perturbations, and background spacetime expansion [23,25]. We find the
preheating can happen in the scalar, gauge and Goldstone sectors, however, dependent on the value of

the nonminimal coupling between the SM Higgs and R.
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Abstract. We show that both the baryon asymmetry of the Universe and the dark matter abun-
dance can be explained within a single framework that makes use of maximally helical hypermagnetic
fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We
consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that
the observed baryon and the dark matter abundances are achieved for a wide range of inflationary
parameters, and the dark matter mass ranges between 7-15 GeV. The novelty of our mechanism stems
from the fact that the same source of CP violation occurring during inflation explains both baryonic
and dark matter in the Universe with two inflationary parameters, hence addressing all the initial

condition problems in an economical way.

Keywords: asymmetric dark matter, baryogenesis, CP violation, chiral anomaly, pseudoscalar in-
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1 Introduction

The curious coincidence between the observed baryon and dark matter abundances lead to the so
called asymmetric dark matter (ADM) paradigm, where the dark sector mimics the baryonic one by
exhibiting an asymmetry in its abundance of particles over its antiparticles (see e.g., reviews [1, 2]).
The basic idea behind the asymmetric dark matter scenario is that the same source of CP violation
that leads to the baryogenesis also feeds into the dark sector, and hence similar abundances are
achieved in both. Typically, in such models the dark matter candidate has a mass not so far from the
tens of GeV to a few GeV unless there is a huge suppression or enhancement factor for the transfer
of the asymmetry. In that sense it is a quite predictive top down approach.

On the cosmological side, it is still not clear what the source of baryon asymmetry of the Universe
(BAU) is and at which epoch it occurred. There are vast ways of generating the BAU, but there are
only a few testable models (see e.g., YMSM [3, 4]) due to having too many parameters and/or not
being in reach for accelerator experiments or cosmological observations.

It has recently been pointed out that CP violation that occurs during inflation via a coupling of
an inflaton to the hypercharge gauge fields via a dimension 5 operator of the form (a/f)®F; Wﬁ"“’ leads
to a successful baryogenesis! [6]. The basic idea is that during inflation there is a non-perturbative
production of gauge fields with high occupation numbers leading to coherent maximally helical hy-
permagnetic fields [7], which in turn sources the well known chiral anomaly in the Standard Model
(SM) producing an asymmetry in the SM particle species. The model only depends on two param-
eters, namely the scale of inflation, H;,s and the coupling of the inflaton to the hypercharge gauge
fields a. With these basic ingredients, all that is needed to produce the required asymmetries is the
SM physics, namely the chiral anomaly. In this work, we generalize this framework to include the
generation of asymmetric dark matter and report on a relation between the CP violation that occurs

IRef. [5] also considered a somewhat similar mechanism using the coupling of inflaton to gravity and by making use
of gravitational anomaly.



during pseudoscalar inflation and the observed baryon and dark matter abundances in the Universe.
Hence, we propose a mechanism that solves all the initial condition problems including the baryon
and dark matter abundances.

This paper is organized as follows. In Sec. 2, we introduce our minimal ADM field content
and interactions. We review the chiral anomaly in the SM in Sec. 3.1. We discuss the generation
and evolution of maximally helical hypermagnetic fields during pseudoscalar inflation in Sec. 3.2
and Sec. 3.3, respectively, and calculate the rate of change of hypermagnetic helicity that feeds into
the chiral anomaly in Sec. 3.4. We introduce the asymmetry parameters and the associated kinetic
equations governing their evolution in Sec. 3.5. Our results appear in Sec. 3.6. We discuss various
mechanisms for the annihilation of the symmetric part of the ADM in Sec. 4. We conclude with a
summary of our results and a discussion in Sec. 5.

We use natural units ¢ = 1, A = 1 and set the Boltzmann constant kg = 1. We parametrize
the flat Friedman-Robertson-Walker (FRW) metric as ds? = a(7)?(dr? — dz?), where a is the scale
factor, 7 is the conformal time, which is related to the cosmic time via dt = adr.

2 A Minimal Model of Asymmetric Dark Matter

Before we discuss the details of the asymmetry generation mechanism, which will follow in Sec. 3, we
first introduce the matter content and interactions of the messenger and dark sectors. We consider a
minimal asymmetric dark matter model, adopted from Ref. [§], that is suitable for cogenerating an
asymmetry in both the SM and ADM sectors from the same source of CP violation produced during
pseudoscalar inflation.

We introduce a messenger sector that includes two left handed fermions, Ly, Lo, which are SU(2),
doublets, and two right handed singlets, R1, R2, where all of them carry dark lepton global charges,
D, ,,D,,, respectively. The dark sector has two Dirac fermions, X, X, that are charged under the
dark gauge group U(1), and also carry global dark lepton charges D, , D,,, respectively. The fermion
content is chosen such that it is minimal to cancel all the gauge anomalies of both the SM and dark
gauge sector U(1), as well as the global Witten anomaly [9]. The fermionic field content of this
minimal ADM model is summarized in Table 1, and its Lagrangian is given by

. 1
Lapn = iL]G" Dy Li +iR]o" DI Ri +iXy" DY Xi = 2CuC* + Ly, (2.1)

where ¢ = (1,—0), o* = (1,0), {¢'} are Pauli matrices, {y#} are Dirac matrices,

. A
Dﬁ =0y +igy Y1, Ay + ng?VV“ +igoCy, (2.2a)
Dff = 0y +igyYr, Ay +igoCp (2.2b)
DY = 9, +igrCy, (2.2¢)

weak and U(1), dark gauge fields, respectively, and

L

A, W, C, are the U(1), hypercharge, SU(2)
Jy, 9w, gp are the corresponding gauge couplings. The Yukawa Lagrangian is given by

Lo =yo, LIH Ry +y LY HRy + yx, LY HXT + yy LLH X 4+ hec., (2.3)

the Higgs doublet, H, and its conjugate

+ of
H—(Z()), HC—iUQH*—<_HH_>. (2.4)



Fermions Gauge charges Global charges

field | handedness | I3 Y | Q| Qb D,, D,,
Ly left /2 1|1 1 1 0
. L{ left /2010001 1 0
%0 R, right 0 | 2]1] 1 1 0
2| Ly left 12 [-1]0] -1 0 1
= Lg left /2 -1 -1 -1 0 1
R, right 0 [-2]-1] -1 0 1
= | X both 0 |00 1 1 0
R X, both 0 |o]o]| -1 0 1

Table 1. Messenger and dark sector fermion content, their chiralities and local and global charges. Weak
isospin, I3, hypercharge, Y, and electromagnetic charge, @, are the SM electroweak SU(2), x U(1),,
whereas Qp is the gauged dark U(1), charge. All the fermions have dark lepton-like charges given by Dr,
and Dp,. We use the convention Q = Iz +Y/2.

charges,

have hypercharges Yy = 1 and Yy = —1 , respectively,

L= (1) 25)

are much more massive than the DM states, X;, hence, they can decay via the following channels:

The messenger states

Ll—)Xf—FH, LQ—)X§+HC. (26)

These are the only decays that conserve all the charges in Table 1. As we will show in Sec. 3, an
asymmetry is first generated in the messenger sector, and then gets transferred to the dark sector via
the decays given in Eq. (2.6). Once the asymmetry is generated for the right-handed component of
X;, the dark gauge interaction U(1), equilibrates the left and right handed dark fermions. Since the

decay rate

FL¢—>X1.R-~-H ~ %yXLiva (2.7)
is much larger than the Hubble rate H ~ T /M, for messenger masses of m; ~ 1 TeV, for instance,
we will consider that the asymmetry generated in the messenger sector gets quickly converted into
the dark matter states. Hence, we assume that the number densities are related as nx, = ny, in what
follows.

In addition to the asymmetric component of the ADM, there will be a symmetric part that is
thermally produced. In order to annihilate the symmetric component efficiently, we will consider two
scenarios, where the U(1), dark photons can be massless or massive. We will discuss both cases in
detail in Sec. 4. We will now present our proposed co-generation mechanism in detail in the following

section.

3 Pseudoscalar Inflation and Asymmetry Generation

The asymmetry in both the SM and the messenger sector is generated via the coupling of the hy-
percharge gauge field to a pseudoscalar inflaton as was studied in Ref. [6] for baryogenesis. The



Lagrangian that we will consider has the form

_ ! 2 _ 1 wo_ &
£= 50,8 = V(®) = V¥ —

1 Y, Y, (3.1)
where @ is a pseudoscalar inflaton field, V(®) is a flat potential satisfying the slow-roll conditions,
Y, is the hypercharge field strength, « is a dimensionless coupling, and f is the axion constant of
dimension mass.

As the inflaton slow-rolls, it provides a time dependent background to populate the modes of
the hypercharge gauge fields due to the dimension-5 coupling given in Eq. (3.1). Besides, since the
inflaton under consideration is a pseudoscalar, it will only lead to over abundance in a given helicity
mode of the gauge fields. Hence, as a result, hypermagnetic fields that are coherent over the horizon
scale at the given epoch are produced with net Chern-Simons density (or magnetic helicity) that
breaks CP macroscopically [7] (see also Refs. [10-14]). It has been recently noted in Ref. [6] that such
hypermagnetic fields can source the baryon asymmetry of the Universe through the chiral anomaly in
the Standard Model as all the Sakharov criteria [15] are satisfied in this process (see also Refs. [16-45]
for the evolution of hypermagnetic fields and their effect on particle asymmetries). It was found that
the observed baryon asymmetry can be easily achieved in a generic set of inflaton parameters, i.e.,
the Hubble rate during inflation H;,¢ and the coupling of the inflaton to the hypercharge field, a. In
this work, we extend this mechanism to include a messenger sector that carries both dark and SM
charges so that we can relate the observed dark matter and baryon abundances in the Universe to a
single source of CP violation generated during inflation.

As the messenger sector fermions carry the SM charges, hence the hypercharge, there will be an
accompanying asymmetry in L; and R; fermions. Subsequently, the decay of L; leads to the transfer
of this asymmetry into the dark fermions X;. To set our notation, we will briefly go over the chiral
anomaly in the SM, review how the helical hypermagnetic fields are generated during inflation, discuss
how they evolve in the primordial plasma and finally derive the the kinetic equations governing the
evolution of asymmetries in particle species in the SM, messenger and dark sectors. We present our
main results at the end of this section.

3.1 Chiral Anomaly

Since the SM has chiral fermions, there is a chiral anomaly associated with each species, both gauge
and global [46]. The gauge anomaly is terminal, but it is cancelled in the SM [46]. However, there
remains a global anomaly, namely the baryon, B, and lepton, L, numbers are separately anomalous
in the SM so do the additional global dark charges D, ,D;, for the messenger sector that we have
introduced. To put it in a compact form, each species that are charged under the SM gauge groups
exhibit the chiral anomaly given as (see e.g., Ref. [6] or appendix of Ref. [18] for the full set of anomaly
equations)

ay

o f Y412 f Qv 1rra 1ira pv s
3u]} —Cy 1677'['YMUY‘UI +CW87’/TWHVW H +Cs ST

where the coefficients C’]f are given in Table 2 for all the chiral fermions in the SM and the mes-

G, Ger, (3.2)

senger sector for the corresponding SM gauge groups. o;’s are the fine structure constants of the
corresponding SM gauge groups, a; = g?/(47r).
The currents associated with the baryon and lepton numbers in terms of the individual fermionic



f cf |clld
q | NeNwy? | Ne | Ny
¢ Nyy? 1] 0
up | —Ney2, | 0 | -1
dp | — Cng 0 —1
er fyzR 0 0
Li | Nwyi, 1 0
R; —y%, 0 0

Table 2. Coefficients ij in Eq. (3.2). The multiplicities N; = 3 and N,, = 2 take into account the color
and weak isospin states of a given family of leptons and quarks, and the SM hypercharges are y, = 1/3, y, =
—1, Yur =4/3, yap = —2/3, Yer = —2. The charge conjugates ¢°, £°, ug, d%, €%, L{ and R{ have the same
coefficients, C’jf7 with all the signs flipped.

currents are

3
1
Y o
B = 52 (v +3, +3%,) - (3.38)
3
i = Z (2 +54) (3.3b)

and for the both dark lepton like numbers
iy = b, + i, + 3%, (3.4)
We note that all these currents are anomalous, and thus not conserved:

1 . 1 . . Qg = Q = v
Niﬁw% = ﬁgauﬂf'f = Ouigy = g Wi W = Y Y, (3.5)
where Ny = 3 is the number of generations in the SM. There is an accidental conserved current,
0uj's_; = 0 in the SM, which has important consequences for the baryon asymmetry of the Universe,
namely, baryons can be converted into leptons and vice versa with the selection rule 3AN, = ANp
since any baryon number violation is compensated by a lepton number violation [46]. Similarly,

Oy j’Lﬂ _ ;2 = 0 in our setup due to the similarity of the fermionic field content, hence,
D D

3ANp: =3ANp =ANpg. (3.6)
Moreover it trivially follows that all the gauge currents [47]
B= 0 Yy, (3.72)
particles
= > dimiy, (3.7b)
left particles
= by, (3.7¢)
quarks
Jon = D QU (3.7d)
dark particles
with 774, n¢; the generators of SU(2) , SU(3), respectively, are not anomalous, i.e., d,jl' = Jpjk® =
Ougt® = ung = 0, which ensure that unitarity is not violated. It is well known that the non-

Abelian gauge theories have topologically distinct degenerate vacua, transition between which leads



to the change of baryon, lepton and dark lepton numbers. However, we stress that U(1), sector can
also source the chiral anomaly provided that there is a net YWY’“’, e.g., hypermagnetic fields with
net helicity. In other words, in the Abelian case, the magnetic helicity is the Abelian Chern-Simon

number. We will explain next how such field configurations are produced during inflation.

3.2 Hypermagnetic Fields from Pseudoscalar Inflation

In this section, we summarize the generation of helical hypermagnetic fields during pseudoscalar
inflation to set the notation and to make the paper self contained, see Ref. [7] for details.
The equation of motion for the hypercharge field strength Y}, derived from Eq. (3.1) is

G VY = —%gmv”@)ff”p, (3.8)

where g,,,, is the flat FRW metric and V* is the corresponding covariant derivative. Using the radiation
gauge Ag =0, V- A =0, we obtain the equation of motion for the gauge field as

0? 5 «a0®

where the terms involving V® drop out due to the homogeneity of the inflaton field. In this gauge, the
hyperelectric and hypermagnetic fields are respectively given by E = —9,A/a? and B =V x A/a?,
where a is the scale factor in the FRW universe. We promote the vector potential to a quantum
operator in the Heisenberg picture

3
Are) =Y / (Q‘jr)’:,fﬂ [exin (k) Ax (7 k)™ + 3] (k) A3 (7, k)e ™™, (3.10)
A==+

where we used the circular polarization basis e1 that obey to the properties k-eL =0, and k X €1 =
Fi|k|ex, such that |ex|? = 1. Defining a parameter

OZQ.SO

= -11
7 2 (310
and using the fact that a(t) = effin* during inflation we obtain
0?A 2
TA (ke E)ap =0, (3.12)
ot2 T

We distinguish three cases that lead to solutions with different asymptotic behaviors. At early times,
when |k7| > |2¢], the solution is a vacuum mode, hence a free wave Ay = e~ **07/\/2. When
|kT| ~ |2¢] the field develops an instability. Depending on the sign of £, either A} or A_ modes will
be amplified (£ Z 0 & Ay amplified). In the limit |k7| < |2¢| the solution for the growing mode is
given by [7]

1

1 k RN ooy e
Ay e~ a(7) Hine] 1
= 2k (25 a(T)Hinf) ¢ (349)

whereas the other mode is exponentially suppressed. Note that due to the e™ factor, the gauge
potential grows tremendously for moderate values of £ > 1.



3.3 Evolution of Hypermagnetic Fields in Plasma

We assume instant reheating so that immediately after inflation the Universe becomes filled with a
plasma of relativistic particles. Therefore, the evolution of hypermagnetic and hyperelectric fields are
governed by the relevant magnetohydrodynamics (MHD) equations [20]

%—Jf - VxE, (3.14a)
88—154—J:V><B, (3.14b)
V-B =0, (3.14¢)
V.E=p, (3.14d)
V.J=0, (3.14¢)
J =o0(E+vxB), (3.14f)

where v is the plasma fluid velocity and o ~ 1007 is the hypercharge conductivity [48]. Assuming
a neutral plasma, p = 0, with sufficiently slowly varying hyperelectric field such that 0;E = 0,
and combining equations (3.14a), (3.14b) and (3.14f), we obtain the evolution equations for the
hypermagnetic fields

%—Jf =V x(vxB)+ §V2B, (3.15a)
EZE(VXB)—’UXB. (3.15b)
g

The former equation states that the time evolution of the hypermagnetic field depends on an advection
term and a dissipation term when the hyperconductivity is finite. The Reynolds number R is defined
as the ratio of these two terms in the Fourier space

R="2, (3.16)
kp

where £k, is the last mode that exits the horizon after inflation

Hinf T
5 Trh '

For R < 1 the hypermagnetic field will quickly dissipate as the dissipation term dominates whereas for

ky ~ (3.17)

R > 1 a turbulent flow will be generated, and hence, the magnetic field will be sustained. Assuming
instant reheating, the reheating temperature can be estimated as

1

Tiy ~ 1\/ M1 Hiyg, (3.18)

and thus,
M,
R =250 =, 3.19
S (3.19)
which is much bigger than unity for velocities [6]
1075 Hins
v > ¢ 101 GaV (3.20)

We therefore consider the plasma as turbulent in what follows. In the next section, we show that this
condition leads to conservation of helicity of the maximally helical hypermagnetic fields generated
during inflation.



3.4 Hypermagnetic Helicity

Hypermagnetic helicity feeds into the chiral anomaly and eventually sources the baryon and dark
matter asymmetries. We can deduce the useful relation from Eq. (3.15b)

1
E-B=-B-VxB, (3.21)
g

where we used B -v x B = 0.
The magnetic helicity is defined as

H:/d%A-B. (3.22)

Using the MDH equations and relation (3.21), we obtain the rate of change of the spatially averaged
helicity density as

@z—hmi d3z B-V x B. (3.23)
ot Voo oV v

Using Eq. (3.10), we obtain the spatially averaged quantity of interest

1 [ d°k|k 2 2
<B -V x B>inf = E/ (27T)3 (|A+| - ‘A*| ) ’ (324)

where the integral is over the comoving momenta k. Note that only one of the modes Ay is amplified

as shown in the previous section. Thus, the produced field has maximal helicity. After setting one of

the modes to zero and using Eq. (3.13), we obtain? [6]

H5627'r§
£

where I = 6.848-10~* and the overall sign depends on the choice of the mode A, respectively. Here,

(B-V xB)= +I (3.25)

we cut off the integral at k. ~ 2(Ha(7) in order to be in the range of validity of the expression for
A.. When performing the integral, we ignored residual terms that are proportional to ¢ ~'e™8¢ as
they are exponentially suppressed since & > |k7|. Therefore, at the end of inflation, the change of
helicity finally reads [6]

27 . 5
Oh _ cor® <H1“f>7 (3.26)

a T oe a
Here, cosmological redshift has been taking into account and the scale factor has been normalized
such that it is one at the end of inflation. We note that to generate baryons rather than antibaryons,
the negative sign has to be chosen, corresponding to the mode A as we will see in the next section.

3.5 Kinetic Equations

The set of kinetic equations is found by integrating the anomaly equations (3.2) over spacetime. The
number density of a given particle species in terms of a current reads

. 1 .
n; = Vlgnoo v /V d3z 59, (3.27)
and defining the asymmetry parameter of a given species as
ng—ng
N = ?f , (3.28)

2We note that the the produced hypermagnetic fields are maximally helical saturating the realizability condition
hav(k) < 2enm(k)/k (see e.g., Ref. [49]). Here, for instance for a given helicity mode, say A4, the following relations
are always satisfied: [dk hyv(k) = & [, d3z (A B) = [dk k% |A;|? whereas [dk ep(k) = & [, d3z 1 (B?) =
1fdk kAL



where, s is the entropy density. The relevant asymmetry parameters for the SM and messenger sector
fermions are

1

Ng = &NgSMNWNC,un27 (3.29a)
ne = 61—SN§MNWWT2, (3.29b)
Nup = (;—SNSMNCMH,RTZ, (3.29¢)
Nap = 61—SN§MNcudRT2, (3.29d)
Ner = 61—SN§M/¢ERT2, (3.29)
nL = g—sNSMquLW, (3.29f)
nR = éNgMufaW, (3.29g)

where NJM = 3 and NPM = 2 are the multiplicity factors for the SM and messenger sector families,
respectively.

Upon integrating and thermally averaging the right hand side of the anomaly equations (3.2), we
obtain three contributions. The first contribution comes from the hypercharge sector through the term
Y,,Y* = —4 E - B which brings the rate of change of helicity density as we derived in Egs. (3.21),
(3.23) and (3.26). The other two contributions come from the SU(2), and SU(3)_ sphalerons, i.e., the
weak and the strong sphalerons, respectively. The weak sphalerons relax the baryon-+lepton number
charge of the fermions charged under SU(2), whereas the strong sphalerons relax the chiral charge of
the quarks charged under SU(3)_ [50-52]. We note that since sphalerons act on a global level, relaxing
global charges, we defined the asymmetry parameters as a sum over all internal degrees of freedom
(spin, color, isopsin and family). Finally, the kinetic equation® corresponding to the seven asymmetry
parameters given in Eqs. (3.29a)-(3.29g) is (see Ref. [6])

% =cf &@
ot Ydrs Ot

The coefficients C’]f are given by the Table 2. In Eq. (3.30), I'y, = 25a5T [53] and Ty = 100a°T
[54] are the weak and strong sphaleron rates per unit time, respectively. Notice that this set of

- Cv{/FW(nq +ne+nL) — Csfrs(nq — Nug — Ndg) - (3.30)

equations respect the Sakharov conditions [15] since: 1) the anomalous B/L/L%, currents provide a
B/L/L%, number violation; 2) the term containing h has different sign for different chiralities hence
breaks C/CP; 3) the h term is a source term (external field produced during inflation) and hence
describes an out of equilibrium process.

Since we add new species to the Standard Model, the number of relativistic degrees of freedom
increases:

7 7
Ge = M 4+ gM 4 gPM — 106.75 + g 12+ 5 8+2=126.25, (3.31)

where we also considered a massless dark photon corresponding to the dark U(1), gauge field.
It is more convenient to express Eq. (3.30) in terms of a dimensionless variable = defined as

M,
T = DTPI, (3.32a)

[ 45
D=, /——. 3.32b

3Here we neglect both the Yukawa terms and the chiral magnetic effect, which can change the final values of the

asymmetry parameters slightly. See, e.g., Ref. [43] and Ref. [44], where the Yukawa terms and the chiral magnetic effect
are taken into account for baryogenesis, respectively.



Figure 1. Numerical solutions of the kinetic equations given by Eq. (3.30). The lines show the result for the
baryon asymmetry and the dotted one corresponds to the asymmetry in one family of DM. The red dashed
line shows the observed value of the baryon asymmetry np ~ 107'° which can be achieved for instance with
¢ =1 and Hinr = 5.6 - 10'° GeV. The messenger sector asymmetry is 1z, = 75 /3 for all values of Hinr and ¢
as also can be obtained from the relation Eq. (3.6).

As soon as inflation ends, the radiation dominated era begins, and thus, we have the relation H =
1/(2t) = T?/(My, D). Performing this change of variable in Eq. (3.30) yields our final master equation

on
L = —Ofn, — Clyu(ng +me+ 1) — CIvu(ng = Nun — M) » (3.33)
ox
with v, = o, 7 (i) and = D2 This equation is much more convenient to solve
Y £6v/D o \ My Tw/s T - q

since the system of equations becomes just a set of first order differential equations with constant
coefficients.
This set of kinetic equations is valid from the end of inflation until the weak sphalerons shut off,

% ~ 10 TeV, where v = 246 GeV is the Higgs vacuum expectation value.

at temperature T =
For simplicity we assumed that the 7, source shuts off at the same temperature even if it contributes

to the evolution of 77¢ until electroweak phase transition, Tgw ~ 160 GeV.

3.6 Results

The solution of the system of equations (3.30) allows us to obtain the parameter space for the inflation
parameters, namely, Hi,¢ and £, in order to produce the observed value of the baryon asymmetry ng =
1x10719 [55]. We assume that initially all the asymmetry parameters given by Eqs. (3.29a)-(3.29g) are
zero. We show the parameter space in Figures 1 and 2 for 1 < € < 5 and 108 GeV < Hiyy < 10 GeV.
Recall that only for £ > 1 the analytic solution of the mode is given by Eq. (3.13) that we have used
in our calculation®.

The solution also provides a relation for any inflation parameters between the asymmetry param-
eters of the SM and messenger sectors: ng = 31y, [see Eq. (3.6)]. Not surprisingly, because the equa-
tions for dark lepton number 1 and 2 are identical, their asymmetry parameters are equal: nr, = nr,.
Since we take n; = nx it is possible to compute the typical mass of the DM candidates as follows.

4Note that there is a constraint on the parameter ¢ < 4 from non-Gaussianities caused by the hypermagnetic fields,
see, e.g., Refs.[56, 57].
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Figure 2. Numerical solutions of the kinetic equations given by Eq. (3.30). This plot shows the values of the
parameters Hinr and € in order to have the observed baryon asymmetry ng ~ 107'° with n, = nz/3.

Today neither the dark matter nor the baryonic matter is relativistic: p; = m;n; = m;n;80 = Qipe,
where sq is the actual entropy density. This yields the relation

Qx. mx, Nx,

Xi _ MX; %’ (3.34)

Qb mp MB
for each dark matter particle X;, where m, = 938.73 MeV is the proton mass. Since observation
cannot distinguish Qx, and Qx, which sum up to Qpys, we compute the equivalent DM mass by
performing a sum on both dark species contribution mpn; = Y mx, and we get:

nB Qx,  Qpm 1B

mpm = Mp~— =My
Q < e, Q 1Ly,

~ 15 GeV, (3.35)

which is in the range of the allowed values [1]. This is the total mass of the DM particles and depending
on whether one of them is lighter than the other leads to the dominant component mass in the range
of 7—15 GeV. In other words, if mx, ~ mx,, we predict the DM mass to be around 7 GeV whereas
for mx, > mx, (or the other way around), the DM mass is predicted to be around 15 GeV.

Now that we have successfully generated an asymmetry in the both the SM and the dark matter
sectors, we will turn our attention into getting rid of the possible thermal symmetric component of
dark matter.

4 Annihilating the Symmetric Component of Dark Matter

There are three possibilities in order to annihilate the symmetric part of the DM: 1) the DM annihilates
into SM states, 2) it annihilates into messenger states that eventually decay to SM states, 3) it
annihilates into dark radiation. The two first possibilities are forbidden by our model since the DM
candidates cannot annihilate into the SM because they do not carry any of the SM charges. Besides
their annihilation into the other dark sector species (the messengers of our model) is not efficient

- 11 -



enough since they are the lightest. Therefore the only remaining possibility is direct annihilation into
dark radiation, that is why we added a gauge interaction between DM states in the first place when
we introduced our model in Section 2.

We consider a U(1), gauge group whose mediator is the dark photon yp. There are now two
or U(1)
massive. In the first case the yp production increases the radiation component in the primordial

cases: either yp is massless, and we have an unbroken U(1) is broken, and thus, vp is

D D

plasma which affects the big bang nucleosynthesis (BBN) and the cosmic microwave background
(CMB). Alternatively, we can take a massive U(1),, in which case the U(1), group is spontaneously
broken and yp can mix kinematically with U(1), photon and decay into SM states. This case is safer
from cosmological constraints as we will see next. We shall explore these two cases in detail in the
next subsections.

As we argued briefly, aside from the asymmetry generation that leads to the observed DM
abundance, we have a thermal production of messenger particles with

3¢(3)
472

ng = g T3 (4.1)
The symmetric part of the messengers then decay very efficiently to X; according to Eq. (2.6). DM
annihilates into dark photons with cross-section (see e.g., section 4.2 of [2])

2 4710 GeV\”
yeys -8 (9D -2
~ —=~2.1 — E— GeV™~. 4.2
(o0) m%, 0 (0.1) ( mx, ) ¢ (42)

The annihilation rate is then simply I'xx_,., ., = n{ov) > H. Hence the symmetric part of the
messenger and dark sectors annihilate quickly into dark photons within a Hubble time. Next, we will
discuss the massive and massless yp cases separately.

4.1 Massless vp

It is possible to find out the actual temperature and density of the relic vp as it is done usually for
neutrinos. Using entropy conservation we obtain a relation between the visible and dark sectors after
their decoupling that occur at T~ mx ~ 10 GeV

TS dec
gDTD gDec

where V' (respectively D) denote the visible (dark) photon. Referring to Table 1, we find that

g%€0:2.2.2g+2:9, (4.4a)
7
gp =0-2+2=2, (4.4b)

since at V-D decoupling there are both X;, X5 and their antiparticles and one massless vp. X3
and X, are not relativistic in the current epoch so we do not count them here, and there is still one
massless vp. At T ~ 10 GeV, the SM plasma contains every particle except the top quark, the three
W bosons, all the Higgs and all the messenger particles. Thus, the corresponding effective number
of relativistic degrees of freedom is g = 86.25. We find the temperature of dark photons in the

dec 1/3 1/3

9p < gv 9 2
T, = — T, = ——- T, . 4.5
P (ngngD) v (86.252) K (4.5)

current epoch as
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A good measure of extra relativistic degrees of freedom is the effective number of relativistic neutrino
species defined as the ratio of energy density of one neutrino species (1 left handed neutrino + 1 right
handed antineutrino so there is a factor 2)

p
Nepﬂ L (4.6)
Pv
where we have
T
L, =2 —T4, 4.7
P 240 (47e)
2
T
oy = 2- %TQLD’ (4.7b)
and
A\ 1/3
T, =|— T, . 4.
v (11) K 49
Therefore,
4/3 dec 4/3
ANIP =P % (T) <9§ecgv> =0.22. (4.9)
Pv gy 9D

This is smaller than the maximum allowed value ANeg = 0.334 by the Planck collaboration [55] so
the massless case is marginally allowed by the cosmological observations. The value can be lowered by
two mechanisms: increasing the degrees of freedom in the dark sector or increase the V-D decoupling

temperature, which will increase gﬁec.

4.2 Massive vp

In order to give yp a mass we must add a dark Higgs field in the model to break U(1),, that is a
complex scalar field ¢p with a dark charge qp. The Lagrangian is [58]

* 2
ELPD = DMPDDuﬁaD —-A (|<PD|2 - U}%}) s (4-10)

with D, = 0, +1i9,C,, and where vp is the vacuum expectation value of ¢p. The physical mass of a
particle is roughly given by the product of the Higgs VEV and the coupling constant. Since the dark
photon mass is

M, =V2qpgvp, (4.11)

which we take to be around 100 MeV as an example, it implies a smaller Higgs VEV and a smaller
dark Higgs mass, my, = 2v/\vp. The dark Higgs mass is much smaller than the visible Higgs mass,
allowing the latter to decay in the former via the term

£$0DH :/\chH|80D\2|H|27 (4-12)

which turns out to yield a negligibly small contribution.
The kinetic mixing is given by the effective Lagrangian

€ v
Lmix = §YWC” , (4.13)
where C*¥ is the field strength associated to U(1),. The kinetic mixing of U(1), and U(1) is given
by the parameter ¢ and reads [59]
gvop ) My (4.14)

€~ n—&
1672 M,
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where ML+ and M, are respectively the higher and lower mass of the different L messenger states.
This simply comes from a 1-loop diagram with messenger fermions in the loop. The logarithmic factor
is typically of the order one, hence

e~6-1073 (g%) (%) . (4.15)

Then, the yp decay rate is [58, 60]

Eay 4m? 2m?
o= —"M, 11— —L(1 SR 4.16
ant 3 P M2, ( + MgD) (4.16)
for the SM leptons and
o Oete——qq B
F»\/Dﬁqq — O'e+efi>'u7+uf F’YD_)”’ (417)

— A2
swaD

for hadrons. Of course, these decay channels are allowed only if M., > 2my. The decay rate for an
electron-positron channel is

~ -7 € 2 M,
T et ~1.2:10 (6.10_3) (100 1\/fev> GeV. (4.18)

or I' = 1.82-10'7 57!, exceeding the Hubble rate by several orders of magnitude. Thus, the massive
dark photon can efficiently be converted into the SM species, and hence, the symmetric component
of the DM is removed successfully. For M,, < 210 MeV, this is the only allowed channel. When
M, increases and it allows more channels (say n), hence quicker decay, the total decay rate can be
parametrized as

Fd =n-T

v iF (119)

unless we are at a threshold of pair production.

5 Summary and Discussion

We proposed a new mechanism to generate asymmetric dark matter and the baryon asymmetry of
the Universe via the same source of CP violation that occurs during inflation. The coupling of the
inflaton to the SM hypercharge gauge fields via the dimension five operator («/f)®F, WZ*:'W leads to
generation of coherent hypermagnetic fields with maximal helicity, which in turn source the chiral
anomaly in the SM and yield the desired asymmetries in both the SM and DM sectors. We showed
that for a wide range of inflationary parameters, Hi,¢ and &, the observed BAU and DM abundances
can be achieved. In the minimal ADM model we considered, we found that the DM mass is in the
range of mx ~ 7 — 15 GeV, depending on whether they have comparable masses or one of the two
DM species is relatively lighter, respectively. The DM mass can take a different range of values if the
minimal ADM field content is extended as this will affect the ratio between the BAU and the DM
asymmetry parameters.

We also gave two scenarios for annihilating the symmetric part of the ADM. By coupling the DM
fermions to a U(1), gauge field, the symmetric part can be efficiently annihilated into the dark photons,
vp. In the first scenario we considered, U(1), is unbroken, and hence vp is massless and contributes
to the relativistic degree of freedom today. We found that the contribution of vp, AN.g = 0.22, is
within the allowed range of Nog = 3.15+0.23 provided by the Planck collaboration [55]. However, we
note that as the constraint on ANeg continues to improve, this scenario might become problematic.
One way out is to increase the field content in the ADM sector to dilute the dark radiation component.
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In the second scenario that we have considered for annihilating the symmetric part of the ADM, the
U(1)

gauge kinetic mixing efficiently. Hence, this is a safer route to annihilate the symmetric component

o is broken, hence the dark photons are massive. These photons decay into the SM species via a
of ADM and is free from the constraints.

Since in the minimal ADM model we considered there are two DM candidates carrying two
different quantum numbers, there is a possibility for them to combine and form dark Hydrogen-like
atoms. For the massless vp case, dark atoms can form provided that [61]

6 2
ap (Qpuh 1 GeV 1 keV 16
s 21 >1.5-10716, 1
R ( 0.11 )(mDM—BD Bp o 10 &
with T
R= -2 , (5.2)
T’Y z=0

and Bp the binding energy of the dark Hydrogen-like atom. Taking Qpash? = 0.11, Bp = 1 keV,
gp = 0.1 and our value of R = 0.47 [see Eq. (4.5)], we conclude that this condition is not reached for
our value of mpyr =7 — 15 GeV. For the massive vp case, dark atoms can form provided that [58]

mx,mx.
My < ap—d X2 (5.3)
mpm

For m.,,,, = 100 MeV and gp = 0.1 this condition cannot be respected either for the range of mpas
that we have. Therefore, in our setup the dark atoms cannot form.

We would also like to point out that the model of ADM that we considered with the dark
U(1),, interaction is compatible with the observation of haloes and subhaloes in the galaxies, namely,
addressing the the so-called “missing-satellite problem” as was discussed extensively in Ref. [61]. In a
nutshell, this can be understood as follows. The interaction between the DM mediated by a massless or
light force carrier reproduces the large-scale structure of the universe while suppressing the formation
of structure at smaller scales [58].

Finally, we note that in the simplest version of the natural inflation model [62] that we considered
as an example to study the asymmetry generation in ADM and baryons, either a curvaton field [63] is
needed to explain the observed density perturbations or some other dynamical mechanism is needed
to be implemented (see e.g., string theory inspired models [64, 65]). To achieve the observed BAU and
hence the DM abundance, we require Hi,t to be not so large as can be read off from our Figures 1 and 2.
A model of inflation that has Hi,s < 5.6 - 101° GeV, € > 1 and that also explains observed amplitude
of the density perturbations leads to a complete picture of the early Universe, namely, solving all
the initial conditions problems including the BAU and DM abundances in a single framework. The
interrelations between our proposed mechanism and various models of inflation that satisfy these
criteria remain to be studied.
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Abstract

We study a modification of the Higgs inflation scenario where we introduce an extra scalar ¢, with
mass m, coupled to the Ricci scalar as g¢? R, and mixed with the Higgs field h via the Lagrangian
term pu¢h®. Both fields participate in the inflation process in a unitary theory that predicts
values of the cosmological observables in agreement with the results from the Planck/BICEP /Keck
collaborations. In addition, by means of a CP-odd effective operator that couples ¢ to the Chern-
Simons term of the hypercharge gauge group as fj ) YWY/””, maximally helical magnetic fields
are produced during the last e-folds of inflation. We found a window in the coupling f, where
these fields survive all constraints until the electroweak phase transition, and source the baryon
asymmetry of the Universe through the Standard Model chiral anomaly. From a phenomenological
perspective, the model can solve the Standard Model instability problem at the scale Q; ~ 10!
GeV, provided that p < m < Qr, and for m < O(few) TeV, the ¢-h mixing becomes sizable
while the theory turns natural. The latter thus predicts modifications of the trilinear and quartic
couplings that could be explored at the HE-LHC, as well as at future colliders, and allows for
direct ¢ production at the LHC followed by decay into hh. Present results from ATLAS and CMS
already put (mild) bounds on the mass of the heavy scalar as m 2 0.55 TeV at 95% C.L.
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1 Introduction

Electroweak (EW) baryogenesis is an appealing mechanism to understand the baryon asymmetry of
the Universe (BAU) [1] (for reviews see Refs. [2-7]), which is testable at EW energies. Although the
Standard Model (SM) contains all necessary ingredients required by the three Sakharov conditions, it
quantitatively fails as the amount of CP-violation in the CKM phase is too small and moreover, given
the experimental value of the Higgs mass, the electroweak phase transition (EWPT) is not strong
enough first order, but a continuous crossover [8, 9]. This mechanism should then require beyond the
SM physics.

It was more recently realized, Refs. [10-16], that maximally helical hypermagnetic fields can be
produced at the end of (axial) inflation, and can generate the observed BAU, via the B 4+ L anomaly,
during the EWPT. In this kind of theories, CP is spontaneously violated by the effective dimension-five

operator aY*Y,,,, where a is the axial field, Y#* the strength of the hypercharge gauge field Y#, and

)
Y# its dual, whose generation requires an ultraviolet (UV) completion of the model. The generation
of the observed BAU was further elaborated in a number of papers, see e.g. Refs. [17-20].

In a recent paper [21], we proposed a mechanism where the helical hypermagnetic fields were
produced after inflation by the Higgs doublet field ‘H with a CP-violating |’H|2Y‘“’}N/W dimension-six
operator, thus entirely relying the nonperturbative production of gauge fields on SM physics. Of course
generating the CP-odd operator |H|2Y’“’§~/W requires a UV completion, which can be similar to that
giving rise to the CP-even operator aY’“’)N/W, for which CP is (spontaneously) violated for background
values of the axial field a.

Moreover there are theories, dubbed as Higgs inflation (HI) models [22-24] (for a review see [25]),
where the inflaton is identified with the SM Higgs boson, thus linking the cosmological observables
during the inflationary period of inflation with SM quantities. These models are based on assuming, in
the Jordan frame, a coupling between the Higgs doublet H and the Ricci scalar R as £ = —(M3,/2)R—
Ex|H|?R + - - -, where the ellipses refers to the SM Lagrangian. This model has been shown to have
a (dynamical) cutoff Mp;/&4, for values of the Higgs at the electroweak scale, i.e. h ~ v [26-31],
while at values of the Higgs where inflation happens, i.e. h ~ Mp;/+/&3;, the cutoff has been proven
to be ~ Mp1/+/E3, at least for two-by-two tree level scattering amplitudes, avoiding thus unitarity
violation [32-34]. Moreover, HI models have to face another challenge: for actual values of the
Higgs boson and top-quark masses the SM potential becomes unstable at values of the Higgs field
h ~ Qp ~ 10" GeV. This question has been tackled in Ref. [35], where the case of an unstable
potential was considered, taking into account radiative corrections. Because of the Higgs-Ricci coupling
the theory becomes nonrenormalizable in the Einstein frame and requires the addition of an infinite
number of counterterms. By assuming a scale invariant UV completion it is found that there are
threshold effects at scales ~ Mp;/x which generate jumps of the SM quartic coupling to positive
values (although one cannot determine their amplitude from the theory) and therefore HI can proceed
in the usual way. Still the potential has two minima: the EW minimum and a much deeper (unphysical)
minimum associated to the instability of the original SM potential. The evolution of the Higgs field
after inflation will depend on the reheating process, and in particular on the reheating temperature.
If the reheating temperature is high enough such that the unphysical minimum is dominated by the
thermal corrections, then the Higgs will relax to the symmetric phase, otherwise the Higgs would go
to the unphysical vacuum and it would stay there forever.

Motivated by HI, we will propose a model where the SM potential is simply stabilized by a
scalar field ¢ coupled to the Higgs (this coupling was already pursued in Refs. [36, 37]) and with a
mass m < Qp, opening up the possibility of direct or indirect detection at present (LHC) and future



accelerators. Moreover if the stabilizing field has a weak enough self-coupling ¢* and is coupled to
the Ricci tensor as ~ g¢2R, it can trigger cosmological inflation, as the potential becomes flat in the
Einstein frame, while the COBE normalization does not impose strong constraints on the g coupling.
In this theory the inflaton can couple to the Chern-Simons component of the SM hypercharge and
trigger baryogenesis via the production of helical magnetic fields. Finally through the coupling of
the inflaton and the Higgs field, the latter will also be a component of the inflaton sector, although
we will work out a model where the parameters are such that cosmological inflation will be mainly
driven by the stabilizing field ¢. The model thus combine HI, baryogenesis via production of helical
magnetic fields and stabilization of the SM potential by modifying the renormalization group running,
to provide a successful history of the Universe.

In the present paper we will follow the above guideline in order to build such a model of inflation,
which consists in a modification of the HI model by the introduction of a scalar field ¢, with a two-
field potential V' (h, ¢) in which analytical relations between both fields are enforced by its shape. One
major difference with respect to a previous attempt, Ref. [37], is that ¢ is coupled to the Ricci scalar
as (g/2)¢?R, with ¢ < Ay = Mpi/g ', where Ay is the theory cutoff, while &, < 1, thus satisfying
the most naive unitarity requirement. Therefore, in our model the Higgs field is not the only inflaton,
but a component of the inflaton system, as inflation is really driven along a particular path in the
two-field space, while its orthogonal direction has a strong curvature around its minimum, where the
field system is anchored.

This paper is organized as follows. In Sec. 2 we introduce the potential in the Jordan frame, as
a function of the fields ¢ and h, which (for Planckian values of the field ¢) can be approximated by
the most general renormalizable polynomial satisfying the Zs symmetry ¢ — —¢. As the Ricci term
is quadratic in ¢, g¢?R, the beginning of inflation will be controlled by the quartic term Ag¢*, and
the size of the amplitude of density perturbations is provided by the smallness of Ay, for values of
¢ < Ay, consistent with the naive unitarity of the theory. The smallness of the coupling Ay is stable
under radiative corrections, and so is technically natural, but the Higgs potential is unstable for values
of the renormalization scale Q; ~ 10'' GeV. If the mass m of the ¢ field is m < Qj, the field ¢
decouples for values of @ < Qj. Then, in the presence of a potential term softly breaking the Zs
symmetry, —ud|H|?, there is a threshold correction in the one-loop 8 function of the Higgs quartic
coupling that can stabilize the EW vacuum. This mechanism was introduced in Ref. [37] and we will

use it to constrain our parameter space.?

Tt has been proved, in Refs. [29, 31], that there is no tree-level unitarity problem for the amplitude A(¢p¢p — ¢¢) as,
in the Einstein frame, see Eq. (2.30), there appears the effective operator ¢2 (8ud>)2/A§> that—upon integration by parts
gives, on-shell, the correction m2¢*/A2—leads to a four-point function that does not grow with the energy, and thus
does not violate unitarity. A similar result is obtained in the Jordan frame, where the amplitude A(¢¢ — ¢¢) grows, in
the s-channel, with the energy, and behaves as s/ Ai. However, considering the cross channels, there is a cancellation,
and the four-point amplitude behaves as (s +t + u)/A?5 o m2/A§5. However, the quick conclusion that unitarity is not
violated at the scale Ay has been challenged in Refs. [30, 31], where it was pointed out that, in the Jordan frame, the
above cancellation is very unlikely to appear in loop-induced corrections to the same process ¢p¢p — ¢¢, leading to a
cutoff at the value ~ 4wA, where a loop factor has been included. The observation is similar for higher order processes,
since e.g. ¢¢ — P¢ + n¢o has a cross section that scales as )\is"/Q_lg"/Mgl, where )y is the ¢ quartic coupling. This

indicates that the perturbative description breaks down for energies /s > /\;Q/nAd), which goes to Ay for large values

of n. Similarly, in the Einstein frame, on top of the nonproblematic effective operator ¢2(8u¢)27 other higher order
operators, as e.g. ¢2(8#¢)4, are expected to be generated by loop effects, and so are expected to trigger violations of
unitarity beyond the scale Ay. In view of these arguments we will conservatively consider in this paper Ay as the scale
at which unitarity is violated.

2Should we have, instead, considered a linear Ricci term, g¢R, and a quadratic, m2¢?, inflationary potential, one
could also have achieved the amount of flatness required by the slow roll conditions during the inflationary period, but



The properties of the inflationary model are presented in Sec. 3. There, we will prove that all
observational constraints from the Planck and BICEP /Keck collaborations on the slow roll parameters,
or equivalently on the spectral index, the spectral index running and the tensor-to-scalar ratio, can be
satisfied for a range of the parameter g such that g < 1, thus easily satisfying the unitarity condition
for the model.

The nonperturbative production of gauge fields at the end of inflation is presented in Sec. 4. In
particular we will consider the CP-violating dimension-five operator 1/(4 f¢)¢YW}7“”, provided by
some UV completion, to trigger baryogenesis at the EWPT. We postpone to App. A the details of
a particularly simple UV completion giving rise to such an operator. Similar UV completions were
proposed in Ref. [38], and recently in Refs. [39, 40], to generate the BAU using various mechanisms,
so we can be agnostic about its origin. We have found a critical value of the parameter f,, such
that for fy 2 [§ the backreaction of the produced gauge fields on the inflationary dynamics can be
neglected, and so we have explicitly considered this region in the numerical analysis. Moreover, in
the presence of magnetic fields, as those produced in this work, there appear fermionic currents, a
phenomenon called the Schwinger effect, and, for sufficiently strong magnetic fields, their backreaction
on the gauge fields cannot be neglected. As exactly solving the equations of motion of gauge fields, in
the presence of the Schwinger fermionic currents, is beyond the scope of the present paper, we have
followed recent proposals in the literature for gauge field estimates [20, 41], and have worked out two
simple approximations: the mazimal estimate, obtained upon maximizing the value of the helicity, and
the equilibrium estimate. A detailed recent analysis [42] shows that the exact solutions lie in between
both estimates, so we can reliably corner the final allowed region in the relevant parameter space.

The reheating mechanism has been studied in Sec. 5, and we have consistently considered the
region f, > fg, where the reheating takes place perturbatively by the leaading inflaton decay process
I'(¢ — hh). The inflaton width, as well as the reheating temperature T}y, are then functions of the
inflaton mass parameter m. In order to stabilize the EW vacuum, the latter must lie in the interval
m € [1TeV, Q;] which implies, for reheating temperatures, the interval Ty, /T € [1072,107°], where
Tins ~ 2.10'% GeV would be the instant reheating temperature, i.e. the reheating temperature in the
hypothetical case where I'(¢p — hh) equals the Hubble parameter at the end of inflation.

We show in Sec. 6 how the baryon asymmetry is generated when helicity transforms into baryon
number at the EW crossover. In particular we show that this mechanism works for f, > f;, and
provides an upper bound on f4 which depends on the value of the reheating temperature.

In Sec. 7 we consider all relevant conditions for the helical magnetic fields to survive from the end
of inflation, when they are generated, to the EWPT, when they convert into the baryon asymmetry.
In particular we have considered the constraints from magnetohydrodynamics (MHD) and Reynolds
numbers, from chiral plasma instability, from the non-Gaussianity of the inflaton primordial fluctu-
ations and from the baryon isocurvature perturbations. Some technical details about the latter are
postponed to App. B. Globally they constrain the region where the baryogenesis mechanism works,
leaving an allowed range for the values of the parameter fy, which depends on the ratio T,/ Triﬁs.
Readers not interested in the technical details of the analysis can straightforwardly go to Sec. 7.5, and
in particular to Fig. 9, which summarizes the combined results.

In Sec. 8 some phenomenological considerations, from the point of view of particle physics, are
presented. First of all we study the naturalness problem generated by the mass hierarchy m > my,
where my, is the Higgs mass, which leads either to a fine-tuning or considering m = O(TeV). The

the size of the amplitude of density perturbations, now controlled by m, would have yielded a value m > Qp, which is
too large to stabilize the EW vacuum.



latter case is phenomenologically appealing as the Zs-breaking term in the potential generates a
mixing between the singlet ¢ and the Higgs field h. This mixing, which is negligible in the case of very
large values of the parameter m, can be sizable, and with relevant phenomenological applications, for
the case of m = O(TeV) and, furthermore, is already bounded by the present LHC measurements of
Higgs signal strengths. As the mixing angle is inversely proportional to m, the latter already provide
mild lower bounds on m, as m 2 0.4 TeV, a region where electroweak observables are shown to be in
agreement with their experimental values. Moreover, the mixing introduces modifications on the SM
parameters A3 and A4, which could lead to constraints at the HE-LHC at /s = 27 TeV, or even in
future colliders with center of mass energies of 100 TeV. Finally the singlet state can be produced at
LHC by means of its mixing with the Higgs field. Present upper bounds, from the ATLAS and CMS
collaborations, on the production cross section lead to upper bounds on the mixing parameter and,
consequently, to lower bounds on m as m 2 0.7 TeV at 95% C.L., while future runs are expected to
provide stronger bounds on it.
Finally we summarize the results and present our conclusions in Sec. 9.

2 The model

As stated in the previous section we consider, on top of the Higgs field h, the scalar field ¢ with the
Lagrangian £ as °
Mg,
2

which contains a coupling of the field ¢ to the Ricci scalar 4, and the potential is given by

Ly= "R IPR 4 (0,0 + 5 (0,0)° ~ Ul,h), (2.1)

1 1 1 1
U(¢,h) = Usm(h) + =m?¢® + SAgnd’h? + =" — Spuoh®
2 2 4 2 (2.2)
1 1 '
Uspm(h) = — §uih2 + Zth‘l.

The first four terms of the potential U(¢, h) in Eq. (2.2) constitute the most general renormalizable
potential invariant under the Zs symmetry, ¢ — —¢, while the last term is a soft breaking of such
symmetry. Besides, for large Higgs field configurations we will be neglecting the mass term ui, as
compared to the Ao term, in Ugp(h).

The parameters Agp, and Ay should be constrained by the slow roll conditions during inflation to
very small values Agp, Ay < 1, as we will see later on. Their smallness is radiatively stable, as can
easily be deduced from their one-loop 3 functions ®

A 9 9
Bagn = 15;2 12X0 4 8Agn + 6Ag — (293 + Togf - 6yf)} 0(t — to), (2.3a)
1
Br = 153 (8AZ), + 18AZ)0(t — to), (2.3b)

where ¢t — ty = log(Q/m), and Q is the renormalization scale. In particular the choice Agp = 0 is
technically natural at one loop, as can be seen from Eq. (2.3a). For simplicity we will adopt hereafter
the value Ay, = 0. Moreover, from the amplitude of density perturbations, we will see that typically
Ay = 10712 a value that is very mildly changed by radiative corrections.

3In our notation the Lagrangian £ will not contain the factor /=g, so that the action S is given by S = [ d*z/—gL.

4Notice that in our model we do not need to primarily introduce any £ |H|?R term. Although a small value of the
parameter £7; will be generated anyway by radiative corrections [43], its effects on the inflation mechanism will always
be negligible, even for values of £y >~ O(1); so for simplicity we are assuming that £y = 0.

5We are defining conventionally here Bx = dX/dt.



2.1 Jordan frame

The previous Lagrangian is defined in the so-called Jordan frame, and it is a valid framework provided
that the field ¢ satisfies the condition ¢ < Mp;//g. This region, as we will see, encompasses part
of the inflationary period, and in particular the end of inflation. The trajectory of fields ¢ and h
will proceed along the submanifold given by the minimum of the two-dimensional potential surface,
providing a relationship between both fields, as anticipated in the introduction of this paper.

To find the relationship between both fields ¢ and h, along the potential minimum direction, we
will follow a general procedure summarized here. Given a potential V(z,y) of two fields 2 and y, the
contour lines corresponding to constant values of the function V(z,y) = constant, satisfy the relation
dV = 0, which reads

ov ov dy oV /ox
—d —dy=0 =F(r,y)=-—=-— ,
ar + Oy Y (z,9) dx oV/dy
where, by definition, the function F[z,y] is the slope along the contour lines at the point (z,y). We
wish to find the direction y = f(x) that intersects orthogonally every contour line. The slope of

this line is obviously f’(x) and the slope of the orthogonal line is —1/f’(x), so the condition for the

(2.4)

orthogonal intersection is
F(z, f(z)) = =1/ f'(2). (2.5)
The idea behind the regions is to divide the potential valley into segments such that ¢ = ah™.
The regions are separated according to which term dominates in the potential. Hence, we will find it
useful to work with logarithmic variables

y = log ¢, x = logh, (2.6)

where the ¢ and h fields are considered in some arbitrary mass units, such that the relation between
fields translate into straight lines y = nz + loga. Given the shape of our potential we find a unique
solution to (2.5) in each region.

The direction ¢ = f(h) that intersects orthogonally every contour line in the plane (h, ¢) is given
by the solution to the equation

OV/Oh h 1
where Egs. (2.4) and (2.5) have been used.

Therefore, the trajectory in the (¢, h) plane is given by relation (2.7), which changes according to
the different regions of the potential that we will now introduce. This is validated by the plot of the
total potential exhibited in Fig. 1. In all cases, the valley acts as an attractor for the fields, as shown
in Ref. [37].

(2.7)

Region A

In this region both fields take their maximum allowed values in the Jordan Frame, and the potential
can be approximated by the quartic coupling terms

1 1
Up ~ Z)\oh“ + ZA¢¢4. (2.8)

The direction along the minimum can be found, after applying Eq. (2.7) to the potential (2.8), with
the function f(h) = (Ao/Ag)"1/4h, i.e.
1
A\ 1
h = <¢> ¢ . (2.9)
Ao



We plot in Fig. 1 the complete inflationary potential in the Einstein frame (see Sec. 2.3) and show the
direction from Eq. (2.9) with a solid (green) line as specified in the figure caption.

0 P

— 0t
£ ¢
d,? - — Region © -10¢
S — Region A Logyo(V)-20
| — Region B -30°%
| 0%
Logio(h) ™

Logso(¢)

Figure 1: Left panel: Contour plot of the potential V (o, h) in units where Mp1 = 1 with Regions ©, A and B
and the corresponding minimum submanifolds. Right panel: 3D plot of the potential with the same color code.
We use the following numerical values: g = 0.01, m = 10'° GeV, Ao = 0.23, 6y = 0.15, A\, = 1072,

Its region of validity is then given by

Mt > 2v2m (5*) hzmml(‘”)z, (2.10)
\/{? \/)\(;5 )\0 )\O

(AgAo)?
where we have defined the constant §) as

2
I
o= —. 2.11
= (211)
Along the minimum direction (2.9) the potential can be written, as a function of ¢, as
1 4
Ua(9) = 52907, (2.12)

which will be used in the next section to describe the end of inflation.

To make contact with HI results, in this region we can also use the Higgs field as the explicit
variable using the relation between the fields h and ¢ given by Eq. (2.9). This implies that the Ricci
term in Eq. (2.1) can be equivalently written as —£4/2 h2R, with €4 = g1/Xo/Ae. For typical values
of the parameters (e.g. g ~ 0.01, Ao ~ 0.2, Ay ~ 107'2, see Secs. 2.2 and 3), we get Ep ~ 4+ 104, which
is the value required by HI. Moreover the potential (2.12) can be written, using again (2.9) as

1
Ua(h) ~ 5/\0h4. (2.13)

This result shows how, in region A, the results of HI could be interpreted in our model with g < 1,
being perfectly consistent with the unitarity condition ¢ S Ay.



Region B
In this region, where
2V/2 3 23 3
5 2m ()" mshg 2Y2m (2) (214)
\/ )\¢ )\O >\O

(ApAo)?
the potential can be approximated by

1 1 1
Ug ~ —§u¢h2 + §m2¢2 + 1/\0h4, (2.15)

which, using Eq. (2.7), has its minimum along the direction

¢=f(h)5< L +2/\°)h2. (2.16)

 4m?2 16mt  m?

Direction (2.16) is shown in the potential plot, Fig. 1, with a solid (magenta) line. If we define the
coupling A as
A= Ao — 0y, (2.17)

in the limit A <« 1 we can write the minimum condition as

oy /2 s [1+0(\)] (2.18)
=05 o .
and the potential (2.15) becomes
1
Up ~ ZAh“ + O(N\?), (2.19)

which shows that the effective quartic coupling in this region is given by A, instead of A\g as in the
original potential (2.2).

Region C

In this region v < Q@ = h < m, where v is the Higgs vacuum expectation value (VEV) and Q, the
renormalization scale, is here identified with the classical value of the Higgs field h. The field ¢ hence
decouples and is integrated out as

I CR Y LS
o= 2m2h + O(h°) ~ 5 T (2.20)
which yields a potential
1
Uc ~ th‘* + O(h®). (2.21)

Notice that, to leading order, the solution to the equation of motion of ¢, Eq. (2.20), agrees with the
minimum condition in Region B, Eq. (2.18), which guarantees the continuity between both regions.
Moreover the stability of the potential in both Regions B and C is provided by the same condition,
A> 0.



2.2 Stability of the potential

In Region C, h < m, the inflaton field ¢ is integrated out and the potential, as a function of the Higgs
h, is given by Eq. (2.21), so that the parameter A\ runs as the quartic coupling in the SM potential,
according to the SM 3 function, S3™. In Regions B and A, h > m, the inflaton ¢ propagates and thus
there is an extra contribution to the running of the parameter A as [37]

1
By = M + ﬁc&(:&/\ +6x) 0(t — to), (2.22)

where 0(x) is the Heaviside function, equal to 1 (0) for > 0 (x < 0), and ¢t — tg = log(h/m). The
parameter &y also runs with the renormalization scale as

1

Bs

The extra contribution to the running of A\ in Eq. (2.22) can solve the Higgs vacuum instability
problem provided that:

e The inflaton mass m is smaller than the SM instability scale, Q; ~ 10! GeV.

e The value of 0, at the scale Q@ = m, d)(m), is large enough in order to significantly change the
value of B3M.

Of course, smaller values of m (i.e. wider regions where ¢ propagates) allow smaller values of dy(m)
to satisfy the second criterion. Conversely, for values of m close to Q; the minimum value of §y(m)
that solves the instability is a largish one.

As we have seen, the condition for the stability of the potential is that the coupling A\ defined in
Eq. (2.17) is positive definite, A > 0. We have solved at two-loop the RGE’s of the theory for the
following set of values of the input parameters [44] at the pole top mass M; = 172.76 GeV,

gy (M) = 0.358545,  go(M,) = 0.64765, gs(M,) = 1.1618,

(2.24)
A(M,) = 0.12607,  hy(M;) = 0.9312.

In Fig. 2 we show the two-loop running of the parameters A and Ao for two extreme cases, with a
light (m = 1 TeV, upper panels) and a heavy (m = 10'° GeV, lower panels) inflaton. As we can see
typical values of §, are smaller for smaller values of m. We have chosen §, = 0.05 for m = 1 TeV,
and &y = 0.15 for m = 10'° GeV. In both cases the value of §y(m) can be tuned to smaller values,
such that the corresponding values of A\ at high scales are smaller. On the other hand, larger values
of &y are bound by imposing that the theory remains in the perturbative regime up to the high scale.
In particular we find, for large values of m, m ~ Qy, dx(m) < 0.35, while for m in the TeV region,
dx(m) < 0.2. The dashed lines in the left panels are the SM running, shown for comparison. On both
left panels, we can see that the condition 0 < A\ < 1 is satisfied while dy > A\ at Q ~ Mp;.

2.3 Einstein frame

For values of the ¢ field such that ¢ > Mp/,/g we must redefine the metric and go to the so-called
Einstein frame to recover the Einstein-Hilbert action for the Ricci scalar. To do so, we perform a Weyl
redefinition of the metric:

G = O G, V—g = 02%y/—=y. (2.25)
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m=1 TeV, 6,(m)=0.05 m=1 TeV, §,(m)=0.05
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Figure 2: In blue, two-loop running of A (left panels) and Ao (right panels) for two cases. Top panels: with
m =1 TeV, §x(m) = 0.05. Bottom panels: with m = 10'° GeV, §x(m) = 0.15. The green dashed line is the
SM running. In both cases one has Ao =~ dx for Q ~ Mp.

For the Ricci scalar this implies

6 O (g“”\/—g 8u\/@)
93/2 NE :
Note that R is absent in the correction term R, hence we will define © by demanding that the explicit
coupling between ¢ and R disappears from the Lagrangian in the Einstein frame. The Ricci part of

R——=—-R, R=

®I:U

(2.26)

the action transforms then as

Sk — SE = / day/—g (Ml%l i ) (RO — RE?) (2.27)
and so the definition
¢2>
e 1492 2.28
0= (1+ 45 (2.29)
leads to
SE = / dz/—g [ PIR+3@29 ¢ maﬂqs] (2.29)

We can see from the second (dimension-six effective operator) term in Eq. (2.29) that the cutoff of the
theory Ay is identified as Ay = Mp1/g (see however comments in footnote 1).

11



In the meantime the kinetic terms of ¢ and h get transformed to %(8H¢8“¢ + 0,h0*h) so that
the (noncanonical) kinetic terms are given by

2 42
Lign = ° (1 + % f @) 0u0" ¢ + 9c‘iﬂha"h (2.30)
2 MPI 2

leading to the action in the Einstein frame
M2
Sg = /d4x\/7—g <—2P”R +LE —V(e, h)) , (2.31)
where the Einstein frame potential V' (¢, h) is given by

V(6. h) = ©%(¢) U(e, h), (2.32)

and U(¢,h) is given by Eq. (2.2). The potential region where the values of the field ¢ satisfy the
condition ¢ > Mpy/,/g is denoted as Region © and is explored hereafter.

Region ©

As just stated, the Region © is characterized by the potential V' (¢, h) in the Einstein frame, i.e. Eq. (2.32)
for g¢? > M3,, and a straightforward application of Eq. (2.5) shows that, using Eq. (2.7), the direction
along the minimum in the two-dimensional potential is given by

1
A\ 2
W =Mp (2] o, 2.33
" <3g>\0) i (23
from where the function f(h) in Eq. (2.7) can easily be read out. Along this direction the potential is
A M2 A
Vo(9) = ©%(9) 5 & (3; + ¢2) ~ 0%(0) 7 o', (2.34)

where again the last equality comes from the very definition of the © region. Notice that the values
of the field ¢ at the beginning of inflation, and in particular its value ¢, at horizon crossing of the
present Universe, belong to Region O.

In Fig. 1 we plot the potential in the Einstein frame V' (¢, h) for a chosen set of the parameters
values, and we superimpose the lines of minimum submanifolds given by Egs. (2.33), (2.10) and (2.16),
for Regions ©, A and B, respectively. As we can see they intersect orthogonally, by construction, the
contour lines of the potential. In the left panel we plot the contour lines of the potential and in the
right panel the three-dimensional plot with the same color codes.

We can try to make contact with HI in Region ©, as we did in Region A, using the Higgs field h
as the explicit variable, by means of the relation between the fields ¢ and h given in Eq. (2.33), which
we can write as 4 3420
s with o = T¢0'
The Ricci coupling can then be written as —£gh*R/ME,, where £g ~ 3-107 by using the typical values
of the parameters, g ~ 0.01, A9 ~ 0.2, Ay ~ 1072 (see Secs. 2.2 and 3). Similarly, we can also write
the potential as

99" = o (2.35)

D VRN

These two expressions show that our model, written in terms of the Higgs field, departs from the
conventional HI as it requires an effective dimension-eight operator for the potential which could only
appear when the Standard Model is completed by some UV theory, giving rise, after decoupling, to
higher dimensional operators.

12



3 Inflation

Inflation takes place only in Regions © (for \/g¢ > Mpy), and A (for \/gp < Mpy), thus we will choose
conditions (2.33) and (2.9), respectively, to relate h and ¢. In this case the kinetic term (2.30) along
the minimum direction can be written in both Regions © and A, as

9°¢°
M,

e
ﬁf}in:Q[HG

o+ AR] 9,00"¢, (R=0,A) (3.1)

where AR corresponds to the (tiny) contribution of the Higgs kinetic term

_ M% _ M [ A 2 Ao 2
Aa= ()\0) ’ Ao =3 <3g)\0) < (48)\0 (3.2)

and the last inequality comes from the condition /g¢ > Mp;. Putting numbers we obtain that
Apx ~107% and Ag < 1077, so that AR can be safely neglected for numerical calculations in Eq. (3.1).

As for the potential in both inflationary regions, ® and A, using the previous results we can write
it as

Vald) = n V(6), V(0)=O%(6) jhed's ea=2 co=1, (33)

so that, in both regions, they only differ by a global factor. As the slow roll parameters do depend
on ratios of the potential and its derivatives, they will not depend on the global factor cg and can
thus be given a universal expression. So for the computation of the slow roll parameters we will just
remove the global factor cg and use V(¢) as the inflationary potential.

We can now define the inflaton x as a field with canonical kinetic term as

»Ckin = %a/_tX8HX7 (34)

where the change of variable ¢ — x is done by

% =~ [9(4‘5) (1 + 6]?;22 @(QS))}é = f(9), (3.5)

the last equality simply being the definition of the function f(¢) for later use. Solving the above
differential equation gives the approximation

146
X =~ Mp; —; 9 arcsinhy/g(1 + 6g) Mi’ (3.6)
Pl
which, for \/g¢ 2 Mpi, can be inverted to get
Mp, ( g X >
~_ P oy X ), 3.7
¢ 21/g(1 + 6g) P 1469 Mp 3.7

while ¢ ~ x, for \/g¢ < Mpy, as in this limit the Jordan and Einstein frames should coincide.
However, although the slow roll parameters must be computed from the inflaton potential V (),
we will not need to use this explicit solution to obtain the inflationary parameters. Instead, we can
keep ¢ as the explicit variable, since performing the change of variables (3.5) in the slow roll parameters
definition allows us to avoid making inevitable approximations stemming from the relationship between

13



the fields ¢ and x. Hence, we can keep the description of the model in terms of the ¢ field and the
potential V(¢) given in Eq. (3.3).% In this framework the slow roll parameters can be written as [45]

o(¢) = Mo (V'(X))Z _ My, (V'(‘z’))Qf?(w, (3.8)

2 \V(x) 2 \V(9)
o) = 3t 58 = aady [ 20 - T oo | (3.50)
(o) = oty SO gy T (3.80)
V(@) VD) e VIO (o pr20ay p=2(i) — f7( ) #—1
T s O ) + T G100 - @ )]
where the function f(¢) was defined in (3.5). Their current observational bounds are, from Ref. [46]:
e < 0.0044 (95%C.L.),
n = —0.015 £ 0.006 (68%C.L.), (3.9)
€2 =0.00297 5073 (95%C.L.).

We should evaluate the slow-roll parameters at the field value ¢. = ¢(N,) with

1 [ V() 1 (7 V()
= — A gy = ——
Mlgl XE V/(X) X MP2’1 /¢E VI(¢)

being N, the number of e-folds at which the reference scale exits the horizon. Here ¢, the value of
¢ at the end of inflation, is defined by the condition €(¢g) = 1 and can be computed analytically. A
plot of its dependence on g is shown on the left panel of Fig. 3. One can evaluate the integral (3.10)

to find ) ) ) )
N o— X [(1 +69)(95 — ¢%) 3log Mg, + g9 ]
4 2M3, Mg, + 993

N, 12() dg, (3.10)

(3.11)

and then solve for ¢, = ¢(N,).” A plot of ¢, for N, = 60, and its dependence on g is shown in the
left panel of Fig. 3. The dark shading region is excluded as there ¢, > Ay = Mp1/g and so there is a
unitarity violation (see however footnote 1). This constraint provides an upper bound on the value of
the parameter g as g < 0.0508.%

We display, in the right panel of Fig. 3, the functions e(¢.) and n(¢.) as functions of g. The
observational constraints (3.9) provide a lower bound on the Ricci coupling as g = 0.0096. When
combined with the upper bound from unitarity, the allowed region in the g parameter is given in the

6From here on we will use primes to denote derivatives of a function with respect to its functional dependence,
e.g., V'(x) = dV(x)/dx and V'(¢) = dV(¢)/d¢.

"We can solve Eq. (3.11) for ¢(N.) recursively, first ignoring the logarithm for the first iteration and then inserting
each solution into the next iteration (which this time contains all terms). The sequence converges quickly to the exact
solution. After 3-4 iterations the relative error is already ~ 10~3 at most.

8For g < 1 the cutoff Ay is trans-Planckian, and from Fig. 3 we can see that during inflation A¢ ~ 20 Mp;, which
satisfies the so-called Lyth bound [47]. Such behavior induces nonnegligible quantum gravity corrections to the potential.
However, the terms induced by quantum gravity effects are suppressed, not by factors ¢™/MJ,, but by factors V/Ml‘;l,1
and mQ/Mlgl, see Sec. 2.4 of Ref. [48]. Hence, as long as the inflationary potential takes sub-Planckian values and
m < Mp; (like in our model), quantum gravity effects are insignificant, regardless of the values of g or Ag.
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Figure 3: Left panel: ¢r, ¢« and x« in unit of Mp1, as functions of g. The dark shading region violates the
unitarity bound ¢ < Mpi/g. The white area corresponds to Region A and the light shading one to Region O.
Right panel: slow roll parameters evaluated at the beginning of inflation and their corresponding observational
bounds (dashed, matching color). The bound for e(¢.) is an upper bound.

range °
0.0096 < g < 0.0508. (3.12)

Finally we have found that, in the relevant region of the g parameter, the parameter £2 is |€2] ~ 1074,
well in agreement with the experimental range in Eq. (3.9).

For the allowed region of the slow roll parameters in Fig. 3, the cosmological observables, the scalar
spectral index ns =~ 1 — 6€(ds) + 2n(d.), the spectral index running n, ~ 16€(¢.)n(ds) — 24€>(ps) —
2¢2(¢,), and the tensor to scalar ratio r = 16 €(¢, ), fall inside the experimental range given by [46, 50],

ns = 0.9649 4 0.0042, n’, = —0.0045 £ 0.0067, r=0.01415019 (3.13)

where we have included, in the last r determination, the most recent combined result from the BI-
CEP /Keck collaboration [50]. In particular, for the allowed range in the coupling g (3.12) the theory

predicts
0.96448 < ng < 0.96695 (0.96783) (3.14a)
—0.00063 < n., < —0.00019 (—0.00005) (3.14b)
0.0467 =z r 2 0.0124 (0.00296) (3.14¢)

where the unbracketed right-hand side (RHS) bounds come from the unitarity bound, while the brack-
eted ones come from disregarding the latter in view of the comments in footnote 1 9. As we can see
both predicted ranges (with/without considering the unitarity bound) in (3.14) nicely fit inside the
allowed range in Eq. (3.13). These results also agree with those of model (n,p) = (2,4) in the recent
work of Ref. [51], where general inflationary models with nonminimal inflaton couplings to gravity
have been analyzed.

90ne should worry about the stability, under radiative corrections, of such small values of the g parameter. Con-
tributions to the one-loop f¢,, function, in the Ricci coupling (£7;/2) h2R, from the contribution of the SM fields (top
quark, gauge and Higgs bosons), have been computed in Refs. [43, 49] where it is shown that the renormalization from
the weak to the high scale of £, is < 20%. In the case of our coupling (g/2) 2R, as ¢ is not directly coupled to the SM
fields, the g running between m and the high scales is suppressed by the mixing angle a between the fields ¢ and h (see
Sec. 8), so that 8y ~ 26A(02/m2),8§7_£ K Bgy, - In this way the running of the g parameter can be safely neglected.

101f we disregard the unitarity bound, see the comments in footnote 1, there is no upper bound on g from observational
constraints and the cosmological observables for larger values of g asymptotically go to the RHS values in parenthesis.
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Figure 4: Left panel: The inflaton self-coupling Ay as a function of g. Right panel: The Hubble parameter
H at the end of inflation H(¢g) and for the number of e-folds N., H(¢.) as functions of g. In both plots the
vertical red lines show the range for g where the slow roll cosmological observables and unitarity constraints
are met.

We now use the constraint on the amplitude of scalar fluctuations to find an analytical relation
for the inflaton self-coupling A4, since this quantity is obtained from the potential as

A _ 1 V@(¢*)
T 24w MY e(gu)

(3.15)

where we are using as inflaton potential Vg, as the ¢, line in the left panel of Fig. 3 is inside the light
shading region, where the inflaton potential corresponds to that in Region ©, Eq. (3.3). We can then
compute Ay as
MEN?
Ao = 9672 g% Ag e(u) (1 + P;) . (3.16)
99%
Using the observed value of A from Ref. [46], A%P® = 2.2-1079, as well as the values of €(¢.) and ¢.
from Fig. 3, we plot, in the left panel of Fig. 4 the parameter Ay as a function of the Ricci coupling
g. Notice that, inside the allowed region in Eq. (3.12), we obtain A, ~ 10~'2 as postulated earlier.
Finally we can compute the Hubble parameter during inflation H(¢). From the Friedmann equa-
tion we have that the energy density of the inflaton reads as p(¢) = 3M3,H?(¢). Since we are assuming
a slow roll evolution of the inflaton, we can neglect the kinetic part in the energy density and consider
p(6) ~ Vr(¢p). Therefore in Region A, i.e. around the end of inflation and, in particular, at ¢g,

Hp = H(¢p),
Mp [Xg M2\

For the value ¢ = ¢,, in Region O, this further simplifies to

H, = H(¢.) = 2°/%n Mpyy/e(¢.) A2Ps. (3.18)

We plot in the right panel of Fig. 4 the Hubble parameters at the end of inflation, i.e. for ¢ = ¢,
Hpg, and at the beginning of inflation, for a number of e-folds N, = 60, H,. As we can see from the
right panel of Fig. 4, for the lower bound of g, g ~ 0.01, the Hubble parameter changes, between ¢ and
¢+, by one order of magnitude, from H, ~ 5.5-10'3 GeV, to Hg ~ 6.4-10'2 GeV. On the other hand,
for the upper bound of g, g ~ 0.05, the Hubble parameter changes by a few, from H, ~ 2.8-10'3 GeV
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to Hg ~ 10'3 GeV. As we can see the absolute upper bound on the Hubble parameter in our model is
H, <5.5-10' GeV, or equivalently an inflation scale V@1/4(¢*) < 1.5-10'6 GeV, in agreement with
the observational upper bounds from the Planck collaboration, Ref. [46], given by

H™ < 6-10" GeV, (VoY% < 1.6-10'° GeV  (95% C.L.). (3.19)

Consequently our model, independently of the value of m, is a high scale inflation model, where the
Hubble parameter does depend on the value of ¢ and is maximized for its lower bound.

4 Gauge field production

In this section we will consider the generation of fully helical hypermagnetic fields that will be trans-
formed into baryon asymmetry at the EWPT. Of course all modes produced during inflation, except
the last modes that exit the horizon at the end of inflation reentering the horizon at the onset of
reheating, get diluted [14]. For that reason we will be concerned by the last e-folds of inflation,
corresponding to the inflaton value ¢ ~ ¢, well inside Region A with a potential given by Eq. (3.3).
We need a source of CP-violation and we will assume the CP-odd dimension-five operator given

by

1¢ ~

VoG Lo = =2, T, (4.1)

4 fy

where Y*” is the field strength of the hypercharge gauge field Y*, and Yy = %EWWYM its dual
tensor. This Lagrangian term is scale invariant (it does not change when going from the Jordan to
the Einstein frame), and should appear in the effective theory after integrating out some UV physics,
heavier than the inflaton field. A possible and simple UV completion, with a heavy vectorlike fermion
coupled to the field ¢ by a CP-violating Yukawa coupling, and giving rise to Eq. (4.1) is presented in
App. A. However, in the rest of this paper, we will be agnostic about the origin of such a term as it
may arise from a great variety of models.

In addition to this, by virtue of the minimum condition in Region A, Eq. (2.9), the Higgs back-
ground value is nonzero (it is anchored to the value of the field ¢), and so the electroweak symmetry
is broken, meaning we are producing ordinary U(1)gy magnetic fields, as the Z fields are very mas-
sive for those values of the background field &, and hence much harder to produce. In this way the
CP-violating term in the broken phase, at the end of inflation, will look like

1¢
4 fo
where F),, is the electromagnetic field strength, corresponding to the photon field A,, and we have
rescaled the constant fy as

vV —9g ‘C/fo = - F,ul/ﬁl“jy (42)

fo

= 4.
fd’ COS2 HW ’ ( 3)

where Oy is the EW angle.

At reheating, h will drop at its potential minimum at zero, because of the sudden dominance of the
thermal correction terms, and we will recover the symmetric phase. This is a necessary requirement
for a successful baryogenesis as the helical fields participating in the chiral anomaly must belong to
the unbroken electroweak sector. This is because, in the symmetric phase of the electroweak plasma,
the chiral anomaly induces the phenomenon where variations in baryon, Nz, and lepton, Ny, number
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can be induced by changes in the SU(2); Chern-Simons number N s and/or U(1)y hypermagnetic
helicity J%&- as

ANp = ANp = N, (ANCS - éy Ay ) (4.4)
where N, = 3 is the number of fermion generations and gy the U(1)y coupling. This equation

tells us that any change in the U(1)y helicity leads to a fermion asymmetry, in particular when
projecting ordinary magnetic fields into hypermagnetic fields at the end of inflation. However, as long
as T = 160 GeV, the electroweak sphalerons are in equilibrium in the plasma, hence any fermion
asymmetry gets washed out in less than a Hubble time, and only the U(1)y helical fields remain.

As the U(1)y helical magnetic fields participate in the baryogenesis process [18], while U(1)gm
helical magnetic fields are produced at the end of inflation, the projection of the latter on the former
must be taken into account with a factor !

Ay = cosby A, By = cos? Ow A . (4.5)

The Z fields can also project onto U(1)y fields but, as stated before, we will ignore this contribution
as they were too heavy to be produced.

Moreover after inflation, in Region B, the Higgs will start relaxing to its minimum and, if some
conditions are satisfied, the Higgs could source extra helical magnetic fields, as was studied in Ref. [21],
and eventually overproduce the BAU from the induced coupling

V9L __E\/g“” 20, v, 7 = Ly g 4.6
g or — 4 )\m COs Nz A2 7 s ( a)
1 K} -1 f 3
Ay ~ 8.7-10% ) (A 0 4.
w=8710° 6oV (Ges) (535)  \oram) (460)

where we have used the minimum condition in Eq. (2.18). Nevertheless the required relaxation mecha-
nism found in Ref. [21] should not work under the present conditions, because one necessary condition
for the Higgs relaxing into the hypermagnetic fields is not fulfilled here, namely that h > 3-10' GeV
at the end of inflation. In fact in our model, as a consequence of the definition (2.16) of Region B,

p< 2V2m (A> < 4-10" GeV,
(Apdo) T

Ao
where we chose the parameters configuration that maximizes the RHS bound. Therefore a significant
production of helical magnetic fields from the Higgs decay after inflation is unlikely, and we can
consider Loz as inactive in Region B.

4.1 Helical magnetic fields

As stated earlier, we will mainly be interested in values of the inflaton field near the end of inflation,
i.e. ¢ ~ ¢p, which means that ¢ and h evolve in Region A of the potential, given by (3.3). For such
values of ¢, the differential equation (3.5) admits the simple solution ¢ ~ x + O(g). We recall that x
is the true inflaton field with canonical kinetic term and action

= oM o) g

+ [ dta =g iimy, (4.7)

11Bold characters stands for 3D vectors in space.
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where we have included the interaction of fermionic currents, corresponding to charge ) fermions, with
the electromagnetic fields (encoded in the covariant derivative D, = 0, — eQA,), the CP-violation
term and the inflaton potential

A A
Vi) =22 (1+ 22, 4, 4.8
=% (1+5) « (19
Varying the action (4.7) with respect to A, = (Ap, A) leads to the gauge equations of motion in
the radiation gauge, Ag =0and V-A =0,
82 X/
— —V?-Z-Vx]A=0, 4.9
(37 ? s > “9)
where 7 is the conformal time, defined by g, = a*(7)1,., and we assume a homogeneous inflaton
with only zero mode, x(7,x) = x(7). Unless otherwise specified, all quantities and fields are comoving.
During the inflationary period one has 2
X
TH(x)

X' =xa~-— (4.10)
and the field velocity x is computed from the equation of motion for the inflaton obtained from the

action (4.7)
E-B

X+3H(X) X +V'(x) = , 4.11
0%+ V00 = iy (111)
where we have used that F,“,F "W = —4 F - B. From the slow roll conditions, we can neglect y, since

X o_ 70 (4.12)

3HYy 3

where we are already neglecting the backreaction of the generated magnetic field on the inflaton (i.e. we
are neglecting the term E - B/a*f, in Eq. (4.11)), a hypothesis that will be self-consistently checked
a posteriori (see Sec. 4.3). During the last e-folds of inflation, our model provides |e —n| /3 < 0.1.
Hence, we obtain

Mg V’(X)7 (4.13)
T V(x)
where we have made use of Eq. (4.10).
We now quantize the gauge field A in momentum space
A(r,x) = Z /d?)k [ex(k) ax(k) Ax(T,k) e + h.c] (4.14)
o= e ’ ’

where A = + is the photon polarization and ay (k) (a:r\(k:)) are annihilation (creation) operators that
fulfill the canonical commutation relations

[ax(k), al, (k)] = (27)30xn 6P (k — K') . (4.15)

12 As for fields, we denote the derivative with respect to 7 with a prime and the derivative with respect to the cosmic
time t with a dot, e.g. X’ = dx/dr and x = dx/dt.
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The polarization vectors €y (k) satisfy the conditions '3

k-ex(k)=0, k x ex(k) = —idkex(k), (416)
ev (k) -ex(k) =, ex(k) = ex(—k), ’
where k = |k|. The equation of motion for the modes yields
’A 2
(9;+l~c<k+>\§) Ay =0, (4.17)
or T

which is the Coulomb wave equation, with

_ MR V() Me [e(d)
o v TR V2 7Y s

where Eq. (4.13) has been used and €(x) is the slow-roll parameter. Let us mention that, even if the

first equality in Eq. (4.18) looks model dependent, as it depends on the potential and its derivative,
in fact it is very model independent because the last relation only relies on the slow roll regime of the
inflationary potential, and €(x) ~ 1 at the end of inflation. We have done a self-consistency check by
comparing the numerical results of both expressions and found no significative difference, see below.

As already emphasized, all modes produced during inflation will get diluted, except the last mode
that exits the horizon right before the end of inflation. This mode reenters the horizon at the onset of
reheating and is the source for the BAU. Hence, it is only necessary to consider the mode produced
at ¢p ~ xg, for which €(xg) ~ 1, and hence, using the last equality in Eq. (4.18) we obtain for £ the
constant value

Mp,
&~ . (4.19)
V2[4
We numerically checked that this approximation coincides with the exact solution:
M2 V! d
€= [ b V'(9) ﬂ ’ (4.20)
26 V(®) dxlyy,

where equations (3.5) and (4.8) should be used. A plot of ¢ as a function of g is shown in the top
left panel of Fig. 5 (solid lines) where we compute the exact solution in Eq. (4.20). As we can see
the values of £ are nearly constant with respect to g, a behavior that is well approximated by the
expression of £ in Eq. (4.19). A plot of £ as a function of fy is displayed in the bottom left panel of
Fig. 5 (solid lines) for the range of values of g allowed by the final inflationary analysis. As all results
of the following sections are very sensitive to the precise value of the parameter £ we will use next the
exact expression for £ in all numerical calculations.

Notice that in this section we are neglecting, in the RHS of Eq. (4.17), the possible effect of the
fermion currents e Jy, appearing in the action Eq. (4.7), and in particular their backreaction on the
produced helical magnetic fields. This phenomenon, known as the Schwinger effect, will appear for
sufficiently strong magnetic fields, hence for large (small) enough values of the & (f,) parameter. In
this section we will consider the case of backreactionless fermion currents (i.e. small values of &) and
will devote Sec. 4.2 (where those values will be quantified) to the analysis of the Schwinger effect and
its backreaction on the helical magnetic fields.

13 A simple realization can be given in terms of a real basis with the orthonormal vectors (k/|k|, e;), (i = 1,2), such
that k-e; = e; -ex =0 and e; - e; = 1, with €y = (e1 + i\e2)/v/2, from where identities (4.16) follow.
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The general solution of (4.17) is

A, = 1Fo(N, —kT) 4+ Go(NE, —kT) (4.21)
V2k

where Fy and Gy are, respectively, the regular and irregular Coulomb wave functions with index
0 [10].1* At early times, the above solution has the asymptotic behavior that corresponds to the
Bunch-Davies vacuum of the modes. In fact during inflation, where €(x) < 1, we obtain, using
Eq. (4.18), that ¢ < 1 and therefore |k7| > 2¢, so we can write Ay o< e~ *7. However, at the end of
inflation ¢(xg) ~ 1 and so we can have £ 2 1. Then, only one mode develops both parametric and
tachyonic instabilities for k ~ k. where

ke =2¢apHg, ag = a(Tg), (4.22)

while the other one stays close to its vacuum. As in our model £ > 0, and during inflation 7 < 0,
the mode exhibiting the instability is the one with the A\ = 4+ polarization. For late times, k < k.
(i.e. k7| < 2£), Fy can be neglected and the growing mode solution can be approximated by [10, 14, 52]

G 1 EoO\ 2Lk
~ \/i ~ NGT (2§CLEHE> exp {7r§ -2 aEgHE } . (4.23)

Another assumption in this solution is that H(x) ~ Hg during the last e-folds of inflation. As we

have seen that the g dependence of £ is mild, the main g dependence of all our predictions from here
on, will arise only from the g dependence of the Hubble parameter Hp, see the right panel of Fig. 4.
Moreover, from the approximated value of the £ parameter in Eq. (4.19) we can see that £ can be
traded for the value of the parameter f, such that { > 1 corresponds to fs < Mp;. Moreover, as we
see from the explicit solution in Eq. (4.23), there is an exponential magnification for large values of
&. However, as shown later on in Sec. 4.3, for very large values of &, the backreaction on the inflation
dynamics from magnetic fields cannot be neglected, which will lead to upper bounds on the values of
&, or correspondingly to lower bounds on the values of f4.
Assuming homogeneity in momentum space, the comoving U (1)gy helicity is by definition

= lim — / d*z (A - B) / dk: — (1AL = 1A_P), (4.24)
V~>oo
where (-) is the expectation value of quantum fields and the integral V—! fV d3z is the spatial average,
which is trivial for space independent quantities. Since the magnetic fields are maximally helical, we
can neglect one mode and set the other one to (4.23). We cut off the integral at the last mode to exit
the horizon given by (4.22). The resulting computation gives the amount of comoving helicity at the
time of the end of inflation, as
o a%H 3 o2m¢
=515 T2gh )

where we have used the approximation for £ > 1.1%

(4.25)

On the right panels of Fig. 5, we display the magnetic helicity in function of ¢ (top panel) and
fo (bottom panel). The exponential regime given by Eq. (4.25) is shown by solid lines for values
fo 2 015 Mpy (§ < 4.7). For solid lines with f, < 0.15 Mpi, and dotted lines, the backreaction of
fermion currents on the magnetic fields (Schwinger effect) cannot be neglected, as we will see in the
next section where we will continue our comments on these plots.

14Gee also Sec. 14 of Ref. [52].
151n fact, we have found that the approximation is valid up to 0(6*8‘5) terms, so that it is good enough for £ 2 2-3.
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Figure 5: Top panels: the & parameter (left panel) and produced helicity at the end of inflation (right panel)
as a function of g for various values of fy. The vertical red lines display the range for g where the inflation
model is valid. Bottom panels: the same as top panels but as functions of fe in the same interval of values
of g. In all panels solid lines correspond to the Schwinger effect mazimal estimate while dashed lines are the
equilibrium estimate. In the bottom left panel, blue and orange lines overlap since the result is insensitive to

g.

The comoving U(1)gy energy density in the magnetic and electric fields are similarly computed

as
1 ke k‘4
oo = Jim 5o [ dla @) = [k (A 1a). (4.264)
1 ke 2
PE = vhi%oﬁ/vd% (E”) :/O dk 1= (|0-Ay|* +0,A-]) (4.26b)

Using the (backreactionless) value (4.23) for Ay, and neglecting the other mode, we similarly obtain
the analytical solutions at the end of inflation, for £ > 1 (see footnote 15)

315 abHp one

pB =~ g e , (4.27a)
63 anLHp one 4€2
Hence the total comoving electromagnetic energy density is
4£2
PEM = pE+pp=pp |1+ - ) (4.28)
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Finally, we will also need the correlation length of the magnetic field which can be estimated
as [53]

o ke k3
lp="—[ dk— (|JAL]* +]A_]*). 4.29
b= [k g (AP + AP (429)
Likewise its analytical solution at the end of inflation is given by
8 w&
I ~ = 4.30
B 7 GJEHE ) ( )

Note that the above three quantities are comoving and apply to ordinary electromagnetic field,
while we will denote in subsequent sections their equivalents for the hypercharge U(1)y in the sym-
metric phase with the index Y. The corresponding physical quantities are given by #Ph = 2 /a3,
PP = p/at, E%h = afp. Finally, we will conventionally set ag = 1.

To close this section, we would like to underline that maximally helical fields, E(k) and B(k),
in (Fourier transformed) momentum space are collinear as, using the identities (4.16), one can easily
check that both are proportional to €y (k). Besides, these fields in configuration space are, using the
approximation (4.23), (almost) collinear. In fact, one can compute, using our approximated solution
for the backreactionless solution, the angle 6 measuring the collinearity of the electric and magnetic
fields, as
(E-B)
|El- B’

|E| =/ (E?), |B| = +/(B?). (4.32)

Using Eqgs. (4.27) and (4.45) we obtain, for £ > 1

cos 0 ~ g ~ 0.958, (4.33)

cosf = (4.31)

where we define 16

which corresponds to the angle 8 ~ 0.00167. As a result we have proved that the fields E and B are
(almost) collinear, a property that will be used when applying the Schwinger effect in the next section.

4.2 Schwinger effect

In the presence of strong gauge fields, i.e. for £ > 1, fermions charged under the gauge group are
produced by the backreaction of gauge fields which source the fermion equations of motion. The
corresponding currents can then, in turn, backreact on the produced gauge fields and change their
(so-called backreactionless) solutions. This phenomenon is called the Schwinger effect and we will
consider it in this section. Moreover, the fermions produced by this effect are at the origin of another
phenomenon, called the chiral plasma instability, that we will study in Sec. 7.2.

As the Higgs VEV is different from zero at the end of inflation, as we have already explained, the
EW gauge bosons are massive and the system is in the broken phase. Massless gauge bosons are the
photons, and we can consider the theory of electrically charged fermions in the presence of the U(1)gm
gauge group. In the case of a Dirac fermion with mass m and electric charge @, the produced current
satisfies the Ohm’s law J = oE, where o is the Schwinger conductivity given, for collinear E and B

fields, by [42]
leQ]® |B]| 7| B mm?a’
—t 1P otn (221 _mmar 434
7= %2 ez M\ E ) TP\ T eQl1E] ) (4.34)

16Hereafter in this paper we are skipping the space average, as all background quantities are homogenous and so
limy 00 % fV A3z =1.
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where the trace runs over all charged fermions t;, with mass m; and charge @;, such that mm? <
leQ;||E|, and e(Q) = /47 (Q) ~ 0.33 is the electromagnetic gauge coupling at the characteristic scale
of Schwinger pair production Q ~ plE/l\jL[ [42]. However, as the Higgs VEV is suppressed with respect to
the classical value of ¢, see Eq. (2.9), while Yukawa couplings for first and second generation fermions,
are small, their corresponding square masses are much smaller than typical values of the produced
electric field, and so we can make the simple reasonable approximation that only the first and second
generation fermions are massless and contribute to the conductivity (4.34).

We have to stress here that, in spite of the fact that the Higgs VEV is large after inflation hy ~ 10'°
GeV, which yields large masses m for fermions, as the typical values of the produced electric fields are
also large, typically |E| ~ h%, the small values of the Yukawa couplings for light fermions make that
their pair production is not effectively blocked. Moreover, as their contribution to the conductivity is

exponential in mfc

we can consider fermions that contribute to the conductivity as effectively massless.
Here we have considered for simplicity that the two first generations of quarks and leptons contribute
to the conductivity. Had we considered also the third generation would have amounted to a global
factor in o of 3/2, which would not change at all the qualitative results in this paper.

The backreaction of fermionic currents, the Schwinger effect, has been proven to roughly be

encoded into a redefinition of the & parameter, £ — &, as [41]

3
Er =E— AL, Af= % coth (”'EEB") If%l : (4.35)
where only first and second generation fermions have been considered. The correction becomes signif-
icant, A&/€ 2 0.1, for £ 2 3.7, which corresponds to f, < 0.19 Mp;. Hence for £ 2 3.7 the Schwinger
effect must be taken into account, and the amplitudes of the gauge fields in equilibrium must satisfy
the equation [41]

26t H|E||B| — 2H(|E2 + | B[%) = prent = 0 (4.36)

Previous studies [20, 41, 42] have considered two regimes: (i) Maximal estimate and (ii) Equilib-
rium estimate. We will use them to compute the MHD quantities yielding the BAU, i.e., the helicity,
its derivative, the electric and magnetic energies, as well as the magnetic correlation length. Both
regimes follow different strategies: in the maximal estimate all quantities are capped by other rela-
tions that still depend on the parameter &, whereas in the equilibrium case the exponential relations
from the previous section stay with the counterpart of the substitution (4.35) on ¢&.

4.2.1 Maximal estimate

In this case we assume the exponential behaviors of the backreactionless solutions to be valid until
they saturate the maximal value that we will display hereafter. We numerically determine the value of
crossing, which happens for £ ~ 4.4-4.7 depending on each quantity, corresponding to fg ~ 0.15 Mpy.
However, as we just saw, for such value the Schwinger effect can no longer be neglected, so there
remains in this process a gray area of uncertainty as to the exact transition between the two regimes.

The maximum electric and magnetic energy density can be estimated as the solution of Eq. (4.36) [41],
ie.

|E|* + |BJ* = &l E| | BI. (4.37)

This replacement yields an equation relating the |E| and | B| fields that can be solved analytically. We
then choose, as definition of our maximal estimate, the solution (|E|, |B|) of (4.37) that maximizes the
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product |E| - |B|.}" For £ > 1, the result approximates to:

272

|E|max =~ 673 fH%, (4383.)
22

| Bmax =~ 33 HZ, (4.38b)

although, in the numerical calculations, we of course use the exact solutions. Hence we obtain our
maximal helicity estimate

~ ST 3173
Hnax = 9c6 & Hy, (4.39)
as well as our maximal energy density estimate
max 27T4
PEN = 55 ¢t (4.40)

Finally, combining (4.24) and (4.29), and assuming maximally helical magnetic field, we get for the
correlation length (still for large &)

Hmax AT
g €y

max

(4.41)

In this case the upper labels “max” on pgii and £5** mean that they are computed from maximal
quantities, but do not necessarily mean upper bounds. In fact the estimate for /'~ is a conservative
one, as it matches the corresponding backreactionless quantity at a small value, £ ~ 1.4, so in principle
we would expect higher values for (5**, giving rise to bigger Reynolds numbers (see Sec. 7.1). Still we
will use the estimate in Eq. (4.41) for our numerical calculations.

We finally recall that in this case the parameter £ remains as given by (4.19), hence it corresponds
to the solid lines displayed in the left panels of Fig. 5. For the solid lines of the right panels, however,
the helicity has two regimes: it first obeys the exponential relation (4.25) until it reaches its maximal
value, then follows (4.39).

4.2.2 Equilibrium estimate

In this case, we take into account the backreaction of the chiral fermions on the gauge fields by just
replacing the parameter & with the effective one given by (4.35) in the backreactionless solutions.
Using (4.27) and (4.32) the latter becomes

63 e2€ea /3722 5
PYE) egT = (;) (€ = &eq)® tanh® (\/; ;) : (4.42)
eq €q

When the backreactionless solutions are used, and to make it explicit which case we are handling,
we chose to label the effective parameter as £eq. The solution of Eq. (4.42) provides the function
€oq = &oq(§) and, using (4.19), we can obtain & as a function of fy (and g) that we plot on the left
panels of Fig. 5 in dotted lines.

17Notice that our definition of maximal estimate departs from that used in Ref. [41], where separate maximal conditions
to the configurations for the fields £ and B (corresponding to absolute maximal values independently reached by the
configurations E and B) are imposed, so that their corresponding partners do not satisfy Eq. (4.37). Conversely, our
criterium of maximizing the helicity guarantees that our solution satisfies Eq. (4.37).
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Next, the MHD quantities are calculated in the same way as in the case without considering the
Schwinger effect, but with the replacement § — .4, hence

%q = %(geq)a P?/E = PB/E (geq)a geél = gB (feq)a (443)

where (4.25), (4.27) and (4.30) should be used. On the right panels of Fig. 5, we plot the equilibrium
estimate for the helicity as a function of f; and g in dotted lines.

4.2.3 Final comments

Needless to say, neither the maximal nor the equilibrium estimates are true solutions to the gauge
equations of motion in the presence of the Schwinger effect, which introduces highly nonlinear effects
into them. However, numerical solutions taking into account the backreaction from fermion currents
have been recently considered in Refs. [42, 54] which show that, for values of the ¢ parameter for which
the Schwinger effect becomes relevant, the numerical solution for the different quantities, in particular
for the helicity, lies between the maximal and equilibrium estimates. This feature remains if the Bunch-
Davies vacuum is damped by the conducting medium, even for extreme cases of very large damping,
leading to very suppressed vacua. Therefore, we expect that the solution to the complicated problem of
taking into account all the backreaction from Schwinger fermions currents will be somewhere between
the two considered estimates, and thus the allowed region by the BAU will be in between the allowed
regions that we will exhibit in Secs. 6 and 7 for both estimates.

4.3 Self-consistency condition

In previous subsections, we have computed the helical gauge fields generated in the presence of the
inflationary background, after estimating the backreaction of fermion currents on gauge fields, but we
have neglected the backreaction of gauge fields on the inflaton dynamics. We will now compute the
conditions to have negligible backreaction of the generated gauge fields on the inflaton equations of
motion, such that we can reliably trust the inflationary predictions, and therefore the actual generation
of helical magnetic fields. Needless to say this condition is mainly a simplifying one, and allows to
work out the inflationary model independently on the generated gauge fields. As we will see in Sec. 5,
this condition is also related to the possibility of reheating the Universe after the inflationary period
by the preheating mechanism, although this scenario deserves further studies.

Once we have obtained the helicity, we can compute the RHS of the inflaton equation of motion
(4.11), as in the radiation gauge they are simply related by

1d
E-B)=——-——(A-B). 4.44
(E-B) =5 (A-B) (4.44)
Ignoring for the moment the Schwinger effect on the produced gauge fields, using (4.24), (4.25) and
the relation in the de Sitter universe aH = —7~!, one gets at the end of inflation, for £ > 1
135 a4, H, one
(E - B)| ~ 216 g . (4.45)

In the absence of backreaction of the gauge field on the inflaton equation of motion, the inflationary
equation (4.11) with slow roll conditions reduces to 3Hx ~ —V’'(). Thus, in order to consistently
neglect the backreaction on the inflaton, we must simply enforce that, in the inflaton equation of
motion (4.11), the RHS term is negligible compared to the potential term, i.e.

V2¢
Mpy

(E-B)
V’(X)‘ <1, (4.46)
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where we used (4.19). This condition is independent of the reheating temperature and should hold
during the full magnetogenesis process, hence during the last few e-folds of inflation, so we can evaluate
it using the above solutions for (E - B) at the end of inflation. Then, using the definition of the slow
roll parameter €(x), we can write V'’ ~ /2V/Mp; at the end of inflation, and hence, for x ~ g,
Eq. (4.46) becomes

SHE - B)| < V(xg)- (4.47)

Moreover it is interesting to note that, if we ignore the Schwinger effect, combining pgy =~ pp
given by (4.27b), together with (4.45), we get

2poni = & |(E- B)). (4.48)

Notice that, for collinear E and B with the substitution £ — &g, this equation yields the starting
point of the Schwinger maximal estimate, i.e. Eq. (4.37).
Hence, the condition (4.46) evaluated at the end of inflation is equivalent to imposing

2 pem < V(XE). (4.49)

Notice that the condition (4.49) is stronger than the condition for neglecting pgy in the Friedman
equation, i.e., ppm < 3H2ME, ~ V(x&), so that the latter does not need to be imposed.

Now taking into account the Schwinger effect, the equilibrium estimate is obtained by the replace-
ment § — &eq in the expression (4.45), as described in Sec. 4.2.2. Hence, the consistency condition in
the Schwinger equilibrium estimate is given by Eq. (4.49) where £ — &4, i.e.

2ppn < Vixe), (4.50)

a stronger condition than the one coming from the Friedman equation pgpy; < V(xg), but much
weaker than Eq. (4.49) where we were ignoring the Schwinger effect, since phy; < prM.
On the other hand, for the maximal estimate, using the results from Sec. 4.2.1, we can write

1/272\* ,
|<E.B>‘max: |E|max |B|max ~ g ? § HE7 (451)
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Figure 6: Ratio between the potential term and the backreaction term in the inflaton equation of motion, see
Eq. (4.46), for the range of values of g allowed by inflation. Solid lines are the maximal estimate while dashed
lines are the equilibrium estimate, after taking into account the Schwinger effect.
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where in the first step we maximize the product by assuming a collinear configuration of E and B [41],
while the second step is justified for large values of £. A similar reasoning for the consistency condition
does apply to this case, for which the total density is dominated by the energy stored in the magnetic
field, ppm =~ pB, and such that the explicit maximal estimate found implies that, for large &,

6'0%11&\143( 25 |<E ! B>|max' (452)
Hence, in the maximal estimate, imposing condition (4.46) is equivalent to requiring
6 P < V(xg), (4.53)

which is again stronger than the condition for neglecting the total gauge energy density in the Friedman
equation, ppe < V(xg).

We display in Fig. 6 the left-hand side of Eq. (4.46) as a function of f, for the range allowed on
the parameter g by the inflationary observables, using for the |E| and |B| fields both the maximal and
the equilibrium estimates. In conclusion, condition (4.46) is satisfied for:

fo 1.9-1072 Mp, (Maximal estimate),

>
~ 4.54
fo 2 7.2-107* Mp (Equilibrium estimate). (4.54)

5 Reheating

At the stage of inflation all the energy is concentrated in the slowly rolling inflaton field. Soon after,
it begins to oscillate near the minimum of its effective potential and eventually perturbatively decays
into SM particles that interact with each other, and come to a state of thermal equilibrium in a
process called reheating. However, the Universe can also be reheated nonperturbatively in a much
quicker timescale through coherent fields effects while it oscillates in its potential, in a process known
as preheating [55].

In inflationary models where the inflaton is coupled to the Chern-Simons term with coupling
1/fs, as in Eq. (4.2), recent lattice simulations [56, 57], in the absence of fermionic currents, have
shown that even for a negligible electromagnetic energy density at the end of inflation, the Universe
can efficiently preheat provided that the coupling 1/f, in Eq. (4.2) is large enough. In particular
preheating occurs when f, < fg, with f§ ~ 0.11Mpy, ie. for £ 2 & with § ~ 6.7. However, in this
region the backreaction of the fermion currents on the helical gauge fields cannot be neglected, and
we should adapt the previous results to our different estimates in the presence of the Schwinger effect.

For the equilibrium estimate, we have seen in Sec. 4.2.2 that the effect of the backreaction can
be encoded into the redefinition of the parameter { — &4 while using the backreactionless solutions
but as functions of &q. Therefore a straightforward application of the results from Refs. [56, 57]
should provide the condition for efficient preheating as &oq 2 &, With £, >~ 6.7 which translates, using
Eq. (4.42), to

fo < 2.4-107* Mpy. (Equilibrium estimate) (5.1)

This bound is outside the region where we can neglect the backreaction of the helical fields on the
inflaton, Eq. (4.54).

In the case of the Schwinger maximal estimate of the electromagnetic fields, see Sec. 4.2.1, we can
easily perform a similar translation on the same requirement. To this end, we define a new effective
parameter &,.x that mimics the effect of the maximal estimate once plugged into the backreactionless
solutions as

(E-B)le,.. = Enax(&)] [Bmax(§)l, (5-2)
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where | Enax(€)] and | Bimax (€)] are the maximal estimates of the electromagnetic fields from Egs. (4.38),
and (E - B)g, .. is the corresponding backreactionless product given by (4.45) evaluated at = &{max.
From there, the condition for efficient preheating &ax 2 €50y, With €5, =~ 6.7, translates into

max

fo $5.6-1073Mpy, (Maximal estimate) (5.3)

which again is inconsistent with the condition (4.54) on no backreaction of helical fields on the inflaton
dynamics.

The previous results can be easily understood by considering that, in the presence of the back-
reaction of the Schwinger currents on the helical fields, the required coupling, between ¢ and the
Chern-Simons term, for preheating must be much stronger than in the backreactionless case. This is
because the produced helical gauge fields are much weaker, in the presence of backreaction, for a fixed
value of the coupling Mpi/ f5.

We thus conclude that, after considering the backreaction of fermion currents on the helical fields
in both estimates, the preheating mechanism is not consistent with the self-consistency condition
obtained in Sec. 4.3. Hence, in our model preheating does not occur and reheating should take place
by perturbative decays of the inflaton into the SM matter only.

Reheating then takes place after inflation, during the inflaton oscillations around its minimum, by
perturbative inflaton decays. In this period, between the end of inflation ¢t ~ 1/Hp and the reheating
time ¢,, ~ 1/T'y, where I',, is the inflaton decay width, the Universe temperature first grows from zero
to a maximum temperature Ty given by [58, 59]

Ty ~ 0.611/ T, T2, (5.4)

where, assuming thermalization,
(90 \* T
Trh = rzg* XMPI (55)

is the reheating temperature and g, = 106.75 is the number of relativistic degrees of freedom. Also,
in this work we define T as a reference temperature given by the above equation with I'y ~ Hg.
It would correspond to the reheating temperature for instant reheating, and takes the value TP ~
2.13 (2.61) - 1015 GeV for g ~ 0.01 (0.05) in our model.

The temperature Tp is attained at a time to when the scale factor a grows by an O(1) factor,
i.e. ag ~ 1.5ap, and, after that '®, the Universe evolves toward the reheating temperature following

the law T ~ a~3/% [43], with a scale factor a,;, given by

ins

4

T 3

amn ~ 0.4 ag ( jfh ) . (5.6)
rh

At the reheating temperature, the inflaton energy density has completely decayed and the Universe is
fully dominated by radiation, giving rise to a radiation dominated era where the temperature evolves
as T ~ 1/a. Of course, the value of the inflaton decay width I'y, and the reheating temperature Ty,
depend on the particular interactions between the inflaton and the Standard Model particles that we
will now explore.

18 The energy density is dominated, after the end of inflation, by the inflaton energy density py (), which decays as
e~I'xt  so that at the reheating temperature the energy density is dominated by the radiation energy density pg(t).
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In the present model, the Lagrangian from Eq. (2.2) contains the interaction term +/dy/2m xh?
which gives rise to the leading inflaton decay channel y — hh, with a decay width given by [60]

Srm 4m?
Nx—”m)=qa;ﬂl—;j% (5.7)

where my, = 125.25 GeV is the Higgs mass. As the inflaton is stabilizing the EW vacuum (see Sec. 2.2),
which has an instability around Q7 ~ 10! GeV, we can reliably put the upper bound on m as m < Qy,
and fix m ~ 5 - 10'° GeV while 6, < 0.35 on perturbative grounds (see Sec. 2.2). This gives for the
decay width I'(x — hh) ~ 3.5 - 10® GeV leading, using Eq. (5.5), to a reheating temperature given by
T, ~ 1.6-10'3 GeV, which corresponds to T]rh/Tri}‘l1S ~ 1072. On the other hand, the lowest bound on
m, fixed by phenomenological considerations (see Sec. 8) to m ~ 103 GeV, together with &y < 0.2 (see
Sec. 2.2) provide I'(x — hh) of a few GeV and correspondingly T}, ~ 10° GeV, which corresponds to
Tom/T, rlﬂs ~ 1076, Hence from now on, we will consider the temperature ratio Ty, / Triﬁ‘s as a parameter
of the model, which will become handy for the baryogenesis and constraints calculations. We also
stress that this ratio mainly reflects the dependence of coming results on m, as just sketched above.

There are of course other channels that can contribute to I'y, but, as we will demonstrate hereafter,
they are all subdominant. For instance, the coupling (4.1) gives rise to the decay channel y — AA
into two gauge bosons with a decay width given by [56]

m3

64rf2’

I(x — AA) ~ (5.8)
which is subleading with respect to the channel x — hh for the relevant values of m and fs. In
particular T'(x — AA) ~ 107° GeV for m = 5-101° GeV, while T'(x — AA) ~ 10728 GeV for
m = 10% GeV. Moreover, there is a mixing angle o between ¢ and h (see Sec. 8), which is sizable
for m ~ O(few) TeV, while of course is negligible for m > 1 TeV, given by sina ~ /25\v/m. This
mixing opens up the x decays into the SM channels, with a total decay width into all SM channels
given by I'(x — SM) = sin? a- T'(h — SM) ~ 4sin® o MeV, in all cases subleading with respect to the
decay width T'(x — hh).

Note added: after this paper appeared on the arXivs, the possibility that the Lagrangian in
Eq. (2.2) could induce preheating by the explosive production of scalar fields after inflation was con-
sidered in Ref. [61]. In this case, we can identify the scalar fields of Ref. [61] with the Higgs field °
and this mechanism, if implemented, would be more efficient than the perturbative production that
has been considered so far in this section. First of all, as we wanted the inflaton to stabilize the
Higgs potential we have imposed the condition on its mass m < 10~7Mp;. This means that during
preheating the inflaton potential term As¢* will dominate the mass term $m?¢?, as Ay ~ 1072 and
¢r ~ Mp). In Ref. [61] it was proven that there is no runaway solutions provided that §y < A\g/4, and
preheating imposes the mild condition 26, > (100 m/¢E)2, always satisfied as 100m/¢p < 107°. Still
in the rest of the paper we will be agnostic about the (p)reheating mechanism and will consider the
reheating temperature Ty, as a free parameter.

19The relation between the parameters g3 and gy in Ref. [61] and our parameters can be written as

¢ Ao¢Z
Q3:\/25xf, ax = QE,

m
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6 Baryogenesis

Using the helical gauge fields produced at the end of inflation, and assuming that their corresponding
helicity remains after reheating (a hypothesis that will be self-consistently checked a posteriori, see
Sec. 7.1), until the EWPT (which we assume to be the SM crossover), we can compute the conversion
of the helicity into the (B + L) asymmetry, and therefore the baryon asymmetry of the Universe
(BAU).

At a temperature around the electroweak scale, Tgw =~ 160 GeV, the Higgs VEV departs from zero
and smoothly transitions to the SM VEV at T' = 0, v = 246 GeV, making the off-diagonal elements of
the gauge bosons mass matrix gradually compete with the thermal mass for W;:’ on the diagonal, that
decreases with decreasing temperature. This results in a phase transition controlled by the EW angle
Ow whose temperature dependence is subject to significant uncertainties [8, 9]. Following Refs. [20, 21]
we define the parameter fy,,, which encodes all the details of the EW transition and its uncertainties,

as
dbw

dlnT

, 5.6-107% < fo, S0.32. (6.1)
T=135 GeV

fow = —sin(20w)

This gives rise to a source term for the (B + L) asymmetry, while the electroweak sphalerons are still
in equilibrium for 7' 2 130 GeV. In Ref. [18], it was shown in detail how the source and washout terms
balance each other around an equilibrium value of the baryon asymmetry around T' = 135 GeV, which
is finally given by

3
_ W 3% Hg 2 T _
~ 12 ~ 11
ne =4 107 Jow g (1013 GeV> (Tiﬁs =910 (6.2)

where we have imposed the observed value [62] in the right-hand side.
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Figure 7: The baryogenesis region. In the shading region the value of np satisfies Eq. (6.2). Left panel:
Schwinger mazximal estimate. Right panel: Schwinger equilibrium estimate.

In Fig. 7 we show—in the plane (fy, Tyn/T22), for both bounds on the allowed g range, Eq. (3.12),
and for both Schwinger estimates for the magnetic fields, i.e., maximal (left panel) and equilibrium
(right panel) estimates—the region where the value of np satisfies Eq. (6.2) taking into account the
range in Eq. (6.1) for the quantity fp,, . As we can see from both panels, together with the range
(3.12) on the g parameter where inflationary conditions in Ref. [46] are satisfied, there is an absolute
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upper bound on the parameter f, as fy < 0.25 Mp; for both Schwinger estimates, corresponding to the
reference (instant) reheating temperature, where the baryogenesis conditions are met. Moreover, for
the highest reheating temperature we can get from our model of inflation, Ty, ~ 1072 TilS| the bound
lowers to fs < 0.19 (0.17) Mp; for the maximal (equilibrium) Schwinger estimate. Putting together
the lower bounds from (4.54), and the requirement that Ty, /7. > 1075, one gets the global ranges

1.9-107% < fy/Mp < 0.19 (Maximal estimate),

~ 6.3
7.2:107% < fy/Mp S 017 (Equilibrium estimate), (6:3)

where baryon asymmetry can be generated consistently with the condition of no backreaction of the
helical gauge fields on the inflationary dynamics.

However, as we will see next, the helical magnetic fields, produced at the end of inflation, interact
after reheating with the thermal plasma and there are a number of constraints that have to be sat-
isfied for the helicity to reach the temperatures where the EWPT takes place. As we will see, these
constraints may reduce the allowed region in the parameters space.

7 Constraints

We have computed, up to now, the baryon asymmetry generated by helical magnetic fields produced
after inflation when their helicity decays into (B + L) asymmetry at the electroweak crossover, and
identified the region of the parameter space (g, fy, Trn) where the observed value of the baryon asym-
metry is reproduced. However, there are a number of constraints that can further narrow the region
of the parameter space where the BAU can really be reproduced by our theory and will be analyzed
in this section.

7.1 Helicity evolution: Magnetohydrodynamics and Reynolds numbers

Helical magnetic fields are produced at the end of inflation, and we assume their comoving quantities
stay constant until reheating, at temperature T;,. However, at reheating a thermal plasma is generated
by the decay of the inflaton into the SM particles and consequently the electroweak symmetry is
restored—by the appearance of thermal masses—until the EWPT. Hence the helicity in photons 57
gets transformed into helicity in hypercharge gauge fields 443, as sketched at the beginning of Sec. 4,
see Eq. (4.5). The latter then interacts with the thermal plasma which, in turn, backreacts on the
gauge fields.

This system can be described by the so-called MHD equations [53, 63, 64], and has been studied
for the case at hand in Ref. [21]. In a nutshell, the physical quantities of interest (amplitudes, en-
ergy densities, correlation length and helicity) do not scale adiabatically in such an environment, or
equivalently their comoving quantities are not constant. Therefore there can be a magnetic diffusion
effect leading to the decay of the helicity. If, on the other hand, the magnetic induction is the leading
effect, then the helicity can be conserved until the EWPT and the baryogenesis mechanism can take
place. This effect is measured by the magnetic Reynolds number R,,, and we will see that it is enough
to require R,, > 1 at reheating for the helicity to be conserved until the EW crossover. Hence, in
this section we will study how this constraint affects the region of the parameter space that yields the
BAU.

The magnetic Reynolds number is defined as the ratio of the magnetic induction term over the
magnetic diffusion term of the corresponding MHD equation. It can be written as

Rm = 01}63}/7 (71)
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where 0 = ¢, T5/(ay log(ay!)) is the conductivity of the thermal plasma, with ¢, ~ 4.5, and

. 1
. TlnS 3
o~ 0.8 T (T‘; > (7.2)

is the typical (comoving) temperature of the plasma, where we have used Eq. (5.6) with ag = 1.

In addition, the typical bulk velocity of the plasma v can be estimated from the MHD Navier-
Stokes equation for the velocity field. The general solution should be computed numerically, but for
asymptotic cases, when one term clearly dominates over the others in the equation, we can sketch some
approximations. To do so, like in the magnetic case, we can compute the electric Reynolds number

Re, given by

R, = Vv (7.3)

v

where v = ¢, /(a} log(a;l)Tgl) is the kinematic viscosity, with ¢, ~ 0.01. If R, > 1, then there is an
equipartition between the kinetic energy in the plasma and the magnetic energy. In the opposite case,
where R, < 1, the kinetic energy and velocity are smaller than the magnetic energy. Relying, in this
way, on the value of R., we can compute all quantities in these two separate cases:

e Viscous regime: R, <1 < Ry,
o Turbulent regime: 1 < R, < Ry .

We omit the other cases, where R,, < 1, since we will not be interested in them.
In summary, the evolution of these two scaling regimes with respect to conformal time 7 behave
as [20, 65]

Re<1: By x 177, lp, x T, v ~{p, B/ (vp) x 7°, (7.4a)
Re>1: By x 7735, (g, x T3, wv~By/J/pxT 3, (7.4b)
where
T\ ° 2 772
p=~04p, 7. ) px =~ 3Mp Hg, (7.5)

is the plasma energy density. Inserting the latter relations for v in (7.1) for both cases, we can estimate
the magnetic Reynolds number at reheating as [21]

2
e PBy R Hg T \?
For R"<1 = R ~59.107° Y . , 7.6
or e m HZ  \108Gev ) \ T2 (7.6a)
_1 /PBy !B Hg H T 5
For R">1 = R =x~1.1-107"! Y oY . 7.6b
oF e m Hy 108Gev ) \Tips (7.6b)

where the magnetic energy density is roughly given by pp, ~ B% /2. From (7.4), using (7.1) and (7.3),
we see that in both regimes both Reynolds numbers grow with time according to the same scaling
relations:

Re<1: Ry o< T, Re < T, (7.7a)
Re>1: R X T3, Re T3 . (7.7b)

Hence, once the requirement R'" > 1 is reached, the magnetic Reynolds number remains greater
than one, as long as there is a plasma filling the Universe. The conservation of helicity is due to an
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inverse cascade in which the helicity is transferred from smaller to larger scales, reflected in the growth
of {p, . Therefore, to guarantee the survival of the comoving helicity at the EWPT, it is enough to
compute both Reynolds numbers at the end of inflation, allowing us to ignore the evolution of the
plasma at later times.

Now, all we have to know is which regime (viscous or turbulent) does apply at the reheating
temperature. This is given by the value of R, at that time. Inserting the above expressions for v,
Egs. (7.4a) and (7.4b), in the definition of R., Eq. (7.3), we obtain at reheating [21]

2 2
_o PBy (B Hg Tin \°®
For RP<1 = RP=x25.107° Y . 7.8a
¢ ¢ H?, 1018 GeV ) \Ths ) 7 (7.82)
1 1
rh rh -5 VPBy EBY Hp ? T \®
For RI">1 = RPx54.107°Y . (1013 oV i ) (7.8b)
r
g=0.05 g=0.05
10° 101
0%
Th _ 10-2 %
— 10 &
s %:10-6 oS
10710
001 005 0.1 0.15 02 0.25 001 005 0.1 0.15 0.2 0.25
fo [MpI] fo (Ml
g=0.05 g=0.05
100 P— = 10°
1 — N =) 1
\\\\ (.3
102} . & 10
10} RS 107" \
16‘3 16*2 1072 1072 107
fo [Mp1] fo IMp]

Figure 8: Left panels: Plot of the electric (solid lines) and magnetic (dashed lines) Reynolds number at
reheating as o function of fs for different values of To,/THS = 1072 (blue color) and 107¢ (orange color).
The ranges of successful baryogenesis for the different values of Tw, /TR are displayed here by the vertical
bands, whose colors match the corresponding lines color. We see that the production of the helical magnetic
fields at reheating always occurs for Re < 1 but not necessarily for R., > 1, in the correct baryogenesis
region. The latter condition must nevertheless be met for successful baryogenesis, which reduces the parameter
window mainly (but not only) for high reheating temperatures. Right panels: Plot of the Tcpr temperature. In
the baryogenesis regions we always have Tcpr < 10° GeV. Top panels correspond to the Schwinger mazimal

estimate, and bottom panels to the equilibrium estimate.
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In our scenario it turns out that RX® < 1 for the range of parameters that provides a successful
baryogenesis, as displayed in the left panels of Fig. 8 (solid lines) for the two extreme values of the
parameter Ty, /T2 = 1072 (blue color) and 1075 (orange color). Thus, the plasma starts in the
viscous regime and the magnetic Reynolds number should be computed using Eq. (7.6a). Plots of
R™ | as a function of f#, are shown in the left panels of Fig. 8 (dashed lines) for the same values of the
parameter Ty, /T and the same color codes. We consider the Schwinger maximal (top left panel)
and equilibrium (bottom left panel) estimates for the gauge fields. In all cases we exhibit the regions
allowed by the baryogenesis constraint, which depend on the corresponding values of the parameter
Tin/Tins| using the same color code than for the different lines (both for RX" and RI2) in the plot.
Then even if R™" < 1, at some later time 7 the plasma will eventually fall into the turbulent regime
where R, > 1, with evolution given by Eq. (7.6b).

As we can see from the dashed lines in the left panel plots of Fig. 8 the condition R > 1 is not
satisfied everywhere in the region allowed by baryogenesis. Therefore, as summarized in Fig. 9, the
condition for magnetic induction dominance, R,, > 1, constrains the available region (6.3) from the
baryogenesis window. Of course, once the condition RI! > 1 is satisfied (at the reheating temperature),
its value increases with time, see Eq. (7.7b), which guarantees that the condition will be fulfilled until
the EWPT.

7.2 The chiral plasma instability

When the symmetric phachiral plasma instabilityse is restored during reheating both, the asymmetries
in the particle/antiparticle number densities, and the hypercharge helicity, are generated via the
Schwinger effect, as described in Sec. 4.2, and via the chiral anomaly, as stated at the beginning
of Sec. 4, see Eq. (4.4). In the absence of any other process, the newly generated asymmetry will
relax into the same amount of the newly generated helicity but with opposite sign, as the gauge fields
configuration has lower energy density than the fermion states configuration, resulting in a cancellation
of the total helicity and hence no baryogenesis at the EWPT. This phenomenon is called the chiral
plasma instability (CPI) [66-72], and has to be avoided for a successful baryogenesis.

CPI can be avoided if we require that the CPI timescale is long enough to allow all fermionic states
to come into chemical equilibrium (so that sphalerons can erase their corresponding asymmetries in
particle number densities) before CPI can happen. The estimated temperature at which CPI takes

place is [21]
S He \° [ Twm\’
Tepr/GeV 41077 28 (2 _ o) 7.9
cp1/Ge H, <1013GeV) (T;gs) (79)

The last fermion species to enter chemical equilibrium, through its Yukawa coupling with the left-
handed electron ey, is the right-handed electron, er, and it happens at the temperature T' ~ 10° GeV.
Indeed, when the fermionic states are in chemical equilibrium, their asymmetry is washed out through
weak sphalerons and Yukawa couplings. Therefore the constraint Tcpr < 10° GeV guarantees that the
CPI cannot occur before the smallest Yukawa coupling reaches equilibrium and all particle number
density asymmetries are erased, preventing thus the cancellation of the helicity generated at the reheat
temperature.

In the right panels of Fig. 8 we show the plot of Tcpr as a function of f, for both, Schwinger
maximal (top panel) and equilibrium (bottom panel), estimates and values of Ty, /70 = 1072 (blue
color) and 107% (orange color). In each plot, the region between the vertical bands is that selected by
the baryogenesis mechanism for the corresponding value of T}y, / Triflls with the same color code. As we
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can see from Fig. 8, the range of values for Tcpr in the corresponding baryogenesis region is
10 GeV > Tgpr > 1073 GeV (7.10)

which then prevents the cancellation of any previously generated helicity. So, as we will explicitly
exhibit in Fig. 9, this constraint is satisfied in all the region provided by the baryogenesis condition.

7.3 Primordial non-Gaussianity

Inflation predicts that the statistical distribution of primordial fluctuations is nearly Gaussian. Measur-
ing deviations from a Gaussian distribution, i.e., non-Gaussian correlations in primordial fluctuations,
is a powerful test of inflation. While the two-point function for Jx defines the power spectrum, the
three-point correlation function encodes departures from Gaussianity [73, 74]. Helical gauge fields
yield a new source of cosmological perturbations for the inflaton field dx as

02 o V2 4
(at?+3Hat_a2) 6X_—a4f¢E-B. (7.11)

The magnitude of the three-point function is conventionally quantified using the parameters fny,.

non-Gaussian effects from helical gauge fields are maximal when the three modes have comparable
wavelength, the so-called equilateral form, which in the backreactionless case where gauge fields are
given by Eq. (4.23) is given by [75, 76]

equil _16 667"501\/113
eauil ~ 4710 — (7.12)
§emB
where Eomp = &(x«). However, we have seen that the Schwinger effect significantly reduces the

magnitude of the RHS of Eq. (7.11), for a fixed value of fg, and that we can mimic its effect by
the replacement of the effective parameters {4 and {max, for the equilibrium and maximal estimates
respectively, in the backreactionless expression for (E - B), Eq. (4.45). Hence, in the same way as
we did at the beginning of Sec. 5, we identify the primordial non-Gaussianity constraint with {.q and
&max before translating them back to f, by the use of Eqgs. (4.42) and (5.2).
Current observational bounds on non-Gaussianity of the cosmic microwave background (CMB)
anisotropies lead to [77]
il — 26 4 47 (7.13)

which translate, from Eq. (7.12) into {cmp S 2.54 (95% C.L.). Using now the scaling relation

geq/max _ €(XE) _ 1
fovs \/ ) \/ ) (7.14)

where &q/max = Eeq/max(XE) is the value of the effective £ parameter at the end of inflation in the

equilibrium /maximal Schwinger estimate, one can compute corresponding upper bounds on &eq/max;
at the end of inflation. In fact, for the lower value of g allowed by the cosmological observables
< 47 while for the upper bound, g ~ 0.05, one

~

in our inflation model, g ~ 0.01, one gets &cq/max
gets Seq/max S 91. However those values of {.q/max are never reached in our model, as they would
correspond to negligibly small values of f4 which are never met.

In conclusion, in the presence of the Schwinger effect the produced gauge fields are never strong
enough to trigger non-Gaussianity in the distribution of the primordial inflaton fluctuations, in good
agreement with present observations. In other words the model prediction in the presence of the

fermionic Schwinger currents is fyj = =~ 0, and so we will not consider further this constraint.
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7.4 The baryon isocurvature perturbation

Many models of baryogenesis using (hyper)magnetic fields try to simultaneously explain the origin
of the large scale, intergalactic magnetic fields (IMF) measured today by the Fermi satellite [78-80].
They all face a balance problem when addressing this issue.

While maximally helical fields can indeed generate the BAU without explaining the observed IMF,
they would suffer from baryon overproduction should they try to accommodate IMF. In the case of a
mixture of helical and nonhelical fields, the baryogenesis is less effective so that stronger hypermagnetic
fields are needed to explain the present BAU, and hence they could meet the lower bound from the
IMF observations.

However, it has been recently shown that such models are inconsistent with the baryon isocurvature
perturbations, that are constrained by the observations of cosmic microwave background on large
scales [81]. In particular, it was pointed out that the baryon isocurvature perturbations at a scale
larger than the neutron diffusion scale at the Big Bang Nuclesynthesis (BBN) epoch is constrained by
the deuterium overproduction due to the second-order effect [82]. This translates into an upper bound
on the volume average of the baryon isocurvature perturbation, as

S%gBeN < 0.016 (20). (7.15)

It was shown that, regardless of their helicity properties, hypermagnetic fields with too large
strength and coherence length are not allowed before the EWPT [81]. Still baryogenesis from the
hypermagnetic helicity decay can be responsible for the present BAU, but additional magnetogenesis,
or an unknown mechanism of the magnetic field amplification after the EWPT, is needed to fit the
IMF observations. However the constraint becomes more severe for less helical hypermagnetic fields.
In our model the magnetic field produced at the end of inflation is maximally helical and we do not
cope with the IMF observations. Hence we should be safe from this constraint. Nevertheless, we will
deserve to App. B the detailed calculation where it is proven that the bound (7.15) is indeed widely
satisfied in our model, so that this constraint does not need to be taken into account any further.

7.5 Summary of constraints

To close this section, we would like to compile all our results about baryogenesis into a single plot,
see Fig. 9. Here, we have displayed in the plane (fg,Tin/ Tins) all the relevant constraints described
in this section. In particular:

e The generated baryon asymmetry at the EW crossover, given by Eq. (6.2), should be given by
the observational value
np=~9-107", (7.16)

where the broadness of the prediction band is associated to the uncertainty in the determination
of the parameter fp,, .

e The magnetic diffusion given by MHD, leading to the helicity decay should be smaller than the
magnetic induction, to allow helicity to be conserved until the electroweak phase transition. This
happens when the magnetic Reynolds number at reheating given by Eq. (7.6a) is

R >, (7.17)

e As the symmetric phase is restored during reheating, an asymmetry via chiral anomaly is gen-
erated and decays into a helicity with opposite sign, resulting into a cancellation of the total
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helicity with no baryogenesis at the EWPT. This phenomenon, called chiral plasma instability,
can be avoided if the temperature at which it is produced Tcpr, given by Eq. (7.9), is smaller than
the temperature at which all fermion species enter chemical equilibrium through their Yukawa
couplings, and in particular the last species to reach chemical equilibrium, eg. This condition is
satisfied provided that

Tepr < 10° GeV. (7.18)

We shall choose the overlapping region as that meeting all the constraints. We removed the
dependence on g as the results are not sensitive to it, preferring to choose the value g = 0.05 in the
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Figure 9: Summary of constraints on baryogenesis for g = 0.05 (the dependence on g is tiny) in the plane
(fo/Mp1, Ten/TiES).  The considered constraints are on np (blue area), on the magnetic Reynolds number
(orange area) and on chiral plasma instability (green area). We seek for the overlapping region. On the left
side of each plot, the black band displays the region where the backreaction of gauge fields on the inflaton can
no longer be neglected. Left panel: Schwinger mazimal estimate. Right panel: Schwinger equilibrium estimate.

allowed range from the inflation model.

From Fig. 9 we can conclude that the CPI constraint is satisfied in all the region where the
constraint of having enough baryon asymmetry ng holds. On the other hand the constraint from the
magnetic Reynolds number is effective for the case of the Schwinger maximal estimate, by cutting off
the larger available values of the parameter f, for every value of Tiy,. However, for the Schwinger
equilibrium estimate the magnetic Reynolds number constraint is effective for the larger values of
Tin/Tins, by cutting off the larger values of the parameter f,, while for the smaller values of Ty, in
particular for Thy, < 5-1074 T it entirely covers the region satisfied by the constraint on np. Finally,
given the range m € [10%,5 - 1019 GeV, for the corresponding range on Ty, /TS € [1072,107°], we
get the available (approximated) regions, for g € [0.01,0.05],

fo/Mpy € [0.14,0.17] for Ty /TiRs =102

) ) . (Maximal estimate),
fo/Mp €1.9-1072,2.8-107%]  for Ty /Tip®=10"°

fo/Mpi € [4.1-1072,0.13] for T /T = 1072 (Equilibri timate)
. ulibrium estimate).
fo/Mpy € [72-107%,1.1-107%]  for Ty /Tip5=10"° d

Let us also mention that the condition (4.46) on the nonbackreaction of the gauge fields on the
inflaton, displayed by the black bands, becomes a constraint only at low temperature, Ty, /T1S <

~

38



2-107° (3-1079) for the Schwinger maximal (equilibrium) estimate. Finally, the condition for the
nonbackreaction of fermion currents on the gauge fields, which corresponds to fg 2 0.19 Mpy, is outside
the region of validity of the baryogenesis region, which shows that the Schwinger effect can never be
neglected in the baryogenesis analysis.

8 Some phenomenological considerations

In some chaotic inflation models, the mass of the inflaton is constrainted to a high value because of
the observational constraint on the scalar perturbations amplitude. In our model, though, we have
two terms in the inflaton potential: while inflation is controlled by the quartic term, dominant at
Planckian scales, the quadratic one controls reheating and low energy physics. Thus the value of the
inflaton mass is decoupled from the inflationary dynamics.

In previous sections, we have considered on the one hand the upper value of the inflaton mass as
m < Qp, small enough to solve the instability problem of the Higgs potential, and on the other hand we
have roughly imposed m 2 1 TeV on phenomenological grounds for the theory to not being excluded
by present experimental data. In fact, an inflaton mass at the TeV scale could have implications for
low energy physics. Therefore, in this section we will make some considerations from the point of view
of collider physics and the Standard Model in the presence of the inflaton field with the interactions
appearing in the Lagrangian (2.2).

The naturalness problem

First of all, our theory has two hierarchically separated scales, the inflaton mass m and the Higgs
mass my, = 125.25 GeV, with m > my. As such, the theory should exhibit a hierarchy problem,
which in general implies an unnatural fine-tuning of the parameters. In the absence of any symmetry
protecting the EW scale from the high-scale UV physics, one has either to accept the fine-tuning (as
it is customary done in the Standard Model) or to lower the value of the mass m as much as possible.
More quantitatively, the coupling in the Lagrangian ud|H|?> = v/25xm|H|? generates a contribution to
the Higgs mass term p7 through the one-loop radiative corrections. In the limit g — 0 (i.e. y — 0),
there is an enhanced Zs symmetry ¢ — —¢ indicating that any value of u, as small as it can be, is
natural in the sense of 't Hooft, since in this limit the symmetry is recovered. Moreover, this coupling
induces a correction to the parameter ,u,zl in the Lagrangian as [83]

5)\ m
Api ~ ——-m? log — (8.1)
872 m3
Naturalness would then require |Ap? | < u? = m? /2, which translates into the bound
m < 1.2 TeV, (8.2)

where we have considered the typical value of the coupling §y ~ 0.1. This leads to the exciting
possibility of having an inflaton with an O(TeV) mass, which does not spoil naturalness, solve the
problem of the instability of the EW minimum, and has phenomenological implications for present
and future colliders.

The Higgs-inflaton mixing
Near the vacuum, the potential for the Higgs and ¢ fields is given by

1
V(g H) = —/265m ¢|H|* + §m2¢2 — M| + ol H|*. (8.3)
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The vacuum is defined as the solution to the minimum equations 9V/9¢ = 9V /Oh = 0, which provides
(h) = v =246 GeV and (¢) = vy, with

5)\ [
2 2

A AT 8.4
K, v, Vg 2 ) ( )

where the parameters d) and A were defined in Eqgs. (2.11) and (2.17), respectively.
In the presence of the parameter ¢y, there is a mixing between the Higgs h and ¢ fields given by
the squared mass matrix at the minimum

M2:(2()\+5,\)v2 - 25,\mv>

—/20) mv m?2

This matrix is diagonalized by an orthogonal rotation with angle o 20 as

o sa) g (o —sa) (0O (8.6)
—S4 Ca Sa Ca 0 m% ’ '

such that the mass eigenstates are

h=coh+ 5.0, d=co®—5sh, (8.7)

and the mass eigenvalues are

m: o v? 1 v2
W+(>\+5,\)W:F\/(>\6)\)mz+()\+5x)

o vt
m 2 4 4

(8.8)

In this way the physical mass eigenstate h is associated with the Standard Model Higgs, with a
mass mj, = 125.25 GeV, while  is the physical singlet, and both of them are coupled to the SM fields
through the mixing angle a.

Hence this theory predicts then the existence of a scalar ¢ that decays mainly into the channel
gz~5 — hh with a decay rate

2
1- m—h K= /20xco (1 — 352) + 6542 (N + 5y) (8.9)

v
m

which was responsible for the reheating in Sec. 5. Contour lines of T'(¢ — hh) are exhibited in the
upper left panel of Fig. 10 in the parameter space (m,dy). As we can see, typically the width of the
resonance gg is around a few GeV. As was already stated in Sec. 5, there are also subleading decay
channels into SM particles (X € SM), as <5 — X X, induced by the mixing with the Higgs, with very
suppressed branching fractions

—
>

(8.10)

—
-

as Iy, = 4c, MeV in the SM, T'; ~ ['(¢ — hh) ~ few GeV, so that sal; /Ty < L.

20We are using the notation cq = cosa, sq =sina, to = tana.
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Electroweak precision constraints

The doublet-singlet mixing can affect the electroweak precision observables (EWPO) through changes
in the gauge boson propagators. Explicit expressions for the modified scalar contributions to the W
and Z propagators are given in Refs. [84, 85]. In particular the contribution to the S and T oblique
parameters from the new physics, AS = SN — §SM and AT = TNP — T5M are found to be given by

127

3 §2 1 m2 m? m2 m2
AT~ S o ko ) — (g = my) 8.11
167 S%V [(C%/V m}% — m2Z 8 mQZ m’% — m%V 08 m%,v "M e ( )
and 6 4 2 2 2
2 |Im32 —9ms +3ms + 5+ 12m2 log(ms
AS = Sa l h h h 7, log (7 ) _ (mﬁ — mé)l (8.12)

(2 —1)3

where we are defining masses in units of mz, i.e. hx =mx/mz.
The model predictions, Egs. (8.11) and (8.12), must be compared with the experimental values,
given by [62]
AT =0.05+0.06, AS=0.0=+0.07 (8.13)

and 92% correlation between the S and T parameters. This gives rise to a Ax?(m, ) distribution,
which defines the allowed region in the parameter space (m,dy), exhibited in all panels of Fig. 10.
In particular we display, in orange shading, the region in the parameter space (m,d,) for which
Ax?(m, 8y) < 5.99, that corresponds to the bound at 95% C.L. As we can see, for large values of the
parameter 0y the lower bound on m can be near the TeV scale.

LHC constraints

In this section we will consider several constraints arising from LHC physics where we are led to the
exciting possibility to explore the inflaton sector at present and future high energy colliders and, in
particular, at the LHC.

- The Higgs signal strength

From Eq. (8.7) we see that the coupling of the mass eigenstate h to the SM particles, is suppressed,
with respect to the coupling of the SM Higgs h, by the factor c¢,. Given that, the signal strength

modifier rlf for a specific process i — h — f, is given by

o; Bf
o _oB e

~c (8.14)
(01)sm B

where o; is the production cross section for the initial state into h, and B its branching fraction on
the final state. For the last equality we have considered that the production cross section is suppressed
by ¢ while the branching fraction is approximately equal to the SM one. Experimental data from
ATLAS [86] and CMS [87] provide the global values

r=1.11705 (ATLAS), r=117+0.1 (CMS) (8.15)

which are consistent with a value of » = 1 (the SM prediction) with ~ 10% error, thus providing a

lower bound on ¢, as
2 >0.9. (8.16)
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Figure 10: Contour lines in the plane (m/TeV,85) of the decay rate T'(¢p — hh)/GeV (top left panel), the
quartic parameter at the weak scale A\(mw) (top right panel) as well as the Higgs trilinear (bottom left panel)
and quartic (bottom right panel) couplings normalized to the SM values with the regions of validity defined by
the signal strength modifier (8.16) (blue) and the constraints from the electroweak parameters (8.13) (orange)
superimposed. One should read the contour lines in black that pass through the overlapping region, and hence
that satisfy both constraints. As discussed in Sec. 2.2, for m ~ O(TeV), to solve the stability problem and
after imposing that the theory remains in the perturbative regime up to the high scale, the parameter dx is
constrained to be in the region 0.05 < dx < 0.2.

For m >> v the mixing angle is s, ~ v/25\(v/m) < 1 so that the bound (8.16) is easily satisfied.
However for TeV values of m the bound (8.16) translates into a lower bound on the value of m. We
shade in blue, in all panels of Fig. 10, the region in the parameter space (m, dy), where this constraint
is satisfied. In particular we see that, for d, = 0.1, the bound (8.16) is satisfied for m = 0.4 TeV. For
m =~ 1 TeV and &) = 0.1, the mixing is given by ¢2 ~ 0.988, which is not excluded by the actual LHC
data.

- Trilinear and quartic Higgs couplings

As the light state & is to be identified with the SM Higgs, with mass mj, = 125.25 GeV, for any fixed
value of the parameter J) the experimental value of the Higgs mass fixes the value of the quartic
parameter at the weak scale, A\(my/ ), at a different value than in the SM case. In the upper right
panel of Fig. 10 we plot contour lines of A(my ) in the parameter space (m,dy). As we can see
Amw) > Asm(mw ), and only for values of m — oo one recovers the SM value.

Moreover, the mixing of the Higgs with the singlet ¢ modifies, in the broken phase, the trilinear
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A3 and quartic Ay SM couplings. Recent experiments on di-Higgs searches are putting bounds on
these two parameters by looking for possible departures with respect to the SM values ASM = vAgym
and A7 = Asm. In our theory the h-¢ mixing angle a generates such a departure. After going
to the broken phase by means of the shifts qb — (,zS + Vg, h— h+o (where 0 = cq v + Sq vy and
Up = Ca Vg — Sa V), and integrating out the field gzb, which yields the value

b= \/51 3 3(N+6 h? 8.17
¢ = ca ( — 9S8 )+ ( + A)Sacam er"', ( )

one gets the Higgs potential, in the broken phase,
7 L 959 73 1y 5y

where the ellipses are higher order terms, giving rise to powers h" (n > 4) in the potential, and

)
A3 =cdv )\+5,\—ta\/>‘m]7
2 v
M= AN+ A (=t —4st + 4252 + 2)oy (8.19)

02
—64/26 ¢ 54 (c2 — 252 )(/\—|—5)\)——18$264()\—|—5>\) ol

The model can then, in the future, be excluded or confirmed by experimental data on trilinear
(and quartic) Higgs couplings data. Notice that in the limit m > m), the mixing angle behaves as

~ /26\v/m so that \3 =~ )\gM and Ay ~ MM 21 and the decoupling is automatic. We plot
in the bottom panels of Fig. 10 contour lines of the trilinear and quartic couplings, normalized to
the corresponding SM values, as functions of the parameters m and 6. At present, with 89 fb~!
of LHC data, the triple Higgs coupling has been constrained by the ATLAS collaboration to be
A3/ASM = 4.0793 excluding it outside the interval [~3.2,11.9] at 95% C.L. [88], while the CMS
collaboration finds A\3/A\§M = 0.61%2 excluding it outside the interval [~3.3,8.5] at 95% C.L. [89].
Theoretical studies based on the HE-LHC at /s = 27 TeV and 15 ab~! luminosity foresee exploring
the interval range A3 /A\5M € [0.6,1.46] at 68% C.L. [90], while a future 100 TeV hadron collider could
achieve the trilinear coupling measurement within better than 5% accuracy [91], thus potentially
imposing strong constraints on m from the plots in Fig. 10.

- Heavy Higgs production

Finally the state é can be produced at the LHC by the same mechanisms of Higgs production with a
cross section given by
olpp = ¢+ X) =52 o(pp — H+ X) (8.20)

where H is a heavy SM-like Higgs with a mass equal to m. Using the results of inclusive cross sections
for o(pp — H) for the leading mechanism of gluon-gluon fusion (ggf) [92] we plot, in Fig. 11, the cross
section o447(pp — (5) as a function of m for two relevant values of the parameter 0y for m <1 TeV
and a center of mass energy /s = 13 TeV. Given that, as we have explained earlier in this section
B (q~5 — iziz) ~ 1, we can compare these cross sections with the SM cross sections for di-Higgs production
o(pp — hh) given by US%(hh) ~ 33.5 fb [93].

210f course, in the limit m > v, A ~ Agy as exhibited in the top right panel of Fig. 10.
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Figure 11: Plots of cross section o(pp — d;) in fb for relevant values of 6x = 0.05, 0.15. The dots (stars)
are the 95% C.L. upper bound from ATLAS [94] (CMS [95]), that bring the approximate constraint m 2 0.55-
0.7 TeV, depending on the value of dx.

The predicted cross sections in Fig. 11 are compared with the present experimental upper bounds
at 95% C.L. on the production of a scalar field (qg) which decays into two Higgs bosons, from ATLAS
with luminosities 27.5-36.1 fb—! [94] and CMS with luminosity 35.9 fb~! [95], at present LHC center
of mass energies, /s = 13 TeV (see Fig. 11). We conclude from here that the present lower bounds

on the value of m are
m 2 0.55 (0.7) TeV @ 95% C.L., for 6, =0.05 (0.15), (8.21)

while in the future much stronger bounds could be achieved.

9 Conclusion

In this paper, we have explored the possibility of modifying the Higgs inflation theory by means of
the introduction of an extra scalar field ¢, with the Ricci coupling (g/2)$?R, and an interaction term
1 ®h? to solve the stability problem of the electroweak vacuum. Both fields, ¢ and h, participate in
the dynamics of inflation through the two-field potential V' (¢, h), which has the shape of a valley in
which they are related by simple analytical expressions so that we can express one field in term of the
other. This allows us to define the true inflaton field y as the one following the valley with canonical
kinetic term although we kept the description in terms of ¢ for mathematical convenience.

A key point is that we have considered for the ¢ field a quartic coupling A4 and a mass m, such
that inflation is driven by the quartic coupling term, while reheating is driven by the mass term.
The Lagrangian coupling 0y = u?/2m? triggers a positive contribution to the 8 function of the Higgs
quartic coupling such that, if the mass scale m is in the range 1 TeV < m < Qr, where Q7 ~ 10! GeV
is the instability scale of the electroweak potential, the instability problem of the electroweak vacuum
can be solved just by roughly imposing the mild constraint 6, < O(1).

We find that the beginning of inflation ¢ = ¢, (V. = 60) is mainly driven by the scalar field ¢,
and since the amplitude of density perturbations is fixed by the ¢ quartic coupling (and not by the
Higgs quartic coupling), the main problem of Higgs inflation is easily solved with g < 1. On the other
hand, the end of inflation (N =~ 0), where the hypermagnetic helicity will be produced, is equally

44



driven by both the scalar ¢ and the Higgs h quartic terms, so that the role played by the Higgs field is
relevant. Both regimes are separated, for g ~ 0.01 (0.05), by a critical value of the field ¢./Mp; ~ 10
(4), which corresponds to the critical number of e-folds N, ~ 12 (2). After imposing the Planck and
BICEP /Keck conditions on the slow roll parameters and the unitarity condition ¢, < Mp/g (see
however footnote 1 for a nuance) we obtain the allowed interval on the parameter g, 0.01 < g < 0.05,
which translates into the prediction for the cosmological observables in agreement with observations,
and with a Hubble parameter almost saturating the Planck upper bound H°" < 6 -10'3 GeV:

[ 0.965 < ns < 0.967, 0.047 > r > 0.012, 5.5-10'% GeV > H(¢.) = 2.8-10'3 GeV

During the last e-folds of inflation we generate maximally helical magnetic fields that will source the
BAU via the (B+ L) anomaly of the SM during the EWPT [10-21]. This results from the introduction
of a coupling of the Chern-Simons term of the hypercharge gauge group with the inflaton, as QSYW}N/'W,
with coupling strength Mp;/fs, that breaks the CP symmetry. This effective CP breaking operator can
be easily obtained from a UV completion with a CP-violating Yukawa coupling of ¢ to a hypercharged
vector like heavy fermion, as it is shown in App. A. This source of CP-violation is needed by the
Sakharov conditions [1], the two other conditions being provided by the chiral anomaly of the SM,
which violates the baryon number, and the helical magnetic fields conversion to baryon asymmetry at
the EWPT, which happens during EW sphalerons freeze out, when they go out of thermal equilibrium.

We have undertaken both backreation processes, namely the one of the gauge fields on the inflaton,
and the one of the thermally produced chiral fermions on the gauge fields, known as the Schwinger
effect. The latter significantly reduces the amount of electromagnetic energy and helicity generated
at the end of inflation as, for fo/Mp1 < 0.19, we have to trade their exponential behavior with two
polynomial cases: the maximal and the equilibrium estimates. This raises the effective coupling of the
CP-violating term Mp)/ fy, thus compensating its lowest overall value since electromagnetic fields are
simultaneously weakened.

As for the former issue, we have found a critical value of the coupling strength of ¢ to gauge
bosons in the CP-violating operator, fg, such that for f, b [g, the backreaction of the gauge field
on the inflaton can be neglected. In particular we find f§/Mp) ~ 0.02 (7 - 10~%) for the Schwinger
maximal (equilibrium) estimate. On the contrary, for f, < [§, the field ¢ is strongly coupled to the
gauge fields, the backreaction of the latter on the inflaton equations of motion cannot be neglected,
and the preheating of the Universe proceeds by the nonperturbative production of gauge fields. In this
paper we have concentrated in the case fy 2 [, where the field ¢ is weakly coupled to the gauge fields,
the backreaction of gauge fields on the inflaton dynamics can be neglected and the Universe reheating
proceeds by the perturbative decay of the inflaton into SM particles. Besides, we have considered the
constraints from non-Gaussianity of primordial fluctuations, and baryon isocurvature perturbations,
and find that they have no influence on our model.

Concerning the value of the baryon asymmetry of the Universe generated at the EW crossover,
np depends on the value of the reheat temperature Ty, and in particular on its ratio with respect
to the reference instant reheat temperature Ty, /705 (in our model T ~ 2 - 10'° GeV). As we are
imposing no backreaction of gauge fields on the inflaton dynamics, and reheating should proceed by
perturbative inflaton decays, the value of Ty, /Tri}ﬁlS depends on the inflaton decay width I'y. In our
model the inflaton mainly decays through the channel x — hh, with a width which increases with the
value of the inflaton mass m and ranges in the interval 1 GeV < Ty < 109 GeV, which corresponds to
1078 < T /T <1072, for 1 TeV Sm <5+ 1019 GeV.
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Moreover, as helicity is converted into baryon asymmetry at the EWPT, while it was produced at
the end of inflation, it has to survive MHD processes between these two times. By imposing that the
magnetic Reynolds number is bigger than unity, and that the chiral plasma instability effect does not
washout the produced gauge fields, the available parameter window is reduced by an amount which
depends on the value of the reheating temperature. We have shown that all these constraints are
satisfied for a large range of the parameters f, and Ty, very insensitive to the value of the parameter
g, inside its allowed range from cosmological observables:

fo/Mp1 € [0.14,0.17] for Tw/Ti" =10""

_2 _2 . 6 (Maximal estimate)
fo/Mp1 € [1.9-107%,2.8-107%] for Ton/T'R* = 10

fo/Mp1 € [4.1-1072,0.13] for Tw/Ti® =102

4 L i 6 (Equilibrium estimate)
fo/Mp1 € [7.2-107%,1.1-1077] for Twm/TH° =10

The complete available parameter region is summarized in Fig. 9.

Notice that the fact that the inflaton potential has both quadratic and quartic terms allows
to decouple the mass m from the actual value of the amplitude of density perturbations, which in
the absence of a quartic term would fix its value to m ~ 102 GeV (or smaller at the price of the
introduction of a curvaton scalar), allowing any value m < Q; in order to stabilize the electroweak
vacuum. This is achieved by the contribution, to the Higgs quartic coupling 8 function, provided by the
coupling 6y in the Lagrangian term, v/25, m ¢ |H|>. We have found for the parameter &y the absolute
bounds, ) 2 0.05 in order to solve the stability problem, and §) < 0.35 to not spoil the perturbativity
of the theory, although its particular range depends on the actual value of m. Nevertheless, values
m > my, create a naturalness/fine-tuning problem, essentially given by the fact that there appears
a loop correction to the Higgs squared mass term p3. It translates into a fine-tuning of the order of
472 /(6xp? log p?) where p = m/my,. While for d) ~ 0.1 and m = 10'° GeV the fine tuning is ~ 1074
(similar to the SM fine-tuning), and for m = 10 TeV it is ~ 0.01, there is essentially no fine-tuning
for values m < 1 TeV. This leads to the exciting possibility of a light inflaton which could possibly be
detected by direct measurements at LHC and/or future colliders.

The key point here was that the Lagrangian term /25y m ¢ |H|? creates a ¢-h mixing, sizable
for low values of the mass m, leading to an interesting phenomenology for high energy colliders. In
fact all the collider phenomenology is triggered by the mixing angle a. The mass eigenstates (45, i~z),
where h should be identified with the experimentally detected Higgs with a mass equal to 125.25
GeV, are related to the weak states (¢, h) by a rotation with angle a.. This fact triggers that A(mw )
be different from Agy(my) ~ 0.13, which leads to predictions on the ratios Az/A5M and Ay /A$M
which could be probed by future experiments, as HE-LHC and/or a 100 TeV collider. The mixing
is already bounded by present ATLAS and CMS results on the SM Higgs signal strengths, which
provides the bound m 2 0.3 (0.45) TeV for 6, = 0.05 (0.15). It also generates a contribution to the
oblique electroweak observables, and yields for e.g. 05 = 0.15 the lower bound m 2 0.5 TeV. Finally,
the mixing is responsible for the inflaton production and decay. In particular ¢ — hh, triggered by
the coupling ¢y, is the main decay channel, while other decay channels into the SM particles, via
the mixing s, are subleading. The inflaton ¢~> can also be produced mainly by the gluon-gluon fusion
mechanism through its Higgs mixing. Present data from ATLAS and CMS translate into lower bounds
m 2 0.55 (0.7) TeV at 95% C.L. for §, = 0.05 (0.15).
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There are a number of research lines which could be safely explored in the future. First of all,
we have considered models of inflation based on the Ricci coupling ¢?R, and a ¢ dependent potential
dominated, for large values of ¢, by the quartic coupling. This kind of theories, when considered
in the Einstein frame, give naturally rise, for large values of ¢, to flat potentials, appropriate for
inflation, without invoking any particular symmetry. It is clear that similar results could be obtained
for theories with a Ricci coupling as F(¢)R, and a Jordan frame potential behaving, for large values
of ¢, as U(¢) ~ F?(¢). In particular it would be interesting to see what kind of theories would
produce enough baryon asymmetry in the presence of a period of preheating, by the nonperturbative
production of gauge fields. A very recent work [51] has already explored a general class of inflationary
potentials and shown consistency with cosmological observables. In particular our model, labeled
therein by (n,p) = (2,4), give results for the cosmological observables, which are in good agreement
with this paper. These general theories are therefore good candidates to generate also the observed
value of the BAU, provided they contain the inflaton coupling to the Chern-Simons term. In addition,
as far as we are aware of, there are no in-depth studies in the literature of preheating mechanisms
taking into account the Schwinger effect, which has led us to make some shortcuts in this article.
Therefore we leave for future work a more rigorous study of nonperturbative production of gauge
fields at preheating, leading to the BAU, that takes this effect into account. Lastly, at the level
of particle physics it remains as an exciting playground the possibility of detecting the inflaton at
present or future colliders, or that future experimental results on the production of heavy scalars,
coupled to the SM fields, or on the measurements of the trilinear and quartic Higgs couplings, by
di-Higgs production, could start cornering the present theory and put stronger bounds on the mass of
the inflaton and its mixing with the SM Higgs.
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A UV completion for CP-violation

C’P-violation in our model is driven by the effective dimension-five operator

Sepr = — / iz 2 Y, Y™ (A1)
4fp

where Y#" is the hypercharge field strength.
A simple UV completion generating such effective operator can be a massive (with mass M)
hypercharged vectorlike fermion 3 with a CP-violating Yukawa coupling to ¢ as

L= —KZL(M + |/\¢|6wk (/5)’(/}1{ + h.c. = —|/\¢‘¢ [COS 9)\1L’¢ + sin 9)\152"}/51/)} (AQ)

where CP-violation is induced by the angle 6. The CP-even ¢Y,,,,Y*", and CP-odd quWf/‘“’, cou-
plings are generated by loop diagrams where the fermion v propagates in the loop and emits two gauge
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bosons Y),, via the cos 6 and sin 0y couplings in Eq. (A.2), respectively. The corresponding Feynman
diagrams are finite and thus one gets fy o< M. For maximal CP-violation, i.e. 5 = £m/2, only the
coupling ¢Y,,,Y'*" is generated such that

Molg3 = -
M ~ %ﬁﬁ ~ 810" GeV |\y| (fs/Mp1) . (A.3)

- Stability of the inflationary potential

The UV completion here proposed could affect the stability of the inflationary potential through
radiative corrections in the high energy theory. In fact, the coupling in Eq. (A.2) provides a correction
to the 8 function of the coupling Ay, similar to the correction to the § function of the Higgs quartic
coupling coupling Sy from the top quark Yukawa coupling. This contribution comes from the box
diagram with four ¢ external legs, where the fermion v is exchanged, and the resulting contribution
to By, is given by

_ 2Dy
? T 1672
Notice that the correction given by Eq. (A.4) is negative, as it arises from a fermion loop, which can
lead the coupling A4 to negative values and thus destabilize the whole inflationary scenario, a process
similar to the destabilization of the EW vacuum by the loop corrections induced by the top quark. It

APy

G(t—tM), t—tMZIOg(Q/M). (A4)

is then required to prevent such destabilization. A sufficient condition to not destabilize the quartic
inflaton coupling, without any tuning of parameters, is to impose |Ay| S /\(11)/ * Which translates, using
the typical value, from Fig. 4, Ay, ~ 1072, into |Ay| < 1072, and so into an upper value of the ¢-mass
as

M < 10" GeV(fy/Mp)). (A.5)

Notice that in the limit Ay — 0 the UV Lagrangian has the enhanced Z; symmetry, ¢ — —¢, and
thus any small value of Ay is natural in the sense of 't Hooft. For instance, values of Ay ~ 10712
would lead to values of M ~ O(TeV).

- Naturalness problem

The UV completion brings a new naturalness problem as there is the hierarchy of masses M > my,.
In fact, the presence of the vectorlike fermion ¢ coupled to the field ¢ through the coupling (A.2),
along with the ¢-h mixing generates the Lagrangian

L= |>‘w|5a i”/;i’}%?/} + ‘)‘w|ca ‘577[31'751/) (AG)

whose first term provides at one-loop (for scales @ > M) a contribution to the mass parameter u7 as

1 M?
2 2 2 22
AVIT= 152 e [Ay|” M 10gm7}2l (A7)
which would require, for large values of M, a fine-tuning. In particular, the naturalness condition
Ap? < m? /2 implies, for m ~ 1 TeV, the upper bounds on M and |A\y| given by
M <(7.6,2.5,0.8)-10° GeV, |\, < (1,3, 10)-107°, (A.8)

where the values in parenthesis correspond to f¢ /Mp) = (0.1,0.01,0.001), respectively, and where we
have used §, = 0.15.
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Of course the second term of (A.6) can create a second naturalness problem, as M > m by

radiative corrections providing a one-loop contribution to mj; as

2 1 2 2 2 M2

However, once we have solved the naturalness problem between M and my,, as m? > m3, the second
naturalness problem between M and m is automatically solved as, for all values in Eq. (A.8), it turns
out that Am?;/m2 ~ 0.4.

- Cosmological problems

The Lagrangian (A.2) has the (1 number) discrete Zs symmetry ¥ — —1) making the fermion
cosmologically stable, inconsistent with direct Dark Matter detection, and possibly overclosing the
Universe. A simple way out is explicitly breaking the Zo symmetry. For instance we can identify
Y = E with a heavy vectorlike, SU(2) singlet, lepton E = (Er, Er)?, with hypercharge -1, as the
SM right-handed leptons er,. We can then generate a tiny mixing of e.g. the third generation leptons
with E by means of the Yukawa coupling Yy

ﬂE:—MELER—YggLSHTR—YB/ZLSHER—Fh.C. (AlO)

The mixing in (A.10) generates a mass matrix as
_ F TR mz my
E = Al
(7z L)M<ER>> M < 0 M> (A.11)

where m3 = Y3v/v/2 is the 7-lepton mass in the absence of the mixing with the heavy fermion, and
mf = Y4v/+/2. One can diagonalize the mass matrix M with left and right unitary transformations,
with angles 6, and 0, respectively, as

_ t _ sinHL/R COSGL/R
Md ULMUR, UL/R ( oS QL/R sin HL . (A12)

In the limit M > mg, mf we get

/ 2 / 2 _ 12
sin@Lz% [1+Z\ﬂ;?;+”l’ sin@Rzm]\ZZL‘o’ {1+m3z\42m3+~-]. (A.13)

As a consequence of the mixing the mass eigenfunctions are shifted as

i i
TR — TR + mj\:}TZBER, FEr — Er — mj\:}TZBTR. (A14a)
/ /
TL — TL+%EL, Ey, —)ELf%TL. (A14b)
and the mass eigenvalues as
my my
—~m, = 1— el M M1 A.15
ms — m mg{ sz ] [+2M2+ (A.15)

by which the fermion F decays as E — Ht, as well as to leptons and gauge bosons through the
mixing with 77, and 7, as F — Wwv, or E — 7Z, 7. These decays prevent the heavy fermion from
overclosing the Universe.

49



B Baryon isocurvature perturbations

Baryon isocurvature perturbations can be generated by the presence of strong gauge fields [81]. To
be conservative, in this section we will consider the case where the generated gauge fields are as
strong as possible: where one neglects the backreaction from the fermionic Schwinger currents (the
backreactionless case). Borrowing the notation from [81], we have in our case for the symmetric and
antisymmetric combinations, S(k) = (JA4(k)* + |A_(k)[*)/2 and A(k) = (JAL(k)|? — |A_(k)|?)/2.
For the case of maximally helical gauge fields one obtains

A2 B\ "2 e2mE 2
S(k) ~ A(k) ~ | 2*‘ 24];@”) 65 exp <—4\/;>, (B.1)

where we are choosing e.g. Ay (k) as the amplified mode, and (4.23) was used together with the
definition ky = apHg/2¢ ~ 102 GeV, which corresponds to the spectrum peak of A,. Writing
B? ~ 2pp in term of ky, and using (4.27a), we obtain a relation for the spectrum given by [81]

102472 B2 [k \ 2 k
Alf) ~ —2 2 (2 a2, B.2
(k) ~ =375 K (k,\) eXp( kA> (B-2)

It may be interesting to note that in these terms, the magnetic field and the helicity are written as

1 315 6271-5 2 B2
2 4
~ 7Y ~ZZ B.
472 1024 2 A o 7k ( 3)

From this we can estimate the baryon isocurvature perturbation at the BBN as

- T (ka\' [ ko’ ka\°

v S5 () () o) o
where kg4 is the comoving neutron diffusion scale at the BBN, k;l ~ (0.0025 pc. From the expansion
ratio kq/kx ~ 10742, we can see that Eq. (B.4) is suppressed provided that ky/kEWFT is not too big,
which we will next demonstrate.

Eq. (B.4) should be evaluated at the time of baryon asymmetry production at Trwpr ~ 135 GeV,
hence the rescaling for the wave number ky. At first glance, this rescaling could appear to be exactly
one since k) is comoving, but because of the peculiar dynamic of the plasma decribed by the MHD
equations, comoving quantities do scale with the expansion of the Universe after reheating, as already
stated in section 7.1.

We shall now study how the comoving coherence length scales until the EWPT. Every plasma
quantity (field amplitude, correlation length, wave number) evolves adiabatically from reheating until
the eddy turnover temperature T; ~ vT}, where v is the typical bulk velocity of the plasma. For T' < T
the scaling regime depends on the value of the electric Reynolds number at the end of inflation. The
velocity of the plasma is

3

_ eB PB HE’ 2 Trh
Re<1l = A~ 2.9.10710 =X LEY f : B.5
v i (1013G6V> (T;;;S) (B.52)

2

_6 VPBy HE Trh 3
Re>1 = ~ 5.3-1076 : B.5b
e v 2 (1013GeV> (T;;:;S) (B.5b)
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For RiP < 1, as R, grows with time, we eventually reach the point where it becomes one, at temper-
ature [20]
T'=T(R.=1)=RIT,. (B.6)

Once R, > 1, the scaling regimes for comoving quantities become (7.4b) until recombination.

In summary, the magnetic energy and correlation length scale adiabatically until the eddy turnover
temperature Ty, then they scale according to (7.4a) until R, = 1, where the regime changes to
(7.4b) until recombination. However we compute the scaling only until Tgwpt = 135 GeV since the
comparison with the neutron diffusion scale must be done at the EWPT temperature [81]. This yields
a total dilution factor for comoving quantities as

1 1
B}]*;WPT B Tewpt \ ° Q 2 (B 7a)
B\ T T.) "’ '
—2 -
Ot _ (Tewer\ ° (11 ' (B.7h)
oy T T; ' '

We stress that T3 and 77 depend on v, which in turn depends on ¢p, and pp. For values of the
parameters space yielding the correct BAU, e.g. for g = 0.01, fs = 0.15Mp; and Ty, ~ 10727 (blue
region in Fig. 8) we find that T; ~ 2-10% GeV and Ty ~ 3 - 107 GeV. Then we get that the comoving
quantities By and {p, get scaled between the reheating and EWPT temperatures as

B}]*;WPT Ly K%WPT .
Yo ~1072, B ot (B.8)
BY éBy

Going back to the baryon isocurvature perturbation (B.4), we hence have

ko’ T \ kx ? _13

which therefore get for the observable ?B’BBN an exceedingly small value. A similar result is obtained
for all allowed values of the parameters (g, fg, Tin), so for our model the prediction is ?B’BBN ~ 0.
This result also holds for the case where the Schwinger effect is considered, as in this case gauge fields
are much weaker than in the backreactionless case studied above, and so their contribution to @BBBN
is expected to be much smaller.
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Abstract

Previous studies demonstrate that the inflaton, when coupled to the hypercharge Chern-Simons
density, can source an explosive production of helical hypermagnetic fields. Then, in the absence of
fermion production, those fields have the capability of preheating the Universe after inflation and
triggering a successful baryogenesis mechanism at the electroweak phase transition. In the presence
of fermion production however, we expect a strong damping of the gauge fields production from
the fermion backreaction, a phenomenon called Schwinger effect, thus jeopardizing their original
capabilities. Using numerical methods we study the backreaction on the generated gauge fields
and revisit the processes of gauge preheating and baryogenesis in the presence of the Schwinger
effect. We have found that gauge preheating is very unlikely, while still having a sizable window
in the parameter space to achieve the baryon asymmetry of the Universe at the electroweak phase
transition.
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1 Introduction

Cosmological inflation [1-3] is nowadays a well-established paradigm to solve the classical (flatness,
horizon, ...) problems of the Standard Cosmological Model, and to generate the primordial density
perturbations giving rise to the present Universe structure. The achievements of cosmological inflation
usually require the presence of one (or several) scalar field —the inflaton— giving rise to physics beyond
the Standard Model (SM) of Particle Physics (BSM). In this way, along with the classical problems of
the SM (hierarchy problem, baryogenesis, strong CP-problem, dark matter,...), cosmological inflation
provides yet another motivation for BSM physics.

Although the existence of a period of cosmological inflation is pretty well stablished by obser-
vational cosmological data [4], there is no consensus on a detailed model. An interesting candidate
for the inflaton is a pseudoscalar field ¢, denoted in this paper as azionlike particle', which can then
couple to the Chern-Simons density FWF“” of a U(1) gauge field. In this case, and depending on the
size of the coupling of the inflaton to the Chern-Simons term, there can be an explosive production
of helical gauge fields at the end of inflation [7-9]. This exponential production can dominate the
energy density of the Universe during the coherent oscillations of the inflaton around its minimum, a
phenomenon dubbed as gauge preheating [10-12], and lead to a rapid production of inhomogeneities
sourcing a significant gravitational wave background, leading to strong constraints on the inflaton
Chern-Simons coupling from the Planck (and future CMB-S4) limits on the net energy density in
gravitational waves [5, 6].

When the gauge field is identified with the SM hypercharge, Y,,, with strength Y, the inflaton
coupling to the Chern-Simons density Yl“,f/‘“’ gives rise to the production of helical hypermagnetic
fields which can then survive until the electroweak phase transition (crossover), and trigger the baryon
asymmetry of the Universe (BAU) [13-18]. However, in the presence of strong gauge fields, light
fermions charged under the gauge group are produced by the backreaction of gauge fields that source
the fermion equations of motion (EoM) [19, 20]. The corresponding currents can then, in turn,
backreact on the produced gauge fields, a phenomenon called Schwinger effect (see e.g. Ref. [21]). The
backreaction of fermion currents on the produced gauge fields acts as a damping force in the explosive
production of helical gauge fields, and many of the conclusions from the gauge field production should
be revised in the presence of the Schwinger effect?, in particular those concerning the preheating
capabilities and the baryogenesis mechanism.

In this paper, we will study the effect of the Schwinger particle production on the helical hyper-
magnetic fields produced at the end of inflation, and in particular its influence on the gauge preheating
efficiency and baryogenesis capability. In order to consider the backreaction of the produced gauge
fields on the inflationary equations of motion and that of the Schwinger effect on the gauge field pro-
duction, we will use numerical methods, in particular, the fourth order Runge-Kutta (RK4) algorithm.
Our numerical results are validated as they overlap with some recent semianalytical methods and the
gradient expansion formalism of Refs. [22-25]. Our general finding is that the gauge field production is
much less explosive than in the absence of the Schwinger effect, which will jeopardize the conclusions
concerning the possibility of gauge preheating, although they leave an open window for baryogenesis.

The contents of this paper are as follows. In Sec. 2 we present the general lines of the model and
the methods we will consider, including the relevant equations of motion in momentum space and

1With an (obvious) abuse of language, we are identifying in this paper axions with axionlike (or pseudoscalar)
particles, which allow a wider choice for inflationary potentials [5, 6].

20ne possible way out is if there are no light charged fields when gauge fields are produced, a condition that is not
fulfilled here.



the observable quantities we will compute. In Sec. 3 we will present numerical results for the gauge
sector assuming the slow roll conditions in the inflaton equations of motion. In order to check the
validity of our approach, numerical results will be compared with some estimates from the literature,
namely the backreactionless solution, the Schwinger equilibrium and maximal estimates as well as
the gradient expansion formalism where dynamical results are obtained analytically and numerically
in configuration space. Some details about the numerical methods will be explained in App. A. In
Sec. 4 we will perform the full numerical calculation for two kinds of models that predict cosmological
observables in agreement with the observed values: the a-attractor models and the quartic hilltop
models. In all cases the gauge preheating efficiency does not seem good enough to ensure complete
reheating, which has to be completed by other perturbative or nonperturbative mechanisms. Moreover
we have reanalyzed the baryogenesis predictions in the presence of the Schwinger effect and found a
sizable window where the BAU is correctly predicted. Again, some details about the numerical methods
we used are described in App. B. Finally, our conclusions are presented in Sec. 5.

2 The model

The model action is given by

9
4fs

where ¢ is the pseudoscalar inflaton, V' the inflaton potential, and f, provides the inverse coupling of
the inflaton to the Chern-Simons term. Y*” is the field strength of the hypercharge gauge field Y*
and Y* = %e””’"’Yp[7 its dual tensor. We also have included the interaction of fermionic currents,

S :/d% [\/jg (;amaﬂqs— %YWYW - V(¢)> YW?W} —|—/d4x —gipPy,  (2.1)

corresponding to hypercharge @y fermions, with the hypercharge fields (encoded in the covariant
derivative D, = 9, — ¢'Qy A,). All gauge field quantities are U(1) hypercharge fields, i.e. Ay, Ey,
By, etc. To make the notation lighter, we drop the index Y as there will be no ordinary electromagnetic
fields in this work.

2.1 Equations of motion

Variation of the action with respect to ¢ and the hypercharge gauge field A, = (Ay, A) leads to the
gauge equations of motion in the radiation gauge, Ag =0 and V- A =0,

. . , _ E-B
¢+3H¢—+—V(q5)—Tlfq5 , (2.2a)
92 é

(87-2 —v2—C}¢VX>A:J, (22b)

where we have used Y,“,f/’“’ = —4FE B and J* = (p.,J) = ig'Qypy*¢). We assume that initially
the Universe does not contain any asymmetry of charged particles and that these ones are produced
only later in particle-antiparticle pairs. Therefore, we set the charge density to zero, p. = 0. Finally,
the current J is given by the Ohm’s law

0A
J=0FE=—-0— 2.3
4, (23)
where o is the generalized conductivity, which will be defined later.
As it can be seen from the above system, we use cosmic time ¢ for the inflaton dependence and

the conformal time 7, defined by g,, = a*(7) 7, for the gauge field dependence. We denote the



derivative with respect to conformal time 7 with a prime and the derivative with respect to the cosmic

time ¢ with a dot, e.g. @’ = da/dr and a = da/dt. The Hubble parameter is defined as H = a(t)/a(t)

where a is the scale factor. We assume a homogeneous inflaton with only zero mode, ¢(t, ) = ¢(t).
We now quantize the gauge field A in momentum space

3
A(rz) = Y /% [ex(k) ax(k) Ax(r,k) ™™ + h.c], (2.4)
A==+

where ) is the photon polarization, and a) (k) (air\ (k)) are annihilation (creation) operators that fulfill
the canonical commutation relations

lax(k), al, (K")] = (2m)%6xx 8P (k — k') . (2.5)

The polarization vectors €y (k) satisfy the conditions®

k-ex(k)=0, k xex(k) = —idkex(k), (2.6)
ex (k) - ex(k) = dxx ex(k) = ex(—k), '
where k = |k|. Therefore, the equation of motion for the gauge modes yields
;’+UA;+k<k A‘;C‘f’) Ay =0. (2.7)
é

In some special cases (¢ = 0 and slow-roll inflation), this equation can be solved analytically, and we
will do it in Sec. 3.1. In the general case, we will solve it using numerical methods.

2.2 Observable quantities

Once we obtain a solution to the modes A, we can compute the (hyper)electromagnetic energy
densities as

P a4/ dk:4 (AL (AL, (2.82)

Kmin

pB = / dk: |A+\2 |A_|2). (2.8b)

The upper integration limit comes because subhorizon modes have an oscillatory behavior and should

be regarded as quantum fluctuations. Therefore, such modes do not contribute to the above classical

observables and are excluded from the integration. More details and precise value of k. will be given
in Sec. 2.3. For the lower integration limit kyi,, see Eq. (A.5).

In this work, we will also make use of the (hyper)magnetic helicity and its derivative, defined as

1 (A-B) 1 k3

H = &ﬂov/vd% = / dh g (1427~ |A_P), (2.92)
1AM s, (B B).

QZ%a*fkﬂv/d (2.9b)

3 A simple realization can be given in terms of a real basis with the orthonormal vectors (k/|k|,e;), (i = 1,2), such
that k-e; =e1 -ea =0 and e; - ; = 1, with €y = (e1 + i)\eg)/\@, from where identities (2.6) follow.



In the case of one Dirac fermion with mass m and hypercharge Qy, the conductivity can be written

as? [19]
ooy Vo o (=22 e { - o E
o= YL@ o coth (7w [2E ) expd —— L 2.10
672 H VPP o) P 20E19'Qy| (210)

where ¢’ ~ 0.4 is computed at the characteristic scale u ~ ((E)? 4+ (B)?)'/* where the Schwinger
effect takes place [24]. This estimation is valid in the case of collinear electric and magnetic fields, an
assumption that we have numerically checked by verifying that

9

~ (2.11)
NG

cosf =

where 6 is the spatial angle between E and B.
Moreover, the massless hypercharged fermions that are continuously produced during inflation
have an energy density given by

o (A-E) o [k k> d
= lim — Bp L = = —— — (AP + 1A 2.12
Py VganAdm a* a4/kmindk2772d7' (| +‘ +‘ | ) ( )
Notice that the observable quantities pg, pg, py, H and G are physical®, while the fields A, E and B
as well as the conductivity ¢ and current J are comoving.
Concerning the Higgs vacuum expectation value, there are two possibilities during the inflationary
period:

1) The first possibility, which we will consider throughout this paper, is that (h) = 0, and so the
electroweak symmetry is unbroken during the inflationary period. In order to ensure unbroken
electroweak symmetry and hence massless SM fermions, which all contribute to the conductivity
(2.10), we assume that the SM Higgs field h remains stabilized at the origin in field space by
a large mass term throughout the inflationary period. Such a large mass can, e.g., be induced
by a nonminimal coupling to the Ricci curvature scalar as £ = %fth with £ > 3/16 (see

e.g. Ref. [26]). Hence, we get
41¢° a [pB
O V/2pp coth (77 o) (2.13)

#i) The second possibility is that the electroweak symmetry is broken during the inflationary period.
In this case after AN e-folds of inflation, there is a Gaussian distribution of values of the
Higgs field with zero mean and variance (h?) = H?AN/(4w?) with probability P(h, AN) o
exp(—%mh—z) dominated by the values h < \/(h?), see Ref. [26]°. In this case, the electroweak
symmetry is broken and the hypercharge field strength Y, in Eq. (2.1) is projected onto the

electromagnetic field strength F),, with a coupling to the inflaton given by f,/ cos? 6y where Oy

4As the conductivity o relates J and E in (2.3), it is a comoving quantity, i.e. it scales with the Universe expansion.
Our definition differs from the one in [23, 24] where the authors used a physical conductivity that we will denote & in
this paper, their relation being o = a 6.

5They relate to the comoving ones %y PG, HE, and G by the relations p4 5 = a4pB,E, He = a’H, G° = a*G.

6The SM Higgs potential is still unstable at a value of the Higgs field h = hr ~ 1011 GeV and the condition for
P(h;,AN) < e 32N (50 that it is unlikely to find the Higgs away from its EW vacuum in any of the 32N causally
disconnected regions formed during inflation) implies Hg < \/2/737rh[/AN, a condition that is not fulfilled by any of
the models of inflation we have considered. Therefore this possibility would require stabilization of the Higgs potential
by some new physics.



is the electroweak angle. Now the conductivity for the hypermagnetic field in Eq. (2.10) should
be replaced by a similar expression for the magnetic field, with the replacement |¢'Qy| — |e@)],
where e = gg’'/v/g? + ¢’ and Q is the fermion electric charge. The condition for a fermion f
to contribute to the magnetic conductivity Wmfc < V2pE leQy| translates into the condition, for

Y; <0.45 (%)1/4 Vias! (2.14)

and we have computed all couplings at the characteristic scale y ~ ((E)? + (B)?)'/* where the
Schwinger effect takes place. If the three generations of fermions satisfy the above condition then
the conductivity for the magnetic field is given by Eq. (2.13) with the replacement 4;122;‘: ;—;
We have checked that, in this case, the results for f; < 0.2 M, are consistent with all three
generation fermions contributing to the magnetic conductivity. For fs 2 0.2 Mp; only the top
quark does not contribute. Given that 41¢’3/72 ~ 0.37 while e ~ 0.36, at the scales where the
Schwinger effect takes place, we have found that the results in this second case are qualitatively

similar to those for the previous case, which will be worked out in detail in this paper.

the fermion Yukawa coupling,

Considering then the case i) above, the conductivity (2.13) yields a nontrivial integro-differential
system as the damping term grows with the magnetic energy and hence backreacts on the amount of
produced electric/magnetic fields. We aim to solve this setup of the Schwinger effect numerically. In
the next sections we will consider specific cases where this system can be further simplified.

2.3 The gauge vacuum

At very early times, when \agﬂ < kfg, the modes are in their Bunch-Davies (BD) vacuum, hence

1
V2k

Initially, we can consider all the modes in the BD vacuum (which would be possible by initializing the
numerical simulation such that ag < ko/Hy). In that case, since |A| = |A_|, the fields F and B are
plane waves perpendicular to each other, as G = 0 in (2.11) yields cos@ = 0. Therefore, there is no
Schwinger effect and o = 0.

It has recently been shown that in the presence of the conductivity o, the BD vacuum amplitude
of the modes that are still in the vacuum get damped by the ones that left it [23]. Indeed, consider we
are at a time a, where modes k > k, are still in the BD vacuum, while modes k < k, were amplified
by both tachyonic and parametric instabilities from Eq. (2.7). Then, the equation of motion for modes
such that |a*q5(r*)| < kfy does not reduce to a plane wave in the presence of a non-zero o, but instead
to AY + 0 A} + k*A, = 0, and Eq. (2.15) is not a solution anymore. To derive the generalized BD
vacuum, we write the gauge equation of motion (2.7) in cosmic time:

—ikT

Ax(r, k) = (1 = —o0). (2.15)

Ay + (6 + H) Ay + S (i — A}i) Ay =0, (2.16)

where we used the identity a_QA’)f = A\ + HAA, and perform the transformation A, = VA A,
with [23]
t
At) = exp{—/ &(t’)dt’}. (2.17)

— 00



We recall that we have defined & = o /a as the physical conductivity in footnote 4. The above equation
hence becomes

k(k ¢\ & 6° Hé
TS (22 ) -2 0 2a=0 2.18
)‘+a<a f¢> 2 14 2]““4 ’ (2:18)
where we used the fact that A(t) = —&(t)A(t). A mode crosses the horizon when the expression in

the square brackets vanishes for the first time at least for one polarization, at k = k.. The modes in
the vacuum are then characterized by k& > k.. This yields the momentum of the mode that crosses
the horizon at time ¢, namely the cutoff of the integrals:

(;Z):C;Z {&+&<Z+Hﬂ. (2.19)

Deep inside the horizon, when the first term in square brackets of (2.18) dominates, the solution

a$

k. =
2fs

must satisfy the BD condition (2.15). As we have seen, in the presence of finite conductivity, this
equation does not fully describe the gauge-field mode function inside the horizon, as the damped BD
condition includes an exponential damping factor

NG
2k

The bottom line of this section is that the modes still in their BD vacuum see their amplitudes
damped because of the effect of the modes that left their vacuum earlier and participate in the

—ikT

Ax(r, k) = (1 = —o0). (2.20)

equations of motion (2.2a) and (2.7). The parameter A was first introduced in the context of the
gradient expansion formalism in Ref. [23], where it was dynamically solved, while in Ref. [24] it was also
considered as a free parameter and validated the corresponding procedure by numerical calculations.
In order to compare with results from the gradient expansion formalism in configuration space, we
will also both compute A numerically and consider it as a free parameter, although our final results
will be based upon the dynamical calculation of A.

3 Slow Roll Analysis

The slow-roll inflation paradigm has been used by many authors to compute the amount of electromag-
netic energy density [7, 27, 28], or baryogenesis through helicity [8, 9, 16, 18] at the end of inflation,
with or without taking into account the Schwinger effect. Here we aim to validate our numerical
results by comparison with the known analytical results at the end of inflation.

In this section we will take ¢ as a slowly rolling inflaton field such that ¢ ~ 0, 3H¢ ~ —V'(¢),
and so we can consider (b and H = Hpg as constant. Doing so, we are neglecting the gauge field
backreaction in the right-hand side of Eq. (2.2a), a hypothesis that we have consistently checked a
posteriori. The results of this section will be model independent, within the hypothesis of the slow
roll approximation.

3.1 Absence of Schwinger effect

Here we are assuming there is no Schwinger effect”, i.e. ¢ = 0, hence we can rewrite (2.7) as

2
&'+k<k+>\f)Axo, (3.1)

7This condition should be considered as being fulfilled by some physical systems, as e.g. systems with no massless
fermions, more than as an approximation to the full (more realistic) case.



where, following the slow roll equations,

¢
E=— 3.2
2HEg [y 32)
is a constant. Since we are in de Sitter space, we can use the scale factor definition a = —(H7)~! and

solve (3.1) asymptotically. At early time, when |k7| > 2¢, the modes are in their BD vacuum given
by (2.15), as here A = 1. When |k7| ~ 2¢, one of the modes develops both parametric and tachyonic
instabilities leading to exponential growth while the other stays in the vacuum. During the last e-folds
of inflation, i.e. |k7| < 2¢, the growing mode has the solution [8, 27]

L Lk [ 2
AA_\/ﬁ(anEHE) exp{ﬂ'f 2 aEHE}’ (3.3)

where ap and Hg are, respectively, the scale factor and the Hubble parameter at the end of inflation.

Here, as we assume a slow roll regime, we consider Hg constant and we take the convention ap = 1.
Using (2.8) and (2.9) we can compute all electromagnetic quantities:

63 H% 315 Hi 45 H3 135 H%
PE E 27r§7 pp o~ E 27rf7 H o~ E 6271'5’ ~ 2 FE 27rf.
216 712¢3 218 72¢5 215 72¢d 216 72¢4

(3.4)

These results are only valid when the absence of backreaction on the inflaton equation of motion (2.2a)
is guaranteed, hence when |G/V'(¢)| < f4. This model-dependent condition puts a lower bound on
the parameter f, or, equivalently, a higher bound on . Using the slow roll equations and the definition
of the slow roll parameters, this parameter can be written as

_Mpl\f
=25 (35)

where € = (M§1/2) (V'/V)2. Therefore, at the end of inflation, where by definition € = 1, one has
¢ = Mp/v2fs, and the no backreaction condition in Eq. (2.2) provides the bound ¢ < 5.73 (or
equivalently f, > 0.12M;). In Fig. 1 we show, with orange lines, the quantities pg, pg, H and G
evaluated at the end of inflation obtained from the analytical backreactionless solutions from Eqgs. (3.4),
while the blue dots are the numerical solutions, which correspond to the case ¢ = 0 (no Schwinger
effect) and correspondingly A = 1. We have used a Runge-Kutta method which is explained in App. A.

3.2 Presence of Schwinger effect

The Schwinger effect is taken into account by means of the conductivity o in Eq. (2.7), as given by
Eq. (2.10) [19]. The growth of o with time then backreacts on the gauge field, as the damping term
grows in its differential equation. We will compare our numerical calculations with three analytical
(or semianalytical) results: the Schwinger maximal and equilibrium estimates [19, 24], as well as the
gradient expansion formalism [22-24]. From the numerical point of view however, we aim to solve
Eq. (2.7) with o computed at each time step using (2.13). The details about the numerics will be
displayed in Sec. 3.3.

Schwinger equilibrium estimate

In this case, the backreaction of the chiral fermions on the gauge fields is taken into account by just
replacing the parameter ¢ with the effective one [19]

. d1gs P8\ V2pE
ot = & — A7 coth <7r p—E "2 (3.6)
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Figure 1: FElectric pg and magnetic pp energy densities, and the helicity H and its derivative G, at the end
of inflation (i.e. for e(ag) = 1), in units of Hg, as functions of the coupling fo assuming A constant. We see
the plots confirm the result from Fig. 1 of [2/]. Here, we also assumed & constant.

in the backreactionless solutions (3.4). This amounts to solving

63 2" 14472\ > 9 2 \/g s
- )2 tanh? [ /2 1), 3.7
2157_[_2 é-g,q (41 g/3 ) (g 5 q) an 4 €eq ( )
which provides the function &q = &eq(§) that we plug in (3.4) instead of the bare £ to obtain the

quantities pfq, pqu, Heq and Geoq. These equilibrium estimates are shown with a purple line in the plots
of Fig. 1.

Schwinger maximal estimate

In this case, we assume the exponential behaviors of the backreactionless solutions to be valid until
they saturate the maximal value that we will display hereafter. We numerically determine the value
of crossing, which happens for £ ~ 4.4-4.7 depending on each quantity.

The maximum helicity density can be estimated as the solution of [19]

|E” +|B|* = & | E| |BI. (3-8)

This replacement yields an equation relating the |E| and |B| fields that can be solved analytically. We
then choose, as definition of our maximal estimate, the solution (|E|, |B|) of (3.8) that maximizes the

10



product |E|-|B| 8. This yields for £ > 1

8 /7272\°
pﬁax = § (41 g,3> €2Héa (393‘)
8 /7272\°
B 4774
Pmax = g1 (419/3) ¢ H, (3.9b)
2Gmax 32 (T272\° 4
Humax = 3Hg = g <4lg/3) 5 HE (39(3)

The maximal estimates for the quantities pZ_ ., pB Hiax and Guax are shown with a pink line
in the plots of Fig. 1.

Gradient expansion formalism

This method was introduced in Refs. [22-24] and transforms the EoM for the vector field A into EoM
for observable quantities, in particular the electric E and magnetic B fields. As the spatial gradients
in the EoM do always appear as rot E and rot B, the EoM can be written as an infinite series in
terms of the bilinears £ = (E -rot"E)/a", G = (E -rot"B)/a" and B™ = (B - rot"B)/a",
with n = 0,1,.... In this way the coupled system of EoM for the fields E and B transforms into
a system of coupled differential equations for the quantities £, B and G(™. This system is not
block diagonal in the space of the n index so that the system has to be truncated to find solutions.

Moreover, the parameter A(t) in Eq. (2.17), which suppresses the gauge-field amplitude on small
scales depends on the conductivity at all times ¢ < t. So, a precise determination of A(t) would
require a complete analytical solution of the infinite-dimensional system of equations. While A was
dynamically computed in Ref. [23], for the sake of simplicity and generality, it was considered as a free
parameter in Ref. [24] and fixed to the values A = 1, 1072, 107, 107%. In our numerical approach
we will consider A as a function of the conductivity o, as the initial condition for E and B are plane
waves, such that E - B = 0 and therefore initially ¢ = 0 and so A = 1. However, as time is evolving
E and B will become collinear, and a nonvanishing conductivity will appear, as well as the function
A(t) < 1. In order to compare our numerical results with those from Ref. [24], we also will eventually
enforce A to be a constant in our code. Upon considering a constant value of A, our results will agree
pretty well with those obtained in the gradient expansion formalism, see Fig. 1. In the more realistic
cases where we just compute the value of A(t), we will see that at the beginning ¢ = ¢, just very deep
inside the inflationary period, A(¢g) = 1, while the value of A will decrease very fast and at the end
of inflation ¢t = tg, A(tg) < 1.

3.3 Numerical results at the end of inflation

We will find it more convenient to change the variable from the time ¢ to the scale factor a. The gauge
field equation of motion (2.7) then becomes

2
8AML1<2+ 7 )aAML i (k —2>\§>AA=O. (3.10)

Oa? a aHg ) Oa a3Hg \aHg

We recall that, as we are considering the slow roll regime in this section, we do not need to solve the
equation of motion for ¢.

8Notice that our definition of maximal solution departs from that given in Refs. [19, 24], where the fields |E| and |B]|
are separately maximized, while we are maximizing the product |E|-|B|, the relevant quantity for the baryon asymmetry
generation.
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The Bunch-Davis solutions can now be written as

A,\(a,k) _ A(a) eik/aHE

2k
0 3.11
NN ) O P IR
da 7 a2Hpg 2 2.k

with

Aa) = exp {— /a: 52(?25 da'}. (3.12)

The technical details of the numerical simulations for solving Eq. (3.10), subject to the boundary
conditions (3.11), can be found in App. A. We display in Fig. 2 the spectra of all the observable
quantities in order to see how the BD vacuum is dominating the spectra for large k and how the cutoff
ke(a), given by (2.19), efficiently removes that part of the integration. The difference between the BD
vacuum and the damped BD vacuum is also clear, as the first goes like k3 whereas the second goes like
A(a)k? with A decreasing with time. Hence the asymptotic behaviors are not superimposed since A
changes. Finally, we also see explicitly how the growth of pp and pp with the scale factor a is due to
the increase in amplitude of the spectrum hump and its shift to larger values of k. For this illustrative
purpose we used a constant value of £. Here we have fixed fy = 0.1 My, while for other values of this
parameter the plots are similar.

Before moving to the full numerical results, we will compare our slow roll based inflaton numerical
results with the recent literature on the subject.

103 [P
1072 ‘
2 . 1 b
= 107 1 ! =
w | : : S
10712+ . ! :
! : ! ‘
! ; | ‘
! | | ‘ 5
| | i — a=10
107" W S o i !
! | ! ! — a=10"
! ,
! ‘ — a=102
1074 :
= { Lt = A S
s ! — |
L : T :
Wae =14 | 1 3 '
Q 10 § &) ! '
107 : . i
1 ]
. ‘ | !
102 10'16\5/‘ ! f
T T T ‘ 1 L I\IHH‘ L \HHH“ L \HHH‘ L \HHH% L \HHH‘ L \HHH; L H’
107 1072 1 105 10% 10° 102 10 1 10
k [HE] k[Hel

Figure 2: Spectra of the magnetic energy (top left), electric energy (bottom left), helicity (top right) and
its derivative (bottom right), i.e. the integrands of (2.8) and (2.9), for different values of a during inflation
stmulation. Here we used variable o(a) and A(a) with constant &. The color matching dashed vertical lines
show the cutoff values kc(a) computed from (2.19).
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3.3.1 Constant A and ¢ approximation

We will first assume that the parameters A and £ are constants. As we already mentioned, the
parameter A was fixed to constant values in Ref. [24] while £, as defined in Eq. (3.2), is often considered
as a constant in the slow roll approximation. In Fig. 1, we displayed several results already present in
the literature that we successfully reproduced with our numerical method. First the backreactionless
case, where there is no conductivity, by simply enforcing o = 0 (therefore A = 1) in the code. The
data set are displayed in blue and match the corresponding analytical value given by Eq. (3.4). Then,
in order to reproduce results from [24], we considered a non-zero conductivity given by (2.13) while
assuming A constant during inflation, thus making it a free parameter. In Fig. 1, we plot the quantities
pB, pE, H and G at the end of inflation for chosen values of A. We can see that the results agree well
with those using the gradient expansion formalism in Ref. [24].

3.3.2 Variable A and ¢

The benefit of the slow roll approximation is that the results look “model independent”. However,
the tradeoff comes with the need of having a constant parameter £ as the slow roll regime implies
an approximately constant ¢> Besides, we know that this parameter can also be expressed in terms
of the slow roll parameter € (see Eq. (3.5)), which is indeed small and constant during inflation but
then quickly becomes unity during the last e-folds. We also know that the modes produced during
the last e-folds are the ones that contribute the most to the integrals (2.8) and (2.9), as all the modes
previously generated get washed out by the Universe expansion.

All these observations lead us to conclude that the most important contribution to the quantities
pE, pB, H and G is taking place during an epoch when the constant £ approximation loses its relevance.
Hence, in this section, we will instead specify an inflation model, namely the Starobinsky potential,
and make its study in the slow roll regime with a function £(a) that can be obtained from the model.
We have chosen in this section the Starobinsky potential as it provides a realistic model of inflation,
and will be a particular case of a more general class of models we will consider to make predictions
using the full solution of the system. The purpose of this section will thus be to assess the goodness
of the slow roll approximation when computing the full solution to the system (2.2).

The Starobinsky potential is given by

V= A l—exp{— 3}'\2}” : (3.13)

Using the slow roll regime, the inflaton field ¢ is given by

2¢(a)_ agp % I e aE 7% _ )
\/;Mpl = —log (7) -Wo _—ﬁe (7> }—ﬂ+logﬂ, 6_14-% (3.14)

where W, is the nth branch of the Lambert function. The value of the function £ is then given by

\[ ! (3.15)
3 fs exp Ma)} 1. .

pl

In Fig. 3, we display in blue results for the Starobinsky model, for various values of €, when ¢ and
A vary dynamically. Although the slow roll approximation loses its relevance for values of € closer to
1 (an issue we address in the next section), we already see a difference with the plots in Fig. 1. This
is because, no matter the value of the initial time, the function A(a) rapidly goes to extremely small
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values, thus killing the BD modes that would have been amplified at the very end of inflation and that
would have contributed the most to the integrals (2.8) and (2.9). With a constant A, this suppression
is less effective and the tachyonic amplification yields higher energy densities and helicity.

10°
—— backreactionless @ ae
— maximal @ ag 108
— equilibrium @ ag .
gu o =1 T 100
d + €=10" d 1
* €=1072
= =107 1073
m  slow roll

m  full solution

10°
108
00k
T
1
107

Figure 3: Comparison between the slow roll approrimation and the full solution for the Starobinsky model.
The analytical estimates are given for e = 1. As expected, the slow roll computation diverges from the full
solution as inflation is nearing the end, since the slow roll approrimation is only valid in the regime € < 1.
Hence the slow roll computation overshoots the value of all quantities, closer to the value given by the Schwinger
equilibrium estimate for fo < 0.05 My, As expected, we also have compared both analysis, slow roll and full
solution, for values of a such that €(a) < 1 (in particular e = 107%, 1072, 1072 ) and found good agreement.

4 Full Analysis

In this section, we are not using the slow roll hypothesis for the inflaton equation of motion and
consider the full solution to the system (2.2) in specific models of inflation. We will choose a set of
inflationary models that are well known to be in agreement with all cosmological constraints. Also,
we do not assume any peculiar geometry of the Universe.
The equations to be solved during inflation are the system (2.2) written in terms of the variable a.
Unlike in the previous section, the current change of variables must take into account that the Hubble
da

parameter is not constant, but moreover we have %% = a = aH, and we will define the auxiliary

quantity F as
a dH a dH?
== 4.1
4 H da 2H? da (41)
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We will relate it to the Friedmann equations

2 P
H* = SMZ (4.2a)
P
a 3p+p
- = - 4.2b
a 6M2 " ( )

which combine themselves into

adH? dH & p+p
22 T 2 g2 - 4.3
2 da dt a 2M?2° (4:3)

where the total energy density and pressure are

1.
p= 50" +V+pen + py, (4.4)
1.9 PEM | Py
= ¢ -V +— +—. 4.4b
p=39 t g (4.4b)
Hence we have e

a 1 1. 2 2
H2 - __ — Zh2 _ — . 4.
F =5 M, <2¢ +3pEM+3p¢) (4.5)

and the system (2.2) becomes

2 _ !
o 4-Fdp V') g

= 4.
it o da T em T ey, 70 (4.6a)
d?A, 1 o\ dAj k k A do
S(o—r4 2 _ 28 4 —o. 4.
a2 Ta ( F aH) da | @20 <a2H fo da) »=0 (4.6)

The Hubble parameter can be computed from the Friedmann equation (4.2a), where p is given
by (4.4a). This way, we can compute the value of H and F at each time step recursively to feed
the equations of motion, like we already do for ¢ and G. The BD vacuum modes are identical to
the previous case, see Egs. (3.11). Finally, for comparison purposes, we can define a generalized time
dependent instability parameter £(a) as

fa) = — 290 (4.7)

2f¢ da
such that it corresponds to the definition (3.2). The simulations show that this parameter, obtained
from full solution computation, significantly differs from the slow roll one at the very end of inflation.

4.1 Full numerical results at the end of inflation

In this subsection we will compare our results at the end of inflation, where we are making a full nu-
merical analysis of the EoM, with those obtained using the slow roll approximation for the inflationary
potential. For the sake of comparison we will concentrate on the Starobinsky model given by (3.13).
In this current framework, we see in Fig. 3 that the four studied quantities, namely pp, pg, H and G,
are much closer to the Schwinger equilibrium estimate at the end of inflation.

We present in Fig. 3 the values of the physical observables evaluated at various stages of inflation,
i.e. various values of the scale factor a, from e(a) = 1073 to €(a) = 1, as a function of the coupling f,
for the Starobinsky model. We superimpose the analytical results from Secs. 3.1 and 3.2, and hence
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the backreactionless solution as well as the Schwinger maximal and equilibrium estimates. From the
plots we see that for f, < 0.05 My the equilibrium estimate is a good approximation, especially for
pre where the predictions of maximal and equilibrium estimates merge. We also verify that cosf ~ 1
hence satisfying the assumption on parallel electric and magnetic fields leading to the conductivity
definition (2.10).

In this setup, our numerical code is computing a value of the conductivity ¢ and A for each time
step, hence we got the functions o(a) and A(a). The variation and presence of A(a) is not without
effect on the final results. Indeed, the smallest (k > Hpg) modes are the ones that most contribute
to the integrals (2.8) and (2.9). Without the Schwinger effect, these modes are produced last, just
at the end of inflation, and only briefly leave the horizon. They therefore should have a significant
impact on preheating. When the Schwinger effect prevents their generation, by reducing them by a
< 1 factor, while they are still in the BD vacuum, we can ask ourselves about the effectiveness of
gauge preheating. It was shown in previous studies of gauge preheating [12] that its efficiency mainly
depends on the electromagnetic energy fraction available at the end of inflation pgm/prot. To shed
light on the last point, we will extend, in the next section, our numerical results beyond the end of
inflation when the inflaton is coherently oscillationg around its potential minimum. We will do that
in a set of particularly interesting phenomenological models that we describe in the next section.

4.2 Inflationary models

We will here introduce two classes of models that all satisfy the cosmological constraints. They should
be considered as a sample of possible models, and they are just chosen for illustrative purposes, as
they do not exhaust by any means the allowed inflationary models.

4.2.1 «-attractor models

The a-attractor potential is given by [29]

Vo (o) = A2 ll—exp{— 32(1]{?'1}] : (4.8)

Setting o = 1 yields the R? model or Starobinsky potential (3.13). To make the comparison interesting,
we choose to have 1 < a < 100, where cosmological observables are correctly reproduced. In the slow
roll approximation, the field value at the end of inflation is

¢E = \/? M, log (1 + \/%) (4.9)

We can readily compute ¢,, and evaluate the slow roll parameters N, = 60 e-folds before the
end of inflation. The slow roll parameters and the cosmic observables are in agreement with the
cosmological contraints for the range

1 <a <100. (4.10)
In particular, for o = 1 (100) we get
€, =~ 0.00019 (0.00387), 7. ~ —0.0159 (—0.00331) (411)
ns =~ 0.967 (0.97), r. =~ 0.003 (0.062), Hp ~0.82 (1.13) - 10" GeV.
in agreement with the observed values [4]
n°Ps ~ 0.9649 + 0.0042, 7°" <0.06, H™ <6-10" GeV (95% CL). (4.12)
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Using the observed value of A, from Ref. [4], A% = 2.2.107°, we fix the vacuum energy. The
result depends on « and is approximately given by A, ~ 3.4 - 1072 a!/® Mp1. We then obtain the
values A; = 3.152 - 1073 M,; and Ajgo = 8.313 - 1073 M.

a attractor: a =1, f5 = 0.02 Mp
Nna R : : . . 1

a attractor: @ =1, f; = 0.15 Mp

1072}

-4 |
pot 10

m
Prot,0

Pi
Prot,0

10—6 L
10—E L

10—10 L

i

Prot,0

Figure 4: Inflaton kinetic and potential energy density, as well as electric, magnetic and fermion energy
density ratios to the initial total energy density of the Universe for the a-attractor models with o = 1 (upper
panels) and o = 100 (lower panels). The vertical gray lines display the value a for which e(a) = 1 and the
dashed line shows the expected scaling of the dominant sector.

4.2.2 Hilltop quartic models
The hilltop model potential is given by [30]

9\
Vi(9) = Ay, [1 - (;) ] - (4.13)
The case p = 4 can be compatible with the Planck measurements. There are two ways for the field to

relax to the minimum at ¢ = p, with different initial conditions:

1. ¢« > ¢p: In this case the field ¢ > pu is relaxing in a potential region that can be approximated
by Vi ~ ¢%, and thus, the slow roll conditions are not met, as chaotic inflation is ruled out.

2. ¢« < ¢g: In this case the field ¢ < p is relaxing in a flat potential region and the model predicts
correct inflationary observables for a large range of the parameter. In this work, we will study
this option.
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The slow roll parameters and the cosmic observables are in agreement with the contraints for the
range
10Mp S p S 50Mp,. (4.14)

We fix the vacuum energy from the constraint on the amplitude of scalar fluctuations. The result
depends on u and is approximately Ay ~ 6 - 10~ ;2/3 M;l/3. We then have the values A, = 3.243 -
1073 M, for =10 My and Ay, = 8.081 - 1073 M, for pp = 50 Mp.

In particular, for p = 10 (50) My we get

€, ~ 0.00021 (0.0041) 7. ~ —0.0207 (—0.00328)

5 (4.15)
ns ~ 0.957 (0.97) 7, ~ 0.00335 (0.0654), Hg ~0.64 (1.1) - 10" GeV.

Hilltop: 11 = 10 Mp, f; = 0.02 Mp Hilltop: u = 10 Mp, fy = 0.15 Mp
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Figure 5: Inflaton kinetic and potential energy density, as well as electric, magnetic and fermion energy
density ratios to the initial total energy density of the Universe for the hilltop models with p = 10 My, (upper
panels) and p = 50 My, (lower panels). The vertical gray lines display the value a for which e(a) =1 and the
dashed line shows the expected scaling of the dominant sector.

4.3 Numerical results beyond the end of inflation

Now that we have established a method to numerically compute the quantities pg, pp, py, H and G,
we aim to study the system evolution past e = 1, and the onset of reheating. Indeed, the system (4.6)
describes the most general interaction of the zero mode of both hypercharge gauge and inflaton fields.
In particular, no assumption was made on the Universe geometry, hence there is no specific reason to
stop its numerical computation at the end of inflation. We will also find it convenient to present some
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numerical results using as the variable the number of e-folds before the end of inflation N, instead of
the scale factor a, and related to it by a
N =—log =2 (4.16)
a

such that N = 0 corresponds to the time ag when e(ag) = 1.

Starobinsky a =1

a =100 attractor

1072
q -4
— fp=002Mp =| 3 40
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Qal « al @
1078
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Figure 6: Time evolution of the electromagnetic to total energy density fraction, during and after inflation for
various values of the coupling fo. The upper panels correspond to the a-attractor model with o =1 (top left)
and o = 100 (top right) and the lower panels to the hilltop model with u = 10 M, (bottom left) and p = 50 My,
(bottom right).

We show the postinflationary energy breakdown for selected value of fy, for the a-attractor models
in Fig. 4, « = 1 (upper panels) and o = 100 (lower panels), and the hilltop models of inflation in
Fig. 5, with p = 10 M}, (upper panels) and p = 50 My, (lower panels). From the inflaton behavior,
we see that the Universe enters a matter domination era as pg ~ a~3. For high enough values of
fe, ie. fg 2 0.1 My, we reproduce the results shown in Ref. [12], whereas for fy < 0.1 M, the
electric and magnetic fields exhibit a different behavior: the former decays faster than the latter
while oscillating. This is due to the fact, already mentioned in Ref. [23], that the energy density for
the electric component E = —A’ is much more sensitive to the Schwinger effect than the magnetic
component B, because it directly couples to the conductivity in the gauge field equation of motion
(2.7). On the other hand, the magnetic component reflects spatial effects, as it is defined by B = VAA.
In this work, we do not consider the inflaton spatial effects, V¢, because this would require one to
implement real fermion interactions in a lattice simulation. Hence, for low values of fs, when the
Schwinger effect is strongly affecting the system, the behavior of pp is expected to be subject to
changes when the spatial effects are enabled; namely we expect to see a faster decay, like that of

pr. As also observed in Ref. [23], the electric field, which is dominant during inflation, becomes
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subdominant afterwards. Finally, we can see that for low values of f; the fermion energy density
dominates the radiation energy density at the end of inflation as already highlighted in Ref. [23].
The authors of Ref. [12] quote a sufficient criterion for gauge preheating to happen, namely that
at least an 80% fraction of the total energy density of the Universe is electromagnetic energy. In the
absence of the Schwinger effect, they found that this criterion is satisfied for values fy < 0.1 M.
However, as expected, the Schwinger effect significantly reduces the share of electromagnetic energy,
as shown on Fig. 6 for the considered models, which displays the ratio pgm/protal for the four previous
considered cases. We can see that the maximum is attained with a value ~ 1072, which precludes any
gauge preheating, at least for f; 2 0.01 M,,;. Another conclusion from Ref. [12] is that the spatial effects
of the inflaton become relevant for sufficiently low values of f4 and contribute to preheating. Since we
are neglecting them in our simplified calculation, any negative statement concerning the possibility of
gauge preheating due to the lack of enough electromagnetic energy should be a conservative one.

107 o,
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Figure 7: Maximum value of the electromagnetic to total energy fraction as a function of fs for the four
considered models: a-attractor models, with o =1, 100, and hilltop models, p = 10, 50 M,;. Preheating seems
unlikely to occur.

The final results from our analysis can be summarized in Fig. 7, where we plot the maximum
value of the electromagnetic to total energy fraction as a function of f, (preheating efficiency) for the
Starobinsky model, the a-attractor model with o = 100 and the hilltop models with p/M;,; = 10, 50.

For fg 2 0.01 My, we obtain )
EM

<0.01, (4.17)
ptot

which seems to prevent gauge preheating as its efficiency is far from the value of ~ 0.8 established in
the numerical analysis of Ref. [12].

4.4 End of reheating

If gauge preheating does not occur, the inflaton will eventually decay by perturbative processes which
depend on the inflaton total decay width I'y. Therefore at the time ¢, ~ 1/T'y, the inflaton has
completely decayed and the radiation domination era starts.
Results from last sections have shown that shortly after inflation ends, the Universe is dominated
by matter, hence we can approximate the Hubble parameter by
2

He~ (C%E);HE He (4.18)
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where Hy = H(ag), such that
2
3Hg\3
~ —_— 4.19
e ( 2L > (419
is the end value after reheating by inflaton perturbative decays. Of course a,} is a model-dependent
quantity, which depends on the value of I'y, which in turn, depends on the couplings of the inflaton
to the matter.
In particular, the coupling 1/ f, of the inflaton to the hypercharge Chern-Simons density provides
a channel for the perturbative decay of the inflaton into a pair of hyperphotons A, as ¢ — AA. This

decay has a width given by [10]
3
m
T(¢p— AA) = 2. 4.2
(0 Ad) = gt (420)

where my is the inflaton mass given by

0*V

2
8(25 ¢=¢min
For the a-attractor (hilltop quartic) model, we have ¢min,q = 0 (Pmin, n» = 1) and
4AE 32A%
2 a 2 h
= __ < = . 4.22
Mo = ansy Mo = "2 4.22)

In the simplest case where the inflaton is only coupled to the hypercharge gauge bosons through
the Chern-Simons density, the total width is T'y = I'(¢ — AA). Using the masses found above we
have that

M3,
Iy =>~12 (3.0)- 1078 Tg (4.23)
$
for oo =1 (100) in the a-attractor models, and
M3
[y ~4.2(21) 1071 f—gl (4.24)
[

for g =10 (50) My, in the hilltop models.
The value of the scale factor and the temperature at reheating, a,;, and T}y, are given by

. T\ Y3 T T
Oh g4 b , LI (4.25)
ag Tins Tins Hg

Consequently we can express a,;, and Ty, as functions of all the involved parameters, namely f,, and
a (u) for a-attractor (hilltop quartic) model. In particular, the relevant parameter for baryogenesis is
the ratio Ty, /T'0 given by

Tin 4 ( 0.01 )
Zh 019 (0.8)-10 , 4.26
T = 1909 Fol My (426)
for @ =1 (100) in the a-attractor models, and
Trh 4 < 0.01 >
— ~ 0.4 (0.7) - 10 , 4.27
e 0 fo/Mpi (427

for p = 10 (50) My, in the hilltop models. As we will see in the next section the obtained values of
the ratio Ty, /71 are fully consistent with the general baryogenesis results, see Fig. 8, provided that
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fo < 0.03 M.

In the presence of extra couplings of the inflaton to matter, the predictions for the inflaton decay
width, Eqgs. (4.23) and (4.24), and the reheating temperature, Eqgs. (4.26) and (4.27), will change in
a model-dependent way, as well as the model predictions concerning the generation of the baryon
asymmetry.

Of course in the hypothetical case where the explosive production of gauge fields should have
prevailed over the perturbative inflaton decays, gauge preheating would have taken place over a few
e-folds after the end of inflation. As we see from the previous results, this is never the case and gauge
preheating is never strong enough to reheat the Universe after the period of cosmological inflation.
This result does not preclude that, in the presence of a strong coupling A of the inflaton with some
other field, e.g. a scalar (or a fermion), there could exist an explosive production of that scalar (or
fermion), triggering preheating of the Universe after inflation [31].

4.5 Baryon asymmetry

Before concluding this paper we wish to make a small comment on the baryogenesis issue at the
electroweak phase transition. In Ref. [18], we presented a model of inflation that leads to a successful
BAU. The effective potential for the inflaton, labeled therein as y, was the Starobinsky potential?,
and we did consider the Schwinger equilibrium and maximal estimates. Hence it is straightforward,
using our numerical analysis in this paper, to make an update of the final results for the BAU for
inflation driven by the a-attractor models with a = 1.

As all details are explained in Secs. 6 and 7 of Ref. [18], we skip them here and go straight to
the final result. First of all we show in Fig. 8 the analogous plot to Fig. 9 of Ref. [18], namely the
parameter space that provides a successful BAU. In particular, we display in blue the region where

1

O ng = 9-107"
Rg > 1

O Tep < 10° GeV

0.01 0.02 0.05 0;1 0.2
Ty [Mpi]

ins

Figure 8: The baryogenesis window in the parameter space (fg, Tyn/Ton°) for the Starobinsky potential (-
attractor model with o =1). The dashed line corresponds to Eq. (4.26).

91n fact, we used in Ref. [18] an scalar field ¢ non-minimally coupled with gravity as £ = —%g(i)QR—i-. .., which yields
for the canonically normalized field x in the Einstein frame an a-attractor potential with o = 1+ é € [4.3,17.6], where
the lower bound was coming from imposing the naive unitarity bound g¢? < Mgl. As the dependence in a (hence in g)
is tiny, we choose to show in the present paper the result for a« = 1, hence for the Starobinsky potential (which would
correspond in Ref. [18] to the limit g > 1).
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the asymmetry parameter meets its observational value given by

3
_ H Hg 2 (T _
410124 Tt (_HB ~q.10-11
np ~4-107"* fo,, 7 (1013 Go ) ( rl?) ~9.107", (4.28)

where we have imposed the observed value [32] in the right-hand side. Following Refs. [16, 17] we define
the parameter fy,,, which encodes all the details of the EW phase transition and its uncertainties, as

dOw
dlnT

, 5.6-107* < fo,, <0.32. (4.29)
T=135 GeV

fow = —sin(20w)

In addition to their dependence on the gauge sector observables, the quantities used in this section
vary according to the ratio of the reheating over the instant reheating temperature. This parameter
hence adds to fy in the parameter space. The reheating temperature is computed as

1
90 \*
T = <7‘r29*) F¢Mp1, (430)

where g, = 106.75 is the SM number of relativistic degrees of freedom, and we define T as a reference
temperature given by the above equation with I'y >~ Hp, which is obtained from the simulation. It
would correspond to the reheating temperature for instant reheating, and takes the value TS ~
2.87 - 10" GeV. Using Eq. (4.26) it is possible to link the reheat temperature to the parameter f,.
The corresponding plot is shown in Fig. 8 which shows that it provides a wide window for baryogenesis.

Second, we display in orange the region where the magnetic Reynold’s number at reheating R is
bigger than one, hence ensuring that the required magnetohydrodynamical conditions are fulfilled for
the (hyper)magnetic fields to survive until the electroweak crossover. As we are in the viscous regime,
it can be computed as [18]

2 Hp T \ 3
R~ 59.10°6 PBB r 4.31
" HZ \103GeV ) \Tis ) (4.31)

where ¢p is the physical correlation length of the magnetic field given by

[— / Sk aup A (4.32)
pp a? Ar2 O B ’

which can be numerically computed during the simulation in the same way as the other observables.

Third, and last'?, we show in green the condition on the chiral plasma instability (CPI) temper-
ature, ensuring that the CPI time scale is long enough to allow all right-handed fermionic states to
come into chemical equilibrium with the left-handed ones via Yukawa coupling interactions (so that
sphalerons can erase their corresponding asymmetries in particle number densities) before CPI can
happen. The estimated temperature at which CPI takes place is

H? He \°/ T4\
~ -7 T

The constraint Tepr < 10° GeV (the temperature at which er comes into chemical equilibrium)
guarantees that the CPI cannot occur before the smallest Yukawa coupling reaches equilibrium and

10Besides, we checked that the generation of baryon isocurvature perturbation provides no constraint.
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all particle number density asymmetries are erased, preventing thus the cancellation of the helicity
generated at the reheating temperature.

Therefore, as we can see from Fig. 8, the resulting baryogenesis window for the Starobinsky
potential is close to the Schwinger equilibrium estimate for fy < 0.06 My, just as the corresponding
results on helicity and magnetic energy density suggest (see the green dots of Fig. 3). However, for
fo 2 0.06 My there is no space for the BAU, as the production of gauge fields is too weak, unlike in
the previous results from Ref. [18]. In addition to this we have seen that the reheating temperature
is constrained by the model, see Eq. (4.26), as we can see from Fig. 8 and compatibility of the model
reheating temperature with the baryogenesis results translates into the baryogenesis region on the
parameter fg

fo < 0.03.Mp (4.34)

Finally, one of the results of this paper is then that baryogenesis at the electroweak phase transition
is favored by low reheating temperatures, in the range 1076 Tis < Ty, < 1073 Tips,

~

5 Conclusions

In this paper, we have studied by means of numerical computations the effect of the Schwinger particle
production on the helical hypermagnetic fields produced at the end of inflation. The inflaton field ¢
can decay, through its coupling to the Chern-Simons density %YW}}’“’, into helical hypermagnetic
fields in a nonperturbative process. When exiting the vacuum, the gauge modes are strong enough to
create particle/antiparticle pairs of light fermions, which contribute to the electrical conductivity of
the plasma. The backreaction of fermion currents on the produced gauge fields acts as a damping force
in the explosive production of helical gauge fields. This effect, called Schwinger effect, was already
considered in numerous studies of inflation and/or baryogenesis, where some analytical and numerical
estimates were computed, mainly in configuration space while our calculation is done in momentum
space.

The equations of motion are in fact a nontrivial integro-differential system. It was solved numer-
ically by using a fourth order Runge-Kutta method, with details being displayed in the Appendices.
The computed observables of interest are the electric and magnetic energy density, the helicity as well
as the helicity time derivative. We assumed a homogeneous inflaton with only zero mode, hence we
did not treat any spatial effects. Besides, we also ensured the convergence of the algorithm and its
invariance to the initial conditions.

First of all we have checked that we recover previous results in the slow roll inflation regime by
making the same approximations required by an analytical resolution. In this way, we validate our
code, i.e. we verify that our code produces the right results in known cases such as the backreactionless
case, where the Schwinger effect is turned off, and the gradient expansion formalism, where the Bunch-
Davies parameter A was first introduced.

In a second step, still in the slow roll regime, we considered a specific model of inflation, namely
the Starobinsky potential, in order to account for the instability parameter as a function, £(a), instead
of the constant imposed by the analytical approximations. That way, we could also implement the
effects of a function A(a) obtained from the plasma evolution on the gauge production itself.

We then simulated, in a third step, the full system, where neither the slow roll conditions nor
the Universe geometry (e.g. de Sitter) are imposed. In order words, the inflaton equation of motion
was computed alongside with the gauge one, taking the backreaction of the latter to the former into
account along with the Schwinger effect. We compare our result to the previous setup and found
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perfect agreement as long as the slow roll conditions are met. When inflation is near its end, the full
solution diverges from the slow roll results and produces, as expected, less energy density and helicity.

Finally we will comment on the implication about two related topics: gauge preheating and
baryogenesis. As our code is free from any geometrical issues, and only requires a model of inflation,
we let the simulations run until the onset of reheating to compute the electromagnetic to total energy
density ratio. We choose two well-known classes of models that satisfy the cosmological constraints
as illustrative examples. Previous studies have quoted a sufficient criterion for gauge preheating to
happen, namely that this fraction should be at least = 80% [12]. However, our numerical estimates
suggest that the Schwinger effect significantly reduces the share of electromagnetic energy for the
considered models and preheating is unlikely to occur. Moreover, since we are neglecting all spatial
effects, any negative statement concerning the possibility of gauge preheating due to the lack of
electromagnetic energy should be a conservative one. On the other hand our results do apply to the
considered class of inflationary models. They show a certain degree of model dependence, so we cannot
exclude a qualitatively different result for models of inflation other than the considered ones.

On the other hand, as a successful baryogenesis does depend on a delicate equilibrium between
the amount of helicity, magnetic energy density, and magnetic correlation length, damped fields do
not necessarily mean no baryon asymmetry in the late Universe. Actually, as a result of our numerical
calculation, we have found there is still a window in the parameter space for baryogenesis to happen
as long as fs < 0.05 My, while consistency from the perturbative decay channel of the inflaton into
hypergauge bosons implies the bound f, < 0.03 M. Moreover, baryogenesis is favored for low enough
values of the reheating temperature Ty, < 1073 70, Of course, the baryogenesis predictions should,
to some extent, depend on the model of inflation. In this way, our result here is restricted to the
Starobinsky model and should be considered just as a “proof of existence” for baryogenesis in the
presence of the Schwinger effect.

These two comments should be viewed as hints for future studies that address the production of
gauge fields at the end of inflation. Of course, a full lattice simulation of the Schwinger effect involving
fermions remains to be done.
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A  Numerical method: the slow roll case

We provide here the technical details for the solution of Eq. (3.10) subject to the initial condition
(3.11). For convenience, we implement the numerical computation in units of Hg. Writing

eala) = Ax(0) (@) = 22 @) (A1)
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Eq. (3.10) becomes the following system:

i)~ (seen @) () = @-reo 0o

To perform each time step Aa, we use the fourth order Runge-Kutta (RK4) algorithm:

A1 = flai, ;) (A.3a)
X =f (ai + %Aa, T; + %Aa)\l) (A.3b)
X3 =1Ff (ai + %Aa, x; + %Aa/\g) (A.3¢)
Ay = f(a; + Aa,z; + AaXs) (A.3d)
a1 = a; + Aa (A.3e)
Tiy1 = @ + gAa(A1 42X + 2A3 + Ay) (A.3f)

Note that x is complex, hence we solve the above system for both real and imaginary parts but with
their specific initial conditions. These are mode-dependent as it takes longer for modes with bigger
wave number to leave the BD vacuum. Therefore, we choose as initial condition for each mode

a0 = L, (A.4)
TBD
where we choose the factor zpp in order to make sure that we initialize the gauge field sufficiently
deep inside the Hubble radius. Its exact value is subject to analysis and is discussed later. As we can
see from (2.8) and (2.9), high values of k are dominating the integral hence large modes are negligible
compared to small ones. This makes us to choose a lower bound on the k range such that the initial
time of the simulation is

kmin
ag = . A5
0= (A.5)

In that way, at ag we make sure that all the modes are in their respective vacua, which implies ¢ = 0
as explained above.

In practice, this means that the modes with k& > zgpa are given by the following relations

A k
BDy _  [2
Re(zy;) = 5% CO8 e (A.6a)
AV k
BD [2i
Im(z)7) = 57, S 2 (A.6D)

1 A k o; k
BDy _ 1 o _ ) .
Re(yys) = 2V 2 (\/E sin._ - Vi cos ai) ) (A.6¢)
1 A k o k
BDy _ N _ i
Im(yy;) = 2V 32 ( Vk cos w oE sin ai) (A.6d)

while the others are evolving with the RK4 algorithm.
The time steps are distributed on a logarithmic scale

loga; —loga;_1 =loga;y1 —logay, (A7)

so that the discretization is the same for each order of magnitude. This means Aa grows exponentially
with a. The advantage of this method is that there is a refinement of the grid for small values of a, at
the beginning of inflation. The same is done for the discretization in k.
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We explored the numerical convergence of the solution, both in the number of a;’s, labeled as N,
and in the number of k;’s, labeled as N. Provided that N, > 2000 and N; > 200, the simulations
are very stable and the output does not depend on the discretization. For big values of fy, fs 2 0.1,
we can even lower the number of time steps needed.

Besides, we must choose the BD penetration factor zpp such that it produces trustable results. We
have done a numerical analysis and conclude that depending on the value of N,, a range 20 < zpp < 50
yields trustable results. We hence choose throughout this work the following values

zp = 20, N, =500, 1000, 2000, N}, = 300. (A.8)

At each time step, we compute the electric and magnetic energy density as

o= [ b (R bR, (A.99)
i 1 k* 2 — (112
oh =11 | dk—ux B + |27 (B)?) (A.9b)
where we choose
i a? [0y — o051 oi [ 04
k! =a; a; —1 _—t — 1)]. Al
e a£+\/( )7 + 5 |:ai_ai—1+ai (Qaﬁ )} (A.10)

such that we cut off the spectra to retain only modes outside the horizon. The helicity (2.9a) and its
derivative (2.9b) become

K: 3
mo- o [ dkiux (W) = a7 (0)) (A1)
6= o [k e 0 0 e i ). (A11b)

In the numerics, these integrals are performed numerically over the range of k that takes IV discrete
values. If the Schwinger effect is taken into account, we turn on the possibility of having o computed
at each time step a; of the numerical computation with

Oil = o5 a; \/2p’y coth ( E (A.12)

and injected into the calculation of the next step. Otherwise, we keep it zero. Last, the fermion energy
density is computed as

) s k2
Py = Z—z dk s [Re(x;\)Re(y{\) + Im(:c;\)lm(y{\)} . (A.13)
7 kmm A=+

Finally, we stop the simulation at a = ag. Quantities at that time are compared to the known
analytical results. The color matching dashed vertical lines in Fig. 2 show the cutoff values k% computed
from (A.10). They agree perfectly with the point where the BD vacuum modes become dominant for
large k.
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B Numerical method: full analysis
The numerical implementation follows from the previous case. Defining the variables

do dAy,
r=— = —

frd = A = B.l
w = ¢, da yr = Ay, aw= o (B.1)
we transform the above coupled system of differential equations (4.6) into the system
d
d—: =x (B.2a)
dx G 4—F V'(w)
- _ — B.2b
da a’H?f, e U7 @2H? ( )
d
% = 2) (B.2¢)
dzy k A k 1 o
—_— = — - ——(2- — B.2d
da _ o2H <f¢ . a2H> n-g (-7 5) > (B-2d)
which is equivalent to writing
d
UT:; = f(a,z). (B.3)

We recall that w, z € R and y,, zx € C. Similarly to the previous calculation with the slow roll
approximation, we use the RK4 algorithm (A.3) with the values of H, o, F and G computed at each
time step.

Inflaton initial condition could be set to

wo = (]5*, Ty = 0. (B4)

However, the number of e-folds sets the initial time as ay = e ™+l ~ 10726, which is too small a
number for the numerical implementation. We then proceed as follows. For a < kmin/2BD, and
sufficiently low kpin, the gauge field modes stay in their vacuum and the total contribution to A(a) is
negligible. Hence we do not need to perform the numerical simulation before that time, as the inflaton
is the main player, so we can solve its equation of motion analytically. Instead, we fix the start of
the simulation like before, at ag = kmin/2pp and we compute the corresponding number of e-folds N
which leads us to the corresponding value of ¢(N). Therefore, the initial condition must be set to wy
such that
v V(e)

dp = —M?loga B.5
on V'(0) P08 0 ()
and, using ¢ ~ — V:;;}b) which is valid at the early stages of inflation,
V' (wo)
=— . B.6
Zo 3@()Hg ( )

As for the gauge field, initial conditions are set in the same way as in the slow roll approximation, see
App. A.
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R2-Higgs inflation stands out as one of the best-fit models of Planck data. Using a covariant
formalism for the inflationary dynamics and the production of helical gauge fields, we show
that the observed baryon asymmetry of the Universe (BAU) can be obtained when this model
is supplemented by a dimension-six CP-violating term ~ (R/A?) B,U,E‘“’ in the hypercharge
sector. At linear order, values of A ~ 2.5x 10~ Mp produce, in the R?-like regime, sufficient
helical hypermagnetic fields to create the observed matter-antimatter asymmetry during the
electroweak crossover. However, the Schwinger effect of fermion pair production can play
a critical role in this context, and that scale is significantly lowered when the backreaction
of the fermion fields on the gauge field production is included. In all cases, the helical field
configurations can remain robust against washout after the end of inflation.
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1 Introduction

Cosmic inflation [1-3] elegantly addresses a plethora of observations, ranging from the flatness of
the Universe, over resolving the horizon and exotic relics problems, all the way to seeding the
primordial density perturbations giving rise to the large-scale structure of the Universe that we see
today. In parallel, it can explain the cosmic microwave background (CMB) anisotropies measured
by experiments such as Planck [4]. While there are several alternatives to inflation, among these
models, Starobinsky or R? [1, 5-8] inflation, where pure General Relativity (GR) is extended by
an additional scalar curvature term R, is one of the best-fitting models of current data [4].

In the dual scalar-tensor theory, the presence of the R? term makes the scalar degree of freedom
dynamical, which can account for cosmic inflation. After the discovery of the Higgs boson at the
Large Hadron Collider (LHC) [9, 10], the theory essentially contains two scalar degrees of freedom.
Indeed, if the Higgs field ® couples non-minimally to the Ricci scalar R via a term &y R|®|?,
with £z as the nonminimal coupling, the Higgs field itself can induce inflation [11-17] (for earlier
works which employed similar mechanisms, see [18-25]). In pure Higgs inflation, i.e. without the
presence of such R? term, a scale of unitarity violation emerges [26-29]. This may not pose a
threat to inflationary dynamics, see Ref. [30]. However, during the preheating stage, longitudinal
gauge bosons with momenta beyond the unitarity cut-off scale are violently produced [31-33]. The
perturbative unitarity is restored up to the Planck scale due to the presence of R? term in R>-
Higgs inflation [34] (see also e.g. [35-46]). Moreover, R2-Higgs inflation (or the Starobinsky-Higgs



inflation), which features both the R? and R|®|? terms, is also the best-fit model for the Planck
data.

Following on from these successes, it is not unreasonable to correlate the R2-Higgs inflation to
the other shortcomings of the current microscopic theory of interactions, the Standard Model of
Particle Physics (SM). One such shortfall is the observed matter-antimatter asymmetry (or the
Baryon asymmetry) of the Universe, BAU. The existence of the BAU is a strong indicator of the
presence of interactions beyond the SM. A range of particle physics experiments, chiefly at the
LHC, are searching for such interactions at the currently largest available energy scales of O(TeV).
If the fundamental scale of the mechanism behind the BAU is tied to a higher scale, it might
be possible that tell-tale effects at present or even future colliders could remain absent. In the
SM, the CP-violation from the CKM matrix is not sufficient for baryogenesis [47-49]. Further,
the electroweak phase transition in the SM is a continuous crossover [50] rather than the typically
desired strong first-order transition to drive the departure from thermal equilibrium condition as
part of Sakharov’s criteria [51]. However, even at the crossover, the out-of-equilibrium condition can
be met if the source and washout decay rates are different and shut off at different epochs [52, 53].
If the inflaton field couples to the CP-odd hypercharge Chern-Simons density FF, with F and
F denoting the field-stress tensor of a U(1) gauge field (which mixes with the hypercharge gauge
field) and its dual, respectively, helical hypermagnetic fields can be abundantly produced at the
end of inflation [54-59]. The helical hypermagnetic fields may then create the observed baryon
asymmetry at the electroweak crossover [53, 60-65].

In this article, we investigate baryogenesis in R?-Higgs inflation from CP-violating dimension-six
Chern-Simons density ~ (R/A%)B,, B"”, where R is the Ricci scalar and B, is the field stress
tensor of U(1)y hypercharge in the Jordan frame (see also Refs. [66-70] for similar discussions).
This term can be considered within the context extended theories of gravity (or rather, f(R, ¢, B,)
gravity), and it elegantly connects high-scale BAU to inflationary dynamics without requiring
additional fields beyond the SM. Adopting the covariant formalism due to the non-canonical kinetic
terms in R2-Higgs inflation, our linear order analysis, with A ~ 107>Mp, demonstrates that the
produced helical hypermagnetic fields are sufficient to account for the BAU. We take into account
effects that could lead to a washout of the helicity stored in the gauge sector (e.g. the chiral plasma
instability) alongside observational bounds on a range of associated phenomena that prevent total
freedom of the possible field configurations.

In the presence of strong gauge fields, light fermions charged under the gauge group are produced
by the backreaction of gauge fields that source the fermions equation of motion [71, 72]. The
corresponding currents can then, in turn, backreact on the produced gauge fields, a phenomenon
called the Schwinger effect, see e.g. Ref. [73]. The backreaction of fermion currents on the produced
gauge fields acts as a damping force during the explosive production of helical gauge fields, and
many of the conclusions from the gauge field production should be revised in the presence of the
Schwinger effect. In particular, it has been shown that, although the amount of gauge energy
density is suppressed, which jeopardizes the gauge preheating capabilities, there is still a window
for the baryogenesis mechanism, see Ref. [65]. Also, one possible way out is if there are no light,
charged fermion fields when gauge fields are produced, for instance by the use of a special Froggatt-
Nielsen mechanism such that all fermion Yukawa couplings stay large at the end of inflation, while
they relax after inflation to the measured values [74]. However, in this paper, we will stay agnostic
on the fermions effect in the plasma and provide the results with and without the Schwinger effect.

We organize this paper as follows. We start with outlining the action and derive the relevant
equations of motion (EoM) for different fields in Sec. 2, followed by the inflationary dynamics in the
covariant formalism in Sec. 3. The production of hypermagnetic fields and subsequent generation



of the BAU are discussed, respectively, in Sec. 4 and Sec. 5. We summarize with some discussion
in Sec. 6. Finally, we present some technical computational details through appendices A-E.

2 The Starobinsky-Higgs Action

In pure GR with a canonically coupled scalar theory, without the presence of R?, the conformal
mode of the metric is known to have a wrong-sign kinetic term. The Starobinsky inflation model,
which extends pure GR with an additional scalar curvature term RZ?, falls within the so-called
general f(R) theory of gravity. In its dual scalar-tensor theory, the presence of the R? term
makes the scalar degree of freedom dynamical, which can then account for cosmic inflation. R2-
Higgs inflation (or Starobinsky-Higgs inflation), which features all possible dimension-four terms
i.e. both the R? and R|®|? terms also provide best-fit models of the Planck data. The model has
two dynamical scalar degrees of freedom, one appearing from the gravity sector and one entering
as part of the Higgs field ®.

We briefly discuss the action and its transformation properties in the metric formalism assuming
the affine connection to be the Levi-Civita connection. The action in the Jordan frame of R>-Higgs
inflation, along with a dimension-six CP-odd term coupling Ricci scalar and U(1)y gauge boson,
is given by

M3 ) 1 o
Sy = /d%«\/—gJ [21’ f(Ry,®,B,) — ¢}/ (V,®)'V, & - V(®,&) - Zgﬁng B Byo
(2.1)

1 B B U oo~
— 9T Wi Wi =Dl er'yaVZf] ,
f

and we adopt a mostly-plus convention for the metric (—1,+1,+1,4+1). From here on, for no-
tational simplicity, we will remove the sum over fermions 3 f in the fermion quadratic terms,
which will remain implicit. The By, and W/, are field stress tensors of the U(1)y and SU(2)r
gauge groups, respectively, ® is the Higgs field, R; the Ricci scalar in the Jordan frame, and
Mp = /1/ (87G) = 2.435 x 10'® GeV, where G is the Newton’s constant and Mp the reduced

Planck mass. We use the convention €%123 = 1 for the Levi-Civita tensor. The covariant derivatives
are defined as

1 1
Vu = Dy+ zg’inyBM + WgoT w,, (2.2a)

vif (Dﬁ—i—ig';nyBM—l—ig;T-WM) 1, (2.2b)
with Qy; denoting the U (1)y hypercharge, T are the Pauli matrices, and ¢’ and g are respective
gauge couplings. D,, is the usual covariant derivative with respect to the space-time metric g7,
and D,{ = 0, + I', is the covariant derivative of spinors, with I';, as the spin affine connection.
Here ey, is the so-called vierbein and 7, is Minkowski space gamma matrices (see Appendix A for
details of the formalism and the definition of I';). The corresponding field-stress tensors for the
U(1)y and SU(2); gauge fields are

3
By, =DuB, - D,B,, W}, =D,W.-D,W.~g > euWiWpk. (2.3)
k=1
The Higgs potential V(®,®") and f(R;, ®, B,) are given as'
V(®, o) = o (2.4a)

! For large configuration values of the Higgs field we can consistently neglect the mass term of the Higgs potential,
which triggers electroweak symmetry breaking.
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The Higgs field has hypercharge +1 and is decomposed in the standard way (we will comment on
our gauge choice further below)

f(R;,®,B,) = Ry BBy Ry (2.4b)

o= . (2.5)

With this choice, Eq. (2.1) becomes

M3 1 .
Sy :/d4x1 /=g [;f(RJ,h, B,) — 595 (Dyh)Dyh —V(h)
Lo 20 Wy —1W5) (W) +iW5) 1

S V2 NG Q01 (W —d'B.) (oW —¢'B))  (26)
- igj 97" By Bpo — igJ g Wi Wi — g felqaVif],
with
V(h) = %hég f(Ry.h,B,) =Ry + 231;21% f;h Ry - A2?\42 \E/MﬁBWBPURJ (2.7)

The dynamics of the scalar degrees of freedom are easily captured once we move from the Jordan
frame to the Einstein frame via a Weyl transformation. We first introduce an auxiliary field ¥ and
rewrite the action in Eq. (2.6) as

5= [ dov=ga M2 (ron 8+ LB (1) - ) — Lo 00) — ViR
1 2 7
4g;jzx 2h2 (W \/EW ) (Wyl %WE) ; ,le/hQ (QWE _ g/Bu) (gWV?, o g/By) (2.8)

1 1 . o
- 195/)95 B Bps — 49J QWW WZ gijyfefﬂavfjf]-

The variation with respect to U gives the constraint ¥ = R, as long as 0%f (¥, h, Bu)/8\1/2 # 0.
We now define a physical degree of freedom © as

Of (U, h, B,)
o= T 2.9
B (2.9)
such that the action Eq. (2.8) can be cast into
4 M3 I Ly vo
Sy = [ d'av=g; | ZLOR, — U0, h B,) = 595 (Duh)(Duh) = V(h) = 365 65" By By
1 py 2 Q(W ZWQ) (W1+iw2) 1 vy2 3 / 3 /
-+ h v v ,u h W° —dB Wo —4q¢' B, 2.10
— 1909 7 g9 Wi B (W —d'By) (2.10)

1 o~
LW W, — o e,



with the definition

M3
U(@’ h, B,u) = 7 [\Ij(@)@ - f(\ll(@), h, Bu)]

=—(1—-0+=>%5h —B,,B .
4§R ( + M2 AQMF% /ng pv=po

To formulate the action in the Einstein frame, we perform the metric redefinition (Weyl transfor-
mation)

(2.11)

1 1
i = 6 9Euv, 95V =0 g%z/’ and \/7 = @\/ —9JE- (2'12)

Under this transformation, the Ricci scalar transforms as
3
R;=0 {RE + 3050 — §g§§”Du(ln ©)D,(InO®)|, (2.13)

with Op = ¢’ D, D,. Ignoring the surface term, the action of Eq. (2.8) now becomes

M3 3MPA 1
Sp :/d4x\/—gE[ —PRp - 4P ,(In©)D, (InO) — 5695 = (Dyh)(Dyh) — Vi
) (W} —iW2) (W} + i)
T pp uoBVBJ_ pny 22 © H v v 2.14
195 98 BuvBpo — 15959 7 NG (2.14)
1 1 _
2 3 3 ! VoYt ) Vroax f
— 5098 " (9W = 9'By) (W = 9'By) = 195" 95 Wi Whe — 98 feidaVif |,
with
1
Ve = o2 V(h)+U(O,h,B,)]. (2.15)
Finally, we perform the field redefinition
3
= Mp\/;lne). (2.16)
to arrive at the action in the form
4 Ml% I J I 1 vo
Sg= [ d'zy/~ Rg — *GIJQ D,¢"'Dy¢” — VE(¢') — 49E 9% BuvBpo
1 _ 2 1, 5172
_ lgE' g%cr 2 Wz _ 1 \/g%g%l/g2h2 (WN ZWM) (Wl/ + zWu) (217)
4 1° V2 V2
\/7 jug 2 3 / 3 ! *\/Ei v F oax f
_76 8 Mp ghh gWM—gB“)(gWV—gBl,)—e 3MPgEfeM7aVVf.
The multi-field ¢! € {¢, h} alongside the field-space metric G s
_\/ii
G¢¢ = 1, Gd)h = Gh¢ = O, th =€ 3 Mp (2.18)

highlight that we are working with a non-canonical kinetic term as alluded to above (see Appendix B
for the corresponding field-space Christoffel symbols). The potential Vg (¢!), consistently truncated
at dimension-six level, reads

2
N 22 [A - Mlg 2 £y o 2 eHrPT
VE(¢') =e \/7MP [ h 4§R 1—e MP + Mgh N2 — [MpB vBoo
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= Vo(¢") + 75 F(¢31)e\/g e B, B, (2.19)
ErA2
with
A o M}
%(¢I) = Zpie” 2 3 Mp 4 P (¢I) (220&)
4 4R
F(¢') = 1—e Vi | Sy, \/;A?P BM = ;e‘“’p"Bm. (2.20Db)
MP 2./—9E

Note that the unmodified Starobinsky potential is recovered when the term that contains BWB“”
is absent.

We can now turn to the EoMs of the different fields in Eq. (2.17). By varying Eq. (2.17) with
respect to the field ¢, we obtain

06" + 17 93 Dad' D¢’ — GHMVi yr + gl X5, = 0, (2.21)

identifying Ffj as the field-space Christoffel symbols and

XK 1f1GK16—@A;;;92h2<W5 — W) (Wi +iwd)
me 4V 3 Mp \/i \/§
N 16—\/§M%Gmg2h(wﬁ —iW2) (W} +iW2)
2 V2 V2

* ;\/EJ\;PGKI‘;@”Z’ W (gW;: — g'Bu) (9W, — 9'By) (2.22)

_ lc;me‘\/g b (g~ o B) (9WE — 9'B)
\/75 K, \[Mp gm/ftu’}/avljjf'

Note that all the terms in Xlﬁ are quadratic in the gauge fields.

The energy-momentum tensor 7T}, describes relevant quantities of the inflationary dynamics such
as energy density or pressure. One can derive the Einstein-Hilbert equation from the action Sg by
varying it with respect to gl

| 1 5(Lar)
RE/.LV - i.gE;wRE M2 (ﬁMgE,ul/ - 2%/) (223)
and identify 7}, as
oL
T = (EMQE#V -2 ((5 ﬁ%)> ) (2.24)
9E

Appendix C provides the full expression of 7),, for the model considered in this work.

The EoM for the gauge field B, is given as

8M32 2 ¢

g%agVﬂD BMV+ AP2D (F(qb])e\/;MP) BOZB_}_ |:4 \/71V1Pgu5h2(gw3 / 'u,)

o O (2.25)
19y, —,/2_¢ _

— 7f€ \/;]\/IP g%6f€Z'Yaf — 0’



and those for the W; fields are found to be

3 .
y . . g _./2 o . 1g —,./2-¢ —
99 DaWr, — ggi’ gie > Wi, WE — Zg%ﬂ e V3me AW + Dk Vi g felFaTi f =0,
Jk=1
gWiif i =1,2

2.26
gW3 — ¢ By,ifi =3 (2.26)

with WL = {

We define W, Z,, and A, in the usual way
1 _ 2 1 2
W:WN_ZWM WT:WM+ZWM

vz V2 (2.27)

A, =sin QWVVi’ +cosbw B, Z, = cos GWW3 —sinfw By,

with e = gsin @y = ¢’ cos Oy, and electroweak angle 6y,. We can express the WfL and B, fields in
terms of W,,, Z, and A, by inverting the above equations.

Given that we are in the broken phase, for which hg # 0, where hg is the homogeneous background
field as we shall see shortly, we can consider the trivial solution WL = 0 from the mass term in
Eq. (2.26) as the variation is small compared to the background field. This means that we can
set W, = W,I =0 and Z, = cos 9WW3 — sinfy B, = 0 which implies that B, = cosfy A, and
WE = sinfw A,. We will therefore retain only the photon field A, replacing B,, with cosfw A,
in the corresponding Chern-Simons term. Put differently, the production of photon fields proceeds
unsuppressed compared to the other heavy gauge bosons.

We now turn to some comments related to the gauge fixing in Eq. (2.5). The Higgs doublet
contains, apart from the radial degree of freedom h, three Goldstone bosons Y. Using SU(2)p,
gauge invariance, and fixing the corresponding gauge parameter d(x) as @(z) = —x(z) (unitary
gauge), the Goldstone bosons disappear from the Lagrangian and the Higgs doublet reduces to
Eq. (2.5). There is still the U(1) gauge invariance that can be used to fix the Coulomb gauge
for the electromagnetic field 9°A; = 0. This is done by fixing the hypercharge gauge field B, as
0'B; = —tan HWOZ'WE. Moreover, in regions where the electric charge density is zero, it turns
out that Ag = 0 (the radiation gauge we use in this paper). Therefore, the EoM for the A, field
simplifies to

8 cos? Oy M2 2 6\ .
959 DaFa + s 00 (Fw)eﬁ MP)F:ﬂ

ErA? (2.28)
_./2 9 _
=ieQye Vi 9 FelAaf,
with Q; = %ny + T3y, where T3 is the third component of weak isospin.
Similarly, one can find the general covariant Dirac equation as
9% ¢ 3a(VLf) = 0. (2.29)

3 Inflationary Dynamics in the Covariant Formalism

We now study the inflationary dynamics of our two-field scenario with the non-canonical kinetic
term (i.e. with a nontrivial field-space manifold) following the covariant formalism discussed in



Refs. [33, 75, 76] (see also Refs. [31, 77-88]). Focussing on linear order perturbations, we decompose
the fields into classical background (¢!) and perturbation parts (5¢!) as

¢! (a") = ¢! (t) + 69 (), (3.1)

with ! (t) = {p(t), ho(t)}. The space-time dynamics can be described by the perturbed spatially
flat Friedmann-Robertson-Walker (FRW) metric, which is expanded as [89-91]

ds* = —(1 + 2A)dt* + 2a(t)(9;B)dz'dt + a(t)* [(1 — 2¢)d;; + 20;0;€] dx'dx? . (3.2)

a(t) denotes the scale factor, t parametrizes cosmic time, and A, 5,1 and € characterize the scalar
metric perturbations. Like the scalar fields, the space-time metric is also considered up to first order
in the perturbations. In the following, when deriving the background and perturbation equations
for scalar and gauge fields, we shall adopt the longitudinal gauge, i.e. B =& = 0.

One may define covariant field fluctuations Q! (covariant with respect to the field-space metric) that
connect ¢! (x#) and ! (t) along the geodesic of the field-space manifold with affine connection &.
Concretely, we can take ¢!(k = 0) = ¢!, ¢! (k = k') = ¢! + ¢! and D¢! |0 = d¢! /dk|s—0 = QI
such that with these conditions, the unique field-space vector Q! connects ¢! and ¢! [75]. Note
here, that D is the covariant derivative with respect to the affine connection. The field fluctuations
5¢! can be expressed in a series of Q7 as [75, 85]

1 1
91 = @ — 1100107 1 LMy T Tl a) 01070 ., 33)

where the Christoffel symbols F§ i are evaluated at the background field order. The field fluctua-
tions d¢! (zH) are gauge-dependent quantities under both the field-space transformation ol = o1,
as well as the space-time transformation z# — z/#. This is motivation to formulate gauge-
independent Mukhanov-Sasaki variables, which are a linear combinations of space-time metric
perturbation 1 and covariant field fluctuations Q' as [90, 92, 93]

QI =90l + Sb—]zp. (3.4)
H

We remark that, while ¢! is not a vector of the field-space manifold, Qf, ¢! and Q! all transform,
indeed, as vectors of the field-space manifold. The Q! is doubly covariant with respect to both
space-time and field-space transformations to first order in the perturbations. It is useful to define
the covariant derivative of vectors ST and S; in the field-space as

D;SsT=0;8" + 148K D;S; =0,5 —I'K Sk. (3.5)
It is convenient to also define a covariant derivative with respect to cosmic time ¢
DSt = I D8t = 8T+ 1L 87 pK, (3.6)
see also Refs. [83, 84, 94-96].

We turn to the stress-energy tensor 7),,, which can be written for the homogeneous, isotropic and
spatially flat metric gg,, = diag(—1, a%(t), a*(t), a?(t)) as

T,uu = (p + p)UuUu + PG> (37)

with a choice of U, = (1,0,0,0) for the fluid four-velocity. For a spatially flat metric, employing
Eq. (3.7) and the Einstein equations, we get the Friedmann equations for the background order

.\ 2
2 [a\" _ 1 v 1
H —<a> =z’ and H = fMg(erp), (3.8)
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where p and p are pressure and energy density, respectively. We can compare the 00 and ij
component of Eq. (2.24) and Eq. (3.7) to get expressions for pressure p and energy density p,

3
1
p="To, =752 > T (3.9)
i=1

At the considered background order, employing the explicit expression of Eq. (C.5) (see Ap-
pendix C), the (inflaton) pressure and energy density reduce to

1 T

p = 3G e +Voleh), (3.10a)
1 T

p = 5Gd'¢" = Vo(¥), (3.10D)

yielding the equation of state

I J
w=b = Gree =2 (3.11)
p Grele? +2

Furthermore, the Hubble parameter and its derivative with respect to cosmic time take the form

-\ 2
a 1 1 7.
P
: 1
H = —— (G¢"¢7). (3.12b)
202

The EoMs for the background fields ¢! and the perturbations Q! at linear order can be derived
utilizing Eq. (3.4), and Eq. (2.21)

D’ +3He' + GV =0, (3.13a)
k‘2
DjQ" +3HDQ' + —555Q" + MLQ" =0, (3.13b)
with
T 1 ad ..
M = G(DLDVo) = Ry’ " — Zas Dt <H90190L> ; (3.14)
P(l

and the field-space Riemann tensor R{J - All relevant quantities such as Vjp, G, I‘§ % Rg K i
Eqgs. (3.13) are evaluated at background order. Moreover, as the field-space metric G! and M1/
are diagonal in this approximation, the first-order perturbations do not mix the different Q7. Note
also that the EoMs for background and perturbations do not depend on the gauge fields for our
linear-order considerations.

To study perturbations, we can find a set of unit vectors that differentiate between adiabatic and
entropy directions. Firstly, we define the length of the velocity vector ¢! in field-space defined as

o= VGple! =\p+p (3.15)

and the corresponding unit vector

=% (3.16)
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With this, we can rewrite Eq. (3.13a) to reproduce a single-field model with a canonically normal-
ized kinetic term. The slow-roll parameters € and 7n are

H 352
R T 3.17
¢ H2 ~ 6242V, (3.17a)
n = ME.MM, (3.17b)
Vo

with My, = 6767 M§ = 6167(D;D;Vp). Inflation ends when the slow-roll parameter reaches
€ = 1, and we denote the corresponding cosmological time as tqnq in the following.

The field-space directions orthogonal to ! are given by

st =gl — 5157, (3.18)
and 6! and 8!/ tensors are related by relations [31]
olor=1, §7s,=N—-1, ;87 =0 for each J. (3.19)

N =2, and I,J = 1,2 in our two-field scenario. We can now decompose the perturbations in the
directions of 67 and §'7 as

Qo = 61Q", (3.20)
ost = 51,Q7, (3.21)

with Q, and ds’ being referred to as adiabatic and entropy perturbations, respectively. We also
define a “turning vector” w! as the covariant rate of change of 67,

wl = Dyol. (3.22)

The turning vector is orthogonal with respect to 6!, w;é! = 0, the corresponding unit vector is
W =—, (3.23)

with w = [w!| = /Grjwlw’.

With these definitions in place, we can now define the entropy perturbations as

Qs = @1Q", (3.24)
which are conveniently normalized to give
H
o
The gauge-invariant curvature (adiabatic) perturbation R [90, 91, 97]
H
R =19 — ——dq, 3.26
p+p ( )
with p, p as defined above, and dq given by 0;0¢ = —Tp; evaluated at background order (cf.

Appendix C) together with Egs. (3.3) and (3.4)

-]
5q = —Grylo9" = —o (QI _ f_ﬁ) . (3.27)
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Therefore, R takes the compact form
H 51 H
R =1+ 5661 (Qf - d0¢> == Qo, (3.28)

at linear order. In the presence of entropy perturbations, the gauge-invariant curvature perturba-
tion does not need to be conserved, R # 0. The non-adiabatic pressure perturbation is given by
[91, 97

2610;V

: I
3e + 26 (wrds'). (3.29)

OPnad = 06p — Lop = —
P

with €,, as the comoving density perturbation. For super-horizon scales k < aH, the only source
of non-adiabatic pressure stems from ds’. This means that R # 0 will not vanish even at the
k < aH scale and wyds! will source @, and hence R.

The gauge invariant curvature perturbation is defined as [90, 97]
(R(k1)R(ks)) = (27)%0) (ky + k) Pr(t; k1) (3.30)
and Pr(t; k) = |R|?. The dimensionless power spectrum for the adiabatic perturbation is given by
k3 9
Pr(t; k) = —|R|*. (3.31)
272

Similarly, the power spectrum for the entropy perturbations is

]{33
Ps(t; k) = —|S|%. 3.32
s(t:k) = 5 51S] (3:2)
To find the power spectra of the curvature and isocurvature (entropy) perturbations, Eqgs. (3.31)
and (3.32), we utilize the quantities H, € and unit vectors such as 67, &!,..., from the solutions of

the Egs. (3.12a) and (3.13a) while @, and Qs are evaluated using the solutions of mode equations
from Eq. (3.13b). For a given Fourier mode k, we calculate the different power spectra at the
t = teng numerically as a function of k as

Pr (k) = Pr(tena; k), Ps(k) = Ps(tend; k), (3.33)

where tqo,q denotes the time when inflation ends, i.e. when ¢ = 1.

The spectral index ng of the power spectrum of the curvature perturbation is defined as

dInPr (k)

ns =1+ —n

(3.34)

As we will discuss in the next section, although our scenario involves scalar fields h and ¢, we
shall primarily focus on a scenario where the dynamics are essentially described by single field-like
inflation. In such a case, the spectral index can be calculated as

ns(te) = 1 — 6e(ty) + 2n(ts), (3.35)

where t, denotes the time when the reference scale exited the horizon and the tensor-to-scalar ratio
is given by r & 16e.

We choose three benchmark points to highlight quantitatively the implications of consistent infla-
tion parameter choices when contextualized with baryogenesis. These are summarized in Tab. I
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BP| &g € | (tin) [Mp] | ho(tin) [Mp]
a |2.35x10° 1073 5.5 2 x 1074
b [2.55x10°| 1 5.5 8.94 x 1074
c|22x10°| 10 5.4 5.00 x 1073

TABLE I: Benchmark points chosen for our analysis. Scales are given in units of the Planck mass Mp.
See text for details.

0.970
_5‘
_ logy[Pr(k,)] 0.965}
< -1}
~
£ 0.960]
% T log,o[Ps (k)] =
&
= ol 0955}
—25L . . i i 0.950 . . I
260 ~30 0 2 25 —60 —55 ~50 —45
N N

FIG. 1: The power spectra of the adiabatic and isocurvature modes and the spectral index ng for the
parameter values of BPa in Tab. 1.

alongside the required initial field values to satisfy Planck 2018 measurements: At the pivot scale
k = k., the amplitude of Pg (k) should match the scalar amplitude measurement of Ref. [4]

As = (2.099 +0.014) x 1072 at 68% CL. (3.36)

As a guideline for our parameter choices and the initial values of the background fields, we follow the
valley approximation that we discuss in Appendix D. We note that, whilst finding the parameter
sets, we also ensure that the isocurvature mode remains orders of magnitude smaller than the
curvature perturbation. The background equations are solved with initial conditions ¢(¢i,) and
ho(tin) as in Tab. I, with vanishing time derivatives; ¢;, denotes the initial time for our numerical
analysis in the following. The perturbation equations (3.13b) are solved with approximate initial
conditions for a Fourier mode k

QY (t) ~ \/12% <z + a’;) exp {zalj_{} , (3.37)

sufficiently in the past such that the Hubble parameter at ti, remains approximately constant. In
practice, we initialize the Q! and their derivatives about four e-foldings before they exit the horizon
for each mode.

In Fig. 1, we show the evolution of power spectra Pr and Pg (for the pivot scale k = k,) and the
spectral index ng for BPa. Note, when calculating both power spectra, we solve Eq. (3.31) and
Eq. (3.32) numerically without any assumption related to slow-roll. It is clear from Fig. 1 that the
isocurvature mode is orders of magnitude smaller than the adiabatic mode and both power spectra
freeze out once they exit the horizon. We remark that while finding the power spectrum we always
check the orthogonality conditions of Eq. (3.19) in our numerical analysis. In the following, we
interchangeably use the cosmological time ¢ and the number of e-foldings before the end of inflation
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FIG. 2: The evolution of the background fields ¢ and the hgy for the parameter values of BPa in Tab. I.
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FIG. 3: The Hubble function H and the inflaton energy density p as in Eq. (3.10a) for the parameter
values of BPa given in Tab. I.

which is defined as

N =120 (3.38)
a(tend)

The pivot scale k, exits the horizon N, = 57, 59.3, 54.9 e-foldings before the end of inflation for
BPa, BPb, and BPc¢, respectively. For illustration, we also show the fields’ time evolution in Fig. 2
for BPa, while, the evolution of the Hubble parameter and the inflaton energy density are shown
in Fig. 3. It is also clear from Fig. 1 that the spectral index ns lies within the Planck 2018 range
when the reference scale exits the horizon. The corresponding values of the tensor-to-scalar ratios
are 7, ~ 0.003, which is consistent with expected values for R?-Higgs inflation.

4 Gauge Field Production

The EoM for the gauge field A, of Eq. (2.28) can be rewritten as
1

vV —YE

a v 8 cos? Oy M2 2 o\ .,
00 (V080501 Fagw)) + =0, <F<¢I>eﬁ Mp> fof

_./2_ ¢ _
—ieQp eVt g et f =0,

(4.1)

without the presence of a torsion term Fjy,, = D,A, — D, A, = 0,A, — 0,A,. One can identify
the fermion current

_.]/2_¢ _
P = Zilee \/QMP g]’g/feff’?af (4.2)
f
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that sources the Schwinger effect.

Neglecting the Schwinger effect

First, we consider the scenario without Schwinger effect i.e. when the fermion current is negligible.
This is possible if the fermion field values are small. One can now separate the space and time
component of the A, field. The time component of Eq. (2.25) at linear order in the perturbations
is

1
a2

8; (9;Ag — o A;) =0, (4.3)

which, in temporal gauge Ag = 0, reduces to 9;A; = 0. The spatial components of Eq. (2.25) are
found to be

1 ¢H

A+ HA; — —50; (054i = 0 A)) - 7&]”“ (9; Ay — O A;) = 0. (4.4)
where
a 4 cos? Oy M3 7 \/EML
H=-, ‘f—gRA2H30<F(90 JeVs e ). (4.5)

In momentum space, using the notation A = A

3 ~ .
A(t,x) = / (;T;;/QA(t, k)e ik, (4.6)

with |k| =k, Eq. (4.4) reads

26 A)=o. (4.7)

S i3 k;2 ~
A+HA+ SA+
a
The A field can be written in terms of transverse components as

A=) ANtk) k), withk-&Mk) =0, ik x k) = Ak (k). (4.8)
A==+

so that, using conformal time 7 (with 9y = 0; = a~'19,), the EoM for the transverse components
becomes

PPAN +WiAN =0, (4.9)
with
wi(r, k) = k? + 2XEHak. (4.10)

In order to quantize the gauge fields, we first integrate Eq. (4.9) by parts to get the action quadratic
in the fields

5 = /dm _ / dr dk B@AW - %w?\(T, k)|flA]2} (4.11)

As we deal with non-canonical kinetic terms, we apply the quantization procedure detailed in
Ref. [98]. The canonical momentum of the transverse modes are

5Ly
5 (aTAA(T, —k)) ’

(7, k) = (4.12)
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with the commutation relation expressed as
A7, k), 0. A (1,q)| = id\nd(k + q). (4.13)
The field operator A*(7,k) can be written as creation and annihilation operators
AN, k) = &ﬁu?(ﬂ + &ikui‘(T% (4.14)
and the mode equations for the gauge fields are then
w2
it + Hit + =3 vt = 0. (4.15)
a

From these mode functions, we can compute the gauge observables, namely the magnetic and
electric fields’ energy densities, magnetic helicity and its derivative, defined as

1 fhe kA

pPB = a4/kmin de;|u>‘|2, (4.16a)
1 ke k2

pE = cf*/kmm dsz/\:|3¢u>‘|2, (4.16b)
1 ke k3

H = ag/min dkﬁ(yuﬂ?— u= %), (4.16¢)

G — ;%7:7 (4.16d)

with the cut-off value given by [65, 99]
ke =2|aH €|, (4.17)

defined by the condition w?(7,k.) = 0 satisfied by the helicity A such that sign(A¢) = —1. The
corresponding U(1)y quantities are linked to the electromagnetic ones via

pBy = pB cos” Oy pEy = pE cos® Oy

4.18
Hy = H cos® Ow Gy = G cos? Ow ( )

In general, the integration limits should cover all modes from zero to infinity, however, not all
modes are amplified during inflation. At the time ¢, the cut-off mode k. is found by the solution
of wy = 0; essentially this is when a mode k = k. crosses the horizon for the first time (at least
for one helicity). The modes k > k. are not excited during inflation and can be neglected for the
estimation of the above observable quantities. We will discuss kmin shortly.

In order to find pp, pp, H and G we solve Eq. (4.15) numerically via fourth-order Runge-Kutta
(RK4) method in discrete time steps. We outline the details in Appendix E. For the i-th time step,
the gauge field modes are initialized with the Bunch-Davies (BD) initial condition as [100]

1 it . Y
up(k, t;) o~ ——=e Wwili Uy ~ —1i
(ki) T : o
with w; = ka1 (t;). It is practically not possible to go to the infinite past. Hence, to ensure that all
modes remain well within the horizon at the initial time step t;,, we chose kmin = zppa(tin) H (tin)
with zgp = 100. On the one hand, if a mode k remains well within the horizon, k > zpp a(t;) H(t;),

e~ twiti, (4.19)
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FIG. 4: In the upper panel we plot the energy densities pp and pg with A = 2.55 x 107> Mp for the BPa
summarized in Tab. I. The lower panel corresponds to the hyperhelical magnetic fields H and G for
identical parameter choices.

we directly assume the BD solutions for the modes instead of applying the RK4 method for any
subsequent time step. On the other hand, all superhorizon modes are solved with the RK4 method.
For the numerical solution discussed below, we employ 25k time steps.

In Fig. 4, we show the evolution of pg, pg, H and G for BPa with A = 2.55 x 10~°Mp for
illustration. Similar values are found for the other benchmark points. We remark that we have
compared our numerical results to the analytical approximation of the magnetic and electric fields’
energy densities, magnetic helicity, and its derivative as in Ref. [65] and find good agreement.

Relevance of the Schwinger effect

We now turn to the impact of the Schwinger effect. The fermion current of Eq. (4.2) can be
expressed as

3" = (pe; J) (4.20)
The current and the gauge field are related by Ohm’s law
J=0.FE=—0.0,A, (4.21)

where the conductivity o. has been defined as a comoving quantity. The physical conductivity oy,
relates to the comoving one via 0. = aopp. In the case of one Dirac fermion f with mass m; and
charge Q¢ under a U(1) group with coupling g, the comoving conductivity associated to f can be
written as [71]

l9 Q¢ a ( PB) mm; 2 ¢
o6 = = /2pp coth (m,[E2 Jexpd ———F /221 4.22
I~ "6n2 gV oz ) P V2pe o Q)] 3 Mp (422)
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where my = my(ho) = mg(v)ho/v and so that
ge=» 05=Y of+N.> oL, (4.23)
f L q

with ¢ = e, u,7; ¢ = u,d,c,s,t,b, N. = 3 being the number of colors. Last, since we are in the
broken phase, we identify g as the electric charge g = e ~ 0.71 at the scale in which inflation takes
place.

This conductivity is to be distinguished from the conductivity of a thermal plasma after reheating
in a radiation-dominated universe. We stress that the above is the conductivity at the end of
inflation, before the reheating, produced by fermion pair formation from the magnetic field. Also,
this estimation is valid in the case of collinear electric and magnetic fields, an assumption that
we have numerically checked. Finally, the electric and magnetic fields are assumed to be slowly
varying, as we expect the hypercharge gauge field to reach a stationary configuration, where the
tachyonic instability and the induced current balance each other. We have verified in our numerical
simulation that this is indeed the case.

In the presence of the fermion current, Eq. (4.7) becomes

= k2 . 2iHE ~
A+(H+aph)A+$A+ (k x A) =0, (4.24)

a

which, for the transverse components in conformal time reads as

D2AN + 0.0, A +W3AN =0, (4.25)
which can be recast as
s o 5 s
O2AN + <a 10g(A(7‘))) 0. AN + WiAr =0, (4.26)
T

with

.
A(T) = exp{/ oc(1") d’i‘/}. (4.27)
—o0
Integrating Eq. (4.26) by parts as in the previous subsection, one can now define the canonical
momentum for the transverse modes as

i (r k) = —— Ok — A0 AY (7. K), (4.28)

5 (aTAA(T, —k))

and the commutation relation now becomes [98]

~ s 1 7
AN(r.X),0-A (7, q)] = gyl ta), with, £(7.k) = dup(r) +a%p(n). - (4.29)

The mode equations for the gauge fields in the presence of the Schwinger effect become

k(k
i + (H 4 oo )u™ + - (a + 2>\H§> uw =0, (4.30)

and the cut-off momenta k. is now modified to

2

ke = |aH €] + \/(aHg)2 + % [zfph +opn (% + H)} . (4.31)
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FIG. 5: Energy breakdown for £ = 2.35 x 10%, £ = 1073 and A = 2 x 1075Mp at the end of inflation
and the onset of reheating. We show a comparison between the absence and the presence of the Schwinger
effect for the quantities p;(N)/p(N), i = E, B,1. When the Schwinger effect is strong, like here, the
fermion energy density can dominate over the gauge density. Still, all energy shares are reduced in the
presence of the Schwinger effect.

At early times solution of the mode equations of Eq. (4.30) are represented by WKB solution [33, 98]

1 1 —i [T dr'wy (T’
u?(7) Jr 7 r(R) (4.32)

N NN TR

as long as \%\ < 1. In practice, we utilize the early-time solution for the modes

1 1
VNN DR

to find relevant, observable quantities. From Eq. (4.30) and Eq. (4.31), we find the energy densities
for BPa and display them in the right panel of Fig. 5.

u(T) —ikt (4.33)

Due to the coupling between the fermion and gauge sectors, massless hypercharged fermions are
continuously produced during inflation. They are massless as long as the EW symmetry remains
intact and thus contribute to the energy density of relativistic radiation as

. O (A-E) o, [* k2 d
= lim — [ & = dk ——— A2, 4.34
Py eV /V R a4/k 2n2 dr S [ (4:34)

min

It has been shown in Ref. [99] that the fermion energy density can easily dominate over the energy
densities of F and B fields at the end of inflation. This situation has been chosen as an example
in Fig. 5 where we display the energy fraction p;(N)/p(N), i = E, B, at the end of inflation and
the onset of reheating. We show a direct comparison between the presence and the absence of the
Schwinger effect. While for A > 4 x 107> Mp the difference is an order one factor, the Schwinger
effect reduces the amount of electromagnetic energy and helicity up to two orders of magnitude
for A ~ 2.4 x 107°Mp, see Fig. 7. This is because the presence of the Schwinger effect trades an
exponential behaviour in ¢ with a polynomial one.

When the gauge share dominates at least by 80%, the Universe will reheat before the perturbative
decay of the inflaton [100], a phenomenon called gauge preheating. As in Ref. [65], we found that
preheating is unlikely since the ratio is ~ 107¢ at most. However, the huge damping in both energy
and helicity does not preclude a window in the parameter space where the BAU is achieved, as we
will see in the next section.
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5 Baryogenesis

To generate a baryon asymmetry, the Sakharov conditions [51] must be met: (i) the system must
contain a process that violates the baryon number, (ii), this process also violates C/CP symmetries,
(#4i) this process occurs out of thermal equilibrium. In the SM, the CP-violating term from the
CKM matrix phase is too small to induce a significant baryon asymmetry at a low energy scale,
hence we included the dimension-six CP-odd term between Ricci scalar and U(1)y gauge boson.
On the other hand, in the symmetric phase of the EW plasma, the SM exhibits a chiral anomaly
that is enough to source the present-day BAU. The anomaly expresses the fact that the B + L
anomaly, the U(1)y helicity and the weak sphaleron are connected as

2
ANp = AN, = N, <ANCS - # A;Lzy) . (5.1)
The factor N, = 3 is the number of fermion generations and ¢’ is the U(1)y gauge coupling. Under
the thermal fluctuation of the SU(2); gauge fields, the Chern-Simons number Ncg is diffusive,
resulting in the rapid washout of both lepton Ny and baryon Np numbers. On the contrary, a
helical primordial magnetic field acts as a source, and a net baryon asymmetry can remain after
the EW phase transition.

In Refs. [53, 60], the effects of the helicity decay and sphaleron washout balance have been studied
within a careful analysis of the transport equations for all SM species during the EWPT. As a
result, a non-zero baryon-to-entropy ratio np remains in the broken phase while the transformation
of baryon asymmetry back into helicity is avoided. The novelty of the mechanism lies in the
introduction of a time-dependent (temperature-dependent) weak mixing angle Oy (7') which enters
an additional source of the baryon number into the kinetic equation. When the EW symmetry
breaking occurs at 7"~ 160 GeV, the primordial hypermagnetic field becomes an electromagnetic
field. However, the electroweak sphaleron remains in equilibrium until 7" ~ 130 GeV and threatens
to washout the baryon asymmetry. Therefore proper modeling of the epoch 160 GeV > T 2>
130 GeV is critical to an accurate prediction of the relic BAU.

The behavior of 6y (T') is confirmed by analytic calculations [50], and numerical lattice simula-
tions [101]. We follow Refs. [60, 61] and model it with a smooth step function

2 1 12 T T

cos® Oy = g’2g—i— 7 + 59/2g+ e (1 + tanh [ATMP]> (5.2)
which, for 155 GeV < Tyep S 160GeV and 5GeV S AT < 20GeV, describes reasonably well
the analytical and lattice results for the temperature dependence. Consequently, it is possible to
generate the observed BAU from a maximally helical magnetic field that was generated before
the EW crossover. Indeed, including all contributions, the Boltzmann equation for the baryon-to-
entropy ratio np reads

dniB 111 3 dOw Hy

12 PARE
= —— 200 ) —— — 5.3
I 3 Weph 1B + 15 5(97 +97) sin(20w)— = ==, (5.3)

where © = T/H(T), with H(T') being the Hubble rate at temperature T', Hy the hypermagnetic
helicity that is initially present and s the comoving entropy density of the SM plasma given by
s = (272 /45)g,T3. Furthermore, YWsph = 6 Dwepn /T* is the dimensionless transport coefficient
for the EW sphaleron which, for temperatures T' < 161 GeV, is found from lattice simulations to
be [102]

YWsph exp{—l47.7 +107.9 (5.4)

T
130GeV |~



21

The Boltzmann equation (5.3) has been numerically solved in Ref. [60] and the baryon-to-entropy
ratio np was found to become frozen, i.e. 7 = 0, at a temperature T" ~ 135 GeV. As expected,
this is close to the temperature 7'~ 130 GeV at which EW sphalerons freeze out. Setting the RHS
of Eq. (5.3) to zero and solving for np yields

3
_ Hy H(tend) \2 ( T
~4.107"2 : 5.5
"B Tow T3 (iona) <1013 Gev) \Tips ) (5:5)

where the (instant) reheating temperature is

7o~ (5 )‘1‘ VT = (s )‘1‘ Hl{fen), (5.6)

m2g, m2g,
and I'y is the total decay width of the inflaton that reheats the universe after inflation.

All the details on the EWPT dynamics are encoded in the parameter fp, which is subject to
significant uncertainties

dbw

5.6-107* < < 0.32. 5.7

T=135 GeV

fon, = —sin(260yw)

The bounds on fy,, are given by varying Ty, and AT in the ranges given below Eq. (5.2). The
result Eq. (5.5) is a main ingredient of this work as it directly relates the amount of the final BAU
to the amount of hypermagnetic helicity available at the EWPT.

The production of hypermagnetic fields nevertheless happens at the inflationary scale, hence one
must ensure that the helicity is preserved as the Universe cools down in the radiation-dominated
era that follows reheating. A rough estimate is to require that the magnetic Reynolds number
Ry, is bigger than unity, as this implies that the effects of magnetic induction are dominating
over magnetic diffusion in the thermal plasma. On the other hand, the electric Reynolds number
Re determines in which regime the plasma evolves and informs us how to calculate the magnetic
Reynolds number, see e.g. Refs. [62, 64]. In our work, we found that we are in the viscous regime,
R. < 1, and hence we need to satisfy the constraint

2 2
th ¢ PBy By [ H(tena) T\ 3
~59.1 - 1 .
R, ~5.9-10 (tend)2 <1013 Go rl}rlls > 1, (5 8)

where ¢p, is the hypermagnetic characteristic size given by

27 ke k3
lp, = dk — A2, 5.9
b= | =N (5.9

min

The magnetohydrodynamics description of the plasma also admits a CP-odd term that can induce
a helicity cancellation because of the fermion asymmetry back-transformation into helical gauge
fields with opposite sign. This is because the energy configuration in the gauge sector is more
favorable than in the fermion sector [103], a phenomenon called chiral plasma instability (CPI).
Thus, one must ensure that all fermion asymmetry created alongside the helical field during inflation
is erased by the action of the weak sphaleron for 1012 GeV > T' > 130 GeV. Because the weak
interaction only couples to left-handed fermions, the right-handed fermions are protected from the
washout until their Yukawa interaction becomes relevant in thermal equilibrium. The right-handed
electron ep is the last species to come into chemical equilibrium, at temperatures ~ 10° GeV, thus
its asymmetry survives the longest. Therefore, to efficiently erase the fermion asymmetry, while
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FIG. 6: These figures display a scan of the parameter A with the first set of initial conditions, see BPa in
Tab. I without Schwinger effect. Top panels: Magnetic and electric energy density (left) and their ratio
with the inflation energy density (right). Middle panel: baryon asymmetry np (left) and Reynolds
numbers (right) with their corresponding constraints in red. Bottom panels: CPI temperature with
constraint in red (left) and baryogenesis parameter space (right).

preserving the helicity in the gauge sector, before the CPI can happen, one must require that
[62, 103]

_ H2 H(tenq) 3 Tin 2
~ 7 Y en r 5
Tepr = (4-107" GeV) Hiona)? <1013 GoV T < 10 GeV. (5.10)

In Figs. 6 and 7, we display the main results for the baryogenesis mechanism both in the presence
and absence of the Schwinger effect. In both figures, the top panels display the electromagnetic

energy and energy ratio to the background energy density. In the middle panels we show the
quantities ng(A, fo, ), Rm(A) and Re(A). On the left, the red line must be in between the two
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FIG. 7: Similar to Fig. 6, these figures again display a scan of the parameter A with the first set of initial
conditions, BPa in Tab. I including the Schwinger effect. Top panels: Magnetic and electric energy density
(left) and their ratio with the inflation energy density (right). Middle panel: baryon asymmetry np (left)
and Reynolds numbers (right) with their corresponding constraints in red. Bottom panels: CPI
temperature with constraint in red (left) and baryogenesis parameter space (right). We did not display the
CPI temperature on this last plot as the CPI is no longer a constraint.

curves to meet the constraint. On the right, the only constraint is that R,, is above the red line.
Finally, at the bottom, we present the CPI temperature as a function of A and the regions where
the different constraints are met. On the bottom left panel, the curve should be below the red line.
On the right one, we shall seek the overlapping region. In this last plot, we add the temperature
ratio Ty, / T rllrlls as a supplementary parameter. We see that the window is larger in the presence
of the Schwinger, which also totally removes the constraint on Tcpr. Indeed, the backreactionless
mechanism tends to overshoot the BAU, an issue addressed by the presence of the Schwinger effect
which therefore acts as a BAU facilitator.



24

6 Summary and Conclusions

We have discussed baryogenesis in the context of R?-Higgs inflation, involving the CP-violating
dimension-six term proportional to (R/A?) BWB"“’ . We adopt a fully covariant formalism for
both inflationary dynamics and gauge field production. Our linear order analysis shows that if
A ~ 3x107°Mp, sufficient helical hypermagnetic fields are produced, which can lead to the observed
BAU during the electroweak crossover. Smaller values of A imply an overproduction of baryons.
Once the Schwinger effect is included, the energy densities pg and pp are suppressed, but there is

a subtlety: the Schwinger effect is exponentially suppressed by a factor ~ exp(—\/(Q /3) ¢/ Mp),

which dilutes its relevance during the inflationary epoch, but becomes pronounced around and
after the end of inflation. The Schwinger effect can then lead to baryogenesis for smaller values
A ~ 2.2 x 1075 Mp. We also find that when the Schwinger effect is included, the radiation density
py can dominate over the electromagnetic densities pr and pp, cf. Fig. 5.

We have primarily focused on the Starobinsky-like regime in our linear order analysis. In the
mixed R2-Higgs scenario, a smaller A may generate BAU without the Schwinger effect. This can
be understood from Eq. (2.25) where a smaller £z and moderately large ¢ (i.e. the mixed R2-
Higgs like regime) can induce inflation, while BAU can be triggered by a larger scale A. However,
a larger £ may lead to an exponential growth of isocurvature modes (see e.g. Refs. [78, 104, 105])
in our backreactionless scenario although such a mode is suppressed during inflation. Moreover, in
such a scenario, one would need to take into account non-perturbative effects. In our analysis, we
have not considered the impact of decay and self-resonance. Thus, the ratio Ty, / Triﬁs is essentially
a free parameter in our analysis. We leave a more detailed analysis of (p)reheating and particle
production for future work. It has been pointed out that the helical gauge fields may source
non-gaussianity [106, 107], which may result in moderate constraint to the parameter space for
baryogenesis without the Schwinger effect [64]. In the presence of the Schwinger effect, the produced
helical gauge fields are much weaker and we expect those constraints to be harmless. However, one
needs to be careful when interpreting results from Refs. [106, 107] as they focus on a single field. In
our multi-field model, a proper estimation of non-gaussianity requires considering perturbations up
to third order. This would induce several new contributions from field-space Riemann tensor [76]
and is beyond the scope of our work.

While there are many avenues to achieve the observed BAU, baryogenesis driven by a dimension-
six CP-odd term ~ (R/A?) B, B" provides a motivated approach to address BAU within the
framework of R2-Higgs inflation. This approach critically rests on the presence of an effective
dimension-six term, but it does not require additional degrees of freedom beyond the SM. In
parallel, such dimension-six terms can also shed light on the UV sensitivity of R?-Higgs inflation
as discussed in, e.g. Refs. [108, 109].
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A The Vierbein Fields

The vierbein fields e}, are defined as follows: The metric in the Jordan frame g;,, can be re-
lated at every point to a Minkowski tangent space 7, via the vierbein, which obeys the following
orthogonality conditions

enen =0, eney =0y, Gruw = eZegnab and v, = €;,Ya, (A1)

where 7, are the Minkowski y-matrices. The v, satisfy {y*,~v"} = 295“/ in curved space-time. The
spin-affine connection is given by

1 1
~w, o™ with e = —[3%,5"]. (A.2)

FM:2

The spin-connection w '}, is defined as [110]

Wy = (e e’g wB efaﬂeg) . (A.3)
B Field-Space Metric and Christoffel Symbols
The field-space G!V metric is given by

Gio—1, it Vi el Zgho _ (B.1)

The corresponding non-vanishing Christoffel symbols are therefore

,\/Eﬁ
e 3 Mp 1

[y, =—=—, b =Th = ———. B.2
e oMy h NGTR (B.2)
C Einstein Equation and Stress-Energy Tensor
The action Sg can be rewritten in the following way
M2
Sg = /d4x\/—gE(2PRE+EM>7 (C.1)
where £y is all terms in the action other than Rp. Varying the action with respect to gl we get
0=404SE
M3 (/= V-
2 0% 0%
2 0(/— (R (L 0(+/
:/d4x - RE(iugE)_‘_\/_gE (;UE/) +V—9E (MV)—FEM(i;W) 69
2 09 09 0g dg
Utilizing 5((37»9 %\/—gEgEW, 5 ,w) REg,,, and ignoring the surface term we get
E
R — ~gmmwRy — —=T (C.3)
Euv — JY9Euwi'E = ——5 L uv .
2 2 K M]% 2
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where

oL
T,ul/ - <£M9Eul/ - 25.9131{) ) (C4)
E

which is found to be

1 _ [z Wl —iWw?2) (Wl 4+ iw?2
T;w:[GIJDM¢IDV¢J+9§BBauBﬁV+9%6W3uwéu+6 SMPQQhQ( “\/5 ) V\/i )

2
2 ¢ 1
F(gbl)e\/; Mp (29Eua€aﬁpoByﬁBpo' + 89Euu€aﬁpUBaﬁBpo'>

2M3
+ [ —
ErRA2/—gE
1 _ /22
+ ¢ Vit p2 (9W; — ¢'B,) (9 — ¢'B.) } —

1 B I J I 2M112’ I 2. o Haf
gEuu<2GIJg% Da¢ Dﬁ¢ + ‘/0(¢ ) + mF(¢ )6\/: Mp BaﬁBa
, 1 12
Ljon oo L oap oy yri o L o—35% as 2,0 (Wa —iWg) (W +iW5)
+ Zg%ng BapBpo + ZQ%IJQE WeasWpo + 1€ \/;MP 95 g°h a\/ﬁ = NG
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+ LoV g2 (gwd - ¢B,) (W5 — 9'Bs) ) Vi FetAaVif.
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D The Valley Approximation

In this section, we detail aspects of the so-called valley approximation for Vj. In this approximation,
the system essentially behaves as a single-field scenario. Firstly, for positivity of the potential at
the inflationary scale, one requires

&

For solving the background equations and the inflationary dynamics we focus on the R?-like regime
and the initial condition of the valley approximation derives from

v
S =0 (D.2)

which gives three solutions

2_¢
\/;W_l
h=0, and h=+ ST L JSH L (D.3)
Jar+ GV en
R

One may choose the trivial solution A = 0, or the solution with a positive sign for convenience.

E Numerical Solutions of the Electromagnetic Equations

In the following, we summarize the details of solving the mode equation of Eq. (4.15) in cosmological
time ¢ using the RK4 method

k?  8cos? Oy M2 2
i it g (B Ow My o neVE e ) o, (E.1)
a? ErA2a
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Firstly, as required for the RK4 method, we rewrite the above equation as two first order equations
du* A\ dy A\ k% 8cos? Oy M3 \ﬁ M,
- = d, L = P H - [+ 2= 7 Ph [ F(oDeV3¥MP ) Ak | ud E.2
I e e Gt A (E2)

The equations are essentially in the form of

du? dy/\
ﬁ = f(uAvykvt)a and E :g(’lj,)\7y)\,t), (E3)

with
flr v ) =y,

2 2 0o M2 3 EA4
gty t) = —y H — (];2 + %60 (F(s@l)e\/g“"/MP) )\k> w, (E4)
R

Now the task is to find out u* and y for each time step utilizing the RK4 method. This is provided
by

1
’LL?_H :u?+6(l0+211+2l2+l3),
A o (E.5)
Yiy1 =Y; + 5 (mo + 2mq + 2ma + m3) ,
with
lO — 5t f(ui\vyz)\)tl)v
mo = ot g(uz)\ayz)\vtz)7
N N 1
l1 =0t f(u; + =lo,y; + =mo, t; + =0t),
2 2 2
N N 1
my = 0t g(u; + =lo,y; + =mo, t; + =6t),
12 12 12 (E.6)
ly = 0t f(ui + 5l yi + 5ma, b + 56t),
2 2 2
N 1
ma = 6t g(u; + 55171/1’ + imlytz’ + 5&),

I3 = 6t f(u) + lo,y; +ma, ty),
mz = 6t g(u} + o, yi +ma, t;),

where 0t is the time step. The Bunch-Davis initial conditions for the modes u* and y are given in
Eq. (4.19).

One can in principle fix the number of modes Ny, in each time step within [kmin, k] for the inte-
gration of Eqs. (4.16). However, this makes the initialization of the modes in the next time step
more involved. This is because as k. increases in each time step, keeping N}, fixed each time would
require some more involved initialization for subsequent time steps. We can take a simpler route
and keep the number of £ modes the same for all time steps. This ensures that the number of
modes N and the corresponding modes are identical at each time step. In practice, we take a
large range [kmin, kmax] With kmax = Ca(tnumend)H (thumend) Where tpumena is the numerical end
of our simulation. We chose C' = 100 to ensure that kc(tnumend) < Kkmax and divide the range
[kmin, kmax) into N = 200 intervals. In each time step, we then numerically interpolate Eqs. (4.16)
in [kmin, kmax] and truncate the numerical integration up to the corresponding k. values. Increasing
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Ny, to higher values does not significantly impact our results. For further details of the numerical
procedure, we refer the reader to Ref. [65].

In the presence of the Schwinger effect the corresponding equation of motion, Eq. (4.30), is solved
numerically using similar methods as those described above.
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We investigate the impact of preheating on baryogenesis in R?-Higgs inflation. In this scenario,
the inclusion of a dimension-six operator (R/A?)B,, B*” abundantly generates helical hypermag-
netic fields during inflation, leading to a baryon asymmetric Universe at the electroweak crossover.
Focusing on the R2-like regime, we first derive the relevant dynamics of preheating using a doubly-
covariant formalism. We find that preheating can happen for the Higgs, transverse gauge and
Goldstone bosons, however, it is dependent on the value of the non-minimal coupling £z between
the Standard Model Higgs field and the Ricci scalar. We identify the preheating temperature to
determine the appropriate scale A for driving baryogenesis, which is around A ~ 2.2 (2.6) x 1072 Mp
for £ ~ 1(10). Our results represent the most accurate estimation of the scale of gravity induced
baryogenesis in R*-Higgs inflation to date. Areas for further improvement are identified.
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1 Introduction

The existence of the baryon asymmetry of the Universe (BAU) is firmly established by various cosmological obser-
vations such as the cosmic microwave background and big-bang nucleosynthesis. However, its origin still remains
unclear. If the fundamental scale of the mechanism behind the BAU is tied to a higher scale than the electroweak one,
it might be possible that telltale effects at present, or even future, colliders could remain absent. One such high-scale
mechanism provides, in the Jordan frame [1], an additional source of CP violation via a (CP-odd) dimension-six
operator (R/A?)B,, B"”, where R is the Ricci scalar and B,,, is the field stress tensor of the hypercharge U(1)y. We
will refer to this mechanism as gravity assisted baryogenesis from here onwards. In this case, even at the electroweak
crossover of the Standard Model (SM), the out-of-equilibrium condition can be met if the source and washout decay
rates are different and shut off at different epochs [2, 3]. The CP-violating dimension-six Chern-Simons density can
abundantly produce helical hypermagnetic fields at the end of inflation #!. These helical hypermagnetic fields #2
may then create the observed baryon asymmetry at the electroweak crossover [3, 15-20].

This mechanism can seamlessly be integrated into inflationary scenarios such as R?-Higgs inflation [21-29] since the
(R/A?)B,,, B" term can also be considered within the context of f(R) gravity (or, rather here, f(R,®, B,) gravity).
In the dual scalar-tensor theory, the R? term is manifest as a dynamical scalar degree of freedom, which, along with
the Higgs field ®, couples to the Chern-Simons density, resulting in the production of hypermagnetic fields at the
end of inflation. It should also be noted that R2-Higgs inflation, like R? [30-34] inflation and Higgs inflation [35-41]
(for similar mechanisms, see e.g. [42-49]), is one of the best-fit models of the Planck data [50]. Further, unlike Higgs

#1 This term, not directly connected to BAU but in the context of hypermagnetic field production, has been discussed in, e.g., Refs. [4-8].
#2 See also Refs. [9-14] for the production of helical hypermagnetic fields due to inflaton dynamics.



inflation, where longitudinal gauge bosons are violently produced well beyond the unitarity cut-off scale [51-53],
the unitarity scale is restored up to the Planck scale in R2-Higgs inflation [22]. Thus, high-scale baryogenesis via
(R/ Az)BWB’“’ can be elegantly connected to the R2-Higgs model without requiring additional degrees of freedom
beyond the SM ones.

It is not surprising that, in the gravity assisted baryogenesis, the production of hypermagnetic fields highly depends on
the inflationary dynamics. The baryon-to-entropy ratio is also highly sensitive to the value of the magnetic Reynolds
number which in turn highly depends on the exact (p)reheating temperature [1, 15, 18-20]. In addition, the latter is
also highly dependent on the value of quantum hypermagnetic energy density when preheating is complete. Therefore,
the exact amount of baryon asymmetry will be model-dependent as it makes use of specific (p)reheating results #2.
An improved understanding of these dynamics brings about major improvements in the precision of predictions since
we do not need to rely on estimates as in previous studies but directly determine the thermal plasma temperature, the
relevant energy densities and the scale factor ratio at reheating and the end of inflation. Previous studies performed
by the current authors treated such effects as effective parameters [1], while a detailed analysis of how (p)reheating
impacts gravity assisted baryogenesis was missing. This will entail us to find a more precise value for the A required
for baryogenesis.

In this work, taking R2-Higgs inflation as a benchmark model for inflation, and focusing primarily on the R2-like
regime, we study the impact of preheating and particle production in the mechanism of gravity assisted baryogenesis.
Adopting the doubly-covariant formalism and including all perturbations at the linear order, we study the preheating
dynamics of the scalar and gauge sectors. In Ref. [53], Sfakianakis and van de Vis did provide a similar detailed
analysis of linear fluctuations during preheating in Higgs inflation in the Einstein frame. In our case, the field space
of the inflationary dynamics consists of five fields: one dynamical scalar degree of freedom arising due to the R2
term and four from the Higgs SU(2);, doublet, corresponding to the physical Higgs and the three Goldstone bosons.
The background dynamics are governed by the R? scalar alongside the physical Higgs boson; the three would-be
Goldstone bosons are treated as perturbations. Our results include the full SU(2); x U(1)y gauge dynamics in a
complete analysis.

The inflaton’s self-resonance turns out to not be efficient enough for preheating. However, Higgs fluctuations can lead
to preheating if the non-minimal coupling g between the Ricci scalar R and the Higgs is = 10. We also show that
for £ ~ 10, the transverse modes of the Z and W boson can lead to gauge preheating. For tiny £y values, gauge
preheating might be induced if A is sufficiently small. We shall see that such a small value of A would, however,
lead to an overproduction of baryon asymmetry. Further, Goldstone bosons may also preheat the Universe even for
£ ~ 1 (see also Refs. [28, 52, 54-58] for Goldstone/longitudinal gauge boson preheating in R?-Higgs inflation). Our
results show that the Goldstone bosons can preheat the Universe mildly faster than any other fields and, hence, they
determine the reheating temperature needed for the baryogenesis computation.

We organize this paper as follows. First, we start with outlining the action and derive the relevant equations of motion
(EoM) for the different fields in Sec. 2. We discuss the inflationary dynamics in the covariant formalism in Sec. 3. The
production of inflaton and Higgs fluctuations are studied in Sec. 4, and the production of the Z, W and Goldstone
bosons is presented in Sec. 5. The production of hypermagnetic fields and subsequent generation of the BAU are
discussed, respectively, in Sec. 6 and Sec. 8. We discuss reheating in Sec. 7. Finally, we summarize and conclude in
Sec. 9. Some technical and computational details are relegated to App. A.

2 The action

We start with the action in the Jordan frame given by

/ M2 i v 1 vo 1 up VOTxt %
SJ = /d4$ —9J |:7Pf(RJa (1)7 B;u Wp,) - g; (vu(b)TvV(I) - V((I)7 q)T) - ig?ng B;LVBpO' - nglpgj WMquo- )
(2.1)
where Mp = /1/ (87G) a2 2.4 x 10'® GeV is the reduced Planck mass and G is Newton’s constant. Throughout this

work, we follow the mostly-plus convention (—1,+1,+1,+1) for the metric, /—g is the determinant of the metric,
and we choose the €123 = 1 convention for the Levi-Civita tensor. R; and ® denote the space-time Ricci scalar and

#3 In the absence of efficient preheating, thermalization proceeds through perturbative reheating.



the Higgs doublet, B,,,, and WZW are the field stress tensors of the U(1)y and SU(2), gauge groups, respectively. The
covariant derivative with the SM gauge groups is defined as

1 .
V=D, + zg’inyB# +igT - W, (2.2)

where g’ and g are U(1)y and SU(2)r couplings. Qy, is U(1)y hypercharge and T' = 7/2 are the weak isospin
generators derived from the three Pauli matrices 7. The field-stress tensors for the U(1)y and SU(2) gauge fields
can be written as

3
B,, = D,B, — D,B,, Wy, =D,W, —D,W)—g > ejWiWp, (2.3)
7,k=1

where D), is the covariant derivative of the space-time metric g,,. We have thus far ignored the fermions in Eq. (2.1)
but shall return later part of the paper. The Higgs potential V(®, ®") and f(R,,®, B,, W},) are given as

V(®,0") =A@, (2.4a)

ér 26y 2 etvre 2 eHvre

2ME i+ M2 @Ry~ Nz =g, r e T R g

The mass term in the Higgs potential is neglected as it plays no role for the inflationary dynamics.

f(Ry,®, B,L,WZ) Ry +

W, Wi R;. (2.4b)

To transition from a generic f(R;y, ®, B, W;) gravity to the respective scalar-tensor theory, we perform a Legendre
transformation by first introducing an auxiliary field ¥ and rewrite Eq. (2.1) as

Of(V,®, B,, Wl)(RI_ ))

2
Sy = /d4xs/—g']{]\g (f(\IJ ®, B, W)) +

ov
) . (2.5)
- (V. @)V, 8 - V(9,07 — 1977957 B Bpo — 195 PeT WL W
We can introduce a physical degree of freedom
of(¥,®, B, Wi
o ot b W (2.6)
and re-express Eq. (2.5) as
Sy = /d4 { P@RJ ~U(©,9,B,,W}) — ¢} (V,®)'V,® - V(&)
1 1 (2.7)
= 195795 Buv Bps = 195795 W Wio
with
i M
U(©,®, B, W) = =" [¥(0)0 — f(¥(6),, B,
2.8)
M4 {( H 2 ehvpo 2 ehvpo 2 (
1-© P|? — ———Bu By — W’W’)]
g\ O mgg =g P e~ e e
Next, we Weyl-rescale the metric
1 LV v 1
9ipy = 6 9Euv, gf] =0 9% , VvV —9J = @V —9E, (2'9)
to write the action Einstein frame as
M2 3M3 1
SE :/d“x\/—gE {TPRE— 4P "' D,(In©)D,(InB6) — 369 e (V, )V, —Vp
(2.10)

1 vo 1 VoIt i
*ZQE!J B Bpo *491;9 Wi W,



with
1 7
Ve = g3 [V(e,o") +U(©,®,B, W), (2.11)
R; =0 |Rg +30g0 — %g%yDu(ln ©)D,(InO)| . (2.12)

We have ignored the surface term O = g% D, D, in the action Sg. With the field redefinition

¢ = MP\/gln 0, (2.13)

Eq. (2.10) finally becomes

1
Sp = /d4 [—RE — fg D,¢D, b — e Vi g (V,®)'V,® - Vg
(2.14)

1 1 .
_ ZgE gI/O'B B _ 4gg‘pguawz Wz

We now turn our attention to the Higgs and gauge fields. The @y = +1 Higgs field decomposes as

g L [Pation) (2.15)

V2 \ htips

It is customary to perform a basis transformation for gauge bosons from the electroweak W;i?Bu to the mass and
QED charge basis W,,, Z,,, A, as

Wr+W- i
Wl=_—# ' # W2=—(WH-w,),
w \/5 123 ﬁ ( 13 H) (2.16)
Ws = SwAM + sz“, BH = CWAM - SWZM7

where e = sy g = cwg’ with shorthand sy and cy for the sine and cosine of the electroweak Weinberg angle 6y .
In the following, we will consider equations of motion (EoM) at the linear order. We therefore expand the action
Eq. (2.14) to quadratic order

1
7g%ngUFZ/AVFZpO‘

M?2 1 Y 1
Sp = [ d'ay=g5 | S R — 5Gragl Dud! Dot = Vild') = 10195 FauuFago — |

4

1 s
— =gl g”"FVJ{,WFWpU— \/gMPg <982h2Z Z, + 92 [(D h) ¢o — (Dud2)h] Z, +—h2W+W +  (2.17)

2 5 i
ﬁDuh (W, (93 +ida) — W, (¢3 — iga)] — Q\fsw (W, D,(¢5 +ids) — W, D,u(d3 — ida)] h),

introducing ¢! € {¢, h, o, d3, b4}, 9z = ¢/(swew ), and the 5 x 5 field space metric G7; whose non-vanishing elements
are

/2 o _\/2_¢_
Gop =1, G = V35, Gorp = ¢ V3 withi=2,3,4. (2.18)

We have treated Goldstone and gauge bosons as perturbations, i.e. they do not acquire any background values while
deriving Eq (2.17). The potential Vg (¢!) reads

VE(¢I):e—2\/g%P )\<h2+z¢> +{ N L SH 1934 <h2+z¢>

2
9 T, g 2 T LT (2.19)
e A Y
202

~ Vol(o') +

2 & Tuv Ty v
T F((;SI) Vi (FA;LVFX + Fz FY +2FV'I",#UF ”)



where we have further introduced

4
P =1 Vi <h2+z¢$) Vi, (2.20)

=2
1y 2 T Mg o, o

h? + 3Mp 4 2 , 2.21
Vo(¢') < Z¢ ) T (2:21)

~ 1 ~ ~ 1
FH = — Mo, FMY o WP, PRV P ik 2.22
A 2\/% P zZ 2\/% Zp w 2\/% Wopo* ( )

The field stress tensors for the massive and massless gauge bosons are

Fap = DA, —D,A, =0,A, —0,A,, (2.23a)
Fzu = DuZ,-D,Z, =0.,2,—0,2,, (2.23b)
Fiy,, = D,2WE-DWE=0,WF-0,WF. (2.23¢)

Since the field-stress tensors are torsionless, the covariant derivatives become partial derivatives. Furthermore, in the
linearized approximation, the field-stress tensors have reduced to the abelian case.

Varying the action, the equation of motion of the scalars fields ¢! can be written as

D¢K + FKI'J g%uDad)IDu(bJ - GKMVE,M

_JZ o 21 o g e _ . )
+ GKMe \/;Mp <\/;]\/[p> 9 (aoz(b)(?Z(s%/[hZV + m [Wu ((5%[ + 1534) — Wj(d%J — 1(515\/[)] h)

_./2_ ¢ . .
_GFM VSt g (922 o (63,hZ,) + ﬁm (W, (83 +i03) — WS (83 — i63,)] h) ) (2.24)

- GfM {67\/%1‘%’9%”5% <g7Z(Duh)Zu> + 67@%9?5&1(
Vs (
_|_ e P (5 D

where T'¥ s are the Christoffel symbols associated with field-space metric. The EoMs for the Z boson, W= bosons
and photon are

D (W ~w))

o (W5 iw) )| =0,

o v 8M3 _JT e 2
75" D, oFut g ns 0, ( ef¢/MP) Fof _oViak g%ﬂ<%hzzu+ 972(¢2Duh—hDH¢2)) —0, (2.25)

(6"
8 M, _JZ o e? e
poe v + B VZE¢/Mp\ aB _ —\/33h MB( 2117+ -
95" 95 DaFifyut g AQa (F(e")e il e 95" (g 1PWi £ 55— Duh(6s £ i64)
+ h) =0, 2.26
F—F 2\[ - D, (¢3 £ igs) (2.26)
9491 Do FAW+§ Apza ( (¢>I)e\f¢’/M") P =o. (2.27)

3 Inflationary dynamics

The preheating after inflation depends on the background and perturbation dynamics. We closely follow covariant
formalism as discussed in Ref. [53, 59, 60], which is suited for multifield inflation with non-canonical kinetic terms as
encountered in our scenario. We decompose the ¢! (x#) fields into a homogeneous classical background part (¢!) and
a perturbation (6¢7) part

¢! () = @' (t) + 09" (2"). (3.1)

In the following, ¢ labels the cosmic time and ! (t) = {¢(t), ho(t)}, i.e. only the Higgs and inflaton fields acquire
background field values while the Goldstone modes ¢o, ¢3 and ¢, are perturbations. The perturbed spatially flat
Friedmann-Robertson-Walker (FRW) metric can be expanded to linear order as [61-63]

ds® = —(1 4 2A)dt* + 2a(t)(9;B)dx'dt + a(t)? [(1 — 2¢)d;; + 20;0,E] da'da?, (3.2)



where a(t) is scale factor. A, B, and £ characterize the scalar metric perturbations. In this work, we adopt the
longitudinal gauge where the scalar perturbations B and £ vanish.

Utilizing Eq. (2.24) and Eq. (3.1), we find the EoMs for the background fields as

Dy + 3H¢p + GV =0, (3.3a)
Diho + 3Hho + G*Vy 7 = 0, (3.3b)
where
DA = ¢'DyAT = AT+ T 7 AKX (3.4a)
DyAT = 9;AT + 1T, AK. (3.4b)

We draw the reader’s attention to the fact that the covariant derivative D; of field space Gy s shall not be confused
with the covariant derivative D,, of space-time metric ¢;,,. The Hubble function is defined as

LN\ 2
1 /1
H2 - (g> - <7 X ! ) )
. ERVE 2G1J90 @” +Vole') ), (3.5)
: 1 Ny
H= M%(G”SDW)' (3.6)

We solve the equations (3.3) and (3.5) together while simultaneously performing consistency check such that H
estimated from Eq. (3.5) matches Eq. (3.6) with adequate precision. We define the number of e-foldings relative to
the end of inflation as

N=In alt) (3.7

which we will use in the following interchangeably with the cosmic time ¢. The background energy density is

ot = 5G19197 + Vol (33)
where Gy is evaluated at the background field order.
The field fluctuations §¢! (z#) are gauge-dependent quantities. However, we can construct covariant field fluctuations

Qf(z#) which connect the scalar fields ¢!(z*) with their background fields ¢!(t) along a unique geodesic of the
field-space manifold such that the field fluctuations can be written as [59, 64]

1 1
s¢" =Qf — §FIJKQKQJ + 31 (FIMNF]Y]K - rIJK,M) ofkgloM 4 ... . (3.9)

This motivates one to consider gauge-independent Mukhanov-Sasaki variables for the field fluctuations expressed
as [62, 65, 606]

Q=0 + ‘p—lw (3.10)
H 9

which is doubly covariant with respect to field-space and space-time transformations. The quantities Qf, ¢! and Q!
transform like vectors in the field-space manifold. In our five-field case, at the linear order, we thus have

6 _ o0 P _ i
Q" = Q"+ =bp+ 10, (3.11a)
ho_ oghy hoy s ho
Q" = Q"+ v =0h+ o, (3.11b)
Q% = Q¥ =8¢ =¢;, (i=2,34) (3.11c)

Inserting Eq. (3.10) and Eq. (3.2) in Eq. (2.24), we find the EoMs for the gauge independent Q! at linear order as

2
D;Q? +3HD,Q” — %Q" +M? Q% =0, (3.12)
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D2Q" + 3HD,Q" — %Qh +M",Q" =0, (3.13)
v2

'Dt2Q¢2 + 3HDtQ¢2 _ aTQqﬁz + M¢2¢2Q¢2 fadad { <\/QM> phoZy — 2h0Z0 + hog®’ (Do Z, )} (3.14)

V2 ,
DQ™ +3HD,Q™ — —Q% + M Q% + ) Pho (Wy — Wy) — 2ho (Wy — W)

QISW{(

\f
+ 9% hoDo (W, = W) } =0, (3.15)
Vi

V2 ,
DiQ™ +3HD,Q™ — —Q™ + M QP + ) Pho (iWy + W) — 2ho (iWy + iWy)

2\/>SW { (
+ g8 haDa (W +77) | =0, (.16)

L (DLD,;VE) JKLY ¥ 2Bt \ e e (3.17)

where the R, is the field-space Riemann tensor. Here all relevant quantities such as Vo, G/, '/, ., RI ., are
evaluated at background order. In contrast to Ref. [1], which focused on the unitary gauge for the Higgs sector, the
EoMs for the perturbations Q?2, Q%* and Q?* now depend on the Z and W bosons at linear order. Reference [1]
solely focused on the production of the hypermagnetic fields at the end of inflation; the reheating temperature was
treated as a free parameter. Therefore, the choice of unitary gauge was not relevant for the estimation of baryon
asymmetry. However, for the present study of preheating, as is clear from the last terms involving Z and W bosons
in the respective Eqgs. (3.14), (3.15) and (3.16), the unitary gauge becomes ill-defined (specifically at zero crossings of
the background fields).

Finally, and for later convenience, we re-express the EoMs of the scalar field fluctuations in conformal time 7 such that
line element becomes ds? = a?(7 )nlwdx“dx with the rescaled variables X' (2#) = a(t)Q! (2*). Hence, performing
the replacements Zy — Zo/a Wi — Wi /a and 8y — 8, /a, we find new EoMs

D2X? — |V? —a? X? =0, (3.18)

DiXh - |V? —a? (M", — ZRpG" h) Xh=o, (3.19)

X +agzho (Y20 — Z4) =0, (3.20)

D2X%s — _v2 —a? ho {T Wy =Wg") = (Wy' = WJ’)} =0, (3.21)

1€
V2sw

'D_,2_X¢2— V2 — g2 (M¢2 _EREG¢22

M — 1HfEcr”S%) X% +a

DX — |V? - a? X% +a ho {T (W +iWg") — ((Wy ' + iWJ’)} =0, (3.22)

€
V2sw

where we defined

0
_ - _ 20 3.23
\/éMp a ho ( )

In these equations, as in the following, we have introduced the shorthand notation (') for derivatives with respect to
conformal time 7.

3.1 Gauge choice and equations of motion of the gauge and Goldstone bosons

We have already mentioned that the unitary gauge becomes ill-defined at the zero crossing of the background field kg
(see also Refs. [52, 53]). We, therefore, choose the Coulomb gauge to study the dynamics of field fluctuations. In the
Coulomb gauge, we have 9;Z° = 0 and 9;W** = 0 and the Goldstone bosons are dynamical.



3.1.1 Z bosons

We begin with the EoM for the Z boson. The time (i.e. 5 = 0) and space (i.e. 8 = i) components of Eq. (2.25) at
linear perturbation order in conformal time are

3 ¢ 2
—0; (61Z0 - Zz/) + a? 67\/;m (%hZZ + = (¢2h/ h0¢/2)) =0, (324)

-0, (6TZ1 — az'Zo) + 8]' ((%Zz — &Zj) — a2 67\/gML;D (%h%Z, — 972}1081(;52)

4]\42 2 e\ s
T A2a < (ph)eVE o ) € (0; 2 — OuZ;j) = 0. (3.25)
One can move to momentum space by considering
37, 3L
Zo(7,%) = / k = Zo(7,k)e X, Zi(1,%) = / ﬁgz (1, k)e~x, (3.26)
(271') (2m)

where the Z = (Z (7, IZ)) field can be written in terms of transverse and longitudinal components as
210 = Y 2Nk 0. 327
A=+,L
with
ik-éE(k) =0, ik-éh(k)=|kl=k  ikxéb(k) =4k éf(k), (k) =éy(—k). (3.28)
The Coulomb gauge condition for the Z boson then implies
- - , 1
02" =0 (98 Zy) = 9%50: 21 = aﬁaizi =0, (3.29)
which translates in the momentum space to
kiZi = nijki 27 = k; 20 =k -Z = 0. (3.30)

Inserting Eq. (3.27) in Eq. (3.30), we get ZL = 0 as a consequence of the gauge condition and Eq. (3.28). Using the
gauge condition of Eq. (3.29) in Egs. (3.24)-(3.25) and going to momentum space, we find

Z() = 6_\/;MP QIC (h(]¢2 52}"6) ) (331)

~ ~ ~ _ /2 e ~ M2 2 o > ~ ~
Z! + a*Kz Z; + ik; (Zg +a?e Vit %Zhoqsz) i g2 O ( (¢T)eVE MP) I (k; Do — kmZ;) =0, (3.32)
where we have defined

k2 2 ST
ICZ — an + rrnzZ7 m2Z = gle \/gMP h%)' (3.33)

The three-components of Eq. (3.32) can then be brought to the form

{z"m%zz} —Hk{Z’—i—a e V3t h0¢2} 2”‘/{25 ( (¢ f)e@M%) (kx Z) =o. (3.34)

This is a system of three differential equations. A linear combination of them is obtained by multiplying both sides
of Eq. (3.34) by ik and utilizing Eq. (3.30): all terms in square bracket go to zero since ik - ¢ (k) = 0 and Z* = 0.
The last term vanishes due to k - <k X Z) = 0. In the end, we obtain the equation

Z(/) = —a? ei\/gﬁ %hogg. (3.35)
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Together, Eqs. (3.31) and (3.35) imply a constraint for the scalar fields. We can now use these Eqgs. (3.31) and (3.35)
alongside the gauge condition to remove the Z fields from the EoM of X?2. This makes ¢ dynamical in place of the
longitudinal component of the Z boson. Finally, multiplying €§(k) to both sides of Eq. (3.34), we obtain the EoM
for the transverse modes (the two remaining equations)

P2+ (wy)? 2> =0, with (A = %), (3.36)
where
8M2 Z o
(wy(1,k))? = a®Kz + Mk & A23 ( (¢ I)e\/gMP) = k2 +a®>m% (1) + (7, k), (3.37)
where, we identify
MNr k) = Ak ?ﬁga ( (0 f)e\/?ﬁ) . (3.38)

We shall return to the impact of different terms in (w3 (7, k))? shortly.

3.1.2 W= bosons

An identical consideration as for the Z bosons leads for the time and space components of Eq. (2.26) to

2 ¢ 2
0, (W W) +a?e Vi (% MW+ [0y +iony ooy is] ) =0, (339
[ 4s 2\[5W
— 0, (0, W5 — iW5") + 05 (W= — o, W) — a? e Vit (‘iiﬁwi 1 o(0igs + i8-¢4)>
T TV el J AR e 28%4/ (VAR 2\@3W 2 ?
4M2 P -
e >0, ( (¢T)eVE Mp) et (o, WiE — 0 W) = 0. (3.40)

We can again go in the momentum space, where the W fields can be written in terms of transverse and longitudinal
components as

WE(r k) = Y WENrk) &y (k), (3.41)
A=+,L
with
k& (k) =0, ik-éy(k)=|k|=Fk ik x&H(k) =4k & (k),  éyk)t =&y (—k). (3.42)
The Coulomb gauge condition gives
A —i —i 1
ORW* =0, (GEWE) = gho,wiE = ?aiwf =0 (3.43)
and it translates to
kiWiﬂ: = nijk’iﬁ;ij = kjﬁ;ij =k- Wi =0. (344)

Inserting Eq. (3.41) in Eq. (3.44), we obtain again WL = 0 similar to the previous section. Using the gauge condition
of Eq. (3.43) in Eq. (3.39) and going to momentum space, we then find

Wi =5 e Vit [(@ﬂ@)hg—howgm@] (3.45)

2\/>SW,CW
/V‘[?ii/, + aQICWWf + ik; <W0i/ + a2 67\/21‘4#;

Q\fSW ho(¢s + Z¢4)>

2 T
ik Mp < (o )e\/gm) I (W

— k, WE) =0, 3.46
é—R m J ) ( )
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with

k2
Kw=—5+ miy, miy = 48W Vi hi. (3.47)

Likewise, the three components of Eqgs. (3.46) read as

WL 1 o2K Wi} + zk{WOiI +d%e vk h0(¢3 + z¢4)}
Q\f Sw
8 M2 vz (3.48)
v nVE W) —
t et ( (¢")e 3MP)(k><W )=0
Applying the same procedure as for the Z boson, and using Eq. (3.48), we find
Woil =Fa? ef\/gMLP ho(ds + igy). (3.49)
Q\fSW

Combing Egs. (3.45) and (3.49), we can remove two degrees of freedom each from W# making the Goldstone ¢3 and

¢4 dynamical, leaving a constraint on the Goldstone fields (bg and ¢4 Finally, from Eq. (3.48) we get the EoM for
the transverse modes

2WHEN + (wiy)? WA = 0 with (A = +£). (3.50)
where
SM?2 3 o
() = @K+ M &30, (F(eeVE T ) = 2 4 iy () + ). (3.51)

3.1.3 Goldstone bosons

As discussed earlier, the Goldstone bosons are dynamical in the Coulomb gauge. The gauge choices remove the
longitudinal components of the Z and W+ and constraint equations for each fields. In the case of the Z boson, these
equations, namely Eq. (3.31) and Eq. (3.35), can be used to make the ¢, field dynamical. This is obtained as follows:
We first rewrite the Eq. (3.20) in momentum space as

D2X? + (K + a®mZy () ) X% +a gzho (Y20 — Z§) =0, (3.52)
where we used the gauge condition 8;Z; = 0 and defined

o1 .
M 5y =M%y, = GREG", (i=2,3,4). (3.53)

We then employ Eqgs. (3.31) and (3.35) to get the EoM of the X% as

D2X + 4, (1, k)D, X2 + w2, ) (7, k) X2 =0, (3.54)
where
2
m
& k) = 227, 3.55
(¢2)(T7 ) Ky ( a)
Wl (T k) = K +a? (mlg 4, +MmY) + Eon) T (3.55b)

Similarly, Egs. (3.21) and (3.22) lead to

D2X% + £ (1, k)D, X% + w2, ) (1, k) X% = 0, (3.56a)
D2X% + £y (1, k)D, X% + w2, (m, k)X = 0, (3.56b)
with
2
Eoa) (1K) = Epu(m k) =27 Ko v, (3.57a)
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Wipe) (T, k) = K +a® (mgﬁ,((pg,) + m%v) + &) T (3.57b)
Wiy (T, k) = K +a® (mgﬂa(@) + m%ax) + &) T (3.57¢)

It is clear that all gauge bosons are decoupled from Egs. (3.54) and (3.56). Furthermore, as only ¢ and h acquire

background field values, the EoMs of the Goldstone bosons are decoupled not only from the EoMs of X? and X h
they are also decoupled from each other.

4 Inflaton and Higgs quanta production

We now proceed with the quantization of the ¢ and h fields, and the production of the respective particles. For this,
we follow closely Refs. [51, 67], which consider non-trivial field space manifolds relevant to our analysis. The Gr;
matrix is diagonal and only depends on ¢* = ¢, whereas the 3 x 3 lower block of M’ matrix involving the Goldstones
is diagonal. Therefore, we can reduce the upper 2 x 2 block of Mﬂ in our scenario to a two field model with ¢ and
h. Quantization of the three Goldstone bosons is discussed separately in the following section alongside the massive
gauge bosons. One may still have nonzero M? , and M" ¢ 1f ho and & are not vanishingly small. The second order

action involving the inflaton and Higgs fluctuations Q! (with I = {1,2}) can be derived as in [51, 59]

1_,, 1
Siom) = / d’w dt a® { - 595 G D.Q7 — §MUQIQJ}, (4.1)

where G, My, are evaluated at background order and gh = (—1,a?(t),a?(t),a?(t)) is the unperturbed spatially

flat FLRW metric. The latter action can be written in conformal time and with the rescaled variables X7 (z#) as

2 1., 1
Sioh = / &z dr [—277“ Gry(D,X")(D,X7) - 2///UX1XJ], (4.2)
with
5 1 . 6a”
Mry=a MIJ*EG]JRE , with Rg = e (43)
The energy momentum tensor for the field fluctuation is given for the linearized theory as
1 1
T,th) - GIJ(DMXI)(DVXJ) + Nuv _inaﬁGIJ(IDaXI)('DﬂXJ) - 2%IJXIXJ] ) (44)
with Tég) h) denoting the associated energy density.
Transforming to momentum space, one can recast Eq. (4.2) into the form
Bk 1, >2 1 =712
with
winy (1,k) = (K + a’mZy (7)) - (4.6)
The effective masses are given by
2 o 1 L @ 2 ho L 1 h
Megr (9)(7) = Mg = gRe = —5 A7, Megr () (7) = My — cRp = —5 M), (4.7)
We identify
mi gy = GO (DD, Vi), (4.8a)

I T .
mi iy = R k9’9", (4.8b)
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m?s,(l) = J\/[éa:*Dt (%3¢(1)¢(1))7 (4.8¢)
mi,(f) = —%7 (4.8d)

without summing over (), such that
mem, (1) = Zk:m?m (4.9)

One advantage of writing the action in Eq. (4.5) (and consequently also Egs. (3.18) and (3.19)) in conformal time as

opposed to cosmic time is the absence of terms linear in D, X’. Hence, the canonical momentum in momentum space
is found as

#(7,k) = 0, X' (1K), (4.10)

with | X1 (r, k), 5 (1, q)| = i(27)?6776®) (k + q), (4.11)

where we have elevated the classical field fluctuations X! to their respective quantized X7 versions.

The quantized fluctuations X1 (1,k) can be decomposed in momentum space as

X1 (r,k) = 3 [l (7, K)am (k) + uls (7, B)al, (—K)] | (4.12)

m

where m € {1,2} for {¢,h}. ul (7,k) corresponds to the associated mode functions of the creation and annihilation
operators a,, (k) and af (—k). These are defined as

am(k)|0) =0, (0]al (k) =0, (4.13)
and obey the usual commutator relationships
[am (k), an(q)] = [af, (k),af(q)] =0, [am (k), a}(q)] = (27)%6,0,0"") (k — q). (4.14)

Note that, we have N = 2 second order differential equations for the X? and X", the parametrization in Eq. (4.12)
leads to N? complex mode functions ul (7,k), and hence 2N? real-valued scalar functions. However, these two
fluctuations are coupled through the EoMs via M ;. This implies 2N (N —1) constraints, leading to 2N?—2N(N—1) =
2N = 4 independent solutions. The mode functions can be parametrized as

ufn(r, k) = t(m,n (T, k‘)efn(r), (4.15)

where the ¢, r)(7, k) are complex scalar functions and el (1) are vielbeins of the field-space metric. Note, T(m,1) 18
not a field space vector, but the index I in brackets denotes individual species and is not summed over. The vielbeins
satisfy the following conditions

sl (T)GJ(T) _ GI‘](T), (4.16)

m n

and are real functions. For any arbitrary vector A’ in field space, we have,

A" = e?‘Al, Al = eanm, 41T
m I _ §m m_J _ 5[ ( . )
€1 €p = 0n €rem =0y
The covariant derivative of the vielbeins in terms of the spin connection reads
Dre} = —wieny, (4.18)
with W' = —w}™ antisymmetric in the internal indices. Further, since the w?'™ is antisymmetric, the covariant

derivative with respect to conformal time vanishes

D, =0, (4.19)
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for all m and J.

We take t(1 4)(7, k) = vir(7), t(2,4)(7, k) = va2r(7), t(1,1) (7, k) = y1r(7) and L2 1) (7, k) = yor(7) for the quantization
of Eq. (4.12). Hence, we get,

X0 = [(vir(r)e? (T)an () + van(r)el (Taa(k)) + (viy()ed (r)af (k) + vz (r)es(rab(-k)] . (4.20a)
X" = [(yir(r)ef () (k) + yar(T)eh (7)az (k) + (yin(7)eh (T)al (k) + vz ()eh (r)ad (k) )| . (4.20b)

Going into momentum space and utilizing the quantization above, from the EoMs in Eq. (3.18) and (3.19) we get

o+l vipel = —a?M? el (4.21a)
vy, + W(2¢) vag €5 = —a?M? n Y2k €5, (4.21b)
Uik W(Qh) yipef = —a’M" ¢ Vik ef, (4.21c)
Yby, +wy) Yok €5 = —a>M" vy es, (4.21d)

with w(QI) given by Eq. (4.6).

We are now equipped with necessary tools to derive the energy density. The comoving vacuum averaged energy
density is defined as

¢h a3k A3k vev
P(¢h) = /d x T( —/( = (Pr(on)) = /(%)3 Pk,(¢h) (4.22)

where we recall we are only considering ¢! € {¢, h} in this section. Taking the 00-component of To(g ") and expressing
different fluctuation fields in momentum space via

3
F@@/é@Nk)*x

we can perform one momentum integration via the Dirac delta function that appears after performing the position

space integral. In pg (4n), which is a quadratic function of fluctuations, one fluctuation is X7 (1,—k). The energy
density spectra is therefore read

Pk (o) fG,J (D X"(7.%)) (D-X7(7,-Kk)) + (kQGqu///U) L7, k)X (7, -K). (4.23)

Inserting Eq. (4.12) in Eq. (4.23) we get energy density per mode & of the quantized fluctuations as

1 b2 * *
Pitomy = (Prem) = 5 D {5mL<GUt?mJ>t (non) + (K*Gry + ) t(m,nt(n,n)eﬁ@eﬂ
e (4.24)

h in
= o7+ o\ + pint,
with

) = %ﬂ@ﬁ*wwMHM% (Jubi[? + wiy) [vae[?)eged ] , (4.252)
h

p?=5@MMM+wmme1OMMWWMMM%, (4.25b)
. 1 . *

pint = 5(///¢h + M) [Ulkylke?ef + Uzkyzkegeg} ) (4.25¢)

where we used Eq. (4.6) and Eq. (4.7).

As we already discussed, in this paper we primarily focus on the R?-like regime and assume that the background
value of hg is much smaller than ¢, which essentially reduces our scenario to a single field attractor-like scenario. We
consider three benchmark points (BP) [1] for our analysis, summarized in Tab. I. The BPa is deep in the R>-like
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BP €r € | p(tin) [Mp] | ho(tin) [Mp]
a 2.35x10°|1073 5.5 2x 107"

2.55 x 10°| 1 5.5 8.94 x 1074

c | 22x10° | 10 5.4 5.00 x 1073

Table I. Benchmark points chosen for our analysis. Scales are given in units of the Planck mass Mp. See text for details.

regime with £y being negligibly small. We can therefore expect this scenario to behave practically like Starobinsky
inflation. BPb and BPc parametrize mixed R2-Higgs scenarios, with i = 1 for BPb and &5 = 10 for BPc. For
all three BPs, the corresponding scalar amplitude, spectral index and tensor-to-scalar ratio are in agreement with
the Planck 2018 data [50] within the 95% confidence level (CL) interval [1]. We have checked that the off-diagonal

elements M? n ~ 0 and M o ~ 0 and, hence, M! | is essentially diagonal for all three BPs. Consequently, the
vielbeins also are diagonal, eg ~ 0, el ~ 0 and X? and X" depend only on the scalar mode functions v1;(7) and

Y2k (7), respectively. Therefore, Eq. (4.21a) and Eq. (4.21d) essentially satisfy source-free EoMs while Eq. (4.21b) and
Eq. (4.21c) vanish. We are left with

vl + W(2¢) vk 0, (4.26a)
Yo + Winy Yor = 0, (4.26b)
and the energy densities for the inflaton and Higgs fluctuations per mode read
1 1
o = 5Gs (Wial + ey lonl?) efef = 5 (105l +wfylonel) (4.27a)
N 1 1
o) = 5 G (ol + iy lyarl) el = 5 (1ol + i lyarl?) (4.27b)

Note that equation of motion of the mode functions are decoupled for all three BPs. It is worth noting that, in
the single field like regime vy corresponds to the mode function for the adiabatic mode while yo corresponds to
isocurvature mode [1, 68].

Let us take a closer look at the different contributions to mgﬁ)( ) and msz,(h) as displayed in Fig. 1 for all three BPs.
The dominant contribution to mgﬂ)( ) for all three BPs before the end of inflation arises from mi( I which turns
msz,( ) large and negative. After inflation, mi( ) provides the largest but positive contributions to mfﬁ( ) for all
three BPs. The same behavior is observed for the Higgs field for BPa, the dominant contribution to mgﬂp’( h) before the
end of the inflation stems again from mi(h). However, for BPb and BPc, mi(h) overpowers mi(h). After the end of
inflation, mi () constitutes the largest contribution to mim n) for all three BPs, which oscillates around the minimum.
This oscillation, makes mgﬁj(h) negative periodically with largest amplitude for BPc, due to the comparably larger

value of £y for BPc. We note that if mgﬁ ) < 0, modes with k2 /a? < ’mgﬁ ( 1)‘ will experience tachyonic instability,
which may lead to exponential growth in energy density. In the case of a tachyonic regime, we shall use the definition

W(2I)(T, k) = (kz + ’a2mgﬂ,(1)(7))) , (4.28)

instead of Eq. (4.6) when computing the energy density [69]. This is because the standard definition of the occupation
number, which was extensively used in modeling preheating, is only valid for mgﬂ (1 = 0. We shall return to the

impact of mgﬁ (1) on preheating shortly.

The energy densities in Eqgs. (4.40) are not vacuum-subtracted. To identify the latter, we first define the Bunch-Davies
(BD) vacuum as

v = ¢ (1 - é) e kT 4 ¢ (1 + kLT) e, (4.29a)

Yor = (1 — kLT) e kT 4 ch <1 + é) et (4.29b)
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Figure 1. The effective masses mZg ;) (black) for ¢ (left) and h (right) as in Eq. (4.7) and their respective contributions
(4.8) for BPa (upper row), BPb (middle row) and BPc (lower row). See text for details.

The normalization viyv}}, — v}, 07, = @ and Yaryay, — Ysra, = ¢ yields constraints

1

|1 = |e5|* = o5 (4.30a)
1

e~ JhP? = o (4.30b)

Here, variations in the mode functions v1; and ysx could be accompanied by respective annihilation operators such
that X? and X" remains unchanged. Each such solution corresponds to a different vacuum, however, we may require
that the vacuum state |0) is the minimum energy state (ground state) of the Hamiltonian.

The Hamiltonian for the inflaton and Higgs fluctuations is written as
= | o )
(27T)3 00

3
= % / (;ir’j (1014 + wlyylorel?) (a1 () (k) + 6%(0)) + (|9l + wilyael?) (a5 (K)aa(k) +6°(0))] . (4.31)

The vacuum expectation value of the Hamiltonian is

3
(#) = / (;iﬁl;a [2175%(0) + pi6(0)] (4.32)

where §2(0) is divergent and arises due to integrating an infinite volume as usual. At sufficiently early times i.e.
T — —00, the vacuum choice of Egs. (4.29) leads to

vip = )T 4 FethT (4.33a)
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Yor = clle TR 4 chetkT, (4.33b)

where along with the constraints Egs. (4.30), <7:L> minimized if

ch=o. (4.34)

~—

Therefore, the desired vacuum solutions (i.e. the so-called BD vacuum) at early times become

BD __ 1 efilcr BD _

v - ’
1k \/ﬁ Yo

The physical BD-vacuum energy is identified as

e kT, (4.35)

1
V2k

sp 1 d3k

_ BD’|2 2 |, BD|2
P(¢) = 944 (273 <|U1k " + wiglvrk >’ (4.36a)
1 d3k /
Py = a1 / e (g2 1? + wiy b1 (4.36D)

At sufficiently early times and for large modes we have k?/a? > |m2; 5 (t)|. Hence w(QI) ~ k2, and the vacuum energy
becomes for both fields

o L Ny 4
Py = Sragi k() = 1 ok (4.37)

The energy density of the inflaton and Higgs quanta is then obtained by removing the BD vacuum from the classical
solution as

Ploy =P =Pl (4.382)
Ply =Py — Plh)- (4.38b)

It is, however, computationally less challenging to solve Egs. (4.26) in cosmic time. Therefore, we rewrite them in
cosmic time as

.. . k2
U1 + Horg + (a—Q + mgﬂ}(d))(t)) v ~ 0, (4.39a)

. . k2
Yok + HYar, + <¥ + mgﬂ7(h)(t)) yar =~ 0. (4.39b)

Utilizing, Eq. (4.22), and Eqgs. (4.27¢), we can find the corresponding (physical) energy densities for ¢ and h fluctuations
in cosmic time

S (pk 2 2

pe(xt) 1 [k . k

i) = <a74> - ?/mdk |01 |* + =+ ’mgﬁy(@(t)‘ lvikl?] (4.40a)
h 2 2
pe(at) 1 [k , k

oy = <(174> _ ﬁ/mdk gl + o + ‘mzﬁ(h)(t)( lyar|?] - (4.40b)

To solve the Eqs. (4.39) in cosmic time we use the BD initial condition and initialize all relevant modes about ~ 5
e-foldings before the end of inflation, N' ~ —5

ikt
. . e e N L i [k ke
m vk t) = lim yop(k,t) = T m o (R, t) = Tim g (K, ) = —E\/;e a. (4.41)

After solving Eqs. (4.39) and evaluating p(4) and p(;) in cosmic time, one can plug them in Egs. (4.38) to find
respective energy densities.

In Fig. 2, we plot the spectra (solid) of the energy densities for ¢ and h alongside the BD spectra (dashed) for all three
BPs for different A/. The figure allows us to identify the upper limit of the &, i.e., the corresponding value where the
bare spectra match the BD ones. Once the upper limit is identified, we evaluate the quantum energy densities for ¢
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Figure 2. Spectra of 52— py (1) (solid) and prf}(jl) (dashed) for ¢ (left) and h (right) as given in Eqs. (4.37) and (4.38)

for BPa (upper row), BPb (middle row) and BPc (lower row).

and h via Egs. (4.38). In practice, we generate all spectra with wave number close to the unitarity cut-off kyy (which
is Mp in case of R2-Higgs inflation [22, 24]). However, to find the quantum energy density from Eqs. (4.38), we utilize
an adaptive numerical code that considers only those modes for which the relative error between py and pBP is about
10% with py > pED, ensuring vacuum is subtracted properly. The lower limit of the relevant modes in Egs. (4.38), on
the other hand, is chosen from different dynamics. Since thermalization during (p)reheating proceeds through particle
interactions, the relevant modes are those which reside within the horizon at the time of consideration. Modes that
are super-horizon are so-called frozen-in and cannot take part in such processes [53]. In our numerical analysis, this is
done via the same adaptive code that only includes modes that have large enough physical wave-numbers to be inside
the horizon at the time that we are considering. Further, for solving Egs. (4.39), we have ensured that all modes are
initialized deep inside the horizon such that the dynamics at the onset of preheating is captured.

We show the energy densities p‘(l ) (blue), p?h) (red) and the background energy density pin¢ (black) in Fig. 3. For
BPa and BPb, both p‘(l ) and p'(]h) are much smaller than pj,¢, which is well above the plotted range and not displayed.
The p'(] ) remains practically unchanged between all the BPs primarily because of the value of {r, which is practically
the same for all three BPs. Around the end of inflation, ,0((7 6 receives a tachyonic (exponential) amplification, which
can be easily understood as miff,(d)) < 0 in Fig. 1. This is due to mi(d)) dominating over all other terms in mgﬂ7(¢)
before the end of inflation. After inflation, m? ¢ dominates and oscillates but never goes below zero. We then find

i

the production of inflaton quanta will not preheat the Universe.

The situation changes for p((]h) due to the range of £y values for different BPs. For BPa, mzf_f ) remains negative
before the end of inflation due to negative mi (h)? however, after the end of inflation mf (h) dominates and becomes

periodically negative due to zero crossing of hy condensate, as can be seen from Fig. 1. But this is not sufficient to
drive tachyonic growth of p‘(Ih) due to a small amplitude, rather we observe a damping of p‘(lh) as displayed in Fig. 3.

This is chiefly due to the smallness of i ~ 1072 for BPa, which is essentially deep inside R2-like regime. In contrast,
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Figure 3. The energy densities ,0‘5’(1>> (blue) and p‘(lh> (red) as defined in Egs. (4.38) for the three benchmark points. The black
line displays the background energy density pint.

for BPb and BPc, mgﬁ,(h) is large positive for A/ < 0 but oscillates for N' > 0. For BPb, after the end of inflation,
mgﬂ’ ) does not go below zero in the plotted range N < 3 (see Fig. 1). Thus, p?h) does not undergo tachyonic growth
for BPb and p?h) still remains much smaller than p;,¢. As a result, for BPb, Higgs production will lead to inefficient
and incomplete preheating. In contrast, for BPc, mgffﬁ(h) turns negative for A/ 2 0, but the amplitude becomes
small as we approach ' 2> 1.5. Therefore, in the initial stage of preheating, p?h) experiences tachyonic growth, but

parametric resonance takes over for the later part of the preheating. We find successful preheating for BPc which is
completed at N/ ~ 3. Here we understand “completion” of preheating as the point in the time evolution when p‘(lh)

becomes equal to the background energy density pins. A more conservative approach is adopted by Ref. [53] where the
authors understand completion of preheating as p((lh) ~ 0.1pint (the linear analysis is not reliable when p‘(zh) approaches

pinf). Our results for baryogenesis are not significantly impacted by the choice between these conventions. We also
remark that the growth in p‘(lh) beyond N ~ 3 for BPc is indicative of the breakdown of our linear order estimation.

This growth is expected to be shut off once the decay of the produced particles, backreaction and rescattering effects
are taken into account. We shall discuss this in more detail in Sec. 7.

5 Production of Z, W and Goldstone bosons
In this section, we focus on a detailed discussion of particle production of gauge and Goldstone bosons.

5.1 Equations of motion and quantization

We consider the second-order action involving Goldstone and gauge bosons

S :/d% dt a [—gE GryD.Q'D,Q7 — fM 7Q'Q’

- e—ﬁwfpgg”{ (Q79uho — ho0,Q7) (53 925 4 1 (63 +i65)W, — (0% — iaﬁ)WjD

2\[8W

(5.1)
1— —Vo 17 vo —
h’OZ Z + h2W+W } — Zg%ng FZ,uyFZpa - 29%13 E FIJ'/I_//J.I/FWPO'
M3 eHro 2M3 7 o PO _
£RA2F( ) \/;MP a FZMVFZpU_ 5 A2F( )6\/§ Mp a3 FWHVFWpU ’

where I,.J = {3,4,5} everywhere, except inside F(¢!) where o € {¢, ho}. In conformal time, the action becomes
1 1
S :/d% dr [277“”G1J(DMXI)(DVX") - 5///UXIXJ

0

—qe Vi 00 (XJ(8ThO) — ho(0-X7) + %“h@f’) (53 92 g4 —= [(54 +isS)W — (5% — iaﬁ)WgD

2\[ Sw
_\/2_e 2 62 1 1
— a2 Vi (‘%Zh?)ZHZV + g W ) = 0 F 2 Fzp0 — 510 B (5.2)
w
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A

We first proceed to quantize the Z and W bosons. With Eq. (5.2), and aided by Egs. (3.36) and (3.50), the quadratic
actions for the respective fields can be written as

S = [t = [ ar [( 0,21 — S (r. )2

T2 e 2M3 5wy ghvpo
F(p ) \/:J\lpeﬂ p FZ;wFZpU_g APQF( )e\/;MPEM P FVJ[FI#VFWpJ .

(5.3)
+ (310722 = S IR ) 4 (51002 — ol WWH)].
The canonical momenta for the Z and W in Fourier space are therefore
2(rk) =0, EA(T k), (5.42)
7r{>vi( k) =0; I/V”F A1, k), (5.4b)
with the commutation relations
|:Z>‘(7' k), 7TZ '(7, q)} =i(27)30*V§5(k + q), (5.5a)
VVi A1, k), 7TWi(T q)} =i(27)30*§5(k + q), (5.5b)
where the field operators are given as
2 =200+ @A k), (=) (5.62)
WA = wd(mad (k) + o (O (-k), (A=) (5.6b)

where d&,, IA)I,V are the creation operators for W+ and W, respectively. These obey the usual commutation relations

B.a¥@| =0 aPmal@] =0 [09.0) @] = eV ek-a, (657

00| =0, laRto.al@] =0 [ah0o.ad @] = errve k- 6

Similar commutation relations hold for lA)f,‘V while all commutation relationships between ayw, by, vanish. Inserting
Egs. (5.6) in the Eq. (3.36) and Eq. (3.50), the mode equations of the W and Z fields can be found as

2+ (w2 =0 (A=), (5.8)
w) + (W )2w) =0 (A= =£). (5.8b)

The quantization of the Goldstone bosons is a bit more involved. This is due to the presence of friction term DT)? 1
(with I = ¢, ¢3, ¢4) in the respective EoMs. We start by recasting Egs. (3.54), (3.56a) and (3.56b) into the form

dS
S(@.) :/dTL(%) —/dT( ) A(I)

Ay = exp{/ En (' k) d’T/}. (5.10)

1
10X — Lty () X, (5.9)

with

Ery(, k) and w%l)(T,k) are provided in Sec. 3.1.3. As we deal with non-canonical kinetic terms, we apply the
quantization procedure detailed in Ref. [70]. We can quantize the fields as in before as

Xér = [su(r)ess (r)as(ho) + si(r)e® (r)al(—k)|, (5.11a)
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X1 = {qk(T)e% (7)aa (k) + gi ()e? (T)dh—k)}» (5.11b)
Xos = {rk(T)e‘m (T)as (k) + 75 (T)e? (T)a;(—k)}, (5.11c)
and the canonical momentum can be found as
F(r k) = A0, X! (r,k), (5.12)
with

X (r k), 5 (r,q) | = ——(27)36"75(k + q), (5.13)

A(I)

and similar commutation relations between creation and annihilation operators as in the previous section. From
Egs. (3.54), (3.56a) and (3.56b), we obtain the EoMs of the mode functions as

5+ E(py) (T, k) 85, + w(2¢2)(7—, k) s =0, (5.14a)
Qi + Eps) (T k) ), + Wiy (T, ) qx = 0, (5.14b)
e+ Epy) (T K) 1), + w(2¢4)(7, k)ry = 0. (5.14¢)

We have checked numerically that the constraints imposed by Egs. (3.31) and (3.35) on the Goldstone boson s, and

(3.46) and (3.49) on the Goldstones %g and %4, are consistent with the EoM of the corresponding mode functions
Egs. (3.54) and (3.56a)-(3.56b), respectively.

5.2 Energy density

We can define the physical energy density associated with the Goldstone and gauge bosons as

1 dSk 1 d3k. vev
7/d3 T00> - /7 <pk:,G> = E/thg’ (515)

where the energy-momentum tensor can be derived from Eq. (5.2) as

0

TS, = GIJ('DHXI)(DVXJ) +2ae Vi 5950 (Xj(aTho) — ho(8:X7) + %ahoX")

639Z (5 + -65)W—_(54 _ -55 W+ 2 2 7@% éhQZ VA ihZWqLW,
Zop + 107)Wq 7= i)Wy | ) +2a”e 80””+48%V0“”

QISW

_ 1, 1
+ 177 FzupFzv0 + 207 Fypy Py + N | =570 BG11(DaX) (DX ) - 5///, sXIx7

2

@hOXJ) (53 92 7.+
a

+ae Vit (XJ(afho) — ho(0:X7) + {(5 +i87)Wy — (85 — i65) Wy D

Q\fSW
1 1
h2W+W5 ) - ZnapnﬁoFZaﬁFZpa - §napnBJFVT/aﬁFWpU .

2
—a? ef‘/gﬁnaﬂ (%h%ZaZﬂ + (5.16)

4s 2
We can also find the energy density per Fourier mode of the of scalar field fluctuations in momentum space
1 ~ ~ 1 i~ 1 T [~ . ~
prG = §G”(DTXI)(DTXJ) +5 (K*Gry+ M15) X' X7 — 3¢ 2V <thf oL X! — hoaTXI>
a

2

3
26705 + poay o

(6167 + 6265)

!
~ ~ ~ 1~ ~ ~, ~
(thJ + ho%XJ — hod- X" ) + 52;2; +Wrw;

4K 5
/CZ

+a* |22 2,7+ KwW; W, }+0()?3), (5.17)
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where we have used Egs. (3.31) and (3.44), as well as the gauge conditions described in Egs. (3.30) and (3.44). As

vev

the different fields do not mix, we can decompose Py into gauge and Goldstone energy densities

o = pf + ol + o). (5.18)

We are now ready to consider the Z and W boson cases before turning to the Goldstone bosons.

5.2.1 Z and W bosons

From Eq. (5.17), we see that the energy densities for W and Z bosons are separated out as
A
=3 ||
A=+
A
o =23 (Jui
A=+
To find the respective vacuum-subtracted energy densities, we have to minimize the associated Hamiltonian

Fwz = [(@n(0§ ) = 5 [ S5 S [ (27 + @712 (& 19309 +5°0)
) = (5.20)
P2 (ol + (@) ) (@3 ad 09 +5°(0)) |

’ +a*Kz ‘22‘2} ) (5.19a)

* K ‘w,@)g) . (5.19b)

(T, 0%’ w2z is the energy associated with Z and W). As before, 7:[W, z can be minimized by the BD vacuum solution

U

—ikT 76_“67-. (5.21)

A
z = e s w =
k,BD Tk k,BD /72]6

The corresponding energy densities, obtained from Egs. (5.19), are

BD k2 BD 1 kg
Pz = dkm pk,Z = g dk ﬁ, (522&)
k2 1 2k3
P = /dkm PE,%V = g/dk w2z (5.22b)

where, at sufficiently early times and for large modes, (sz)Q — k2. The quantum gauge energy density is obtained
by removing the BD vacuum from the classical solution as

Py =pz —p3°, (5.23a)
d = — pBD 5.23b
Pw PW — Pw - (5.23b)

When finding the energy densities, we solve Eqgs. (5.8a) and (5.8b) in cosmic time.

In Fig. 4, we display the different contributions to wJZr2, Eq. (3.37), for all three BPs. For BPa (first column of Fig. 4),
as the non-minimal coupling £ is small, the impact of m% is suppressed compared to ¢(* (see Eq.(3.37)). This is
visible from the cyan and orange solid lines, respectively. However, for BPb and BPc¢, the larger non-minimal coupling
renders m% more dominant compared to ¢ A. This can be seen from the second and third columns of Fig. 4. wy

shows a similar behavior, except for a sign change of the CS term. We also find that the different contributions of

wI),‘VQ follow a similar pattern, and we choose to not repeat these here.

The behavior of (w})2 of Fig. 4 has severe implications for the energy densities of the Z and W bosons, Fig. 5. For
BPa, as the ¢* term dominantes, p%, and Py, both scale as 1/A. However, for BPb and BP¢, as the non-minimal
coupling becomes larger, the m% term overpowers (*. We, therefore, see parametric resonance taking over. We find
that Z boson production can preheat the Universe within 2 e-foldings after the end of inflation for both BPb and
BPc. For W production, the preheating is completed within N ~ 4 (N ~ 2) for BPb (BPc). We remark that gauge
preheating is also possible for BPa if A < 2 x 107° Mp, however, we shall see below that such values of A will
overproduce hypermagnetic fields and imply an overproduction of the observed baryon asymmetry. Note that the
produced Z boson W boson can decay into SM matter. We will return to this in Sec. 7.
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Figure 4. Relative strength of different terms of (w})? in Eq. (3.37) for BPa (left panel), BPb (middle panel) and BPc (right
panel). The upper panel conforms k = a(tend)H (tena) while the lower panel is for k = 10 a(tend) H (tenda). The blue, cyan,
orange, and red lines in each figure display k°/a®, m%, ¢* and a combination of m% plus ¢*. We set A =2 x 107° Mp
throughout.

A
] 1
—11
1012 /‘”’\\ 1012 O A=2.x107s
A 10-15 <& 10715 T 104} ----- A=25%10"%
= | Leememmmmees = = A=3.x10" Mp
,ng. 10718f-~ Smgemas, @g 10°1% vg [ e —
- . SRS —|
102 R * 102 1020
-3 -2 -1 1 2 -3 -2 -1 1 2 -3 -2 -1 1 2
N N N
———— — ]
10-12 10-12 10~
= 10-15 I 10-15 T 1014
[ P St "= . [a=h [=h
§~§ L Tt °§T 10718 @th 10—
102 e, R 1072 10-20
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3
N N N

Figure 5. The energy densities p} (upper row) and p$, (lower row) for various values of A for the benchmark points BPa
(left column), BPb (middle column) and BPc (right column). The black line displays the background energy density pin.

5.2.2 Goldstone bosons

The Goldstone fields do not mix. Therefore, we can further decompose VEV energy density ,0,(~C ) from Eq. (5.18) into
the ¢; VEV energy density as

PO = plon) | o) | (o) (5.24)
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with
2 [ 9 2

(92) _ 1 mz 2 2 2. 2 Mz ~2 2 * *

Pk 2) _ 2{(1 — E) |S;c‘ + k" +a Mg (4y) — IC—Z T |5k| ]Ci T (S;csk + Sk/sk)}7 (5.253)
(#3) 1 miy /2 | 2 2, 2 2 %/V /o ”

pr = 3 1-— W lgs|” + [k +a Meff (¢3) — IC Wy |qr | Ko Y (q,9% + a3 ax) ¢, (5.25b)
(¢4) 1 m%,[, /2 i 2 2 2 m%v 2 %/V /o "

P = 5 - K |Tk + (k" +a Mot ($s) — 7K:W T |7"k| ’Ci T (Tkrk + 7 Tk) , (5.25(3)

where T was defined in Eq. (3.23).

Before solving Egs. (5.14) to find the energy densities, let us briefly discuss the different contributions to w(gl) and
their impact on preheating. For this purpose, we take ¢o as a representative field for the Goldstone bosons, and
we checked that ¢3 and ¢, show a similar behavior (with m% replaced by mW) In Fig. 6, we have plotted the
different contributions to w(2¢2)(7, k) for k = a(tend)H (tena) for illustration. It is clear, around the end of inflation,

m3, dominates over all other terms but soon after, the last term associated with £,,) dominates every time hg crosses
zero, resulting in spike-like structures. The spikes have the amplitude

2 2 2
W(¢2) ho=0 =k + Cl eff J(¢2) + ?ﬁe \/7MP h/ (526)

which is well below the unitarity cut-off scale. For comparison, we have also plotted k?/a? for the k = a(tend) H (tend)
in magenta in the lower panels and the evolution of hy in blue in the upper panels. It is clear that the spikes are
smaller for BPa, which is deep in the R2-like regime with £ < 1. However, they increase significantly for BPb and
BPc due to a comparably larger £. As we will see shortly, such spikes induce a growth of the corresponding modes
leading to preheating of the Goldstone bosons (see Refs. [26, 28, 52-54, 56] for similar discussions) without violating
unitarity.

To solve Egs. (5.14), we make the change of variable 5, = |/A(4,) sk to write

Sp(r, k) + &7, 5(T, k) =0, (5.27a)
@ (1. k) + &l a7, k) =0, (5.27b)
(T k) + @l (T k) =0, (5.27c)
where
&, &

_ 2 (I) (I)
) — W . 5.28
(N 9 4 ( )
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p‘(l 63) = p’é’ ba)° The black line displays the background energy density pint.

At sufficiently early times, when all modes of interest are deep inside the horizon (i.e. k > aH), the frequencies
become Q(QI) — k2 and the solutions of Egs. (5.27) reduce to plane waves

e—lk‘f‘ e—zkr e—zkr

b q - b ,r‘ - -
V2EA(4,) F T V2RA ) " 2RA )

Hence, by taking Eq. (5.29) as the initial conditions, Eqs. (5.27) will enable us to find the evolution of the relevant
modes from sub-horizon to super-horizon scales. Here, unlike the BD solution of all other fields, the appearance of the
A(pys is due to the presence of additional friction terms in Eqs. (5.14) as shown above. At early times, for the relevant
modes, we simultaneously have k?/a? >> |mgﬂr’(1) (t)] and m% v, /Kzw — 0. As before, Eq. (5.29) will minimize the
associated Hamiltonian.

Sk = (5.29)

The energy density associated with vacuum for the Goldstone modes reads
1 k3
BD
= dk . 5.30
P61) = fr2gn / Ao (k> 7) (5.30)

The quantum Goldstone energy densities are obtained by removing the BD vacua from the respective classical solutions
as

Plon = Py = Ploy,  Withi=2,3,4 (5.31)
Note that we have solved the respective EoMs in cosmic time.

We show the p(g@) and pg¢3) as function of A/ in Fig. 7 in blue and red, respectively. We recall that w(2¢3) = w(2¢4)
and pg 6s) = pg 1) We find that for all of our BPs no particles are produced before the end of inflation. However, the
spike behavior in w(Q $2) and w(2 5) induces a growth of the energy densities for BPb and BPc. We find that preheating

is possible for both BPb and BPc. In case of BPb, the preheating is complete for N’ =~ 3 (M ~ 1.9 for the BPc).
However, there is a subtlety. For BPb, the preheating is completed via the ¢3 field, whereas, for BPc it is completed
by ¢o. This is primarily due to myz > my and the evolution of hy. For both these BPs, initially p? 62) rises faster due

to the heaviness of the Z boson while p? s) remains constant. At a later time, the “spike forest” becomes denser which
overpowers the mild mass difference between Z and W. Therefore, the delayed growth of p‘(l 65) plateaus when the
spikes are more abundant. The exponential growth of p‘(z b9) for BPc is not shown in the right panel of Fig. 7 because
the initial growth of p? ) is sufficiently high enough to preheat the Universe. We stress again that our linearized
result here does not include decay, which we shall discuss in Sec. 7.

6 Production of the electromagnetic field

Following the same steps as in the previous sections, we now consider the production of electromagnetic (EM) field.
The time component (5 = 0) of Eq. (2.27) at linear order in the perturbations is

1

a?

0; (3;Ag — Do A;) = 0, (6.1)
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and the spatial components (8 = i) are

a 1
— (OoA; — 0;Ag) — 0o (Do A; — 0; Ag) + ?aj (0;A; — 0;A;)

AM3E
{rA?a

(6.2)
+

o (F(gpf)e\/gﬁ) €% (9, Ay, — O A;) = 0.

We move to conformal time dr = dt/a(t) such that the line element becomes ds? = a?(7)n,, dz"dz”. Hence, perform-
ing the replacements Ay — Agp/a, 9y — 0;/a, we find that the above two equations written in comoving coordinates
are

—0; (0;A0 — A;) =0, (6.3)
4MP2> I \/jL ijk
— 0o (00 Ai — 0;Ao) + 05 (0;Ai — 0;A;) + W& F(p')eV e ) €% (0; A, — Ok A;) = 0. (6.4)
R
As before, we can transform to momentum space by
AoGa) = [ 225 Aa(rdge e, At = [ S5 A(rage e, (65)
(2m) (2m)

where the A field can be written in terms of transverse and longitudinal components as

A(rk) = Y A7 k) &(k), (6.6)
A=x+,L

with
ik-éE(k) =0, ik-éh(k)=|kl=k  ikxéel(k)=+kef(k), k)T = (k). (6.7)

We are free to choose any gauge for the EM field regardless of our choice of gauge for the massive gauge bosons.
Choosing the Coulomb gauge for the EM field, we have 9; 47 = %@Aj = 0. This reduces in momentum space to
ik-A = 0, and removes one degree of freedom from the EM field. Utilizing Eq. (6.7), the gauge condition ik - A=0
translates to A~ (t,k) = 0, i.e. the longitudinal component of the photon vanishes. Further, inserting the gauge
condition AL(t,k) = 0 in Eq. (6.1), we find that Ay = 0, so that the photon is left with two independent (transverse)

degrees of freedom. This is unchanged by the presence of F'F' term as expected. Notice the stark difference between
the photon and the massive gauge bosons discussed earlier. In the former case the constraint equations from the gauge
condition render the Goldstone bosons ¢2, ¢3 and ¢3 dynamical, while for the photon only two transverse degrees of
freedom are dynamical.

In momentum space and conformal time, Eq. (6.4) reads

{K” 4 k%&} + Zj‘ﬁ o, <F(<pl)e\/g v) (kx &) =o. (6.8)
The EoM for the transverse components becomes
PAN 4+ (w))2AN =0, (A=) (6.9)
with
(WA(T, k))? = k* + (1, k), (6.10)

where ¢ (7, k) is given by Eq. (3.38), as well as AL = 0.

In order to quantize the EM fields, we first integrate the photon part of the Lagrangian by parts to get the action

quadratic in the fields
A3k 1
A A
SA—/dTE —/dT E

SR, (6.11)

1o ape
HEE
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The canonical momentum of the transverse modes are

A\ 652 AN
a1, x) = ———2—— = 0; A" (1, %), (6.12)
0 (0. A (7,x))
with the commutation relation expressed as
{AA(T, x), 75 (7, y)} = i0™M(x —y). (A==) (6.13)
In momentum space these expressions become
TA(r k) = 0, A (7, k), (6.14)
{A*(T k), 75 (T q)} =i(21)36™ 6 (k + q) (A==). (6.15)

The field operator Z/)‘(n k) can be written as creation and annihilation operators
A1 k) = up(r)ad (k) +up” (1) (k) (A=%) (6.16)
that obey
. . ) AtA
00, %(a) 09,1 (@)] =0,

Inserting Eq. (6.16) in Eq. (6.9), the mode equations of A can be found as

0,3 (@) = @VE k- (617

W W) =0 (A=) (6.18)

As in the last section, we can define the physical energy density as

1 d*k 1 k% e
*/d?’ <T00 / (23 (pr,a) = g/dkﬁﬂk,m (6.19)

where the EM energy-momentum tensor can be derived from the action (2.17)

1 M3 I
5542) = /dgx dr {_Z 0" Fau Fape — Er /1\32 Flp )e\/gMP P Fap Faps (6.20)

as

1
T.lﬁ/ = N {_1 napnﬁoFAaﬂFApa + npUFAupFAua- (621)

Moving to momentum space and the helical basis (6.7), we find that the EM energy density is

ugﬂ , (6.22)

vev _ 1 A 2
Pr,A = {5 ’Uk
i

where we used Eq. (6.16) and the gauge conditions Ay = 0 and 9;4; = 0. The first term is the electric component,
and the second is the magnetic one. The BD vacuum solution as before is

A e T Py ko ik
Uk,BD = ﬁ’ UkBD =\ 5 € (6.23)
with energy density
k2 1 k3
PRl = /dk o3 4/’53 = /dk >3 (6.24)
As in the other cases, the quantum EM energy density is obtained by removing the BD vacuum from the classical
solution as
p% = pa — pi°. (6.25)
We display the result in Fig. 8 for all the BPs. Preheating from photon production seems then possible only for low

values of the scale A. We will not consider this case in this paper as for such low values of the cutoff the rate of
baryon asymmetry production is too large. See also discussion in Sec. 9.
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background energy density pint.
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Figure 9. Comparison of different masses for the three BPs after end of inflation.

7 Reheating temperature

Our discussion in the preceding sections regarding preheating for different fields did not include effects such as decay
and scattering of the produced particles. These interactions are, of course, not summarized in the action of Eq. (2.17)
since they are beyond the linearized approximation we adopted throughout this paper. Nonetheless, these nonlinear
effects may indeed dampen the strength of preheating and, in some cases may completely shut down preheating for
certain species. We leave out a detailed estimation for separate work but briefly discuss their qualitative impact, in
particular for those fields which display the capability of preheating the Universe.

Let us begin with the decay of the produced particles. For the case of Higgs and inflaton quanta, both Higgs and
Goldstone bosons can preheat for BPc and BPb but the Goldstones preheat faster. The produced Higgs as well as the
Goldstone particles may decay into SM fermions and gauge bosons. For pure Higgs inflation, it has been found that
the decay of Higgs particles into gauge bosons ZZ, WW is kinematically disallowed [53]. Our model is quite similar
in this regard. In Fig. 9, we plot how |meg ()], [Mest,(4,)| and [mz| evolve in comparison to hg. It is clear that |my|
is heavier than both [meg (n)| and |[meg (4,)| for most times during preheating except when ho = 0. For the case of
the Higgs in our qualitative discussion, we find that the duration when |mz| < [meg (1| is too small to deplete the
energy density of the Higgs. The same holds for |meg (¢q)| (|7, (4,)|) for BPb (BPc), where the effective masses of
the respective gauge bosons are larger than those of Goldstone bosons such that decays into gauge bosons are not
allowed. The situation is different for the case of decays to fermions as discussed in Ref. [53]. For lighter fermions, the
decays of the Higgs and Goldstone quanta into fermions are kinematically allowed. However, one needs a decay rate
much greater than the Hubble expansion rate for the decay to efficiently deplete the energy densities. This is only
possible for the heaviest fermions due to the largeness of their Yukawa couplings. However, even in this instance, as
in Ref. [53], we find the duration is too small to deplete the produced particles in our back-reactionless analysis.

The decays of the Z and W bosons into fermions may lead to a significant reduction of the energy densities. Similarly,
the Z boson can decay to two scalar bosons. To illustrate the impact of these decays, we consider Z and W boson
decays into fermions [55, 71]#4

2
Fz(T)_ gZ

=72 7.1
8712 cos? Oy (7.1)

7 11 49
mz(T) (5 — gsin2 Ow + n sin? GW) ,

#4 Note here that Z and W decay rates include decay to all fermions and averaged over all polarization. We ignore the polarization
averaging effect and utilize these expressions for the transverse modes.
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Figure 10. The I'z/H and I'w /H shown, in the left panels, in blue and red respectively for BPb (top) and BPc (bottom).
The energy densities of the Z (middle) and W (right) taking into account the particle decay for the BPb (top) and BPc
(bottom), see Eq. (7.3). The black line displays the background energy densities pins for the respective BPs.

_ 39

Fw(’r) = 167Tm

W(T)v (72)
where the time-dependent Z and W masses have been defined in Egs. (3.33) and (3.47). These decays may deplete
the density of the produced gauge quanta if 'z yw/H > 1. While these decay rates can be directly incorporated into
the respective mode equations to estimate their impact, for simplicity we follow the approximate expression for the
modified energy densities as in [53]

(1) = p(7) exp{— /TOT dT/F(T/>} (7.3)

where 79 is the time when I'z y/H becomes > 1 for the respective particles. The modified energy densities of the
W and Z bosons are shown in Fig. 10. It is clear that the completion of the Z preheating takes longer for the BPs,
in comparison with the results shown in Fig. 5. For the W boson, the decay may completely shut off preheating for
BPb; completion takes longer for BPc. The case of BPa is more involved as for small A there will be an explosive
production of all the gauge fields. However, it was shown that the gauge fields will trigger the production of fermion
anti-fermion pairs in the electromagnetic plasma that will strongly reduce the energy density, see e.g. Refs. [20, 72].
This backreaction (dubbed the Schwinger effect) may jeopardize any gauge preheating. Hence, we will conservatively
consider that there is no preheating for the BPa benchmark point.

Finally, while a more detailed study is required for the consideration of nonlinear effects, we turn to a qualitative
discussion of rescattering and its potential relevance for preheating. In Fig. 11, we combine the effective mass
information at a representative time of Fig. 9 into a computation of representative 2 — 2 scattering processes. The
rate of particle conversion can be approximated as

I =nop, (7.4)

in natural units where g is the velocity of a representative W in the plasma. We can further estimate the number
density as

n, ~ 24 7.5
o B (75)
for a particle species i. The energy densities for, e.g., the gauge bosons are collected in Sec. 5.2.1. We obtain the cross
section in Eq. (7.4) keeping the full mass, background field, and centre-of-mass dependencies. There is interesting
phenomenology toward the end of inflation; W particles can quickly convert into fermions and Higgs bosons, and
vice versa. If the low-mass particles are sufficiently relativistic, they can convert back to vector bosons as indicated
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Figure 11. Representative conversion rates WW — ee, WW — hh, and hh — ee as a function of the Hubble constant and
the W/h velocity 8 for a typical epoch at the end of inflation characterized by ho ~ 107°Mp, Mg, (h) ~ 2.5 X 107 5Mp,

mw ~ 4 x 107°Mp, from Fig. 9. (Right) comparison of WW — hh and WW — ee conversion as a function of the W
velocity.

BP | preheating field(s) | Nin | arn | prn [M3] | Tin [GeV]

a _ _ ] _ _
b ¢3, Pa 3.05/21 [5x 1071 | 5x 10
c 2 1.8316.2] 10713 6 x 104

Table II. Preheating summary in the benchmark points chosen for our analysis. Values given are approximate.

in Fig. 11 (left). This is also true for fermions with sufficient energy very close to unity to transfer kinetic energy
to heavy particle creation (these processes are not shown) as well as for any other crossed process shown in Fig. 11.
Compared to the change of occupation number resulting from the particle decay discussed above, however, we see
that particle conversion turns out to be insignificant and will not quantitatively impact the preheating implications
that are derived from the particle decay in isolation. Again this is consistent with the findings of Ref. [53].

In the following, for definiteness, we take the completion of preheating exactly when pis = pg{)) (with X is any fields),
corresponding to a cosmic time t,y, i.e. a, i.e. Nip. The energy density at the time a,n, namely p,, is therefore
identified with the thermal bath energy density

2
_ grh T
pinf(a/rh) = Prh = 30 ;lhv

(7.6)

from which we can extract the (p)reheating temperature Ty, relevant for baryogenesis. Note, as we stressed before,
our linearized results here neglect back-reaction of the excited modes onto the background condensates; this limitation
should be kept in mind. We summarize which fields can preheat the Universe individually and table the corresponding
value T}y, in Table II. The impact of Ty on the geometric baryogenesis will be discussed shortly.

8 Baryogenesis

The baryon asymmetry of the Universe is characterized, in its entropic version, by the parameter

np — Ny,
=", (8.1)

where np — nj is the difference between the baryon and anti-baryon number density and s the comoving entropy
density of the SM plasma. The best fit of CMB anisotropy puts the contraint [73]

np = (8.70£0.11) x 10~ (95% CL). (8.2)

Besides and for completeness, the observed abundances of all the Big Bang Nucleosynthesis (BBN) isotopes today
coincide within the range value [74]

82x 1071 <np <9.2x 1071t (95% CL), (8.3)
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as all the light element abundances depend on 7np, compatible with the CMB measurement.

The SM Higgs mass measurement of 125 GeV favors a smooth electroweak crossover at temperatures around
180 GeV 2 T = 130 GeV. At first glance, this might jeopardize an electroweak baryogenesis scenario as the Sakharov
conditions impose that baryon number and C/CP-violating processes occur in a non-equilibrium environment [75].
However, by carefully analyzing the transport equations for all SM species during the EWPT, it was shown in
Refs. [3, 15] that the difference between chirality sources and sphaleron washout yields an out-of-equilibrium configu-
ration even for the crossover; the chiral anomaly of the SM provides a baryon+lepton violating process, which is then
sufficient to generate the BAU. The anomaly expresses the fact that the B + L charges, the U(1)y helicity, and the
weak sphaleron are connected as

12
ANg = ANp = N, <ANCS - AHY) , (8.4)
1672

where the factor N, = 3 is the number of fermion generations. Under the thermal fluctuation of the SU(2); gauge
fields, the Chern-Simons number Ncg is diffusive, resulting in the rapid washout of both lepton Ny and baryon Np
numbers. In contrast, a helical primordial magnetic field acts as a source, and a net baryon asymmetry can remain
after the EW phase transition. These two observations open the possibility of a baryogenesis mechanism within the
SM electroweak theory although physics beyond the SM is needed to provide a strong enough CP violation at a higher-
dimensional operator level. Indeed, the SM CP-violating term from the CKM matrix phase is too small to induce
a significant baryon asymmetry at a low energy scale. In our scenario, the dim-6 interaction term e**?? B, B,; R ;
fulfills this role.

The proper modelling of the epoch 160 GeV 2 T' 2 130 GeV is critical for an accurate prediction of the relic BAU.
We will rely on a mechanism that introduces a time-dependent (temperature-dependent) weak mixing angle 6y (T')
which enters an additional source of the baryon number into the kinetic equation, see Refs. [3, 15]. The angle behavior
is confirmed by analytic calculations [76], and numerical lattice simulations [77]. We follow Refs. [15, 16] and model
it with a smooth step function

2 2
2 g g T - Tstep
COSs 9W = 5 + (1 + tanh {7 y 8.5

9% 29% AT (85)

which, for 155 GeV S Tyep S 160 GeV and 5 GeV S AT S 20 GeV, describes reasonably well the analytical and
lattice results for the temperature dependence. We will now present the main lines of this mechanism and refer the
reader to Refs. [1, 3, 15, 17-19, 78] and references therein for further background details.

The Boltzmann equation for the baryon-to-entropy ratio np reads [15]

dnp 111 39% . dOw Hy
YE e sin(20y) TW Y .
dx 34 YW,sph 1B + 1672 blIl( QW) dx P (8 6)

where x = T/H(T) and Hy is the hypermagnetic helicity that is initially present. Furthermore, yw spn = 6 Dyyspn /T
is the dimensionless transport coefficient for the EW sphaleron, which, for temperatures T' < 161 GeV, is found from
lattice simulations to be [79]

(8.7)

T
o~ 147741079 ——— ) .
TWsph eXp( 7T+ 1079 355 GeV)

The Boltzmann equation (8.6) has been numerically solved in [15] and the baryon-to-entropy ratio np was found to
become frozen, i.e. dng/dx =0, at a temperature T ~ 135 GeV. As expected, this is close to T'~ 130 GeV at which
EW sphalerons freeze out. Setting the RHS of Eq. (8.6) to zero and solving for np yields

np = 255 9% Hy  fow T (8.8)
592 773\/@ (Trharh)3 Mp YWsph |1—135 GeV’ .
where we used that
2 2
§= L 9x (Trharh)37 gx = 106.75. (89)
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Figure 12. The helicity Ha for various values of A and all the benchmark points BPa, BPb and BPc, from left to right.

The parameter fy,, encodes all the details on the EWPT dynamics with significant uncertainties

dbw
dlogT |7_y35 Gev

fou, = —sin(20w) , 5.6 x 1074 < fp,, <0.32, (8.10)

Provided that the magnetic induction prevails over the dissipation effects in the plasma between reheating and the
EWPT (see hereafter), we can estimate the hypermagnetic helicity at the start of the EWPT as

Hy = ’HA(arh) cos? Ow , (8.11)

where H 4 is the helicity of the EM field defined as

Ha=— /dk—ZA‘uk‘

(8.12)

that depends on time (or alternatively on the scale factor a or the e-folding number N') and on A, see Fig. 12. The
Z boson contribution vanishes from Hy in Eq. (8.11) because the massive fields are screened or decay away quickly
compared to the time scale on which the baryon asymmetry evolves [15]. Because the BD solution (6.23) is the
same for both helicities, i.e. u',:,BD = Uy, gp, the BD vacuum contribution to the helicity vanishes, hence no vacuum
subtraction is needed.

We can read the values of Ty, prn and a.y from Tab. II. BPa, for which preheating is not evident and the relevant
quantities have to be approximated, has been discussed in detail in our previous work, see Ref. [1]. In this work, we
base the baryogenesis mechanism on the preheating results detailed in the previous section, and we will, therefore,
mainly focus on BPb and BPc. Of course, in all these cases, a detailed calculation of the perturbative reheating in
the R?-Higgs inflation model is needed to further improve on our findings.

The relation (8.11) holds only when the helicity is conserved between reheating and the electroweak crossover. To
guarantee that the magnetic induction dominates over dissipation in the plasma, we must require that the magnetic
Reynolds number R,, evaluated at reheating is bigger than unity as
2
) 1

(

where ¢, = 4.5 and ¢, = 0.01 are respectively the conductivity and the kinematic viscosity factors of the plasma
[80, 81] and ay = ¢'?/4n. The former equation (as well as Eq. (8.18) hereafter) is valid only for R. < 1, where

(%)

is the electric Reynolds number. In Fig. 13 we show that this regime applies for the relevant values of A in BPb and
BPc. In the last two expressions, p‘}gy is the quantum hypermagnetic energy density that can be computed as

q
EBY Trh

Grh

CO’ pBy
Cy  Prh

Rom ~ 2ay (8.13)

4 q
Y 1 —1\2 PBy
og(ay') oeh

2«

2
57

04, Ty

Grh

(8.14)

quy = p%,B(arh) COS2 QW, (815)
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Figure 13. Baryogenesis parameter space for BPb (top) and BPc (bottom). On the left panels we show the asymmetry
parameter in function of A and fs,,. The red line must be in between the light and dark blue curves to meet the
observational constraint 7z = 8.7 x 107, On the right panels we display the two contraints, R,, > 1 and Tcpr < 10° GeV in
function of A. To meet these contraints, both curves must be in between the horizontal red lines. We also display quantity R.
on which there is no constraint, see text tor detail.

with the EM magnetic energy
1 k4 N
pan = [tz 3 Ju

A==+
and EqBY is the hypermagnetic characteristic size given by
27 K3 2 k2

Oy = | [ dk = D || —/dk— : 8.17
By Phpa? [/ 472 ; Yk 472 (8.17)

where we performed a vacuum subtraction. Note that f%y =1%.

2 BD BD PED
S hsmean - PR = (8.16)

The last constraint arises from the CP-odd term present in the magnetohydrodynamics description of the plasma. As
the energy configuration in the gauge sector is more favorable than in the fermion sector [82], a helicity cancellation
is induced because of the fermion asymmetry back-transformation into helical gauge fields with opposite sign. This
phenomenon is called chiral plasma instability (CPI). Thus, one must ensure that all fermion asymmetry created
alongside the helical field during inflation is erased by the action of the weak sphaleron for 10'2 GeV > T > 130 GeV.
Hence to preserve the helicity in the gauge sector, before the CPI can happen, we must require that Tepr < 10° GeV,
where [17, 82]

403 1 (21332 H3
Tepr = e log(ay ') ( ) H . (8.18)

v 481 tend) Tr4h \V a?h a(tend)

Using Egs. (8.8), (8.13), (8.18) and the values from Table II, we display in Fig. 13 the baryogenesis parameter space.
The following ranges on A meet all the constraints and hence yield a successful BAU:

2.07x107°Mp < A < 230 x 107°Mp for BPb,
252x107Mp < A < 2.76 x 107°Mp for BPe.

~ ~

(8.19)
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We observe that the smaller the reheating temperature, the smaller the coupling A needs to be to achieve the BAU.
This is in agreement with our result for the BPa in Ref. [1] although there the reheating temperature was left as a
free parameter.

9 Summary and Outlook

In this work, we studied the implications of the preheating on gravity assisted baryogenesis in R2-Higgs inflation,
namely how preheating can impact on baryogenesis at the electroweak crossover from the production of helical
hypermagnetic fields. To this end, we adopted the doubly-covariant formalism for both inflationary dynamics and
gauge field production. We derived the equations of motion and energy densities for the inflaton, Higgs background
fields, and relevant perturbations at linear order. This includes the inflationary fields, the W=, Z bosons, the photon,
and the three Goldstone fields. The Coulomb gauge was used, as the unitary gauge becomes ill-defined at Higgs
zero-crossings. Hence, the Goldstone bosons remained dynamical in our discussion. The preheating is governed by
the field-space manifold, the dynamics of the background condensates, the respective effective masses and the coupled
metric perturbations.

We primarily focused on R? and mildly mixed R2-Higgs-like regimes, however expressions and the formalism can
be applied to other regimes of £ and £g. We highlight different phenomenological possibilities by identifying three
benchmark points: a deep R2-like scenario with ¢ ~ 1072 (BPa), £g ~ 1 (BPb) and a mixed R?-Higgs scenario
with g ~ 10 (BPc) (see Tab. I). We find that the Higgs quanta and transverse modes of the W boson can preheat
the Universe for BPc for {5 ~ 10, while the Z boson can provide successful preheating for both BPb and BPc. The
Goldstone sector can also preheat for BPb and BPc. We find that for both BPb and BP¢, the Goldstone bosons can
preheat the Universe faster than any other field: at N &~ 3 and N =~ 1.8, respectively (see Fig. 7). In all cases,
preheating never happens for BPa unless A is small. We remark that our results for preheating are in good agreement
with previous studies in this model [26, 28], however, we find that £y =~ 1 is also sufficient for preheating of the
@3 field at N' ~ 3. This is caused predominantly by the spikes in w(zj) due to the presence of the &£ term for the

Goldstones as also discussed in Ref. [52].

We find that the value of A, required for baryogenesis does depend on £y indirectly via the reheating temperature.
We identify a window around A ~ 2.2(2.6) x 107> Mp for £y ~ 1(10) where the observed baryon asymmetry of
the Universe can be achieved. As preheating happens earlier for larger £y, leading to larger reheating temperature,
a larger value of A is required for successful baryogenesis. However, our analysis also reveals that sufficiently small
values of A could lead to gauge preheating as found in Fig. 5 and Fig. 8 for BPa. Nevertheless, based on earlier findings
from Ref. [1] and pending further investigation into fermion-gauge boson backreaction, we expect the inclusion of the
Schwinger effect to significantly impact our results. Importantly, incorporating the Schwinger effect is unlikely to alter
the successful sourcing of baryon number density (see also Refs. [1, 20]). Moreover, the relevance of the Schwinger
effect dramatically depends on the value of the fermion masses at high values of the background Higgs field, and so
on the mechanism for the generation of fermion masses at high scales. For instance a particular Froggatt-Nielsen
mechanism was presented in Ref. [83] where there is no Schwinger effect for the Standard Model at inflationary scales,
while reproducing the fermion spectrum at electroweak scales. In that case, small values of A are disfavored as they
tend to overproduce the baryon asymmetry.

Our work systematically builds upon previous studies [1, 19, 83] by explicitly computing, for the first time, the
reheating time, temperature, and energy without taking them as effective parameters in the model. One remaining
uncertainty regarding the baryogenesis mechanism, which we leave for future work, concerns the specific dynamics
of the electroweak crossover, particularly the evolution of the weak mixing angle from zero to its low-energy value.
In the present analysis, we ensured that the helicity generated during reheating is preserved until the electroweak
scale by carefully considering the plasma’s Reynolds number and verifying that the chiral plasma instability does not
impact our results. We also remark that for our preheating dynamics, we adopted a naive effective approach related
to how decays impact the produced quanta instead of incorporating them in the EoMs directly. Furthermore, we
have also not discussed how the produced particles backreact on both the background condensates (see Ref. [56]). In
addition, we have ignored fermions from the picture to a large extent; they can impact significantly via the Schwinger
effect as discussed in [1, 19, 20, 83]. This requires a first principle derivation of all EoMs retaining terms beyond the
linear order in this doubly covariant formalism including fermions and gauge bosons. This is beyond the scope of the
current work and we leave a dedicated analysis of non-linear effects for future work.
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A Gauge boson spectra

We provide the spectra for the Z, W and photon for illustration in comparison to corresponding BD-spectra. This is
utilized to evaluate the corresponding energy densities for the respective fields. See main text for details.
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