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Dear Members of the Search Committee,

I would like to submit my application for the postdoctoral position within the ERC Synergy Grant

COSMOMAG. I am currently a postdoctoral researcher at the Theoretical High Energy Physics Labora-

tory (LPTHE) at Sorbonne Université in Paris. I completed my PhD at IFAE, UAB, in Barcelona, under

the supervision of Dr. M. Quirós, following a master’s degree at EPFL in Switzerland, in the group of

Prof. M. Shaposhnikov.

The scientific expertise and prior work of Profs. A. Brandenburg, C. Caprini, A. Neronov and F. Vazza,

which underpin the COSMOMAG project, are closely aligned with my own work. Indeed, a significant

part of my research focuses on the generation, evolution and phenomenology of primordial magnetic fields.

In particular, I have studied the production of helical (hyper)magnetic fields during inflation through

Chern-Simons couplings, and analyzed their survival up to the electroweak phase transition in order to

make predictions on baryogenesis. In parallel, I have investigated the non-linear dynamics of gauge-

field production during and after inflation, including backreaction effects on the inflaton and fermionic

production via the Schwinger effect, with a specific emphasis on preheating. More recently, I carried

out a comprehensive analysis of preheating in the R2-Higgs inflation model, including the full Standard

Model SU(2)×U(1) gauge sector at linear order, showing that the energy transfer during preheating can

be dominated by Goldstone modes and identifying the regions of parameter space compatible with the

observed baryon asymmetry of the Universe.

All this research has given me a strong familiarity with the magnetohydrodynamic and cosmological

framework underlying primordial magnetic fields, from chiral plasma effects and inverse-cascade dynamics

to the treatment of primordial fluctuations and their observational signatures. This work relied on the

development of an extensive and modular numerical code library I have written to compute multi-field

background dynamics, electroweak particle production and Schwinger effects, which I see as a flexible

tool that could naturally interface with the theoretical and numerical framework developed within COS-

MOMAG.



For all these reasons, I believe that joining the group of Prof. Axel Brandenburg would allow me

to contribute meaningfully to early-Universe cosmology, while also developing new lines of inquiry at

the interface of magnetohydrodynamics, particle physics and cosmology. I would be keen to contribute

to COSMOMAG wherever my expertise can be most useful, with a particular interest in the study of

primordial magnetic fields at the electroweak scale and their possible observational signatures, including

gravitational waves, while remaining fully open to other directions within the project. It would allow me

to leverage my experience in particle production in the early-Universe while at the same time giving me

the opportunity to interact with researchers outside my current field and to further diversify my research

agenda.

I look forward to the possibility of joining your project and pursuing research within the Nordita and

Swedish theoretical physics communities. Thank you very much for your consideration.

Yours sincerely,

Yann Cado
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Research statement

Yann Cado

December 12, 2025

In this document, I give an overview on my past research, carried out during my Master thesis at

the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland (2017), my doctoral studies at

the Institut de F́ısica d’Altes Energies (IFAE) in Barcelona (2019-2023), and my postdoctoral years of

research at the Laboratoire de Physique Théorique et Hautes Energies (LPTHE) in Paris (since 2023).

By now, my work has led to eight papers [1–8], published either by the Journal of Cosmology and

Astroparticle Physics (JCAP) or by the American Physical Society in Physical Review D (PRD) and to

a PhD thesis [9].

This document is organized as follows. I begin by providing historical context and an introduction to

the problematic, highlighting the main puzzles addressed by my research, namely baryogenesis, inflation

and related subjects such as reheating and Higgs physics. Then I briefly explain how helical fields can be

generated from inflation, highlighting the main constraints such as the Schwinger effect. This introduction

is followed by a discussion of the various models I have developed that connect the inflation paradigm to

the need of baryogenesis. I also comment about the light inflaton phenomenology and preheating.

Introduction

The so-called ΛCDM model is today the most elegant and complete model of modern Cosmology. It

complements the previous standard model of the Universe’s evolution by postulating the existence of

Cold Dark Matter (CDM) that accounts for the dynamics of large-scale structures and by adding a tiny

cosmological constant Λ that accounts for the actual accelerated expansion detected in 1998 [10,11]. The

theory of Big Bang Nucleosynthesis (BBN), accounting for the birth of the lightest elements, is embedded

in this model as well as the description of the Cosmic Microwave Background (CMB) radiation. Last, this

model includes a period of tremendous accelerated expansion prior the BBN in order to solve the initial

condition problems of the standard model of cosmology and seeds the primordial density perturbations

giving rise to the large-scale structure of the Universe that we see today. Denoted as inflation, the

paradigm was developed in the late 1970s and is today a active field of research [12–17].

By definition the Universe expands adiabatically, therefore a dazzling accelerated expansion, such as

inflation, cools it down to absolute zero which is inconsistent with the historic timeline of the Universe as

inflation is eventually followed by a thermal plasma leading to BBN. Thus, any inflation model shall come

with an explanation on how the Universe reheats afterwards. The reheating details are often overlooked

but they can constrain the inflationary model, especially in the perturbative case as it relates the high

energy physics of the Universe to the collider phenomenology. If the reheating is non-perturbative, i.e.

through an energy transfer that happens at the classical level in the equation of motion before the inflaton

decay, we referred to as preheating. The inflaton will eventually decay, but in the case of preheating the

thermal bath can have much higher temperature that can allow for specific new physics, such as primordial

black holes [18], Dark Matter (DM) [19,20] or baryogenesis [21,22]. For all these reasons, both reheating

and preheating mechanism are nowadays the subject of numerous studies [23–28].

From the point of view of particle physics, the Standard Model (SM) accurately describes particle

interactions but does not explain the origin of its content. Its gauge structure implies equal amounts
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of matter and antimatter, yet observations show a clear matter dominance. This discrepancy suggests

a dynamical early-Universe mechanism creating a matter–antimatter asymmetry, known as baryogene-

sis [29–35].

If the SM Higgs field does not itself play the role of the inflaton, any additional scalar field introduced

to drive inflation will generically couple to the Higgs sector, either explicitly at tree level or unavoidably

through radiative corrections. As a result, the Higgs field cannot be consistently neglected when studying

the cosmological dynamics. This motivates an analysis of inflationary and post-inflationary evolution

that includes the Higgs field, while remaining compatible with constraints from collider experiments. In

this context, preheating is intrinsically a multi-field phenomenon: interactions between scalar degrees of

freedom, including possible non-minimal couplings to gravity, can lead to highly efficient energy transfer

after inflation. This remains true even in so-called pure Higgs inflation scenarios, since the dynamics of

the Higgs Goldstone modes cannot be ignored, see e.g. Ref. [25].

Therefore, the Higgs field either drives inflation directly, a scenario referred to as Higgs Inflation (HI),

or participate in the inflationary dynamics alongside other fields like in one of the best-fitting models

of current data [42] which is the R2-Higgs inflation model where the presence of the R2 term makes

another scalar degree of freedom dynamical and restores up the pure HI model perturbative unitarity to

the Planck scale [43–50]. In any case, the models need to address the Higgs vacuum instability problem

as our current (low-energy) understanding of the Higgs interaction predicts a true vacuum of its potential

at an energy scale of ∼ 1011 GeV that could lead the entire Universe to an unphysical phase. To prevent

this catastrophe at such scale, one shall introduce new high-energy physics in the Higgs sector to correct

the self-coupling running.

Until now, my research has mainly focused on the computation of the (hyper)magnetic fields gen-

erated in such inflationary contexts, either numerically or by simplifying the model to make analytical

approximations, in order to find windows of the parameter space for baryogenesis to occur by taking into

account the newest observational data and every known constraints.

Baryogenesis during electroweak crossover

It has been shown that a coupling between a pseudoscalar and a gauge field of the form φFµν F̃
µν

generates a magnetic field that is maximally helical at the end of inflation [25,51–54]. On the other hand,

helicity in the hypercharge sector can be converted into baryon asymmetry during electroweak (EW)

crossover thanks to the chiral anomaly of the SM [55–59]. Putting the pieces together, the observed

baryon asymmetry of the Universe (BAU) can be sourced from a CP-violating interaction between the

inflaton and the gauge sector. This idea was elaborated in a number of papers, see e.g. [60,61]. In Ref. [1],

we apply this mechanism simultaneously to baryonic matter and DM making use of the Asymmetric DM

paradigm [62]. We found that both visible and Dark matter present day abundances can be achieved for

a wide range of the parameters involved.

Then, in order to stress the possible role of the Higgs in the mechanism of baryogenesis, we coupled,

in Refs. [2, 5], the Higgs doublet H to the ordinary electromagnetic (EM) fields as |H|2Fµν F̃
µν and we

studied the magnetic field generation capabilities during [5] and after [2] inflation. In the former we did a

full analytical derivation taking into account the Schwinger effect (see below) and all the other contraints.

In the latter, the computation was done numerically in a radiation dominated Universe.

Magnetohydrodynamics

In any case, we must make sure that the helicity produced at the end of inflation survives until the

generation of BAU at the electroweak crossover. Soon after inflation, the Universe reheats and a thermal

plasma is generated by the decay of the inflaton into the SM particles. Consequently the EW symmetry is
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restored until the EW crossover by the appearance of thermal masses and any helicity in the EM sector get

converted into hypermagnetic helicity (that will source the chiral anomaly at EW crossover). The latter

then interacts with the thermal plasma which, in turn, backreacts on the gauge fields. This system can be

described by the so-called magnetohydrodynamics equations [63–65] in which the physical quantities of

interest (amplitudes, energy densities, correlation length and helicity) do not scale adiabatically in such

an environment, or equivalently their comoving quantities are not constant. Therefore there can be a

magnetic diffusion effect leading to the decay of the helicity. If, on the other hand, the magnetic induction

is the leading effect, then the helicity can be conserved until the EW crossover and the baryogenesis

mechanism can take place. This effect is measured by the magnetic Reynolds number and it is enough

to require it bigger than unity at reheating for the helicity to be conserved until the EW crossover.

In addition we also have to prevent the chiral plasma instability and the non-Gausiannity issues. The

interested reader can find all the constraints and details in Sec. 7 of [3].

The Schwinger effect

The last phenomenon to be under consideration before addressing properly the generation of the BAU is

the Schwinger effect. In the presence of strong gauge fields, light fermions charged under the gauge group

are produced by the backreaction of gauge fields which source the fermion equations of motion [66–68].

The corresponding currents can then, in turn, backreact on the produced gauge fields. The Schwinger

effect hence acts as a damping force in the explosive production of helical gauge fields, and many of the

conclusions from the gauge field production should be revised in its presence. In Ref. [3], we considered two

semi-analytical methods, namely the Schwinger maximal estimate and equilibrium estimate [61, 66, 69],

and gave the parameter space for successful baryogenesis in both cases. We found a wide range in the

axion to gauge field coupling and the reheating temperature for the BAU to be achieved at EWPT.

In a subsequent work, Ref. [4], we performed a deep study of the Schwinger effect by using some

numerical methods. We used the fourth order Runge-Kutta algorithm to solve a non trivial integro-

differential system that takes into account the backreaction of the produced gauge fields on the inflationary

equations of motion, and that of the Schwinger effect on the gauge field production. Our results show that

we recover previous analytical results in the slow roll inflation regime by making the same approximations

required by an analytical resolution. We then solved the full solution for two classes of inflationary

potential, namely the α-attractor and hilltop potentials, and we observed as expected a dampening in

the energy density and helicity production. Note that this outcome does not necessarily jeopardize the

BAU generation, as a successful baryogenesis does depend on a delicate equilibrium between the amount

of helicity, magnetic energy density and magnetic correlation length. Actually, we have found there is still

a window in the parameter space for baryogenesis to happen. However, our numerical estimates suggest

that the Schwinger effect significantly reduces the share of electromagnetic energy for the considered

models and gauge preheating is unlikely to occur. These two comments should be viewed as hints for

future studies that address the production of gauge fields at the end of inflation. Of course, a full lattice

simulation of the Schwinger effect involving fermions remains to be done.

Light inflaton phenomenology

In Ref. [3] we study a two-field inflation model involving the physical Higgs h and a new scalar φ coupled

to each other as µφh2. Like in the Higgs inflation model, where the non-minimal coupling ξh2R induces a

flat potential required for slow roll inflation, we study in this work the implication of the coupling gφ2R,

where R is the Ricci scalar. We show that we can then achieve a slow roll inflation for g ≪ 1 while

preventing the Higgs true vacuum catastrophe at h ∼ 1011 GeV. Indeed, at low energy scale, when φ is

integrated out, the Higgs β function gets modified such that a negative self-coupling can be avoided for a
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range of values of µ and mφ. On the other hand, at high energy scale, the inflaton dynamics and density

perturbation are controlled by the φ quartic self-coupling.

An interesting feature of Ref. [3] is that the the mixing φ–h can provide a light inflaton candidate that

could be detected at the HE-LHC while satisfying all observational constraint and providing a sucessfully

inflation epoch. This is because the inflaton mass mφ is decoupled from the inflationary dynamics.

With mφ ≃ 1 TeV, the interaction between both fields, besides solving the vacuum instability, predicts

modifications on the trilinear and quartic couplings that could be explored at the HE-LHC, as well as at

future colliders, and allows for direct φ production at the LHC. Using present results of inclusive cross

sections for σ(pp → H) for the leading mechanism of gluon-gluon fusion from CMS and ATLAS (where

H stands for the heavy scalar production: in our case the inflaton field), we found a mild bound as

mφ ≳ 0.55 TeV at 95% C.L. [70–73], to be improved in the future.

In a subsequent paper [8], we investigated how the interaction µφh2 constrains the reheating tem-

perature Trh. We performed a renormalization group analysis to determine the relative values of µ and

mφ such that the Higgs potential remains stable (and perturbative) at high energy. Taking into account

the running of the Higgs quartic self-coupling and the experimental constraints from the LHC via the

HiggsTools public code, we found that 3.4× 106 GeV ≲ Trh ≲ 3.9× 1012 GeV.

Gravity assisted baryogenesis in R
2-Higgs inflation

In a similar way to prior cases, helical hypermagnetic fields, and therefore the BAU, can also be generated

by the dimension-six operator (R/Λ2)BµνB̃
µν in the context of f(R) theories.

In Ref. [6] we adopted the doubly-covariant formalism [23,25,74,75] for both inflationary dynamics and

the production of helical gauge fields to show that when the R2-Higgs inflation model is supplemented

by this CP-violating term, the BAU can be obtained for Λ ∼ 2 × 10−5 MPl with and without the

Schwinger effect included. We have primarily focused on the Starobinsky-like (R2) regime in our linear

order analysis. The reheating temperature was left as an open parameter.

In Ref. [7] we studied the implications of the preheating on that model by explicitly computing, for the

first time, the reheating time, temperature, and energy without taking them as effective parameters in the

model. In addition to the progress done in Ref. [6], we derived the equations of motion and energy densities

for the relevant perturbations at linear order which includes the inflationary fields, the W± and Z bosons,

the photon, and the three Goldstone fields. The Coulomb gauge was used, as the unitary gauge becomes

ill-defined at Higgs zero-crossings, making the Goldstone bosons dynamical. Self-resonance is governed

by effective masses that scale differently with non-minimal couplings and evolve over time, influenced by

the field-space manifold, metric perturbations, and background spacetime expansion [23,25]. We find the

preheating can happen in the scalar, gauge and Goldstone sectors, however, dependent on the value of

the nonminimal coupling between the SM Higgs and R.
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Abstract. We show that both the baryon asymmetry of the Universe and the dark matter abun-

dance can be explained within a single framework that makes use of maximally helical hypermagnetic

fields produced during pseudoscalar inflation and the chiral anomaly in the Standard Model. We

consider a minimal asymmetric dark matter model free from anomalies and constraints. We find that

the observed baryon and the dark matter abundances are achieved for a wide range of inflationary

parameters, and the dark matter mass ranges between 7-15 GeV. The novelty of our mechanism stems

from the fact that the same source of CP violation occurring during inflation explains both baryonic

and dark matter in the Universe with two inflationary parameters, hence addressing all the initial

condition problems in an economical way.

Keywords: asymmetric dark matter, baryogenesis, CP violation, chiral anomaly, pseudoscalar in-

flation, magnetic helicity
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1 Introduction

The curious coincidence between the observed baryon and dark matter abundances lead to the so

called asymmetric dark matter (ADM) paradigm, where the dark sector mimics the baryonic one by

exhibiting an asymmetry in its abundance of particles over its antiparticles (see e.g., reviews [1, 2]).

The basic idea behind the asymmetric dark matter scenario is that the same source of CP violation

that leads to the baryogenesis also feeds into the dark sector, and hence similar abundances are

achieved in both. Typically, in such models the dark matter candidate has a mass not so far from the

tens of GeV to a few GeV unless there is a huge suppression or enhancement factor for the transfer

of the asymmetry. In that sense it is a quite predictive top down approach.

On the cosmological side, it is still not clear what the source of baryon asymmetry of the Universe

(BAU) is and at which epoch it occurred. There are vast ways of generating the BAU, but there are

only a few testable models (see e.g., νMSM [3, 4]) due to having too many parameters and/or not

being in reach for accelerator experiments or cosmological observations.

It has recently been pointed out that CP violation that occurs during inflation via a coupling of

an inflaton to the hypercharge gauge fields via a dimension 5 operator of the form (α/f)ΦFµν F̃
µν leads

to a successful baryogenesis1 [6]. The basic idea is that during inflation there is a non-perturbative

production of gauge fields with high occupation numbers leading to coherent maximally helical hy-

permagnetic fields [7], which in turn sources the well known chiral anomaly in the Standard Model

(SM) producing an asymmetry in the SM particle species. The model only depends on two param-

eters, namely the scale of inflation, Hinf and the coupling of the inflaton to the hypercharge gauge

fields α. With these basic ingredients, all that is needed to produce the required asymmetries is the

SM physics, namely the chiral anomaly. In this work, we generalize this framework to include the

generation of asymmetric dark matter and report on a relation between the CP violation that occurs

1Ref. [5] also considered a somewhat similar mechanism using the coupling of inflaton to gravity and by making use

of gravitational anomaly.
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during pseudoscalar inflation and the observed baryon and dark matter abundances in the Universe.

Hence, we propose a mechanism that solves all the initial condition problems including the baryon

and dark matter abundances.

This paper is organized as follows. In Sec. 2, we introduce our minimal ADM field content

and interactions. We review the chiral anomaly in the SM in Sec. 3.1. We discuss the generation

and evolution of maximally helical hypermagnetic fields during pseudoscalar inflation in Sec. 3.2

and Sec. 3.3, respectively, and calculate the rate of change of hypermagnetic helicity that feeds into

the chiral anomaly in Sec. 3.4. We introduce the asymmetry parameters and the associated kinetic

equations governing their evolution in Sec. 3.5. Our results appear in Sec. 3.6. We discuss various

mechanisms for the annihilation of the symmetric part of the ADM in Sec. 4. We conclude with a

summary of our results and a discussion in Sec. 5.

We use natural units c = 1, ~ = 1 and set the Boltzmann constant kB = 1. We parametrize

the flat Friedman-Robertson-Walker (FRW) metric as ds2 = a(τ)2(dτ2 − dx2), where a is the scale

factor, τ is the conformal time, which is related to the cosmic time via dt = adτ .

2 A Minimal Model of Asymmetric Dark Matter

Before we discuss the details of the asymmetry generation mechanism, which will follow in Sec. 3, we

first introduce the matter content and interactions of the messenger and dark sectors. We consider a

minimal asymmetric dark matter model, adopted from Ref. [8], that is suitable for cogenerating an

asymmetry in both the SM and ADM sectors from the same source of CP violation produced during

pseudoscalar inflation.

We introduce a messenger sector that includes two left handed fermions, L1, L2, which are SU(2)
L

doublets, and two right handed singlets, R1, R2, where all of them carry dark lepton global charges,

DL1
, DL2

, respectively. The dark sector has two Dirac fermions, X1, X2 that are charged under the

dark gauge group U(1)
D
and also carry global dark lepton charges DL1

, DL2
, respectively. The fermion

content is chosen such that it is minimal to cancel all the gauge anomalies of both the SM and dark

gauge sector U(1)
D

as well as the global Witten anomaly [9]. The fermionic field content of this

minimal ADM model is summarized in Table 1, and its Lagrangian is given by

LADM = iL†
i σ̄
µDL

µLi + iR†
iσ
µDR

µRi + iX̄iγ
µDX

µ Xi −
1

4
CµνC

µν + LYuk , (2.1)

where σ̄µ = (1,−σ), σµ = (1,σ), {σi} are Pauli matrices, {γµ} are Dirac matrices,

DL
µ = ∂µ + igyYLiAµ + igw

σa

2
W a
µ + igDCµ , (2.2a)

DR
µ = ∂µ + igyYRi

Aµ + igDCµ , (2.2b)

DX
µ = ∂µ + igDCµ , (2.2c)

Aµ,Wµ
a, Cµ are the U(1)

Y
hypercharge, SU(2)

L
weak and U(1)

D
dark gauge fields, respectively, and

gy, gw, gD are the corresponding gauge couplings. The Yukawa Lagrangian is given by

LYuk = yL1
L†
1H

cR1 + yL2
L†
2HR2 + yXL1

L†
1HX

R

1 + yXL2
L†
2H

cXR

2 + h.c. , (2.3)

the Higgs doublet, H, and its conjugate

H =

(

H+

H0

)

, Hc = iσ2H
∗ =

(

H0†

−H−

)

. (2.4)
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Fermions Gauge charges Global charges

field handedness I3 Y Q QD DL1
DL2

M
es
se
n
g
er

Lu1 left 1/2 1 1 1 1 0

Ld1 left -1/2 1 0 1 1 0

R1 right 0 2 1 1 1 0

Lu2 left 1/2 -1 0 -1 0 1

Ld2 left -1/2 -1 -1 -1 0 1

R2 right 0 -2 -1 -1 0 1

D
M

X1 both 0 0 0 1 1 0

X2 both 0 0 0 -1 0 1

Table 1. Messenger and dark sector fermion content, their chiralities and local and global charges. Weak

isospin, I3, hypercharge, Y , and electromagnetic charge, Q, are the SM electroweak SU(2)
L
×U(1)

Y
charges,

whereas QD is the gauged dark U(1)
D

charge. All the fermions have dark lepton-like charges given by DL1

and DL2
. We use the convention Q = I3 + Y/2.

have hypercharges YH = 1 and YHc = −1 , respectively,

The messenger states

Li =

(

Lui
Ldi

)

(2.5)

are much more massive than the DM states, Xi, hence, they can decay via the following channels:

L1 −→ XR

1 +H , L2 −→ XR

2 +Hc . (2.6)

These are the only decays that conserve all the charges in Table 1. As we will show in Sec. 3, an

asymmetry is first generated in the messenger sector, and then gets transferred to the dark sector via

the decays given in Eq. (2.6). Once the asymmetry is generated for the right-handed component of

Xi, the dark gauge interaction U(1)
D
equilibrates the left and right handed dark fermions. Since the

decay rate

ΓLi→XR
i +H ∼ 1

8π
yXLi

mL , (2.7)

is much larger than the Hubble rate H ∼ T 2/Mpl for messenger masses of mL ∼ 1 TeV, for instance,

we will consider that the asymmetry generated in the messenger sector gets quickly converted into

the dark matter states. Hence, we assume that the number densities are related as nXi = nLi in what

follows.

In addition to the asymmetric component of the ADM, there will be a symmetric part that is

thermally produced. In order to annihilate the symmetric component efficiently, we will consider two

scenarios, where the U(1)
D
dark photons can be massless or massive. We will discuss both cases in

detail in Sec. 4. We will now present our proposed co-generation mechanism in detail in the following

section.

3 Pseudoscalar Inflation and Asymmetry Generation

The asymmetry in both the SM and the messenger sector is generated via the coupling of the hy-

percharge gauge field to a pseudoscalar inflaton as was studied in Ref. [6] for baryogenesis. The
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Lagrangian that we will consider has the form

L =
1

2
(∂µΦ)

2 − V (Φ)− 1

4
YµνY

µν − α

4f
ΦYµν Ỹ

µν , (3.1)

where Φ is a pseudoscalar inflaton field, V (Φ) is a flat potential satisfying the slow-roll conditions,

Yµν is the hypercharge field strength, α is a dimensionless coupling, and f is the axion constant of

dimension mass.

As the inflaton slow-rolls, it provides a time dependent background to populate the modes of

the hypercharge gauge fields due to the dimension-5 coupling given in Eq. (3.1). Besides, since the

inflaton under consideration is a pseudoscalar, it will only lead to over abundance in a given helicity

mode of the gauge fields. Hence, as a result, hypermagnetic fields that are coherent over the horizon

scale at the given epoch are produced with net Chern-Simons density (or magnetic helicity) that

breaks CP macroscopically [7] (see also Refs. [10–14]). It has been recently noted in Ref. [6] that such

hypermagnetic fields can source the baryon asymmetry of the Universe through the chiral anomaly in

the Standard Model as all the Sakharov criteria [15] are satisfied in this process (see also Refs. [16–45]

for the evolution of hypermagnetic fields and their effect on particle asymmetries). It was found that

the observed baryon asymmetry can be easily achieved in a generic set of inflaton parameters, i.e.,

the Hubble rate during inflation Hinf and the coupling of the inflaton to the hypercharge field, α. In

this work, we extend this mechanism to include a messenger sector that carries both dark and SM

charges so that we can relate the observed dark matter and baryon abundances in the Universe to a

single source of CP violation generated during inflation.

As the messenger sector fermions carry the SM charges, hence the hypercharge, there will be an

accompanying asymmetry in Li and Ri fermions. Subsequently, the decay of Li leads to the transfer

of this asymmetry into the dark fermions Xi. To set our notation, we will briefly go over the chiral

anomaly in the SM, review how the helical hypermagnetic fields are generated during inflation, discuss

how they evolve in the primordial plasma and finally derive the the kinetic equations governing the

evolution of asymmetries in particle species in the SM, messenger and dark sectors. We present our

main results at the end of this section.

3.1 Chiral Anomaly

Since the SM has chiral fermions, there is a chiral anomaly associated with each species, both gauge

and global [46]. The gauge anomaly is terminal, but it is cancelled in the SM [46]. However, there

remains a global anomaly, namely the baryon, B, and lepton, L, numbers are separately anomalous

in the SM so do the additional global dark charges DL1
, DL2

for the messenger sector that we have

introduced. To put it in a compact form, each species that are charged under the SM gauge groups

exhibit the chiral anomaly given as (see e.g., Ref. [6] or appendix of Ref. [18] for the full set of anomaly

equations)

∂µj
µ
f = Cfy

αy

16π
Yµν Ỹ

µν + Cfw
αw

8π
W a
µνW̃

aµν + Cfs
αs

8π
GaµνG̃

aµν , (3.2)

where the coefficients Cfj are given in Table 2 for all the chiral fermions in the SM and the mes-

senger sector for the corresponding SM gauge groups. αj ’s are the fine structure constants of the

corresponding SM gauge groups, αj = g2j /(4π).

The currents associated with the baryon and lepton numbers in terms of the individual fermionic
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f Cfy Cfw Cfs
q NcNwy

2
q Nc Nw

` Nwy
2
` 1 0

uR −Ncy
2
uR

0 −1

dR −Ncy
2
dR

0 −1

eR −y2eR 0 0

Li Nwy
2
Li

1 0

Ri −y2Ri
0 0

Table 2. Coefficients Cf
j in Eq. (3.2). The multiplicities Nc = 3 and Nw = 2 take into account the color

and weak isospin states of a given family of leptons and quarks, and the SM hypercharges are yq = 1/3 , y` =

−1 , yuR = 4/3 , ydR = −2/3 , yeR = −2. The charge conjugates qc, `c, uc
R, d

c
R, e

c
R, L

c
i and Rc

i have the same

coefficients, Cf
j , with all the signs flipped.

currents are

jµB =
1

3

3
∑

i=1

(

jµqi + jµ
ui
R

+ jµ
diR

)

, (3.3a)

jµL =

3
∑

i=1

(

jµ`i + jµ
eiR

)

, (3.3b)

and for the both dark lepton like numbers

jµ
Li

D

= jµLi
+ jµRi

+ jµXi
. (3.4)

We note that all these currents are anomalous, and thus not conserved:

1

Ng
∂µj

µ
B =

1

Ng
∂µj

µ
L = ∂µj

µ
Li

D

=
αw

8π
W a
µνW̃

µν a − αy

8π
Yµν Ỹ

µν , (3.5)

where Ng = 3 is the number of generations in the SM. There is an accidental conserved current,

∂µj
µ
B−L = 0 in the SM, which has important consequences for the baryon asymmetry of the Universe,

namely, baryons can be converted into leptons and vice versa with the selection rule 3∆NL = ∆NB
since any baryon number violation is compensated by a lepton number violation [46]. Similarly,

∂µj
µ
L1

D−L2
D
= 0 in our setup due to the similarity of the fermionic field content, hence,

3∆NLi
D
= 3∆NL = ∆NB . (3.6)

Moreover it trivially follows that all the gauge currents [47]

jµy =
∑

particles

Yψψ̄γ
µψ , (3.7a)

jµaw =
∑

left particles

ψ̄iτ
a
ijγ

µψj , (3.7b)

jµas =
∑

quarks

ψ̄iη
a
ijγ

µψj , (3.7c)

jµQD
=

∑

dark particles

QDψ ψ̄γ
µψ , (3.7d)

with τaij , η
a
ij the generators of SU(2)

L
, SU(3)

c
respectively, are not anomalous, i.e., ∂µj

µ
y = ∂µj

µa
w =

∂µj
µa
s = ∂µj

µ
QD

= 0, which ensure that unitarity is not violated. It is well known that the non-

Abelian gauge theories have topologically distinct degenerate vacua, transition between which leads
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to the change of baryon, lepton and dark lepton numbers. However, we stress that U(1)
Y
sector can

also source the chiral anomaly provided that there is a net Yµν Ỹ
µν , e.g., hypermagnetic fields with

net helicity. In other words, in the Abelian case, the magnetic helicity is the Abelian Chern-Simon

number. We will explain next how such field configurations are produced during inflation.

3.2 Hypermagnetic Fields from Pseudoscalar Inflation

In this section, we summarize the generation of helical hypermagnetic fields during pseudoscalar

inflation to set the notation and to make the paper self contained, see Ref. [7] for details.

The equation of motion for the hypercharge field strength Yµν derived from Eq. (3.1) is

gµν∇µY νρ = −α
f
gµν(∇µΦ)Ỹ νρ , (3.8)

where gµν is the flat FRWmetric and∇µ is the corresponding covariant derivative. Using the radiation

gauge A0 = 0, ∇ ·A = 0, we obtain the equation of motion for the gauge field as

(

∂2

∂τ2
−∇2 − α

f

∂Φ

∂τ
∇×

)

A = 0 , (3.9)

where the terms involving ∇Φ drop out due to the homogeneity of the inflaton field. In this gauge, the

hyperelectric and hypermagnetic fields are respectively given by E = −∂τA/a2 and B = ∇×A/a2,

where a is the scale factor in the FRW universe. We promote the vector potential to a quantum

operator in the Heisenberg picture

Â(τ,x) =
∑

λ=±

∫

d3k

(2π)3/2

[

ελâλ(k)Aλ(τ,k)e
ik·x + ε

∗
λâ

†
λ(k)A

∗
λ(τ,k)e

−ik·x
]

, (3.10)

where we used the circular polarization basis ε± that obey to the properties k · ε± = 0, and k× ε± =

∓i|k|ε±, such that |ε±|2 = 1. Defining a parameter

ξ =
αφ̇0

2fHinf
, (3.11)

and using the fact that a(t) = eHinft during inflation we obtain

∂2A±
∂τ2

+ k

(

k ∓ 2ξ

τ

)

A± = 0 . (3.12)

We distinguish three cases that lead to solutions with different asymptotic behaviors. At early times,

when |kτ | � |2ξ|, the solution is a vacuum mode, hence a free wave A± = e−ik0τ/
√
2. When

|kτ | ∼ |2ξ| the field develops an instability. Depending on the sign of ξ, either A+ or A− modes will

be amplified (ξ ≷ 0 ⇔ A± amplified). In the limit |kτ | � |2ξ| the solution for the growing mode is

given by [7]

A± ∼= 1√
2k

(

k

2ξ a(τ)Hinf

)1/4

eπξ−2
√

2ξk/[a(τ)Hinf] . (3.13)

whereas the other mode is exponentially suppressed. Note that due to the eπξ factor, the gauge

potential grows tremendously for moderate values of ξ > 1.
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3.3 Evolution of Hypermagnetic Fields in Plasma

We assume instant reheating so that immediately after inflation the Universe becomes filled with a

plasma of relativistic particles. Therefore, the evolution of hypermagnetic and hyperelectric fields are

governed by the relevant magnetohydrodynamics (MHD) equations [20]

∂B

∂t
= −∇×E , (3.14a)

∂E

∂t
+ J = ∇×B , (3.14b)

∇ ·B = 0 , (3.14c)

∇ ·E = ρ , (3.14d)

∇ · J = 0 , (3.14e)

J = σ(E + v ×B) , (3.14f)

where v is the plasma fluid velocity and σ ' 100T is the hypercharge conductivity [48]. Assuming

a neutral plasma, ρ = 0, with sufficiently slowly varying hyperelectric field such that ∂tE = 0,

and combining equations (3.14a), (3.14b) and (3.14f), we obtain the evolution equations for the

hypermagnetic fields

∂B

∂t
= ∇× (v ×B) +

1

σ
∇2

B , (3.15a)

E =
1

σ
(∇×B)− v ×B . (3.15b)

The former equation states that the time evolution of the hypermagnetic field depends on an advection

term and a dissipation term when the hyperconductivity is finite. The Reynolds number R is defined

as the ratio of these two terms in the Fourier space

R =
vσ

kp
, (3.16)

where kp is the last mode that exits the horizon after inflation

kp '
Hinf

ξ

T

Trh
. (3.17)

For R < 1 the hypermagnetic field will quickly dissipate as the dissipation term dominates whereas for

R > 1 a turbulent flow will be generated, and hence, the magnetic field will be sustained. Assuming

instant reheating, the reheating temperature can be estimated as

Trh ' 1

4

√

MplHinf , (3.18)

and thus,

R = 25vξ

√

Mpl

Hinf
, (3.19)

which is much bigger than unity for velocities [6]

v >
10−5

ξ

√

Hinf

1014 GeV
. (3.20)

We therefore consider the plasma as turbulent in what follows. In the next section, we show that this

condition leads to conservation of helicity of the maximally helical hypermagnetic fields generated

during inflation.
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3.4 Hypermagnetic Helicity

Hypermagnetic helicity feeds into the chiral anomaly and eventually sources the baryon and dark

matter asymmetries. We can deduce the useful relation from Eq. (3.15b)

E ·B =
1

σ
B ·∇×B , (3.21)

where we used B · v ×B = 0.

The magnetic helicity is defined as

H =

∫

d3x A ·B . (3.22)

Using the MDH equations and relation (3.21), we obtain the rate of change of the spatially averaged

helicity density as
∂h

∂t
= − lim

V→∞

2

σV

∫

V

d3x B ·∇×B . (3.23)

Using Eq. (3.10), we obtain the spatially averaged quantity of interest

〈B ·∇×B〉inf =
1

a5

∫

d3k|k|3
(2π)3

(

|A+|2 − |A−|2
)

, (3.24)

where the integral is over the comoving momenta k. Note that only one of the modes A± is amplified

as shown in the previous section. Thus, the produced field has maximal helicity. After setting one of

the modes to zero and using Eq. (3.13), we obtain2 [6]

〈B ·∇×B〉 = ±I H
5e2πξ

ξ6
, (3.25)

where I = 6.848 ·10−4 and the overall sign depends on the choice of the mode A±, respectively. Here,

we cut off the integral at kc ' 2ξHa(τ) in order to be in the range of validity of the expression for

A±. When performing the integral, we ignored residual terms that are proportional to ξ−1e−8ξ as

they are exponentially suppressed since ξ � |kτ |. Therefore, at the end of inflation, the change of

helicity finally reads [6]

∂h

∂t
= ∓2I

e2πξ

σξ6

(

Hinf

a

)5

, (3.26)

Here, cosmological redshift has been taking into account and the scale factor has been normalized

such that it is one at the end of inflation. We note that to generate baryons rather than antibaryons,

the negative sign has to be chosen, corresponding to the mode A+ as we will see in the next section.

3.5 Kinetic Equations

The set of kinetic equations is found by integrating the anomaly equations (3.2) over spacetime. The

number density of a given particle species in terms of a current reads

ni = lim
V→∞

1

V

∫

V

d3x j0i , (3.27)

and defining the asymmetry parameter of a given species as

ηf =
nf − nf̄

s
, (3.28)

2We note that the the produced hypermagnetic fields are maximally helical saturating the realizability condition

hM(k) 6 2eM(k)/k (see e.g., Ref. [49]). Here, for instance for a given helicity mode, say A+, the following relations

are always satisfied:
∫
dk hM(k) ≡ 1

V

∫
V
d3x 〈A · B〉 =

∫
dk k3 |A+|2 whereas

∫
dk eM(k) ≡ 1

V

∫
V
d3x 1

2
〈B2〉 =

1

2

∫
dk k4 |A+|2.
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where, s is the entropy density. The relevant asymmetry parameters for the SM and messenger sector

fermions are

ηq =
1

6s
NSM

g NwNcµqT
2 , (3.29a)

η` =
1

6s
NSM

g Nwµ`T
2 , (3.29b)

ηuR
=

1

6s
NSM

g NcµuR
T 2 , (3.29c)

ηdR =
1

6s
NSM

g NcµdR
T 2 , (3.29d)

ηeR =
1

6s
NSM

g µeR
T 2 , (3.29e)

ηL =
1

6s
NDM

g NwµLT
2 , (3.29f)

ηR =
1

6s
NDM

g µRT
2 , (3.29g)

where NSM
g = 3 and NDM

g = 2 are the multiplicity factors for the SM and messenger sector families,

respectively.

Upon integrating and thermally averaging the right hand side of the anomaly equations (3.2), we

obtain three contributions. The first contribution comes from the hypercharge sector through the term

Yµν Ỹ
µν = −4E ·B which brings the rate of change of helicity density as we derived in Eqs. (3.21),

(3.23) and (3.26). The other two contributions come from the SU(2)
L
and SU(3)

c
sphalerons, i.e., the

weak and the strong sphalerons, respectively. The weak sphalerons relax the baryon+lepton number

charge of the fermions charged under SU(2)
L
whereas the strong sphalerons relax the chiral charge of

the quarks charged under SU(3)
c
[50–52]. We note that since sphalerons act on a global level, relaxing

global charges, we defined the asymmetry parameters as a sum over all internal degrees of freedom

(spin, color, isopsin and family). Finally, the kinetic equation3 corresponding to the seven asymmetry

parameters given in Eqs. (3.29a)-(3.29g) is (see Ref. [6])

∂ηf
∂t

= Cfy
αy

4πs

∂h

∂t
− CfwΓw(ηq + η` + ηL)− Cfs Γs(ηq − ηuR

− ηdR) . (3.30)

The coefficients Cfj are given by the Table 2. In Eq. (3.30), Γw = 25α5
w
T [53] and Γs = 100α5

s
T

[54] are the weak and strong sphaleron rates per unit time, respectively. Notice that this set of

equations respect the Sakharov conditions [15] since: 1) the anomalous B/L/LiD currents provide a

B/L/LiD number violation; 2) the term containing ḣ has different sign for different chiralities hence

breaks C/CP ; 3) the ḣ term is a source term (external field produced during inflation) and hence

describes an out of equilibrium process.

Since we add new species to the Standard Model, the number of relativistic degrees of freedom

increases:

g∗ = gSM∗ + gM∗ + gDM
∗ = 106.75 +

7

8
· 12 + 7

8
· 8 + 2 = 126.25 , (3.31)

where we also considered a massless dark photon corresponding to the dark U(1)
D
gauge field.

It is more convenient to express Eq. (3.30) in terms of a dimensionless variable x defined as

x = D
Mpl

T
, (3.32a)

D =

√

45

4π3g∗
. (3.32b)

3Here we neglect both the Yukawa terms and the chiral magnetic effect, which can change the final values of the

asymmetry parameters slightly. See, e.g., Ref. [43] and Ref. [44], where the Yukawa terms and the chiral magnetic effect

are taken into account for baryogenesis, respectively.
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Figure 1. Numerical solutions of the kinetic equations given by Eq. (3.30). The lines show the result for the

baryon asymmetry and the dotted one corresponds to the asymmetry in one family of DM. The red dashed

line shows the observed value of the baryon asymmetry ηB ' 10−10 which can be achieved for instance with

ξ = 1 and Hinf = 5.6 · 1010 GeV. The messenger sector asymmetry is ηL = ηB/3 for all values of Hinf and ξ

as also can be obtained from the relation Eq. (3.6).

As soon as inflation ends, the radiation dominated era begins, and thus, we have the relation H =

1/(2t) = T 2/(MplD). Performing this change of variable in Eq. (3.30) yields our final master equation

∂ηf
∂x

= −Cfy γy − Cfwγw(ηq + η` + ηL)− Cfs γs(ηq − ηuR
− ηdR) , (3.33)

with γy =
Ie2πξαy

ξ6
√
D

T
σ

(

Hinf

Mpl

)5/2

and γw/s =
Γw/s

T . This equation is much more convenient to solve

since the system of equations becomes just a set of first order differential equations with constant

coefficients.

This set of kinetic equations is valid from the end of inflation until the weak sphalerons shut off,

at temperature T = 8πv√
4παw

' 10 TeV, where v = 246 GeV is the Higgs vacuum expectation value.

For simplicity we assumed that the γy source shuts off at the same temperature even if it contributes

to the evolution of ηf until electroweak phase transition, TEW ' 160 GeV.

3.6 Results

The solution of the system of equations (3.30) allows us to obtain the parameter space for the inflation

parameters, namely, Hinf and ξ, in order to produce the observed value of the baryon asymmetry ηB =

1×10−10 [55]. We assume that initially all the asymmetry parameters given by Eqs. (3.29a)-(3.29g) are

zero. We show the parameter space in Figures 1 and 2 for 1 6 ξ 6 5 and 108 GeV 6 Hinf 6 1014 GeV.

Recall that only for ξ > 1 the analytic solution of the mode is given by Eq. (3.13) that we have used

in our calculation4.

The solution also provides a relation for any inflation parameters between the asymmetry param-

eters of the SM and messenger sectors: ηB = 3ηL [see Eq. (3.6)]. Not surprisingly, because the equa-

tions for dark lepton number 1 and 2 are identical, their asymmetry parameters are equal: ηL1
= ηL2

.

Since we take nL = nX it is possible to compute the typical mass of the DM candidates as follows.

4Note that there is a constraint on the parameter ξ . 4 from non-Gaussianities caused by the hypermagnetic fields,

see, e.g., Refs.[56, 57].
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Figure 2. Numerical solutions of the kinetic equations given by Eq. (3.30). This plot shows the values of the

parameters Hinf and ξ in order to have the observed baryon asymmetry ηB ' 10−10 with ηL = ηB/3.

Today neither the dark matter nor the baryonic matter is relativistic: ρi = mini = miηis0 = Ωiρc,

where s0 is the actual entropy density. This yields the relation

ΩXi

Ωb
=
mXi

mp

ηXi

ηB
, (3.34)

for each dark matter particle Xi, where mp = 938.73 MeV is the proton mass. Since observation

cannot distinguish ΩX1
and ΩX2

which sum up to ΩDM , we compute the equivalent DM mass by

performing a sum on both dark species contribution mDM =
∑

mXi and we get:

mDM = mp
ηB
Ωb

∑

i

ΩXi

ηLi

= mp
ΩDM
Ωb

ηB
ηL1,2

' 15 GeV, (3.35)

which is in the range of the allowed values [1]. This is the total mass of the DM particles and depending

on whether one of them is lighter than the other leads to the dominant component mass in the range

of 7− 15 GeV. In other words, if mX1
∼ mX2

, we predict the DM mass to be around 7 GeV whereas

for mX1
� mX2

(or the other way around), the DM mass is predicted to be around 15 GeV.

Now that we have successfully generated an asymmetry in the both the SM and the dark matter

sectors, we will turn our attention into getting rid of the possible thermal symmetric component of

dark matter.

4 Annihilating the Symmetric Component of Dark Matter

There are three possibilities in order to annihilate the symmetric part of the DM: 1) the DM annihilates

into SM states, 2) it annihilates into messenger states that eventually decay to SM states, 3) it

annihilates into dark radiation. The two first possibilities are forbidden by our model since the DM

candidates cannot annihilate into the SM because they do not carry any of the SM charges. Besides

their annihilation into the other dark sector species (the messengers of our model) is not efficient
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enough since they are the lightest. Therefore the only remaining possibility is direct annihilation into

dark radiation, that is why we added a gauge interaction between DM states in the first place when

we introduced our model in Section 2.

We consider a U(1)
D
gauge group whose mediator is the dark photon γD. There are now two

cases: either γD is massless, and we have an unbroken U(1)
D
or U(1)

D
is broken, and thus, γD is

massive. In the first case the γD production increases the radiation component in the primordial

plasma which affects the big bang nucleosynthesis (BBN) and the cosmic microwave background

(CMB). Alternatively, we can take a massive U(1)
D
, in which case the U(1)

D
group is spontaneously

broken and γD can mix kinematically with U(1)
Y
photon and decay into SM states. This case is safer

from cosmological constraints as we will see next. We shall explore these two cases in detail in the

next subsections.

As we argued briefly, aside from the asymmetry generation that leads to the observed DM

abundance, we have a thermal production of messenger particles with

nL =
3ζ(3)

4π2
gLT

3 . (4.1)

The symmetric part of the messengers then decay very efficiently to Xi according to Eq. (2.6). DM

annihilates into dark photons with cross-section (see e.g., section 4.2 of [2])

〈σv〉 ' πα2
D

m2
Xi

' 2 · 10−8
( gD
0.1

)4
(

10 GeV

mXi

)2

GeV−2 . (4.2)

The annihilation rate is then simply ΓXX̄→γDγD = n〈σv〉 � H. Hence the symmetric part of the

messenger and dark sectors annihilate quickly into dark photons within a Hubble time. Next, we will

discuss the massive and massless γD cases separately.

4.1 Massless γD

It is possible to find out the actual temperature and density of the relic γD as it is done usually for

neutrinos. Using entropy conservation we obtain a relation between the visible and dark sectors after

their decoupling that occur at T ∼ mX ∼ 10 GeV

gV T
3
V

gDT 3
D

=
gdecV

gdecD

, (4.3)

where V (respectively D) denote the visible (dark) photon. Referring to Table 1, we find that

gdecD = 2 · 2 · 2 · 7
8
+ 2 = 9 , (4.4a)

gD = 0 · 7
8
+ 2 = 2 , (4.4b)

since at V-D decoupling there are both X1, X2 and their antiparticles and one massless γD. X1

and X2 are not relativistic in the current epoch so we do not count them here, and there is still one

massless γD. At T ∼ 10 GeV, the SM plasma contains every particle except the top quark, the three

W bosons, all the Higgs and all the messenger particles. Thus, the corresponding effective number

of relativistic degrees of freedom is gdecV = 86.25. We find the temperature of dark photons in the

current epoch as

TγD =

(

gdecD

gdecV

gV
gD

)1/3

Tγ =

(

9

86.25

2

2

)1/3

Tγ . (4.5)
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A good measure of extra relativistic degrees of freedom is the effective number of relativistic neutrino

species defined as the ratio of energy density of one neutrino species (1 left handed neutrino + 1 right

handed antineutrino so there is a factor 2)

Nρ
eff =

ρ

ρν
, (4.6)

where we have

ρν = 2 · 7π
2

240
T 4
ν , (4.7a)

ργD = 2 · π
2

30
T 4
γD , (4.7b)

and

Tν =

(

4

11

)1/3

Tγ . (4.8)

Therefore,

∆NγD
eff =

ργD
ρν

=
8

7

(

11

4

)4/3(
gdecD

gdecV

gV
gD

)4/3

= 0.22 . (4.9)

This is smaller than the maximum allowed value ∆Neff = 0.334 by the Planck collaboration [55] so

the massless case is marginally allowed by the cosmological observations. The value can be lowered by

two mechanisms: increasing the degrees of freedom in the dark sector or increase the V-D decoupling

temperature, which will increase gdecV .

4.2 Massive γD

In order to give γD a mass we must add a dark Higgs field in the model to break U(1)
D
, that is a

complex scalar field ϕD with a dark charge qD. The Lagrangian is [58]

LϕD
= Dµϕ

∗
DD

µϕD − λ
(

|ϕD|2 − v2D
)2
, (4.10)

with Dµ = ∂µ + igDCµ and where vD is the vacuum expectation value of ϕD. The physical mass of a

particle is roughly given by the product of the Higgs VEV and the coupling constant. Since the dark

photon mass is

MγD =
√
2qDgvD , (4.11)

which we take to be around 100 MeV as an example, it implies a smaller Higgs VEV and a smaller

dark Higgs mass, mϕD
= 2

√
λvD. The dark Higgs mass is much smaller than the visible Higgs mass,

allowing the latter to decay in the former via the term

LϕDH = λϕDH |ϕD|2|H|2 , (4.12)

which turns out to yield a negligibly small contribution.

The kinetic mixing is given by the effective Lagrangian

Lmix =
ε

2
YµνC

µν , (4.13)

where Cµν is the field strength associated to U(1)
D
. The kinetic mixing of U(1)

Y
and U(1)

D
is given

by the parameter ε and reads [59]

ε ∼ gY gD
16π2

ln
M+
L

M−
L

, (4.14)
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where M+
L and M−

L are respectively the higher and lower mass of the different L messenger states.

This simply comes from a 1-loop diagram with messenger fermions in the loop. The logarithmic factor

is typically of the order one, hence

ε ∼ 6 · 10−3
( gY
0.1

)( gD
0.1

)

. (4.15)

Then, the γD decay rate is [58, 60]

ΓγD→ll̄ =
ε2αY
3

MγD

√

1− 4m2
l

M2
γD

(

1 +
2m2

l

M2
γD

)

, (4.16)

for the SM leptons and

ΓγD→qq̄ =
σe+e−→qq̄

σe+e−→µ+µ−

∣

∣

∣

∣

s=M2
γD

ΓγD→ll̄ , (4.17)

for hadrons. Of course, these decay channels are allowed only if MγD > 2mf . The decay rate for an

electron-positron channel is

ΓγD→e+e− ' 1.2 · 10−7
( ε

6 · 10−3

)2
(

MγD

100 MeV

)

GeV. (4.18)

or Γ = 1.82 · 1017 s−1, exceeding the Hubble rate by several orders of magnitude. Thus, the massive

dark photon can efficiently be converted into the SM species, and hence, the symmetric component

of the DM is removed successfully. For MγD < 210 MeV, this is the only allowed channel. When

MγD increases and it allows more channels (say n), hence quicker decay, the total decay rate can be

parametrized as

Γd = n · ΓγD→ff̄ , (4.19)

unless we are at a threshold of pair production.

5 Summary and Discussion

We proposed a new mechanism to generate asymmetric dark matter and the baryon asymmetry of

the Universe via the same source of CP violation that occurs during inflation. The coupling of the

inflaton to the SM hypercharge gauge fields via the dimension five operator (α/f)ΦFµν F̃
µν leads to

generation of coherent hypermagnetic fields with maximal helicity, which in turn source the chiral

anomaly in the SM and yield the desired asymmetries in both the SM and DM sectors. We showed

that for a wide range of inflationary parameters, Hinf and ξ, the observed BAU and DM abundances

can be achieved. In the minimal ADM model we considered, we found that the DM mass is in the

range of mX ∼ 7 − 15 GeV, depending on whether they have comparable masses or one of the two

DM species is relatively lighter, respectively. The DM mass can take a different range of values if the

minimal ADM field content is extended as this will affect the ratio between the BAU and the DM

asymmetry parameters.

We also gave two scenarios for annihilating the symmetric part of the ADM. By coupling the DM

fermions to a U(1)
D
gauge field, the symmetric part can be efficiently annihilated into the dark photons,

γD. In the first scenario we considered, U(1)
D
is unbroken, and hence γD is massless and contributes

to the relativistic degree of freedom today. We found that the contribution of γD, ∆Neff = 0.22, is

within the allowed range of Neff = 3.15±0.23 provided by the Planck collaboration [55]. However, we

note that as the constraint on ∆Neff continues to improve, this scenario might become problematic.

One way out is to increase the field content in the ADM sector to dilute the dark radiation component.
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In the second scenario that we have considered for annihilating the symmetric part of the ADM, the

U(1)
D
is broken, hence the dark photons are massive. These photons decay into the SM species via a

gauge kinetic mixing efficiently. Hence, this is a safer route to annihilate the symmetric component

of ADM and is free from the constraints.

Since in the minimal ADM model we considered there are two DM candidates carrying two

different quantum numbers, there is a possibility for them to combine and form dark Hydrogen-like

atoms. For the massless γD case, dark atoms can form provided that [61]

α6
D

R

(

ΩDMh
2

0.11

)(

1 GeV

mDM −BD

)(

1 keV

BD

)

> 1.5 · 10−16 , (5.1)

with

R =
TγD
Tγ

∣

∣

∣

∣

z=0

, (5.2)

and BD the binding energy of the dark Hydrogen-like atom. Taking ΩDMh
2 = 0.11, BD = 1 keV,

gD = 0.1 and our value of R = 0.47 [see Eq. (4.5)], we conclude that this condition is not reached for

our value of mDM = 7− 15 GeV. For the massive γD case, dark atoms can form provided that [58]

mγD < αD
mX1

mX2

mDM
, (5.3)

For mγD = 100 MeV and gD = 0.1 this condition cannot be respected either for the range of mDM

that we have. Therefore, in our setup the dark atoms cannot form.

We would also like to point out that the model of ADM that we considered with the dark

U(1)
D
interaction is compatible with the observation of haloes and subhaloes in the galaxies, namely,

addressing the the so-called “missing-satellite problem” as was discussed extensively in Ref. [61]. In a

nutshell, this can be understood as follows. The interaction between the DM mediated by a massless or

light force carrier reproduces the large-scale structure of the universe while suppressing the formation

of structure at smaller scales [58].

Finally, we note that in the simplest version of the natural inflation model [62] that we considered

as an example to study the asymmetry generation in ADM and baryons, either a curvaton field [63] is

needed to explain the observed density perturbations or some other dynamical mechanism is needed

to be implemented (see e.g., string theory inspired models [64, 65]). To achieve the observed BAU and

hence the DM abundance, we requireHinf to be not so large as can be read off from our Figures 1 and 2.

A model of inflation that has Hinf 6 5.6 · 1010 GeV, ξ & 1 and that also explains observed amplitude

of the density perturbations leads to a complete picture of the early Universe, namely, solving all

the initial conditions problems including the BAU and DM abundances in a single framework. The

interrelations between our proposed mechanism and various models of inflation that satisfy these

criteria remain to be studied.

Acknowledgments

We would like to thank Mohamed Anber, Kohei Kamada and Mikhail Shaposhnikov for discussions.

ES is supported by the Swiss National Science Foundation and Alexander von Humboldt Foundation.

YC is supported by the Institute of Physics at Ecole Polytechnique Fédérale de Lausanne.

References

[1] K. Petraki and R. R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A28 (2013)

1330028, [1305.4939].

– 15 –



[2] K. M. Zurek, Asymmetric Dark Matter: Theories, Signatures, and Constraints, Phys. Rept. 537 (2014)

91–121, [1308.0338].

[3] T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys.

Lett. B631 (2005) 151–156, [hep-ph/0503065].

[4] T. Asaka and M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe,

Phys. Lett. B620 (2005) 17–26, [hep-ph/0505013].

[5] S. H.-S. Alexander, M. E. Peskin and M. M. Sheikh-Jabbari, Leptogenesis from gravity waves in models

of inflation, Phys. Rev. Lett. 96 (2006) 081301, [hep-th/0403069].

[6] M. M. Anber and E. Sabancilar, Hypermagnetic Fields and Baryon Asymmetry from Pseudoscalar

Inflation, Phys. Rev. D92 (2015) 101501, [1507.00744].

[7] M. M. Anber and L. Sorbo, N-flationary magnetic fields, JCAP 0610 (2006) 018, [astro-ph/0606534].

[8] J. Shelton and K. M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys.

Rev. D82 (2010) 123512, [1008.1997].

[9] E. Witten, An SU(2) Anomaly, Phys. Lett. B117 (1982) 324–328.

[10] M. S. Turner and L. M. Widrow, Inflation Produced, Large Scale Magnetic Fields, Phys.Rev. D37

(1988) 2743.

[11] B. Ratra, Cosmological ’seed’ magnetic field from inflation, Astrophys.J. 391 (1992) L1–L4.

[12] A. Dolgov, Breaking of conformal invariance and electromagnetic field generation in the universe,

Phys.Rev. D48 (1993) 2499–2501, [hep-ph/9301280].

[13] M. Gasperini, M. Giovannini and G. Veneziano, Primordial magnetic fields from string cosmology,

Phys.Rev.Lett. 75 (1995) 3796–3799, [hep-th/9504083].

[14] P. Adshead, J. T. Giblin, T. R. Scully and E. I. Sfakianakis, Magnetogenesis from axion inflation,

JCAP 1610 (2016) 039, [1606.08474].

[15] A. Sakharov, Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe,

Pisma Zh.Eksp.Teor.Fiz. 5 (1967) 32–35.

[16] M. Joyce and M. E. Shaposhnikov, Primordial magnetic fields, right-handed electrons, and the Abelian

anomaly, Phys. Rev. Lett. 79 (1997) 1193–1196, [astro-ph/9703005].

[17] B. A. Campbell, S. Davidson, J. R. Ellis and K. A. Olive, On the baryon, lepton flavor and

right-handed electron asymmetries of the universe, Phys. Lett. B297 (1992) 118–124, [hep-ph/9302221].

[18] A. J. Long, E. Sabancilar and T. Vachaspati, Leptogenesis and Primordial Magnetic Fields, JCAP

1402 (2014) 036, [1309.2315].

[19] A. J. Long and E. Sabancilar, Chiral Charge Erasure via Thermal Fluctuations of Magnetic Helicity,

JCAP 1605 (2016) 029, [1601.03777].

[20] M. Giovannini and M. E. Shaposhnikov, Primordial hypermagnetic fields and triangle anomaly, Phys.

Rev. D57 (1998) 2186–2206, [hep-ph/9710234].

[21] M. Giovannini and M. E. Shaposhnikov, Primordial magnetic fields, anomalous isocurvature

fluctuations and big bang nucleosynthesis, Phys. Rev. Lett. 80 (1998) 22–25, [hep-ph/9708303].

[22] M. Giovannini, Hypermagnetic knots, Chern-Simons waves and the baryon asymmetry, Phys. Rev. D61

(2000) 063502, [hep-ph/9906241].

[23] M. Giovannini, Primordial hypermagnetic knots, Phys. Rev. D61 (2000) 063004, [hep-ph/9905358].

[24] K. Bamba, Baryon asymmetry from hypermagnetic helicity in dilaton hypercharge electromagnetism,

Phys. Rev. D74 (2006) 123504, [hep-ph/0611152].

– 16 –



[25] K. Bamba, C. Q. Geng and S. H. Ho, Hypermagnetic Baryogenesis, Phys. Lett. B664 (2008) 154–156,

[0712.1523].

[26] A. Boyarsky, J. Frohlich and O. Ruchayskiy, Self-consistent evolution of magnetic fields and chiral

asymmetry in the early Universe, Phys. Rev. Lett. 108 (2012) 031301, [1109.3350].

[27] A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, Long-range magnetic fields in the ground state of

the Standard Model plasma, Phys. Rev. Lett. 109 (2012) 111602, [1204.3604].

[28] S. Rostam Zadeh and S. S. Gousheh, Contributions to the UY (1) Chern-Simons term and the evolution

of fermionic asymmetries and hypermagnetic fields, Phys. Rev. D94 (2016) 056013, [1512.01942].

[29] A. Boyarsky, J. Frohlich and O. Ruchayskiy, Magnetohydrodynamics of Chiral Relativistic Fluids, Phys.

Rev. D92 (2015) 043004, [1504.04854].

[30] E. V. Gorbar, I. A. Shovkovy, S. Vilchinskii, I. Rudenok, A. Boyarsky and O. Ruchayskiy, Anomalous

Maxwell equations for inhomogeneous chiral plasma, Phys. Rev. D93 (2016) 105028, [1603.03442].

[31] V. B. Semikoz and D. D. Sokoloff, Large - scale magnetic field generation by alpha-effect driven by

collective neutrino - plasma interaction, Phys. Rev. Lett. 92 (2004) 131301, [astro-ph/0312567].

[32] V. B. Semikoz and D. D. Sokoloff, Magnetic helicity and cosmological magnetic field, Astron. Astrophys.

433 (2005) L53, [astro-ph/0411496].

[33] V. B. Semikoz and D. D. Sokoloff, Large-scale cosmological magnetic fields and magnetic helicity, Int. J.

Mod. Phys. D14 (2005) 1839–1854.

[34] V. B. Semikoz, D. D. Sokoloff and J. W. F. Valle, Is the baryon asymmetry of the Universe related to

galactic magnetic fields?, Phys. Rev. D80 (2009) 083510, [0905.3365].

[35] P. M. Akhmet’ev, V. B. Semikoz and D. D. Sokoloff, Flow of hypermagnetic helicity in the embryo of a

new phase in the electroweak phase transition, Pisma Zh. Eksp. Teor. Fiz. 91 (2010) 233, [1002.4969].

[36] M. Dvornikov and V. B. Semikoz, Leptogenesis via hypermagnetic fields and baryon asymmetry, JCAP

1202 (2012) 040, [1111.6876].

[37] V. B. Semikoz, D. D. Sokoloff and J. W. F. Valle, Lepton asymmetries and primordial hypermagnetic

helicity evolution, JCAP 1206 (2012) 008, [1205.3607].

[38] M. Dvornikov and V. B. Semikoz, Lepton asymmetry growth in the symmetric phase of an electroweak

plasma with hypermagnetic fields versus its washing out by sphalerons, Phys. Rev. D87 (2013) 025023,

[1212.1416].

[39] V. B. Semikoz, A. Yu. Smirnov and D. D. Sokoloff, Hypermagnetic helicity evolution in early universe:

leptogenesis and hypermagnetic diffusion, JCAP 1310 (2013) 014, [1309.4302].

[40] V. B. Semikoz and A. Yu. Smirnov, Leptogenesis in the Symmetric Phase of the Early Universe:

Baryon Asymmetry and Hypermagnetic Helicity Evolution, J. Exp. Theor. Phys. 120 (2015) 217–225,

[1503.06758].

[41] V. B. Semikoz, A. Yu. Smirnov and D. D. Sokoloff, Generation of hypermagnetic helicity and

leptogenesis in the early Universe, Phys. Rev. D93 (2016) 103003, [1604.02273].

[42] E. Sabancilar, Electromagnetic Currents from Electroweak Fermion Level Crossing, 1310.8632.

[43] T. Fujita and K. Kamada, Large-scale magnetic fields can explain the baryon asymmetry of the

Universe, Phys. Rev. D93 (2016) 083520, [1602.02109].

[44] K. Kamada and A. J. Long, Baryogenesis from decaying magnetic helicity, Phys. Rev. D94 (2016)

063501, [1606.08891].

[45] K. Kamada and A. J. Long, Evolution of the Baryon Asymmetry through the Electroweak Crossover in

the Presence of a Helical Magnetic Field, 1610.03074.

– 17 –



[46] G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys.Rev.Lett. 37 (1976) 8–11.

[47] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University Press, 2014.

[48] P. B. Arnold, G. D. Moore and L. G. Yaffe, Transport coefficients in high temperature gauge theories. 1.

Leading log results, JHEP 0011 (2000) 001, [hep-ph/0010177].

[49] G. B. Field and S. M. Carroll, Cosmological magnetic fields from primordial helicity, Phys. Rev. D62

(2000) 103008, [astro-ph/9811206].

[50] V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the Anomalous Electroweak Baryon Number

Nonconservation in the Early Universe, Phys.Lett. B155 (1985) 36.

[51] S. Y. Khlebnikov and M. Shaposhnikov, The Statistical Theory of Anomalous Fermion Number

Nonconservation, Nucl.Phys. B308 (1988) 885–912.

[52] V. A. Rubakov and M. E. Shaposhnikov, Electroweak baryon number nonconservation in the early

universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493–537, [hep-ph/9603208].

[53] G. D. Moore, C.-r. Hu and B. Muller, Chern-Simons number diffusion with hard thermal loops,

Phys.Rev. D58 (1998) 045001, [hep-ph/9710436].

[54] G. D. Moore, Computing the strong sphaleron rate, Phys.Lett. B412 (1997) 359–370, [hep-ph/9705248].

[55] Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron.

Astrophys. 594 (2016) A13, [1502.01589].

[56] R. Z. Ferreira and M. S. Sloth, Universal Constraints on Axions from Inflation, JHEP 12 (2014) 139,

[1409.5799].

[57] R. Z. Ferreira, J. Ganc, J. Norea and M. S. Sloth, On the validity of the perturbative description of

axions during inflation, JCAP 1604 (2016) 039, [1512.06116].

[58] K. Petraki, L. Pearce and A. Kusenko, Self-interacting asymmetric dark matter coupled to a light

massive dark photon, JCAP 1407 (2014) 039, [1403.1077].

[59] B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B166 (1986) 196–198.

[60] B. Batell, M. Pospelov and A. Ritz, Probing a Secluded U(1) at B-factories, Phys. Rev. D79 (2009)

115008, [0903.0363].

[61] F.-Y. Cyr-Racine and K. Sigurdson, Cosmology of atomic dark matter, Phys. Rev. D87 (2013) 103515,

[1209.5752].

[62] K. Freese, J. A. Frieman and A. V. Olinto, Natural inflation with pseudo - Nambu-Goldstone bosons,

Phys.Rev.Lett. 65 (1990) 3233–3236.

[63] D. H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys.Lett. B524

(2002) 5–14, [hep-ph/0110002].

[64] K. Enqvist and M. S. Sloth, Adiabatic CMB perturbations in pre - big bang string cosmology,

Nucl.Phys. B626 (2002) 395–409, [hep-ph/0109214].

[65] S. Dimopoulos, S. Kachru, J. McGreevy and J. G. Wacker, N-flation, JCAP 0808 (2008) 003,

[hep-th/0507205].

– 18 –



Baryogenesis from combined

Higgs – scalar field inflation

Yann Cado, Mariano Quirós

Institut de F́ısica d’Altes Energies (IFAE) and

The Barcelona Institute of Science and Technology (BIST),

Campus UAB, 08193 Bellaterra, Barcelona, Spain

Abstract

We study a modification of the Higgs inflation scenario where we introduce an extra scalar φ, with

mass m, coupled to the Ricci scalar as gφ2R, and mixed with the Higgs field h via the Lagrangian

term µφh2. Both fields participate in the inflation process in a unitary theory that predicts

values of the cosmological observables in agreement with the results from the Planck/BICEP/Keck

collaborations. In addition, by means of a CP-odd effective operator that couples φ to the Chern-

Simons term of the hypercharge gauge group as f−1

φ φYµν Ỹ
µν , maximally helical magnetic fields

are produced during the last e-folds of inflation. We found a window in the coupling fφ where

these fields survive all constraints until the electroweak phase transition, and source the baryon

asymmetry of the Universe through the Standard Model chiral anomaly. From a phenomenological

perspective, the model can solve the Standard Model instability problem at the scale QI ' 1011

GeV, provided that µ . m . QI , and for m . O(few) TeV, the φ-h mixing becomes sizable

while the theory turns natural. The latter thus predicts modifications of the trilinear and quartic

couplings that could be explored at the HE-LHC, as well as at future colliders, and allows for

direct φ production at the LHC followed by decay into hh. Present results from ATLAS and CMS

already put (mild) bounds on the mass of the heavy scalar as m & 0.55 TeV at 95% C.L.
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1 Introduction

Electroweak (EW) baryogenesis is an appealing mechanism to understand the baryon asymmetry of

the Universe (BAU) [1] (for reviews see Refs. [2–7]), which is testable at EW energies. Although the

Standard Model (SM) contains all necessary ingredients required by the three Sakharov conditions, it

quantitatively fails as the amount of CP-violation in the CKM phase is too small and moreover, given

the experimental value of the Higgs mass, the electroweak phase transition (EWPT) is not strong

enough first order, but a continuous crossover [8, 9]. This mechanism should then require beyond the

SM physics.

It was more recently realized, Refs. [10–16], that maximally helical hypermagnetic fields can be

produced at the end of (axial) inflation, and can generate the observed BAU, via the B +L anomaly,

during the EWPT. In this kind of theories, CP is spontaneously violated by the effective dimension-five

operator aY µν Ỹµν , where a is the axial field, Y µν the strength of the hypercharge gauge field Y µ, and

Ỹ µν its dual, whose generation requires an ultraviolet (UV) completion of the model. The generation

of the observed BAU was further elaborated in a number of papers, see e.g. Refs. [17–20].

In a recent paper [21], we proposed a mechanism where the helical hypermagnetic fields were

produced after inflation by the Higgs doublet field H with a CP-violating |H|2Y µν Ỹµν dimension-six

operator, thus entirely relying the nonperturbative production of gauge fields on SM physics. Of course

generating the CP-odd operator |H|2Y µν Ỹµν requires a UV completion, which can be similar to that

giving rise to the CP-even operator aY µν Ỹµν , for which CP is (spontaneously) violated for background

values of the axial field a.

Moreover there are theories, dubbed as Higgs inflation (HI) models [22–24] (for a review see [25]),

where the inflaton is identified with the SM Higgs boson, thus linking the cosmological observables

during the inflationary period of inflation with SM quantities. These models are based on assuming, in

the Jordan frame, a coupling between the Higgs doublet H and the Ricci scalar R as L = −(M2
Pl/2)R−

ξH|H|2R + · · · , where the ellipses refers to the SM Lagrangian. This model has been shown to have

a (dynamical) cutoff MPl/ξH, for values of the Higgs at the electroweak scale, i.e. h ∼ v [26–31],

while at values of the Higgs where inflation happens, i.e. h ∼ MPl/
√
ξH, the cutoff has been proven

to be ∼ MPl/
√
ξH, at least for two-by-two tree level scattering amplitudes, avoiding thus unitarity

violation [32–34]. Moreover, HI models have to face another challenge: for actual values of the

Higgs boson and top-quark masses the SM potential becomes unstable at values of the Higgs field

h ∼ QI ∼ 1011 GeV. This question has been tackled in Ref. [35], where the case of an unstable

potential was considered, taking into account radiative corrections. Because of the Higgs-Ricci coupling

the theory becomes nonrenormalizable in the Einstein frame and requires the addition of an infinite

number of counterterms. By assuming a scale invariant UV completion it is found that there are

threshold effects at scales ∼ MPl/ξH which generate jumps of the SM quartic coupling to positive

values (although one cannot determine their amplitude from the theory) and therefore HI can proceed

in the usual way. Still the potential has two minima: the EW minimum and a much deeper (unphysical)

minimum associated to the instability of the original SM potential. The evolution of the Higgs field

after inflation will depend on the reheating process, and in particular on the reheating temperature.

If the reheating temperature is high enough such that the unphysical minimum is dominated by the

thermal corrections, then the Higgs will relax to the symmetric phase, otherwise the Higgs would go

to the unphysical vacuum and it would stay there forever.

Motivated by HI, we will propose a model where the SM potential is simply stabilized by a

scalar field φ coupled to the Higgs (this coupling was already pursued in Refs. [36, 37]) and with a

mass m . QI , opening up the possibility of direct or indirect detection at present (LHC) and future
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accelerators. Moreover if the stabilizing field has a weak enough self-coupling φ4 and is coupled to

the Ricci tensor as ∼ gφ2R, it can trigger cosmological inflation, as the potential becomes flat in the

Einstein frame, while the COBE normalization does not impose strong constraints on the g coupling.

In this theory the inflaton can couple to the Chern-Simons component of the SM hypercharge and

trigger baryogenesis via the production of helical magnetic fields. Finally through the coupling of

the inflaton and the Higgs field, the latter will also be a component of the inflaton sector, although

we will work out a model where the parameters are such that cosmological inflation will be mainly

driven by the stabilizing field φ. The model thus combine HI, baryogenesis via production of helical

magnetic fields and stabilization of the SM potential by modifying the renormalization group running,

to provide a successful history of the Universe.

In the present paper we will follow the above guideline in order to build such a model of inflation,

which consists in a modification of the HI model by the introduction of a scalar field φ, with a two-

field potential V (h, φ) in which analytical relations between both fields are enforced by its shape. One

major difference with respect to a previous attempt, Ref. [37], is that φ is coupled to the Ricci scalar

as (g/2)φ2R, with φ . Λφ ≡ MPl/g
1, where Λφ is the theory cutoff, while ξH � 1, thus satisfying

the most naive unitarity requirement. Therefore, in our model the Higgs field is not the only inflaton,

but a component of the inflaton system, as inflation is really driven along a particular path in the

two-field space, while its orthogonal direction has a strong curvature around its minimum, where the

field system is anchored.

This paper is organized as follows. In Sec. 2 we introduce the potential in the Jordan frame, as

a function of the fields φ and h, which (for Planckian values of the field φ) can be approximated by

the most general renormalizable polynomial satisfying the Z2 symmetry φ → −φ. As the Ricci term

is quadratic in φ, gφ2R, the beginning of inflation will be controlled by the quartic term λφφ
4, and

the size of the amplitude of density perturbations is provided by the smallness of λφ, for values of

φ ≤ Λφ, consistent with the naive unitarity of the theory. The smallness of the coupling λφ is stable

under radiative corrections, and so is technically natural, but the Higgs potential is unstable for values

of the renormalization scale QI ' 1011 GeV. If the mass m of the φ field is m < QI , the field φ

decouples for values of Q < QI . Then, in the presence of a potential term softly breaking the Z2

symmetry, −µφ|H|2, there is a threshold correction in the one-loop β function of the Higgs quartic

coupling that can stabilize the EW vacuum. This mechanism was introduced in Ref. [37] and we will

use it to constrain our parameter space.2

1It has been proved, in Refs. [29, 31], that there is no tree-level unitarity problem for the amplitude A(φφ → φφ) as,

in the Einstein frame, see Eq. (2.30), there appears the effective operator φ2(∂µφ)2/Λ2

φ that—upon integration by parts

gives, on-shell, the correction m2φ4/Λ2

φ—leads to a four-point function that does not grow with the energy, and thus

does not violate unitarity. A similar result is obtained in the Jordan frame, where the amplitude A(φφ → φφ) grows, in

the s-channel, with the energy, and behaves as s/Λ2

φ. However, considering the cross channels, there is a cancellation,

and the four-point amplitude behaves as (s+ t+ u)/Λ2

φ ∝ m2/Λ2

φ. However, the quick conclusion that unitarity is not

violated at the scale Λφ has been challenged in Refs. [30, 31], where it was pointed out that, in the Jordan frame, the

above cancellation is very unlikely to appear in loop-induced corrections to the same process φφ → φφ, leading to a

cutoff at the value ∼ 4πΛφ, where a loop factor has been included. The observation is similar for higher order processes,

since e.g. φφ → φφ + nφ has a cross section that scales as λ2

φs
n/2−1gn/Mn

Pl
, where λφ is the φ quartic coupling. This

indicates that the perturbative description breaks down for energies
√
s & λ

−2/n
φ Λφ, which goes to Λφ for large values

of n. Similarly, in the Einstein frame, on top of the nonproblematic effective operator φ2(∂µφ)2, other higher order

operators, as e.g. φ2(∂µφ)4, are expected to be generated by loop effects, and so are expected to trigger violations of

unitarity beyond the scale Λφ. In view of these arguments we will conservatively consider in this paper Λφ as the scale

at which unitarity is violated.
2Should we have, instead, considered a linear Ricci term, gφR, and a quadratic, m2φ2, inflationary potential, one

could also have achieved the amount of flatness required by the slow roll conditions during the inflationary period, but
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The properties of the inflationary model are presented in Sec. 3. There, we will prove that all

observational constraints from the Planck and BICEP/Keck collaborations on the slow roll parameters,

or equivalently on the spectral index, the spectral index running and the tensor-to-scalar ratio, can be

satisfied for a range of the parameter g such that g � 1, thus easily satisfying the unitarity condition

for the model.

The nonperturbative production of gauge fields at the end of inflation is presented in Sec. 4. In

particular we will consider the CP-violating dimension-five operator 1/(4fφ)φYµν Ỹ
µν , provided by

some UV completion, to trigger baryogenesis at the EWPT. We postpone to App. A the details of

a particularly simple UV completion giving rise to such an operator. Similar UV completions were

proposed in Ref. [38], and recently in Refs. [39, 40], to generate the BAU using various mechanisms,

so we can be agnostic about its origin. We have found a critical value of the parameter fφ, such

that for fφ & f cφ the backreaction of the produced gauge fields on the inflationary dynamics can be

neglected, and so we have explicitly considered this region in the numerical analysis. Moreover, in

the presence of magnetic fields, as those produced in this work, there appear fermionic currents, a

phenomenon called the Schwinger effect, and, for sufficiently strong magnetic fields, their backreaction

on the gauge fields cannot be neglected. As exactly solving the equations of motion of gauge fields, in

the presence of the Schwinger fermionic currents, is beyond the scope of the present paper, we have

followed recent proposals in the literature for gauge field estimates [20, 41], and have worked out two

simple approximations: the maximal estimate, obtained upon maximizing the value of the helicity, and

the equilibrium estimate. A detailed recent analysis [42] shows that the exact solutions lie in between

both estimates, so we can reliably corner the final allowed region in the relevant parameter space.

The reheating mechanism has been studied in Sec. 5, and we have consistently considered the

region fφ > f cφ, where the reheating takes place perturbatively by the leaading inflaton decay process

Γ(φ → hh). The inflaton width, as well as the reheating temperature Trh, are then functions of the

inflaton mass parameter m. In order to stabilize the EW vacuum, the latter must lie in the interval

m ∈ [1 TeV,QI ] which implies, for reheating temperatures, the interval Trh/T
ins
rh ∈ [10−2 , 10−6], where

T ins
rh ' 2 · 1015 GeV would be the instant reheating temperature, i.e. the reheating temperature in the

hypothetical case where Γ(φ→ hh) equals the Hubble parameter at the end of inflation.

We show in Sec. 6 how the baryon asymmetry is generated when helicity transforms into baryon

number at the EW crossover. In particular we show that this mechanism works for fφ > f cφ, and

provides an upper bound on fφ which depends on the value of the reheating temperature.

In Sec. 7 we consider all relevant conditions for the helical magnetic fields to survive from the end

of inflation, when they are generated, to the EWPT, when they convert into the baryon asymmetry.

In particular we have considered the constraints from magnetohydrodynamics (MHD) and Reynolds

numbers, from chiral plasma instability, from the non-Gaussianity of the inflaton primordial fluctu-

ations and from the baryon isocurvature perturbations. Some technical details about the latter are

postponed to App. B. Globally they constrain the region where the baryogenesis mechanism works,

leaving an allowed range for the values of the parameter fφ, which depends on the ratio Trh/T
ins
rh .

Readers not interested in the technical details of the analysis can straightforwardly go to Sec. 7.5, and

in particular to Fig. 9, which summarizes the combined results.

In Sec. 8 some phenomenological considerations, from the point of view of particle physics, are

presented. First of all we study the naturalness problem generated by the mass hierarchy m � mh,

where mh is the Higgs mass, which leads either to a fine-tuning or considering m = O(TeV). The

the size of the amplitude of density perturbations, now controlled by m, would have yielded a value m > QI , which is

too large to stabilize the EW vacuum.
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latter case is phenomenologically appealing as the Z2-breaking term in the potential generates a

mixing between the singlet φ and the Higgs field h. This mixing, which is negligible in the case of very

large values of the parameter m, can be sizable, and with relevant phenomenological applications, for

the case of m = O(TeV) and, furthermore, is already bounded by the present LHC measurements of

Higgs signal strengths. As the mixing angle is inversely proportional to m, the latter already provide

mild lower bounds on m, as m & 0.4 TeV, a region where electroweak observables are shown to be in

agreement with their experimental values. Moreover, the mixing introduces modifications on the SM

parameters λ3 and λ4, which could lead to constraints at the HE-LHC at
√
s = 27 TeV, or even in

future colliders with center of mass energies of 100 TeV. Finally the singlet state can be produced at

LHC by means of its mixing with the Higgs field. Present upper bounds, from the ATLAS and CMS

collaborations, on the production cross section lead to upper bounds on the mixing parameter and,

consequently, to lower bounds on m as m & 0.7 TeV at 95% C.L., while future runs are expected to

provide stronger bounds on it.

Finally we summarize the results and present our conclusions in Sec. 9.

2 The model

As stated in the previous section we consider, on top of the Higgs field h, the scalar field φ with the

Lagrangian LJ as 3

LJ = −M
2
Pl

2
R− g

2
φ2R+

1

2
(∂µh)2 +

1

2
(∂µφ)2 − U(φ, h), (2.1)

which contains a coupling of the field φ to the Ricci scalar 4, and the potential is given by

U(φ, h) = USM(h) +
1

2
m2φ2 +

1

2
λφhφ

2h2 +
1

4
λφφ

4 − 1

2
µφh2

USM(h) = − 1

2
µ2
hh

2 +
1

4
λ0h

4.

(2.2)

The first four terms of the potential U(φ, h) in Eq. (2.2) constitute the most general renormalizable

potential invariant under the Z2 symmetry, φ → −φ, while the last term is a soft breaking of such

symmetry. Besides, for large Higgs field configurations we will be neglecting the mass term µ2
h, as

compared to the λ0 term, in USM(h).

The parameters λφh and λφ should be constrained by the slow roll conditions during inflation to

very small values λφh, λφ � 1, as we will see later on. Their smallness is radiatively stable, as can

easily be deduced from their one-loop β functions 5

βλφh
=

λφh
16π2

[
12λ0 + 8λφh + 6λφ −

(
9

2
g22 +

9

10
g21 − 6y2t

)]
θ(t− t0), (2.3a)

βλφ
=

1

16π2
(8λ2φh + 18λ2φ)θ(t− t0), (2.3b)

where t − t0 = log(Q/m), and Q is the renormalization scale. In particular the choice λφh = 0 is

technically natural at one loop, as can be seen from Eq. (2.3a). For simplicity we will adopt hereafter

the value λφh = 0. Moreover, from the amplitude of density perturbations, we will see that typically

λφ ' 10−12, a value that is very mildly changed by radiative corrections.

3In our notation the Lagrangian L will not contain the factor
√−g, so that the action S is given by S =

∫

d4x
√−gL.

4Notice that in our model we do not need to primarily introduce any ξH|H|2R term. Although a small value of the

parameter ξH will be generated anyway by radiative corrections [43], its effects on the inflation mechanism will always

be negligible, even for values of ξH ' O(1); so for simplicity we are assuming that ξH = 0.
5We are defining conventionally here βX ≡ dX/dt.
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2.1 Jordan frame

The previous Lagrangian is defined in the so-called Jordan frame, and it is a valid framework provided

that the field φ satisfies the condition φ � MPl/
√
g. This region, as we will see, encompasses part

of the inflationary period, and in particular the end of inflation. The trajectory of fields φ and h

will proceed along the submanifold given by the minimum of the two-dimensional potential surface,

providing a relationship between both fields, as anticipated in the introduction of this paper.

To find the relationship between both fields φ and h, along the potential minimum direction, we

will follow a general procedure summarized here. Given a potential V (x, y) of two fields x and y, the

contour lines corresponding to constant values of the function V (x, y) = constant, satisfy the relation

dV = 0, which reads

∂V

∂x
dx+

∂V

∂y
dy = 0 ⇒ F (x, y) ≡ dy

dx
= −∂V/∂x

∂V/∂y
, (2.4)

where, by definition, the function F [x, y] is the slope along the contour lines at the point (x, y). We

wish to find the direction y = f(x) that intersects orthogonally every contour line. The slope of

this line is obviously f ′(x) and the slope of the orthogonal line is −1/f ′(x), so the condition for the

orthogonal intersection is

F (x, f(x)) = −1/f ′(x). (2.5)

The idea behind the regions is to divide the potential valley into segments such that φ = ahn.

The regions are separated according to which term dominates in the potential. Hence, we will find it

useful to work with logarithmic variables

y = log φ, x = log h, (2.6)

where the φ and h fields are considered in some arbitrary mass units, such that the relation between

fields translate into straight lines y = nx + log a. Given the shape of our potential we find a unique

solution to (2.5) in each region.

The direction φ = f(h) that intersects orthogonally every contour line in the plane (h, φ) is given

by the solution to the equation
∂V/∂h

∂V/∂φ
· h
φ

∣∣∣∣
φ=f(h)

=
1

f ′(h)
(2.7)

where Eqs. (2.4) and (2.5) have been used.

Therefore, the trajectory in the (φ, h) plane is given by relation (2.7), which changes according to

the different regions of the potential that we will now introduce. This is validated by the plot of the

total potential exhibited in Fig. 1. In all cases, the valley acts as an attractor for the fields, as shown

in Ref. [37].

Region A

In this region both fields take their maximum allowed values in the Jordan Frame, and the potential

can be approximated by the quartic coupling terms

UA ' 1

4
λ0h

4 +
1

4
λφφ

4 . (2.8)

The direction along the minimum can be found, after applying Eq. (2.7) to the potential (2.8), with

the function f(h) = (λ0/λφ)−1/4h, i.e.

h =

(
λφ
λ0

) 1
4

φ . (2.9)
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We plot in Fig. 1 the complete inflationary potential in the Einstein frame (see Sec. 2.3) and show the

direction from Eq. (2.9) with a solid (green) line as specified in the figure caption.

Figure 1: Left panel: Contour plot of the potential V (φ, h) in units where MPl = 1 with Regions Θ, A and B

and the corresponding minimum submanifolds. Right panel: 3D plot of the potential with the same color code.

We use the following numerical values: g = 0.01, m = 1010 GeV, λ0 = 0.23, δλ = 0.15, λφ = 10−12.

Its region of validity is then given by

MPl√
g

& φ &
2
√

2m√
λφ

(
δλ
λ0

) 1
2

, h &
2
√

2m

(λφλ0)
1
4

(
δλ
λ0

) 1
2

, (2.10)

where we have defined the constant δλ as

δλ ≡ µ2

2m2
. (2.11)

Along the minimum direction (2.9) the potential can be written, as a function of φ, as

UA(φ) ' 1

2
λφφ

4 , (2.12)

which will be used in the next section to describe the end of inflation.

To make contact with HI results, in this region we can also use the Higgs field as the explicit

variable using the relation between the fields h and φ given by Eq. (2.9). This implies that the Ricci

term in Eq. (2.1) can be equivalently written as −ξA/2 h2R, with ξA = g
√
λ0/λφ. For typical values

of the parameters (e.g. g ' 0.01, λ0 ' 0.2, λφ ' 10−12, see Secs. 2.2 and 3), we get ξA ≈ 4 · 104, which

is the value required by HI. Moreover the potential (2.12) can be written, using again (2.9) as

UA(h) ' 1

2
λ0h

4 . (2.13)

This result shows how, in region A, the results of HI could be interpreted in our model with g � 1,

being perfectly consistent with the unitarity condition φ . Λφ.
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Region B

In this region, where

φ .
2
√

2m√
λφ

(
δλ
λ0

) 1
2

, m . h .
2
√

2m

(λφλ0)
1
4

(
δλ
λ0

) 1
2

(2.14)

the potential can be approximated by

UB ' −1

2
µφh2 +

1

2
m2φ2 +

1

4
λ0h

4, (2.15)

which, using Eq. (2.7), has its minimum along the direction

φ = f(h) ≡
(
− 3µ

4m2
+

√
9µ2

16m4
+

2λ0
m2

)
h2 . (2.16)

Direction (2.16) is shown in the potential plot, Fig. 1, with a solid (magenta) line. If we define the

coupling λ as

λ ≡ λ0 − δλ , (2.17)

in the limit λ� 1 we can write the minimum condition as

φ '
√
δλ
2

h2

m
[1 + O(λ)] (2.18)

and the potential (2.15) becomes

UB ' 1

4
λh4 + O(λ2), (2.19)

which shows that the effective quartic coupling in this region is given by λ, instead of λ0 as in the

original potential (2.2).

Region C

In this region v < Q ≡ h < m, where v is the Higgs vacuum expectation value (VEV) and Q, the

renormalization scale, is here identified with the classical value of the Higgs field h. The field φ hence

decouples and is integrated out as

φ =
µ

2m2
h2 + O(h6) '

√
δλ
2

h2

m
, (2.20)

which yields a potential

UC ' 1

4
λh4 + O(h8). (2.21)

Notice that, to leading order, the solution to the equation of motion of φ, Eq. (2.20), agrees with the

minimum condition in Region B, Eq. (2.18), which guarantees the continuity between both regions.

Moreover the stability of the potential in both Regions B and C is provided by the same condition,

λ > 0.
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2.2 Stability of the potential

In Region C, h < m, the inflaton field φ is integrated out and the potential, as a function of the Higgs

h, is given by Eq. (2.21), so that the parameter λ runs as the quartic coupling in the SM potential,

according to the SM β function, βSM
λ . In Regions B and A, h > m, the inflaton φ propagates and thus

there is an extra contribution to the running of the parameter λ as [37]

βλ = βSM
λ +

1

2π2
δλ(3λ+ δλ) θ(t− t0), (2.22)

where θ(x) is the Heaviside function, equal to 1 (0) for x ≥ 0 (x < 0), and t − t0 = log(h/m). The

parameter δλ also runs with the renormalization scale as

βδλ =
1

2π2
δλ(3λ+ 2δλ) θ(t− t0). (2.23)

The extra contribution to the running of λ in Eq. (2.22) can solve the Higgs vacuum instability

problem provided that:

• The inflaton mass m is smaller than the SM instability scale, QI ∼ 1011 GeV.

• The value of δλ at the scale Q = m, δλ(m), is large enough in order to significantly change the

value of βSM
λ .

Of course, smaller values of m (i.e. wider regions where φ propagates) allow smaller values of δλ(m)

to satisfy the second criterion. Conversely, for values of m close to QI the minimum value of δλ(m)

that solves the instability is a largish one.

As we have seen, the condition for the stability of the potential is that the coupling λ defined in

Eq. (2.17) is positive definite, λ ≥ 0. We have solved at two-loop the RGE’s of the theory for the

following set of values of the input parameters [44] at the pole top mass Mt = 172.76 GeV,

gY (Mt) = 0.358545, g2(Mt) = 0.64765, g3(Mt) = 1.1618,

λ(Mt) = 0.12607, ht(Mt) = 0.9312.
(2.24)

In Fig. 2 we show the two-loop running of the parameters λ and λ0 for two extreme cases, with a

light (m = 1 TeV, upper panels) and a heavy (m = 1010 GeV, lower panels) inflaton. As we can see

typical values of δλ are smaller for smaller values of m. We have chosen δλ = 0.05 for m = 1 TeV,

and δλ = 0.15 for m = 1010 GeV. In both cases the value of δλ(m) can be tuned to smaller values,

such that the corresponding values of λ at high scales are smaller. On the other hand, larger values

of δλ are bound by imposing that the theory remains in the perturbative regime up to the high scale.

In particular we find, for large values of m, m ' QI , δλ(m) . 0.35, while for m in the TeV region,

δλ(m) . 0.2. The dashed lines in the left panels are the SM running, shown for comparison. On both

left panels, we can see that the condition 0 < λ� 1 is satisfied while δλ � λ at Q ∼MPl.

2.3 Einstein frame

For values of the φ field such that φ > MPl/
√
g we must redefine the metric and go to the so-called

Einstein frame to recover the Einstein-Hilbert action for the Ricci scalar. To do so, we perform a Weyl

redefinition of the metric:

gµν → Θ gµν ,
√−g → Θ2√−g. (2.25)
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Figure 2: In blue, two-loop running of λ (left panels) and λ0 (right panels) for two cases. Top panels: with

m = 1 TeV, δλ(m) = 0.05. Bottom panels: with m = 1010 GeV, δλ(m) = 0.15. The green dashed line is the

SM running. In both cases one has λ0 ' δλ for Q ∼ MPl.

For the Ricci scalar this implies

R→ R

Θ
− R̄, R̄ =

6

Θ3/2

∂µ

(
gµν

√−g ∂ν
√

Θ
)

√−g . (2.26)

Note that R is absent in the correction term R̄, hence we will define Θ by demanding that the explicit

coupling between φ and R disappears from the Lagrangian in the Einstein frame. The Ricci part of

the action transforms then as

SR → SER = −
∫
d4x

√−g
(
M2

Pl

2
+
gφ2

2

)(
RΘ − R̄Θ2

)
(2.27)

and so the definition

Θ(φ) =

(
1 +

gφ2

M2
Pl

)−1

(2.28)

leads to

SER =

∫
d4x

√−g
[
−M

2
Pl

2
R+ 3Θ2 g

2φ2

M2
Pl

∂µφ∂
µφ

]
. (2.29)

We can see from the second (dimension-six effective operator) term in Eq. (2.29) that the cutoff of the

theory Λφ is identified as Λφ ≡MPl/g (see however comments in footnote 1).
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In the meantime the kinetic terms of φ and h get transformed to Θ
2 (∂µφ∂

µφ + ∂µh∂
µh) so that

the (noncanonical) kinetic terms are given by

LEkin =
Θ

2

(
1 +

6g2φ2

M2
Pl

Θ

)
∂µφ∂

µφ+
Θ

2
∂µh∂

µh (2.30)

leading to the action in the Einstein frame

SE =

∫
d4x

√−g
(
−M

2
Pl

2
R+ LE

kin − V (Θ, h)

)
, (2.31)

where the Einstein frame potential V (φ, h) is given by

V (φ, h) = Θ2(φ)U(φ, h), (2.32)

and U(φ, h) is given by Eq. (2.2). The potential region where the values of the field φ satisfy the

condition φ > MPl/
√
g is denoted as Region Θ and is explored hereafter.

Region Θ

As just stated, the Region Θ is characterized by the potential V (φ, h) in the Einstein frame, i.e. Eq. (2.32)

for gφ2 > M2
Pl, and a straightforward application of Eq. (2.5) shows that, using Eq. (2.7), the direction

along the minimum in the two-dimensional potential is given by

h2 = MPl

(
λφ

3gλ0

) 1
2

φ, (2.33)

from where the function f(h) in Eq. (2.7) can easily be read out. Along this direction the potential is

VΘ(φ) = Θ2(φ)
λφ
4
φ2
(
M2

Pl

3g
+ φ2

)
' Θ2(φ)

λφ
4
φ4, (2.34)

where again the last equality comes from the very definition of the Θ region. Notice that the values

of the field φ at the beginning of inflation, and in particular its value φ∗ at horizon crossing of the

present Universe, belong to Region Θ.

In Fig. 1 we plot the potential in the Einstein frame V (φ, h) for a chosen set of the parameters

values, and we superimpose the lines of minimum submanifolds given by Eqs. (2.33), (2.10) and (2.16),

for Regions Θ, A and B, respectively. As we can see they intersect orthogonally, by construction, the

contour lines of the potential. In the left panel we plot the contour lines of the potential and in the

right panel the three-dimensional plot with the same color codes.

We can try to make contact with HI in Region Θ, as we did in Region A, using the Higgs field h

as the explicit variable, by means of the relation between the fields φ and h given in Eq. (2.33), which

we can write as

gφ2 = ξΘ
h4

M2
Pl

, with ξΘ ≡ 3g2λ0
λφ

. (2.35)

The Ricci coupling can then be written as −ξΘh4R/M2
Pl, where ξΘ ' 3 ·107 by using the typical values

of the parameters, g ' 0.01, λ0 ' 0.2, λφ ' 10−12 (see Secs. 2.2 and 3). Similarly, we can also write

the potential as

VΘ(h) '
(

1 + ξΘ
h4

M4
Pl

)−2
λφ
4g2

ξ2Θ
h8

M4
Pl

. (2.36)

These two expressions show that our model, written in terms of the Higgs field, departs from the

conventional HI as it requires an effective dimension-eight operator for the potential which could only

appear when the Standard Model is completed by some UV theory, giving rise, after decoupling, to

higher dimensional operators.
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3 Inflation

Inflation takes place only in Regions Θ (for
√
gφ > MPl), and A (for

√
gφ < MPl), thus we will choose

conditions (2.33) and (2.9), respectively, to relate h and φ. In this case the kinetic term (2.30) along

the minimum direction can be written in both Regions Θ and A, as

LR
kin =

Θ

2

[
1 + 6

g2φ2

M2
Pl

Θ + ∆R

]
∂µφ∂

µφ, (R = Θ,A) (3.1)

where ∆R corresponds to the (tiny) contribution of the Higgs kinetic term

∆A =

(
λφ
λ0

) 1
2

, ∆Θ =
MPl

4φ

(
λφ

3gλ0

) 1
2

<

(
λφ

48λ0

) 1
2

(3.2)

and the last inequality comes from the condition
√
gφ > MPl. Putting numbers we obtain that

∆A ∼ 10−6 and ∆Θ . 10−7, so that ∆R can be safely neglected for numerical calculations in Eq. (3.1).

As for the potential in both inflationary regions, Θ and A, using the previous results we can write

it as

VR(φ) ' cR V (φ), V (φ) = Θ2(φ)
1

4
λφ φ

4 , cA = 2, cΘ = 1 , (3.3)

so that, in both regions, they only differ by a global factor. As the slow roll parameters do depend

on ratios of the potential and its derivatives, they will not depend on the global factor cR and can

thus be given a universal expression. So for the computation of the slow roll parameters we will just

remove the global factor cR and use V (φ) as the inflationary potential.

We can now define the inflaton χ as a field with canonical kinetic term as

Lkin =
1

2
∂µχ∂

µχ, (3.4)

where the change of variable φ→ χ is done by

dχ

dφ
'
[
Θ(φ)

(
1 +

6g2φ2

M2
Pl

Θ(φ)

)] 1
2

≡ f(φ), (3.5)

the last equality simply being the definition of the function f(φ) for later use. Solving the above

differential equation gives the approximation

χ 'MPl

√
1 + 6g

g
arcsinh

√
g(1 + 6g)

φ

MPl
, (3.6)

which, for
√
gφ &MPl, can be inverted to get

φ ' MPl

2
√
g(1 + 6g)

exp

(√
g

1 + 6g

χ

MPl

)
, (3.7)

while φ ' χ, for
√
gφ .MPl, as in this limit the Jordan and Einstein frames should coincide.

However, although the slow roll parameters must be computed from the inflaton potential V (χ),

we will not need to use this explicit solution to obtain the inflationary parameters. Instead, we can

keep φ as the explicit variable, since performing the change of variables (3.5) in the slow roll parameters

definition allows us to avoid making inevitable approximations stemming from the relationship between
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the fields φ and χ. Hence, we can keep the description of the model in terms of the φ field and the

potential V (φ) given in Eq. (3.3).6 In this framework the slow roll parameters can be written as [45]

ε(φ) =
M2

Pl

2

(
V ′(χ)

V (χ)

)2

=
M2

Pl

2

(
V ′(φ)

V (φ)

)2

f−2(φ), (3.8a)

η(φ) = M2
Pl

V ′′(χ)

V (χ)
= M2

Pl

[
V ′′(φ)

V (φ)
f−2(φ) − V ′(φ)

V (φ)
f ′(φ)f−3(φ)

]
, (3.8b)

ξ2(φ) = M4
Pl

V ′(χ)V ′′′(χ)

V 2(χ)
= M4

Pl

V ′(φ)

V (φ)
f−4(φ) (3.8c)

·
[
V ′′′(φ)

V (φ)
− 3

V ′′(φ)

V (φ)
f ′(φ)f−1(φ) +

V ′(φ)

V (φ)

(
3f ′ 2(φ)f−2(φ) − f ′′(φ)f−1(φ)

)]
,

where the function f(φ) was defined in (3.5). Their current observational bounds are, from Ref. [46]:

ε < 0.0044 (95%C.L.),

η = −0.015 ± 0.006 (68%C.L.),

ξ2 = 0.0029+0.0073
−0.0069 (95%C.L.).

(3.9)

We should evaluate the slow-roll parameters at the field value φ∗ = φ(N∗) with

N∗ =
1

M2
Pl

∫ χ∗

χE

V (χ)

V ′(χ)
dχ =

1

M2
Pl

∫ φ∗

φE

V (φ)

V ′(φ)
f2(φ) dφ, (3.10)

being N∗ the number of e-folds at which the reference scale exits the horizon. Here φE , the value of

φ at the end of inflation, is defined by the condition ε(φE) = 1 and can be computed analytically. A

plot of its dependence on g is shown on the left panel of Fig. 3. One can evaluate the integral (3.10)

to find

N∗ =
1

4

[
(1 + 6g)(φ2∗ − φ2E)

2M2
Pl

− 3 log
M2

Pl + gφ2∗
M2

Pl + gφ2E

]
(3.11)

and then solve for φ∗ ≡ φ(N∗).7 A plot of φ∗, for N∗ = 60, and its dependence on g is shown in the

left panel of Fig. 3. The dark shading region is excluded as there φ∗ > Λφ ≡MPl/g and so there is a

unitarity violation (see however footnote 1). This constraint provides an upper bound on the value of

the parameter g as g . 0.0508.8

We display, in the right panel of Fig. 3, the functions ε(φ∗) and η(φ∗) as functions of g. The

observational constraints (3.9) provide a lower bound on the Ricci coupling as g & 0.0096. When

combined with the upper bound from unitarity, the allowed region in the g parameter is given in the

6From here on we will use primes to denote derivatives of a function with respect to its functional dependence,

e.g., V ′(χ) = dV (χ)/dχ and V ′(φ) = dV (φ)/dφ.
7We can solve Eq. (3.11) for φ(N∗) recursively, first ignoring the logarithm for the first iteration and then inserting

each solution into the next iteration (which this time contains all terms). The sequence converges quickly to the exact

solution. After 3–4 iterations the relative error is already ∼ 10−3 at most.
8For g < 1 the cutoff Λφ is trans-Planckian, and from Fig. 3 we can see that during inflation ∆φ ' 20MPl, which

satisfies the so-called Lyth bound [47]. Such behavior induces nonnegligible quantum gravity corrections to the potential.

However, the terms induced by quantum gravity effects are suppressed, not by factors φn/Mn
Pl
, but by factors V/M4

Pl

and m2/M2

Pl
, see Sec. 2.4 of Ref. [48]. Hence, as long as the inflationary potential takes sub-Planckian values and

m � MPl (like in our model), quantum gravity effects are insignificant, regardless of the values of g or Λφ.
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Figure 3: Left panel: φE, φ∗ and χ∗ in unit of MPl, as functions of g. The dark shading region violates the

unitarity bound φ < MPl/g. The white area corresponds to Region A and the light shading one to Region Θ.

Right panel: slow roll parameters evaluated at the beginning of inflation and their corresponding observational

bounds (dashed, matching color). The bound for ε(φ∗) is an upper bound.

range 9

0.0096 . g . 0.0508. (3.12)

Finally we have found that, in the relevant region of the g parameter, the parameter ξ2 is |ξ2| ∼ 10−4,

well in agreement with the experimental range in Eq. (3.9).

For the allowed region of the slow roll parameters in Fig. 3, the cosmological observables, the scalar

spectral index ns ' 1 − 6ε(φ∗) + 2η(φ∗), the spectral index running n′
s ' 16ε(φ∗)η(φ∗) − 24ε2(φ∗) −

2ξ2(φ∗), and the tensor to scalar ratio r = 16 ε(φ∗), fall inside the experimental range given by [46, 50],

ns = 0.9649 ± 0.0042, n′s = −0.0045 ± 0.0067, r = 0.014+0.010
−0.011 (3.13)

where we have included, in the last r determination, the most recent combined result from the BI-

CEP/Keck collaboration [50]. In particular, for the allowed range in the coupling g (3.12) the theory

predicts

0.96448 . ns . 0.96695 (0.96783) (3.14a)

−0.00063 . n′
s . −0.00019 (−0.00005) (3.14b)

0.0467 & r & 0.0124 (0.00296) (3.14c)

where the unbracketed right-hand side (RHS) bounds come from the unitarity bound, while the brack-

eted ones come from disregarding the latter in view of the comments in footnote 1 10. As we can see

both predicted ranges (with/without considering the unitarity bound) in (3.14) nicely fit inside the

allowed range in Eq. (3.13). These results also agree with those of model (n, p) = (2, 4) in the recent

work of Ref. [51], where general inflationary models with nonminimal inflaton couplings to gravity

have been analyzed.

9One should worry about the stability, under radiative corrections, of such small values of the g parameter. Con-

tributions to the one-loop βξH function, in the Ricci coupling (ξH/2)h2R, from the contribution of the SM fields (top

quark, gauge and Higgs bosons), have been computed in Refs. [43, 49] where it is shown that the renormalization from

the weak to the high scale of ξH is . 20%. In the case of our coupling (g/2)φ2R, as φ is not directly coupled to the SM

fields, the g running between m and the high scales is suppressed by the mixing angle α between the fields φ and h (see

Sec. 8), so that βg ' 2δλ(v
2/m2)βξH � βξH . In this way the running of the g parameter can be safely neglected.

10If we disregard the unitarity bound, see the comments in footnote 1, there is no upper bound on g from observational

constraints and the cosmological observables for larger values of g asymptotically go to the RHS values in parenthesis.
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Figure 4: Left panel: The inflaton self-coupling λφ as a function of g. Right panel: The Hubble parameter

H at the end of inflation H(φE) and for the number of e-folds N∗, H(φ∗) as functions of g. In both plots the

vertical red lines show the range for g where the slow roll cosmological observables and unitarity constraints

are met.

We now use the constraint on the amplitude of scalar fluctuations to find an analytical relation

for the inflaton self-coupling λφ, since this quantity is obtained from the potential as

As =
1

24π2M4
Pl

VΘ(φ∗)

ε(φ∗)
, (3.15)

where we are using as inflaton potential VΘ, as the φ∗ line in the left panel of Fig. 3 is inside the light

shading region, where the inflaton potential corresponds to that in Region Θ, Eq. (3.3). We can then

compute λφ as

λφ = 96π2 g2As ε(φ∗)

(
1 +

M2
Pl

gφ2∗

)2

. (3.16)

Using the observed value of As from Ref. [46], Aobs
s = 2.2 · 10−9, as well as the values of ε(φ∗) and φ∗

from Fig. 3, we plot, in the left panel of Fig. 4 the parameter λφ as a function of the Ricci coupling

g. Notice that, inside the allowed region in Eq. (3.12), we obtain λφ ∼ 10−12 as postulated earlier.

Finally we can compute the Hubble parameter during inflation H(φ). From the Friedmann equa-

tion we have that the energy density of the inflaton reads as ρ(φ) = 3M2
PlH

2(φ). Since we are assuming

a slow roll evolution of the inflaton, we can neglect the kinetic part in the energy density and consider

ρ(φ) ' VR(φ). Therefore in Region A, i.e. around the end of inflation and, in particular, at φE ,

HE ≡ H(φE),

H(φ) =
MPl

g

√
λφ
6

(
1 +

M2
Pl

gφ2

)−1

. (3.17)

For the value φ = φ∗, in Region Θ, this further simplifies to

H∗ ≡ H(φ∗) = 23/2πMPl

√
ε(φ∗)Aobs

s . (3.18)

We plot in the right panel of Fig. 4 the Hubble parameters at the end of inflation, i.e. for φ = φE ,

HE , and at the beginning of inflation, for a number of e-folds N∗ = 60, H∗. As we can see from the

right panel of Fig. 4, for the lower bound of g, g ' 0.01, the Hubble parameter changes, between φE and

φ∗, by one order of magnitude, from H∗ ' 5.5 · 1013 GeV, to HE ' 6.4 · 1012 GeV. On the other hand,

for the upper bound of g, g ' 0.05, the Hubble parameter changes by a few, from H∗ ' 2.8 · 1013 GeV
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to HE ' 1013 GeV. As we can see the absolute upper bound on the Hubble parameter in our model is

H∗ . 5.5 · 1013 GeV, or equivalently an inflation scale V
1/4
Θ (φ∗) . 1.5 · 1016 GeV, in agreement with

the observational upper bounds from the Planck collaboration, Ref. [46], given by

Hobs
∗ < 6 · 1013 GeV, (V obs

∗ )1/4 < 1.6 · 1016 GeV (95% C.L.). (3.19)

Consequently our model, independently of the value of m, is a high scale inflation model, where the

Hubble parameter does depend on the value of g and is maximized for its lower bound.

4 Gauge field production

In this section we will consider the generation of fully helical hypermagnetic fields that will be trans-

formed into baryon asymmetry at the EWPT. Of course all modes produced during inflation, except

the last modes that exit the horizon at the end of inflation reentering the horizon at the onset of

reheating, get diluted [14]. For that reason we will be concerned by the last e-folds of inflation,

corresponding to the inflaton value φ ' φE , well inside Region A with a potential given by Eq. (3.3).

We need a source of CP-violation and we will assume the CP-odd dimension-five operator given

by
√−gL��CP = −1

4

φ

f̃φ
Yµν Ỹ

µν , (4.1)

where Y µν is the field strength of the hypercharge gauge field Y µ, and Ỹ µν = 1
2ε
µνρσYρσ its dual

tensor. This Lagrangian term is scale invariant (it does not change when going from the Jordan to

the Einstein frame), and should appear in the effective theory after integrating out some UV physics,

heavier than the inflaton field. A possible and simple UV completion, with a heavy vectorlike fermion

coupled to the field φ by a CP-violating Yukawa coupling, and giving rise to Eq. (4.1) is presented in

App. A. However, in the rest of this paper, we will be agnostic about the origin of such a term as it

may arise from a great variety of models.

In addition to this, by virtue of the minimum condition in Region A, Eq. (2.9), the Higgs back-

ground value is nonzero (it is anchored to the value of the field φ), and so the electroweak symmetry

is broken, meaning we are producing ordinary U(1)EM magnetic fields, as the Z fields are very mas-

sive for those values of the background field h, and hence much harder to produce. In this way the

CP-violating term in the broken phase, at the end of inflation, will look like

√−gL��CP = −1

4

φ

fφ
Fµν F̃

µν , (4.2)

where Fµν is the electromagnetic field strength, corresponding to the photon field Aµ, and we have

rescaled the constant fφ as

fφ =
f̃φ

cos2 θW
, (4.3)

where θW is the EW angle.

At reheating, h will drop at its potential minimum at zero, because of the sudden dominance of the

thermal correction terms, and we will recover the symmetric phase. This is a necessary requirement

for a successful baryogenesis as the helical fields participating in the chiral anomaly must belong to

the unbroken electroweak sector. This is because, in the symmetric phase of the electroweak plasma,

the chiral anomaly induces the phenomenon where variations in baryon, NB , and lepton, NL, number
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can be induced by changes in the SU(2)L Chern-Simons number Ncs and/or U(1)Y hypermagnetic

helicity HY as

∆NB = ∆NL = Ng

(
∆Ncs −

g2Y
16π2

∆HY

)
, (4.4)

where Ng = 3 is the number of fermion generations and gY the U(1)Y coupling. This equation

tells us that any change in the U(1)Y helicity leads to a fermion asymmetry, in particular when

projecting ordinary magnetic fields into hypermagnetic fields at the end of inflation. However, as long

as T & 160 GeV, the electroweak sphalerons are in equilibrium in the plasma, hence any fermion

asymmetry gets washed out in less than a Hubble time, and only the U(1)Y helical fields remain.

As the U(1)Y helical magnetic fields participate in the baryogenesis process [18], while U(1)EM

helical magnetic fields are produced at the end of inflation, the projection of the latter on the former

must be taken into account with a factor 11

AY = cos θW A, HY = cos2 θW H . (4.5)

The Z fields can also project onto U(1)Y fields but, as stated before, we will ignore this contribution

as they were too heavy to be produced.

Moreover after inflation, in Region B, the Higgs will start relaxing to its minimum and, if some

conditions are satisfied, the Higgs could source extra helical magnetic fields, as was studied in Ref. [21],

and eventually overproduce the BAU from the induced coupling

√−gL��CP = −1

4

√
2δλ

|H|2
mfφ

cos2 θWYµν Ỹ
µν ≡ −1

4

|H|2
Λ2
H

Yµν Ỹ
µν , (4.6a)

ΛH ' 8.7 · 1013 GeV
( m

1010 GeV

) 1
2

(
δλ

0.15

)− 1
4
(

fφ
0.1MPl

) 1
2

, (4.6b)

where we have used the minimum condition in Eq. (2.18). Nevertheless the required relaxation mecha-

nism found in Ref. [21] should not work under the present conditions, because one necessary condition

for the Higgs relaxing into the hypermagnetic fields is not fulfilled here, namely that h & 3 · 1015 GeV

at the end of inflation. In fact in our model, as a consequence of the definition (2.16) of Region B,

h .
2
√

2m

(λφλ0)
1
4

(
δλ
λ0

) 1
2

. 4 · 1013 GeV,

where we chose the parameters configuration that maximizes the RHS bound. Therefore a significant

production of helical magnetic fields from the Higgs decay after inflation is unlikely, and we can

consider L��CP as inactive in Region B.

4.1 Helical magnetic fields

As stated earlier, we will mainly be interested in values of the inflaton field near the end of inflation,

i.e. φ ' φE , which means that φ and h evolve in Region A of the potential, given by (3.3). For such

values of φ, the differential equation (3.5) admits the simple solution φ ' χ+ O(g). We recall that χ

is the true inflaton field with canonical kinetic term and action

S '
∫
d4x

[√−g
(
−M

2
Pl

2
R+

1

2
∂µχ∂

µχ− 1

4
FµνF

µν − V (χ)

)
− χ

4fφ
Fµν F̃

µν

]

+

∫
d4x

√−g i ψ̄�Dψ, (4.7)

11Bold characters stands for 3D vectors in space.
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where we have included the interaction of fermionic currents, corresponding to charge Q fermions, with

the electromagnetic fields (encoded in the covariant derivative Dµ ≡ ∂µ − eQAµ), the CP-violation

term and the inflaton potential

V (χ) =
λφ
2

(
1 +

gχ2

M2
Pl

)−2

χ4. (4.8)

Varying the action (4.7) with respect to Aµ = (A0,A) leads to the gauge equations of motion in

the radiation gauge, A0 = 0 and ∇ ·A = 0,

(
∂2

∂τ2
−∇2 − χ′

fφ
∇×

)
A = 0, (4.9)

where τ is the conformal time, defined by gµν = a2(τ) ηµν , and we assume a homogeneous inflaton

with only zero mode, χ(τ,x) = χ(τ). Unless otherwise specified, all quantities and fields are comoving.

During the inflationary period one has 12

χ′ = χ̇a ' − χ̇

τH(χ)
, (4.10)

and the field velocity χ̇ is computed from the equation of motion for the inflaton obtained from the

action (4.7)

χ̈+ 3H(χ) χ̇+ V ′(χ) =
E ·B
a4fφ

, (4.11)

where we have used that Fµν F̃
µν = −4E ·B. From the slow roll conditions, we can neglect χ̈, since

χ̈

3Hχ̇
=
ε− η

3
, (4.12)

where we are already neglecting the backreaction of the generated magnetic field on the inflaton (i.e. we

are neglecting the term E ·B/a4fφ in Eq. (4.11)), a hypothesis that will be self-consistently checked

a posteriori (see Sec. 4.3). During the last e-folds of inflation, our model provides |ε − η| / 3 < 0.1.

Hence, we obtain

χ′ =
M2

Pl

τ

V ′(χ)

V (χ)
, (4.13)

where we have made use of Eq. (4.10).

We now quantize the gauge field A in momentum space

A(τ,x) =
∑

λ=±

∫
d3k

(2π)3
[
ελ(k) aλ(k)Aλ(τ,k) eik·x + h.c.

]
, (4.14)

where λ = ± is the photon polarization and aλ(k) (a†λ(k)) are annihilation (creation) operators that

fulfill the canonical commutation relations

[aλ(k), a†λ′(k
′)] = (2π)3δλλ′δ(3)(k − k

′) . (4.15)

12As for fields, we denote the derivative with respect to τ with a prime and the derivative with respect to the cosmic

time t with a dot, e.g. χ′ = dχ/dτ and χ̇ = dχ/dt.

19



The polarization vectors ελ(k) satisfy the conditions 13

k · ελ(k) = 0 , k × ελ(k) = −iλk ελ(k) ,

ε
∗
λ′(k) · ελ(k) = δλλ′ , ε

∗
λ(k) = ελ(−k) ,

(4.16)

where k ≡ |k|. The equation of motion for the modes yields

∂2Aλ
∂τ2

+ k

(
k + λ

2ξ

τ

)
Aλ = 0, (4.17)

which is the Coulomb wave equation, with

ξ =
M2

Pl

2fφ

V ′(χ)

V (χ)
=
MPl

fφ

√
ε(χ)

2
> 0, (4.18)

where Eq. (4.13) has been used and ε(χ) is the slow-roll parameter. Let us mention that, even if the

first equality in Eq. (4.18) looks model dependent, as it depends on the potential and its derivative,

in fact it is very model independent because the last relation only relies on the slow roll regime of the

inflationary potential, and ε(χ) ' 1 at the end of inflation. We have done a self-consistency check by

comparing the numerical results of both expressions and found no significative difference, see below.

As already emphasized, all modes produced during inflation will get diluted, except the last mode

that exits the horizon right before the end of inflation. This mode reenters the horizon at the onset of

reheating and is the source for the BAU. Hence, it is only necessary to consider the mode produced

at φE ' χE , for which ε(χE) ' 1, and hence, using the last equality in Eq. (4.18) we obtain for ξ the

constant value

ξ ' MPl√
2fφ

. (4.19)

We numerically checked that this approximation coincides with the exact solution:

ξ =

[
M2

Pl

2fφ

V ′(φ)

V (φ)

dφ

dχ

]

φ=φE

, (4.20)

where equations (3.5) and (4.8) should be used. A plot of ξ as a function of g is shown in the top

left panel of Fig. 5 (solid lines) where we compute the exact solution in Eq. (4.20). As we can see

the values of ξ are nearly constant with respect to g, a behavior that is well approximated by the

expression of ξ in Eq. (4.19). A plot of ξ as a function of fφ is displayed in the bottom left panel of

Fig. 5 (solid lines) for the range of values of g allowed by the final inflationary analysis. As all results

of the following sections are very sensitive to the precise value of the parameter ξ we will use next the

exact expression for ξ in all numerical calculations.

Notice that in this section we are neglecting, in the RHS of Eq. (4.17), the possible effect of the

fermion currents eQJψ, appearing in the action Eq. (4.7), and in particular their backreaction on the

produced helical magnetic fields. This phenomenon, known as the Schwinger effect, will appear for

sufficiently strong magnetic fields, hence for large (small) enough values of the ξ (fφ) parameter. In

this section we will consider the case of backreactionless fermion currents (i.e. small values of ξ) and

will devote Sec. 4.2 (where those values will be quantified) to the analysis of the Schwinger effect and

its backreaction on the helical magnetic fields.

13A simple realization can be given in terms of a real basis with the orthonormal vectors (k/|k|, ei), (i = 1, 2), such

that k · ei = e1 · e2 = 0 and ei · ei = 1, with ελ ≡ (e1 + iλe2)/
√
2, from where identities (4.16) follow.
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The general solution of (4.17) is

Aλ =
iF0(λξ,−kτ) +G0(λξ,−kτ)√

2k
(4.21)

where F0 and G0 are, respectively, the regular and irregular Coulomb wave functions with index

0 [10].14 At early times, the above solution has the asymptotic behavior that corresponds to the

Bunch-Davies vacuum of the modes. In fact during inflation, where ε(χ) � 1, we obtain, using

Eq. (4.18), that ξ � 1 and therefore |kτ | � 2ξ, so we can write Aλ ∝ e−ikτ . However, at the end of

inflation ε(χE) ' 1 and so we can have ξ & 1. Then, only one mode develops both parametric and

tachyonic instabilities for k ' kc where

kc = 2ξaEHE , aE = a(τE), (4.22)

while the other one stays close to its vacuum. As in our model ξ > 0, and during inflation τ < 0,

the mode exhibiting the instability is the one with the λ = + polarization. For late times, k � kc
(i.e. |kτ | � 2ξ), F0 can be neglected and the growing mode solution can be approximated by [10, 14, 52]

Aλ ' G0√
2k

' 1√
2k

(
k

2ξaEHE

) 1
4

exp

{
πξ − 2

√
2ξk

aEHE

}
. (4.23)

Another assumption in this solution is that H(χ) ' HE during the last e-folds of inflation. As we

have seen that the g dependence of ξ is mild, the main g dependence of all our predictions from here

on, will arise only from the g dependence of the Hubble parameter HE , see the right panel of Fig. 4.

Moreover, from the approximated value of the ξ parameter in Eq. (4.19) we can see that ξ can be

traded for the value of the parameter fφ such that ξ � 1 corresponds to fφ �MPl. Moreover, as we

see from the explicit solution in Eq. (4.23), there is an exponential magnification for large values of

ξ. However, as shown later on in Sec. 4.3, for very large values of ξ, the backreaction on the inflation

dynamics from magnetic fields cannot be neglected, which will lead to upper bounds on the values of

ξ, or correspondingly to lower bounds on the values of fφ.

Assuming homogeneity in momentum space, the comoving U(1)EM helicity is by definition

H = lim
V→∞

1

V

∫

V

d3x 〈A ·B〉 =

∫ kc

0

dk
k3

2π2

(
|A+|2 − |A−|2

)
, (4.24)

where 〈·〉 is the expectation value of quantum fields and the integral V −1
∫
V
d3x is the spatial average,

which is trivial for space independent quantities. Since the magnetic fields are maximally helical, we

can neglect one mode and set the other one to (4.23). We cut off the integral at the last mode to exit

the horizon given by (4.22). The resulting computation gives the amount of comoving helicity at the

time of the end of inflation, as

H ' 45

215
a3EH

3
E

π2ξ4
e2πξ, (4.25)

where we have used the approximation for ξ � 1.15

On the right panels of Fig. 5, we display the magnetic helicity in function of g (top panel) and

fφ (bottom panel). The exponential regime given by Eq. (4.25) is shown by solid lines for values

fφ & 0.15MPl (ξ . 4.7). For solid lines with fφ . 0.15MPl, and dotted lines, the backreaction of

fermion currents on the magnetic fields (Schwinger effect) cannot be neglected, as we will see in the

next section where we will continue our comments on these plots.

14See also Sec. 14 of Ref. [52].
15In fact, we have found that the approximation is valid up to O(e−8ξ) terms, so that it is good enough for ξ & 2-3.
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Figure 5: Top panels: the ξ parameter (left panel) and produced helicity at the end of inflation (right panel)

as a function of g for various values of fφ. The vertical red lines display the range for g where the inflation

model is valid. Bottom panels: the same as top panels but as functions of fφ in the same interval of values

of g. In all panels solid lines correspond to the Schwinger effect maximal estimate while dashed lines are the

equilibrium estimate. In the bottom left panel, blue and orange lines overlap since the result is insensitive to

g.

The comoving U(1)EM energy density in the magnetic and electric fields are similarly computed

as

ρB ≡ lim
V→∞

1

2V

∫

V

d3x 〈B2〉 =

∫ kc

0

dk
k4

4π2

(
|A+|2 + |A−|2

)
, (4.26a)

ρE ≡ lim
V→∞

1

2V

∫

V

d3x 〈E2〉 =

∫ kc

0

dk
k2

4π2

(
|∂τA+|2 + |∂τA−|2

)
. (4.26b)

Using the (backreactionless) value (4.23) for A+, and neglecting the other mode, we similarly obtain

the analytical solutions at the end of inflation, for ξ � 1 (see footnote 15)

ρB ' 315

218
a4EH

4
E

π2ξ5
e2πξ, (4.27a)

ρE ' 63

216
a4EH

4
E

π2ξ3
e2πξ =

4ξ2

5
ρB . (4.27b)

Hence the total comoving electromagnetic energy density is

ρEM = ρE + ρB ' ρB

(
1 +

4ξ2

5

)
. (4.28)
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Finally, we will also need the correlation length of the magnetic field which can be estimated

as [53]

`B =
2π

ρB

∫ kc

0

dk
k3

4π2

(
|A+|2 + |A−|2

)
. (4.29)

Likewise its analytical solution at the end of inflation is given by

`B ' 8

7

π ξ

aEHE
, (4.30)

Note that the above three quantities are comoving and apply to ordinary electromagnetic field,

while we will denote in subsequent sections their equivalents for the hypercharge U(1)Y in the sym-

metric phase with the index Y . The corresponding physical quantities are given by H ph = H /a3,

ρph = ρ/a4, `phB = a`B . Finally, we will conventionally set aE = 1.

To close this section, we would like to underline that maximally helical fields, E(k) and B(k),

in (Fourier transformed) momentum space are collinear as, using the identities (4.16), one can easily

check that both are proportional to ελ(k). Besides, these fields in configuration space are, using the

approximation (4.23), (almost) collinear. In fact, one can compute, using our approximated solution

for the backreactionless solution, the angle θ measuring the collinearity of the electric and magnetic

fields, as

cos θ =
〈E ·B〉
|E| · |B| , (4.31)

where we define 16

|E| ≡
√
〈E2〉 , |B| ≡

√
〈B2〉 . (4.32)

Using Eqs. (4.27) and (4.45) we obtain, for ξ � 1

cos θ ' 3
√

5

7
' 0.958, (4.33)

which corresponds to the angle θ ' 0.0016π. As a result we have proved that the fields E and B are

(almost) collinear, a property that will be used when applying the Schwinger effect in the next section.

4.2 Schwinger effect

In the presence of strong gauge fields, i.e. for ξ � 1, fermions charged under the gauge group are

produced by the backreaction of gauge fields which source the fermion equations of motion. The

corresponding currents can then, in turn, backreact on the produced gauge fields and change their

(so-called backreactionless) solutions. This phenomenon is called the Schwinger effect and we will

consider it in this section. Moreover, the fermions produced by this effect are at the origin of another

phenomenon, called the chiral plasma instability, that we will study in Sec. 7.2.

As the Higgs VEV is different from zero at the end of inflation, as we have already explained, the

EW gauge bosons are massive and the system is in the broken phase. Massless gauge bosons are the

photons, and we can consider the theory of electrically charged fermions in the presence of the U(1)EM

gauge group. In the case of a Dirac fermion with mass m and electric charge Q, the produced current

satisfies the Ohm’s law J = σE, where σ is the Schwinger conductivity given, for collinear E and B

fields, by [42]

σ = tr
|eQ|3
6π2

|B|
a2H

coth

(
π|B|
|E|

)
exp

(
− πm2a2

|eQ| |E|

)
, (4.34)

16Hereafter in this paper we are skipping the space average, as all background quantities are homogenous and so

limV →∞
1

V

∫

V d3x = 1.
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where the trace runs over all charged fermions ψi, with mass mi and charge Qi, such that πm2
i �

|eQi||E|, and e(Q) =
√

4πα(Q) ' 0.33 is the electromagnetic gauge coupling at the characteristic scale

of Schwinger pair production Q ' ρ
1/4
EM [42]. However, as the Higgs VEV is suppressed with respect to

the classical value of φ, see Eq. (2.9), while Yukawa couplings for first and second generation fermions,

are small, their corresponding square masses are much smaller than typical values of the produced

electric field, and so we can make the simple reasonable approximation that only the first and second

generation fermions are massless and contribute to the conductivity (4.34).

We have to stress here that, in spite of the fact that the Higgs VEV is large after inflation hE ' 1015

GeV, which yields large masses mf for fermions, as the typical values of the produced electric fields are

also large, typically |E| ' h2E , the small values of the Yukawa couplings for light fermions make that

their pair production is not effectively blocked. Moreover, as their contribution to the conductivity is

exponential in m2
f we can consider fermions that contribute to the conductivity as effectively massless.

Here we have considered for simplicity that the two first generations of quarks and leptons contribute

to the conductivity. Had we considered also the third generation would have amounted to a global

factor in σ of 3/2, which would not change at all the qualitative results in this paper.

The backreaction of fermionic currents, the Schwinger effect, has been proven to roughly be

encoded into a redefinition of the ξ parameter, ξ → ξeff , as [41]

ξeff = ξ − ∆ξ, ∆ξ =
e3

3π2
coth

(
π|B|
|E|

) |E|
H2
E

, (4.35)

where only first and second generation fermions have been considered. The correction becomes signif-

icant, ∆ξ/ξ & 0.1, for ξ & 3.7, which corresponds to fφ . 0.19MPl. Hence for ξ & 3.7 the Schwinger

effect must be taken into account, and the amplitudes of the gauge fields in equilibrium must satisfy

the equation [41]

2ξeffH|E| |B| − 2H(|E|2 + |B|2) = ρ̇EM = 0 (4.36)

Previous studies [20, 41, 42] have considered two regimes: (i) Maximal estimate and (ii) Equilib-

rium estimate. We will use them to compute the MHD quantities yielding the BAU, i.e., the helicity,

its derivative, the electric and magnetic energies, as well as the magnetic correlation length. Both

regimes follow different strategies: in the maximal estimate all quantities are capped by other rela-

tions that still depend on the parameter ξ, whereas in the equilibrium case the exponential relations

from the previous section stay with the counterpart of the substitution (4.35) on ξ.

4.2.1 Maximal estimate

In this case we assume the exponential behaviors of the backreactionless solutions to be valid until

they saturate the maximal value that we will display hereafter. We numerically determine the value of

crossing, which happens for ξ ' 4.4–4.7 depending on each quantity, corresponding to fφ ' 0.15MPl.

However, as we just saw, for such value the Schwinger effect can no longer be neglected, so there

remains in this process a gray area of uncertainty as to the exact transition between the two regimes.

The maximum electric and magnetic energy density can be estimated as the solution of Eq. (4.36) [41],

i.e.

|E|2 + |B|2 = ξeff |E| |B|. (4.37)

This replacement yields an equation relating the |E| and |B| fields that can be solved analytically. We

then choose, as definition of our maximal estimate, the solution (|E|, |B|) of (4.37) that maximizes the
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product |E| · |B|.17 For ξ � 1, the result approximates to:

|E|max ' 2π2

e3
ξH2

E , (4.38a)

|B|max ' 2π2

3e3
ξ2H2

E , (4.38b)

although, in the numerical calculations, we of course use the exact solutions. Hence we obtain our

maximal helicity estimate

Hmax ' 8π4

9e6
ξ3H3

E (4.39)

as well as our maximal energy density estimate

ρmax
EM ' 2π4

9e6
ξ4H4

E . (4.40)

Finally, combining (4.24) and (4.29), and assuming maximally helical magnetic field, we get for the

correlation length (still for large ξ)

`max
B = π

Hmax

ρmax
B

' 4π

ξHE
. (4.41)

In this case the upper labels “max” on ρmax
EM and `max

B mean that they are computed from maximal

quantities, but do not necessarily mean upper bounds. In fact the estimate for `max
B is a conservative

one, as it matches the corresponding backreactionless quantity at a small value, ξ ' 1.4, so in principle

we would expect higher values for `max
B , giving rise to bigger Reynolds numbers (see Sec. 7.1). Still we

will use the estimate in Eq. (4.41) for our numerical calculations.

We finally recall that in this case the parameter ξ remains as given by (4.19), hence it corresponds

to the solid lines displayed in the left panels of Fig. 5. For the solid lines of the right panels, however,

the helicity has two regimes: it first obeys the exponential relation (4.25) until it reaches its maximal

value, then follows (4.39).

4.2.2 Equilibrium estimate

In this case, we take into account the backreaction of the chiral fermions on the gauge fields by just

replacing the parameter ξ with the effective one given by (4.35) in the backreactionless solutions.

Using (4.27) and (4.32) the latter becomes

63

215π2

e2πξeq

ξ3eq
=

(
3π2

e3

)2

(ξ − ξeq)2 tanh2

(√
5

4

π

ξeq

)
. (4.42)

When the backreactionless solutions are used, and to make it explicit which case we are handling,

we chose to label the effective parameter as ξeq. The solution of Eq. (4.42) provides the function

ξeq = ξeq(ξ) and, using (4.19), we can obtain ξeq as a function of fφ (and g) that we plot on the left

panels of Fig. 5 in dotted lines.

17Notice that our definition of maximal estimate departs from that used in Ref. [41], where separate maximal conditions

to the configurations for the fields E and B (corresponding to absolute maximal values independently reached by the

configurations E and B) are imposed, so that their corresponding partners do not satisfy Eq. (4.37). Conversely, our

criterium of maximizing the helicity guarantees that our solution satisfies Eq. (4.37).
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Next, the MHD quantities are calculated in the same way as in the case without considering the

Schwinger effect, but with the replacement ξ → ξeq, hence

Heq = H (ξeq), ρeqB/E = ρB/E (ξeq), `eqB = `B (ξeq), (4.43)

where (4.25), (4.27) and (4.30) should be used. On the right panels of Fig. 5, we plot the equilibrium

estimate for the helicity as a function of fφ and g in dotted lines.

4.2.3 Final comments

Needless to say, neither the maximal nor the equilibrium estimates are true solutions to the gauge

equations of motion in the presence of the Schwinger effect, which introduces highly nonlinear effects

into them. However, numerical solutions taking into account the backreaction from fermion currents

have been recently considered in Refs. [42, 54] which show that, for values of the ξ parameter for which

the Schwinger effect becomes relevant, the numerical solution for the different quantities, in particular

for the helicity, lies between the maximal and equilibrium estimates. This feature remains if the Bunch-

Davies vacuum is damped by the conducting medium, even for extreme cases of very large damping,

leading to very suppressed vacua. Therefore, we expect that the solution to the complicated problem of

taking into account all the backreaction from Schwinger fermions currents will be somewhere between

the two considered estimates, and thus the allowed region by the BAU will be in between the allowed

regions that we will exhibit in Secs. 6 and 7 for both estimates.

4.3 Self-consistency condition

In previous subsections, we have computed the helical gauge fields generated in the presence of the

inflationary background, after estimating the backreaction of fermion currents on gauge fields, but we

have neglected the backreaction of gauge fields on the inflaton dynamics. We will now compute the

conditions to have negligible backreaction of the generated gauge fields on the inflaton equations of

motion, such that we can reliably trust the inflationary predictions, and therefore the actual generation

of helical magnetic fields. Needless to say this condition is mainly a simplifying one, and allows to

work out the inflationary model independently on the generated gauge fields. As we will see in Sec. 5,

this condition is also related to the possibility of reheating the Universe after the inflationary period

by the preheating mechanism, although this scenario deserves further studies.

Once we have obtained the helicity, we can compute the RHS of the inflaton equation of motion

(4.11), as in the radiation gauge they are simply related by

〈E ·B〉 = −1

2

d

dτ
〈A ·B〉. (4.44)

Ignoring for the moment the Schwinger effect on the produced gauge fields, using (4.24), (4.25) and

the relation in the de Sitter universe aH = −τ−1, one gets at the end of inflation, for ξ � 1

|〈E ·B〉| ' 135

216
a4EH

4
E

π2ξ4
e2πξ. (4.45)

In the absence of backreaction of the gauge field on the inflaton equation of motion, the inflationary

equation (4.11) with slow roll conditions reduces to 3Hχ̇ ' −V ′(χ). Thus, in order to consistently

neglect the backreaction on the inflaton, we must simply enforce that, in the inflaton equation of

motion (4.11), the RHS term is negligible compared to the potential term, i.e.
√

2 ξ

MPl

∣∣∣∣
〈E ·B〉
V ′(χ)

∣∣∣∣� 1, (4.46)
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where we used (4.19). This condition is independent of the reheating temperature and should hold

during the full magnetogenesis process, hence during the last few e-folds of inflation, so we can evaluate

it using the above solutions for 〈E ·B〉 at the end of inflation. Then, using the definition of the slow

roll parameter ε(χ), we can write V ′ '
√

2V/MPl at the end of inflation, and hence, for χ ' χE ,

Eq. (4.46) becomes

ξ |〈E ·B〉| � V (χE). (4.47)

Moreover it is interesting to note that, if we ignore the Schwinger effect, combining ρEM ' ρE
given by (4.27b), together with (4.45), we get

2 ρEM ' ξ |〈E ·B〉| . (4.48)

Notice that, for collinear E and B with the substitution ξ → ξeff , this equation yields the starting

point of the Schwinger maximal estimate, i.e. Eq. (4.37).

Hence, the condition (4.46) evaluated at the end of inflation is equivalent to imposing

2 ρEM � V (χE). (4.49)

Notice that the condition (4.49) is stronger than the condition for neglecting ρEM in the Friedman

equation, i.e., ρEM � 3H2M2
Pl ' V (χE), so that the latter does not need to be imposed.

Now taking into account the Schwinger effect, the equilibrium estimate is obtained by the replace-

ment ξ → ξeq in the expression (4.45), as described in Sec. 4.2.2. Hence, the consistency condition in

the Schwinger equilibrium estimate is given by Eq. (4.49) where ξ → ξeq, i.e.

2 ρeqEM � V (χE), (4.50)

a stronger condition than the one coming from the Friedman equation ρeqEM � V (χE), but much

weaker than Eq. (4.49) where we were ignoring the Schwinger effect, since ρeqEM � ρEM.

On the other hand, for the maximal estimate, using the results from Sec. 4.2.1, we can write

|〈E ·B〉|max ' |E|max |B|max ' 1

3

(
2π2

e3

)2

ξ3H4
E , (4.51)

Figure 6: Ratio between the potential term and the backreaction term in the inflaton equation of motion, see

Eq. (4.46), for the range of values of g allowed by inflation. Solid lines are the maximal estimate while dashed

lines are the equilibrium estimate, after taking into account the Schwinger effect.

27



where in the first step we maximize the product by assuming a collinear configuration of E and B [41],

while the second step is justified for large values of ξ. A similar reasoning for the consistency condition

does apply to this case, for which the total density is dominated by the energy stored in the magnetic

field, ρEM ' ρB , and such that the explicit maximal estimate found implies that, for large ξ,

6 ρmax
EM ' ξ |〈E ·B〉|max . (4.52)

Hence, in the maximal estimate, imposing condition (4.46) is equivalent to requiring

6 ρmax
EM � V (χE), (4.53)

which is again stronger than the condition for neglecting the total gauge energy density in the Friedman

equation, ρmax
EM � V (χE).

We display in Fig. 6 the left-hand side of Eq. (4.46) as a function of fφ for the range allowed on

the parameter g by the inflationary observables, using for the |E| and |B| fields both the maximal and

the equilibrium estimates. In conclusion, condition (4.46) is satisfied for:

fφ & 1.9 · 10−2MPl (Maximal estimate),

fφ & 7.2 · 10−4MPl (Equilibrium estimate).
(4.54)

5 Reheating

At the stage of inflation all the energy is concentrated in the slowly rolling inflaton field. Soon after,

it begins to oscillate near the minimum of its effective potential and eventually perturbatively decays

into SM particles that interact with each other, and come to a state of thermal equilibrium in a

process called reheating. However, the Universe can also be reheated nonperturbatively in a much

quicker timescale through coherent fields effects while it oscillates in its potential, in a process known

as preheating [55].

In inflationary models where the inflaton is coupled to the Chern-Simons term with coupling

1/fφ, as in Eq. (4.2), recent lattice simulations [56, 57], in the absence of fermionic currents, have

shown that even for a negligible electromagnetic energy density at the end of inflation, the Universe

can efficiently preheat provided that the coupling 1/fφ in Eq. (4.2) is large enough. In particular

preheating occurs when fφ . f cφ, with f cφ ' 0.11MPl, i.e. for ξ & ξc with ξc ' 6.7. However, in this

region the backreaction of the fermion currents on the helical gauge fields cannot be neglected, and

we should adapt the previous results to our different estimates in the presence of the Schwinger effect.

For the equilibrium estimate, we have seen in Sec. 4.2.2 that the effect of the backreaction can

be encoded into the redefinition of the parameter ξ → ξeq while using the backreactionless solutions

but as functions of ξeq. Therefore a straightforward application of the results from Refs. [56, 57]

should provide the condition for efficient preheating as ξeq & ξceq with ξceq ' 6.7 which translates, using

Eq. (4.42), to

fφ . 2.4 · 10−4MPl. (Equilibrium estimate) (5.1)

This bound is outside the region where we can neglect the backreaction of the helical fields on the

inflaton, Eq. (4.54).

In the case of the Schwinger maximal estimate of the electromagnetic fields, see Sec. 4.2.1, we can

easily perform a similar translation on the same requirement. To this end, we define a new effective

parameter ξmax that mimics the effect of the maximal estimate once plugged into the backreactionless

solutions as

|〈E ·B〉|ξmax
= |Emax(ξ)| |Bmax(ξ)|, (5.2)
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where |Emax(ξ)| and |Bmax(ξ)| are the maximal estimates of the electromagnetic fields from Eqs. (4.38),

and 〈E ·B〉ξmax
is the corresponding backreactionless product given by (4.45) evaluated at ξ = ξmax.

From there, the condition for efficient preheating ξmax & ξcmax, with ξcmax ' 6.7, translates into

fφ . 5.6 · 10−3MPl, (Maximal estimate) (5.3)

which again is inconsistent with the condition (4.54) on no backreaction of helical fields on the inflaton

dynamics.

The previous results can be easily understood by considering that, in the presence of the back-

reaction of the Schwinger currents on the helical fields, the required coupling, between φ and the

Chern-Simons term, for preheating must be much stronger than in the backreactionless case. This is

because the produced helical gauge fields are much weaker, in the presence of backreaction, for a fixed

value of the coupling MPl/fφ.

We thus conclude that, after considering the backreaction of fermion currents on the helical fields

in both estimates, the preheating mechanism is not consistent with the self-consistency condition

obtained in Sec. 4.3. Hence, in our model preheating does not occur and reheating should take place

by perturbative decays of the inflaton into the SM matter only.

Reheating then takes place after inflation, during the inflaton oscillations around its minimum, by

perturbative inflaton decays. In this period, between the end of inflation tE ∼ 1/HE and the reheating

time trh ∼ 1/Γχ, where Γχ is the inflaton decay width, the Universe temperature first grows from zero

to a maximum temperature T0 given by [58, 59]

T0 ' 0.61
√
TrhT ins

rh , (5.4)

where, assuming thermalization,

Trh =

(
90

π2g∗

) 1
4 √

ΓχMPl (5.5)

is the reheating temperature and g∗ = 106.75 is the number of relativistic degrees of freedom. Also,

in this work we define T ins
rh as a reference temperature given by the above equation with Γχ ' HE .

It would correspond to the reheating temperature for instant reheating, and takes the value T ins
rh '

2.13 (2.61) · 1015 GeV for g ' 0.01 (0.05) in our model.

The temperature T0 is attained at a time t0 when the scale factor a grows by an O(1) factor,

i.e. a0 ' 1.5 aE , and, after that 18, the Universe evolves toward the reheating temperature following

the law T ∼ a−3/8 [43], with a scale factor arh given by

arh ' 0.4 aE

(
T ins
rh

Trh

) 4
3

. (5.6)

At the reheating temperature, the inflaton energy density has completely decayed and the Universe is

fully dominated by radiation, giving rise to a radiation dominated era where the temperature evolves

as T ∼ 1/a. Of course, the value of the inflaton decay width Γχ, and the reheating temperature Trh,

depend on the particular interactions between the inflaton and the Standard Model particles that we

will now explore.

18The energy density is dominated, after the end of inflation, by the inflaton energy density ρχ(t), which decays as

e−Γχt, so that at the reheating temperature the energy density is dominated by the radiation energy density ρR(t).
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In the present model, the Lagrangian from Eq. (2.2) contains the interaction term
√
δλ/2mχh2

which gives rise to the leading inflaton decay channel χ→ hh, with a decay width given by [60]

Γ(χ→ hh) =
δλm

16π

√
1 − 4m2

h

m2
, (5.7)

where mh = 125.25 GeV is the Higgs mass. As the inflaton is stabilizing the EW vacuum (see Sec. 2.2),

which has an instability around QI ' 1011 GeV, we can reliably put the upper bound on m as m . QI ,

and fix m ' 5 · 1010 GeV while δλ . 0.35 on perturbative grounds (see Sec. 2.2). This gives for the

decay width Γ(χ→ hh) ' 3.5 · 108 GeV leading, using Eq. (5.5), to a reheating temperature given by

Trh ' 1.6 · 1013 GeV, which corresponds to Trh/T
ins
rh ∼ 10−2. On the other hand, the lowest bound on

m, fixed by phenomenological considerations (see Sec. 8) to m ' 103 GeV, together with δλ . 0.2 (see

Sec. 2.2) provide Γ(χ→ hh) of a few GeV and correspondingly Trh ' 109 GeV, which corresponds to

Trh/T
ins
rh ∼ 10−6. Hence from now on, we will consider the temperature ratio Trh/T

ins
rh as a parameter

of the model, which will become handy for the baryogenesis and constraints calculations. We also

stress that this ratio mainly reflects the dependence of coming results on m, as just sketched above.

There are of course other channels that can contribute to Γχ but, as we will demonstrate hereafter,

they are all subdominant. For instance, the coupling (4.1) gives rise to the decay channel χ → AA

into two gauge bosons with a decay width given by [56]

Γ(χ→ AA) ' m3

64πf2φ
, (5.8)

which is subleading with respect to the channel χ → hh for the relevant values of m and fφ. In

particular Γ(χ → AA) ' 10−5 GeV for m = 5 · 1010 GeV, while Γ(χ → AA) ' 10−28 GeV for

m = 103 GeV. Moreover, there is a mixing angle α between φ and h (see Sec. 8), which is sizable

for m ∼ O(few) TeV, while of course is negligible for m � 1 TeV, given by sinα '
√

2δλv/m. This

mixing opens up the χ decays into the SM channels, with a total decay width into all SM channels

given by Γ(χ→ SM) = sin2 α · Γ(h→ SM) ' 4 sin2 α MeV, in all cases subleading with respect to the

decay width Γ(χ→ hh).

Note added: after this paper appeared on the arXivs, the possibility that the Lagrangian in

Eq. (2.2) could induce preheating by the explosive production of scalar fields after inflation was con-

sidered in Ref. [61]. In this case, we can identify the scalar fields of Ref. [61] with the Higgs field 19

and this mechanism, if implemented, would be more efficient than the perturbative production that

has been considered so far in this section. First of all, as we wanted the inflaton to stabilize the

Higgs potential we have imposed the condition on its mass m < 10−7MPl. This means that during

preheating the inflaton potential term 1
4λφφ

4 will dominate the mass term 1
2m

2φ2, as λφ ' 10−12 and

φE 'MPl. In Ref. [61] it was proven that there is no runaway solutions provided that δλ < λ0/4, and

preheating imposes the mild condition 2δλ > (100m/φE)
2
, always satisfied as 100m/φE < 10−5. Still

in the rest of the paper we will be agnostic about the (p)reheating mechanism and will consider the

reheating temperature Trh as a free parameter.

19The relation between the parameters q3 and qχ in Ref. [61] and our parameters can be written as

q3 =
√

2δλ
φE

m
, qχ =

λ0φ2

E

m2
.
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6 Baryogenesis

Using the helical gauge fields produced at the end of inflation, and assuming that their corresponding

helicity remains after reheating (a hypothesis that will be self-consistently checked a posteriori, see

Sec. 7.1), until the EWPT (which we assume to be the SM crossover), we can compute the conversion

of the helicity into the (B + L) asymmetry, and therefore the baryon asymmetry of the Universe

(BAU).

At a temperature around the electroweak scale, TEW ≈ 160 GeV, the Higgs VEV departs from zero

and smoothly transitions to the SM VEV at T = 0, v = 246 GeV, making the off-diagonal elements of

the gauge bosons mass matrix gradually compete with the thermal mass for W 3
µ on the diagonal, that

decreases with decreasing temperature. This results in a phase transition controlled by the EW angle

θW whose temperature dependence is subject to significant uncertainties [8, 9]. Following Refs. [20, 21]

we define the parameter fθW , which encodes all the details of the EW transition and its uncertainties,

as

fθW = − sin(2θW )
dθW
d lnT

∣∣∣∣
T=135 GeV

, 5.6 · 10−4 . fθW . 0.32. (6.1)

This gives rise to a source term for the (B +L) asymmetry, while the electroweak sphalerons are still

in equilibrium for T & 130 GeV. In Ref. [18], it was shown in detail how the source and washout terms

balance each other around an equilibrium value of the baryon asymmetry around T = 135 GeV, which

is finally given by

ηB ' 4 · 10−12 fθW
HY

H3
E

(
HE

1013 GeV

) 3
2
(
Trh
T ins
rh

)
' 9 · 10−11, (6.2)

where we have imposed the observed value [62] in the right-hand side.

Figure 7: The baryogenesis region. In the shading region the value of ηB satisfies Eq. (6.2). Left panel:

Schwinger maximal estimate. Right panel: Schwinger equilibrium estimate.

.

In Fig. 7 we show—in the plane (fφ, Trh/T
ins
rh ), for both bounds on the allowed g range, Eq. (3.12),

and for both Schwinger estimates for the magnetic fields, i.e., maximal (left panel) and equilibrium

(right panel) estimates—the region where the value of ηB satisfies Eq. (6.2) taking into account the

range in Eq. (6.1) for the quantity fθW . As we can see from both panels, together with the range

(3.12) on the g parameter where inflationary conditions in Ref. [46] are satisfied, there is an absolute
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upper bound on the parameter fφ as fφ . 0.25MPl for both Schwinger estimates, corresponding to the

reference (instant) reheating temperature, where the baryogenesis conditions are met. Moreover, for

the highest reheating temperature we can get from our model of inflation, Trh ' 10−2 T ins
rh , the bound

lowers to fφ . 0.19 (0.17)MPl for the maximal (equilibrium) Schwinger estimate. Putting together

the lower bounds from (4.54), and the requirement that Trh/T
ins
rh & 10−6, one gets the global ranges

1.9 · 10−2 . fφ /MPl . 0.19 (Maximal estimate),

7.2 · 10−4 . fφ /MPl . 0.17 (Equilibrium estimate),
(6.3)

where baryon asymmetry can be generated consistently with the condition of no backreaction of the

helical gauge fields on the inflationary dynamics.

However, as we will see next, the helical magnetic fields, produced at the end of inflation, interact

after reheating with the thermal plasma and there are a number of constraints that have to be sat-

isfied for the helicity to reach the temperatures where the EWPT takes place. As we will see, these

constraints may reduce the allowed region in the parameters space.

7 Constraints

We have computed, up to now, the baryon asymmetry generated by helical magnetic fields produced

after inflation when their helicity decays into (B + L) asymmetry at the electroweak crossover, and

identified the region of the parameter space (g, fφ, Trh) where the observed value of the baryon asym-

metry is reproduced. However, there are a number of constraints that can further narrow the region

of the parameter space where the BAU can really be reproduced by our theory and will be analyzed

in this section.

7.1 Helicity evolution: Magnetohydrodynamics and Reynolds numbers

Helical magnetic fields are produced at the end of inflation, and we assume their comoving quantities

stay constant until reheating, at temperature Trh. However, at reheating a thermal plasma is generated

by the decay of the inflaton into the SM particles and consequently the electroweak symmetry is

restored—by the appearance of thermal masses—until the EWPT. Hence the helicity in photons H

gets transformed into helicity in hypercharge gauge fields HY , as sketched at the beginning of Sec. 4,

see Eq. (4.5). The latter then interacts with the thermal plasma which, in turn, backreacts on the

gauge fields.

This system can be described by the so-called MHD equations [53, 63, 64], and has been studied

for the case at hand in Ref. [21]. In a nutshell, the physical quantities of interest (amplitudes, en-

ergy densities, correlation length and helicity) do not scale adiabatically in such an environment, or

equivalently their comoving quantities are not constant. Therefore there can be a magnetic diffusion

effect leading to the decay of the helicity. If, on the other hand, the magnetic induction is the leading

effect, then the helicity can be conserved until the EWPT and the baryogenesis mechanism can take

place. This effect is measured by the magnetic Reynolds number Rm, and we will see that it is enough

to require Rm > 1 at reheating for the helicity to be conserved until the EW crossover. Hence, in

this section we will study how this constraint affects the region of the parameter space that yields the

BAU.

The magnetic Reynolds number is defined as the ratio of the magnetic induction term over the

magnetic diffusion term of the corresponding MHD equation. It can be written as

Rm ≡ σv`BY
, (7.1)
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where σ = cσT
c
pl/(αY log(α−1

Y )) is the conductivity of the thermal plasma, with cσ ' 4.5, and

T cpl ' 0.8 T ins
rh

(
T ins
rh

Trh

) 1
3

(7.2)

is the typical (comoving) temperature of the plasma, where we have used Eq. (5.6) with aE = 1.

In addition, the typical bulk velocity of the plasma v can be estimated from the MHD Navier-

Stokes equation for the velocity field. The general solution should be computed numerically, but for

asymptotic cases, when one term clearly dominates over the others in the equation, we can sketch some

approximations. To do so, like in the magnetic case, we can compute the electric Reynolds number

Re, given by

Re ≡
v`BY

ν
, (7.3)

where ν = cν/(α
2
Y log(α−1

Y )T cpl) is the kinematic viscosity, with cν ' 0.01. If Re > 1, then there is an

equipartition between the kinetic energy in the plasma and the magnetic energy. In the opposite case,

where Re < 1, the kinetic energy and velocity are smaller than the magnetic energy. Relying, in this

way, on the value of Re, we can compute all quantities in these two separate cases:

• Viscous regime: Re < 1 < Rm ,

• Turbulent regime: 1 < Re < Rm .

We omit the other cases, where Rm < 1, since we will not be interested in them.

In summary, the evolution of these two scaling regimes with respect to conformal time τ behave

as [20, 65]

Re < 1 : BY ∝ τ−
1
2 , `BY

∝ τ , v ∼ `BY
B2
Y /(νρ) ∝ τ0 , (7.4a)

Re > 1 : BY ∝ τ−
1
3 , `BY

∝ τ
2
3 , v ∼ BY /

√
ρ ∝ τ−

1
3 , (7.4b)

where

ρ ' 0.4 ρχ

(
T ins
rh

Trh

) 4
3

, ρχ ' 3M2
PlH

2
E , (7.5)

is the plasma energy density. Inserting the latter relations for v in (7.1) for both cases, we can estimate

the magnetic Reynolds number at reheating as [21]

For Rrh
e < 1 ⇒ Rrh

m ≈ 5.9 · 10−6
ρBY

`2BY

H2
E

(
HE

1013 GeV

)(
Trh
T ins
rh

) 2
3

, (7.6a)

For Rrh
e > 1 ⇒ Rrh

m ≈ 1.1 · 10−1

√
ρBY

`BY

HE

(
HE

1013 GeV

) 1
2
(
Trh
T ins
rh

) 1
3

(7.6b)

where the magnetic energy density is roughly given by ρBY
≈ B2

Y /2. From (7.4), using (7.1) and (7.3),

we see that in both regimes both Reynolds numbers grow with time according to the same scaling

relations:

Re < 1 : Rm ∝ τ, Re ∝ τ , (7.7a)

Re > 1 : Rm ∝ τ
1
3 , Re ∝ τ

1
3 . (7.7b)

Hence, once the requirement Rrh
m > 1 is reached, the magnetic Reynolds number remains greater

than one, as long as there is a plasma filling the Universe. The conservation of helicity is due to an
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inverse cascade in which the helicity is transferred from smaller to larger scales, reflected in the growth

of `BY
. Therefore, to guarantee the survival of the comoving helicity at the EWPT, it is enough to

compute both Reynolds numbers at the end of inflation, allowing us to ignore the evolution of the

plasma at later times.

Now, all we have to know is which regime (viscous or turbulent) does apply at the reheating

temperature. This is given by the value of Re at that time. Inserting the above expressions for v,

Eqs. (7.4a) and (7.4b), in the definition of Re, Eq. (7.3), we obtain at reheating [21]

For Rrh
e < 1 ⇒ Rrh

e ≈ 2.5 · 10−9
ρBY

`2BY

H2
E

(
HE

1013 GeV

) (
Trh
T ins
rh

) 2
3

, (7.8a)

For Rrh
e > 1 ⇒ Rrh

e ≈ 5.4 · 10−5

√
ρBY

`BY

HE

(
HE

1013 GeV

) 1
2
(
Trh
T ins
rh

) 1
3

. (7.8b)

Figure 8: Left panels: Plot of the electric (solid lines) and magnetic (dashed lines) Reynolds number at

reheating as a function of fφ for different values of Trh/T
ins

rh = 10−2 (blue color) and 10−6 (orange color).

The ranges of successful baryogenesis for the different values of Trh/T
ins

rh are displayed here by the vertical

bands, whose colors match the corresponding lines color. We see that the production of the helical magnetic

fields at reheating always occurs for Re < 1 but not necessarily for Rm > 1, in the correct baryogenesis

region. The latter condition must nevertheless be met for successful baryogenesis, which reduces the parameter

window mainly (but not only) for high reheating temperatures. Right panels: Plot of the TCPI temperature. In

the baryogenesis regions we always have TCPI < 105 GeV. Top panels correspond to the Schwinger maximal

estimate, and bottom panels to the equilibrium estimate.
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In our scenario it turns out that Rrh
e < 1 for the range of parameters that provides a successful

baryogenesis, as displayed in the left panels of Fig. 8 (solid lines) for the two extreme values of the

parameter Trh/T
ins
rh = 10−2 (blue color) and 10−6 (orange color). Thus, the plasma starts in the

viscous regime and the magnetic Reynolds number should be computed using Eq. (7.6a). Plots of

Rrh
m , as a function of fφ, are shown in the left panels of Fig. 8 (dashed lines) for the same values of the

parameter Trh/T
ins
rh and the same color codes. We consider the Schwinger maximal (top left panel)

and equilibrium (bottom left panel) estimates for the gauge fields. In all cases we exhibit the regions

allowed by the baryogenesis constraint, which depend on the corresponding values of the parameter

Trh/T
ins
rh , using the same color code than for the different lines (both for Rrh

e and Rrh
m) in the plot.

Then even if Rrh
e < 1, at some later time τ the plasma will eventually fall into the turbulent regime

where Re > 1, with evolution given by Eq. (7.6b).

As we can see from the dashed lines in the left panel plots of Fig. 8 the condition Rrh
m > 1 is not

satisfied everywhere in the region allowed by baryogenesis. Therefore, as summarized in Fig. 9, the

condition for magnetic induction dominance, Rm > 1, constrains the available region (6.3) from the

baryogenesis window. Of course, once the condition Rrh
m > 1 is satisfied (at the reheating temperature),

its value increases with time, see Eq. (7.7b), which guarantees that the condition will be fulfilled until

the EWPT.

7.2 The chiral plasma instability

When the symmetric phachiral plasma instabilityse is restored during reheating both, the asymmetries

in the particle/antiparticle number densities, and the hypercharge helicity, are generated via the

Schwinger effect, as described in Sec. 4.2, and via the chiral anomaly, as stated at the beginning

of Sec. 4, see Eq. (4.4). In the absence of any other process, the newly generated asymmetry will

relax into the same amount of the newly generated helicity but with opposite sign, as the gauge fields

configuration has lower energy density than the fermion states configuration, resulting in a cancellation

of the total helicity and hence no baryogenesis at the EWPT. This phenomenon is called the chiral

plasma instability (CPI) [66–72], and has to be avoided for a successful baryogenesis.

CPI can be avoided if we require that the CPI timescale is long enough to allow all fermionic states

to come into chemical equilibrium (so that sphalerons can erase their corresponding asymmetries in

particle number densities) before CPI can happen. The estimated temperature at which CPI takes

place is [21]

TCPI/GeV ≈ 4 · 10−7 H 2
Y

H6
E

(
HE

1013 GeV

)3(
Trh
T ins
rh

)2

. (7.9)

The last fermion species to enter chemical equilibrium, through its Yukawa coupling with the left-

handed electron eL, is the right-handed electron, eR, and it happens at the temperature T ∼ 105 GeV.

Indeed, when the fermionic states are in chemical equilibrium, their asymmetry is washed out through

weak sphalerons and Yukawa couplings. Therefore the constraint TCPI . 105 GeV guarantees that the

CPI cannot occur before the smallest Yukawa coupling reaches equilibrium and all particle number

density asymmetries are erased, preventing thus the cancellation of the helicity generated at the reheat

temperature.

In the right panels of Fig. 8 we show the plot of TCPI as a function of fφ for both, Schwinger

maximal (top panel) and equilibrium (bottom panel), estimates and values of Trh/T
ins
rh = 10−2 (blue

color) and 10−6 (orange color). In each plot, the region between the vertical bands is that selected by

the baryogenesis mechanism for the corresponding value of Trh/T
ins
rh with the same color code. As we
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can see from Fig. 8, the range of values for TCPI in the corresponding baryogenesis region is

102 GeV & TCPI & 10−3 GeV (7.10)

which then prevents the cancellation of any previously generated helicity. So, as we will explicitly

exhibit in Fig. 9, this constraint is satisfied in all the region provided by the baryogenesis condition.

7.3 Primordial non-Gaussianity

Inflation predicts that the statistical distribution of primordial fluctuations is nearly Gaussian. Measur-

ing deviations from a Gaussian distribution, i.e., non-Gaussian correlations in primordial fluctuations,

is a powerful test of inflation. While the two-point function for δχ defines the power spectrum, the

three-point correlation function encodes departures from Gaussianity [73, 74]. Helical gauge fields

yield a new source of cosmological perturbations for the inflaton field δχ as
(
∂2

∂t2
+ 3H

∂

∂t
− ∇2

a2

)
δχ = − 4

a4fφ
E ·B. (7.11)

The magnitude of the three-point function is conventionally quantified using the parameters fNL.

non-Gaussian effects from helical gauge fields are maximal when the three modes have comparable

wavelength, the so-called equilateral form, which in the backreactionless case where gauge fields are

given by Eq. (4.23) is given by [75, 76]

f equilNL ' 4.7 · 10−16 e
6πξCMB

ξ9CMB

, (7.12)

where ξCMB ≡ ξ(χ∗). However, we have seen that the Schwinger effect significantly reduces the

magnitude of the RHS of Eq. (7.11), for a fixed value of fφ, and that we can mimic its effect by

the replacement of the effective parameters ξeq and ξmax, for the equilibrium and maximal estimates

respectively, in the backreactionless expression for 〈E · B〉, Eq. (4.45). Hence, in the same way as

we did at the beginning of Sec. 5, we identify the primordial non-Gaussianity constraint with ξeq and

ξmax before translating them back to fφ by the use of Eqs. (4.42) and (5.2).

Current observational bounds on non-Gaussianity of the cosmic microwave background (CMB)

anisotropies lead to [77]

f equilNL = −26 ± 47 (7.13)

which translate, from Eq. (7.12) into ξCMB . 2.54 (95% C.L.). Using now the scaling relation

ξeq/max

ξCMB
=

√
ε(χE)

ε(χ∗)
=

√
1

ε(χ∗)
(7.14)

where ξeq/max ≡ ξeq/max(χE) is the value of the effective ξ parameter at the end of inflation in the

equilibrium/maximal Schwinger estimate, one can compute corresponding upper bounds on ξeq/max,

at the end of inflation. In fact, for the lower value of g allowed by the cosmological observables

in our inflation model, g ' 0.01, one gets ξeq/max . 47 while for the upper bound, g ' 0.05, one

gets ξeq/max . 91. However those values of ξeq/max are never reached in our model, as they would

correspond to negligibly small values of fφ which are never met.

In conclusion, in the presence of the Schwinger effect the produced gauge fields are never strong

enough to trigger non-Gaussianity in the distribution of the primordial inflaton fluctuations, in good

agreement with present observations. In other words the model prediction in the presence of the

fermionic Schwinger currents is f equilNL ' 0, and so we will not consider further this constraint.
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7.4 The baryon isocurvature perturbation

Many models of baryogenesis using (hyper)magnetic fields try to simultaneously explain the origin

of the large scale, intergalactic magnetic fields (IMF) measured today by the Fermi satellite [78–80].

They all face a balance problem when addressing this issue.

While maximally helical fields can indeed generate the BAU without explaining the observed IMF,

they would suffer from baryon overproduction should they try to accommodate IMF. In the case of a

mixture of helical and nonhelical fields, the baryogenesis is less effective so that stronger hypermagnetic

fields are needed to explain the present BAU, and hence they could meet the lower bound from the

IMF observations.

However, it has been recently shown that such models are inconsistent with the baryon isocurvature

perturbations, that are constrained by the observations of cosmic microwave background on large

scales [81]. In particular, it was pointed out that the baryon isocurvature perturbations at a scale

larger than the neutron diffusion scale at the Big Bang Nuclesynthesis (BBN) epoch is constrained by

the deuterium overproduction due to the second-order effect [82]. This translates into an upper bound

on the volume average of the baryon isocurvature perturbation, as

S2
B,BBN < 0.016 (2σ). (7.15)

It was shown that, regardless of their helicity properties, hypermagnetic fields with too large

strength and coherence length are not allowed before the EWPT [81]. Still baryogenesis from the

hypermagnetic helicity decay can be responsible for the present BAU, but additional magnetogenesis,

or an unknown mechanism of the magnetic field amplification after the EWPT, is needed to fit the

IMF observations. However the constraint becomes more severe for less helical hypermagnetic fields.

In our model the magnetic field produced at the end of inflation is maximally helical and we do not

cope with the IMF observations. Hence we should be safe from this constraint. Nevertheless, we will

deserve to App. B the detailed calculation where it is proven that the bound (7.15) is indeed widely

satisfied in our model, so that this constraint does not need to be taken into account any further.

7.5 Summary of constraints

To close this section, we would like to compile all our results about baryogenesis into a single plot,

see Fig. 9. Here, we have displayed in the plane (fφ, Trh/T
ins
rh ) all the relevant constraints described

in this section. In particular:

• The generated baryon asymmetry at the EW crossover, given by Eq. (6.2), should be given by

the observational value

ηB ' 9 · 10−11, (7.16)

where the broadness of the prediction band is associated to the uncertainty in the determination

of the parameter fθW .

• The magnetic diffusion given by MHD, leading to the helicity decay should be smaller than the

magnetic induction, to allow helicity to be conserved until the electroweak phase transition. This

happens when the magnetic Reynolds number at reheating given by Eq. (7.6a) is

Rrh
m & 1. (7.17)

• As the symmetric phase is restored during reheating, an asymmetry via chiral anomaly is gen-

erated and decays into a helicity with opposite sign, resulting into a cancellation of the total
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helicity with no baryogenesis at the EWPT. This phenomenon, called chiral plasma instability,

can be avoided if the temperature at which it is produced TCPI, given by Eq. (7.9), is smaller than

the temperature at which all fermion species enter chemical equilibrium through their Yukawa

couplings, and in particular the last species to reach chemical equilibrium, eR. This condition is

satisfied provided that

TCPI . 105 GeV. (7.18)

We shall choose the overlapping region as that meeting all the constraints. We removed the

dependence on g as the results are not sensitive to it, preferring to choose the value g = 0.05 in the

Figure 9: Summary of constraints on baryogenesis for g = 0.05 (the dependence on g is tiny) in the plane

(fφ/MPl, Trh/T
ins

rh ). The considered constraints are on ηB (blue area), on the magnetic Reynolds number

(orange area) and on chiral plasma instability (green area). We seek for the overlapping region. On the left

side of each plot, the black band displays the region where the backreaction of gauge fields on the inflaton can

no longer be neglected. Left panel: Schwinger maximal estimate. Right panel: Schwinger equilibrium estimate.

allowed range from the inflation model.

From Fig. 9 we can conclude that the CPI constraint is satisfied in all the region where the

constraint of having enough baryon asymmetry ηB holds. On the other hand the constraint from the

magnetic Reynolds number is effective for the case of the Schwinger maximal estimate, by cutting off

the larger available values of the parameter fφ for every value of Trh. However, for the Schwinger

equilibrium estimate the magnetic Reynolds number constraint is effective for the larger values of

Trh/T
ins
rh , by cutting off the larger values of the parameter fφ, while for the smaller values of Trh, in

particular for Trh . 5 ·10−4 T ins
rh , it entirely covers the region satisfied by the constraint on ηB . Finally,

given the range m ∈ [103 , 5 · 1010] GeV, for the corresponding range on Trh/T
ins
rh ∈ [10−2 , 10−6], we

get the available (approximated) regions, for g ∈ [0.01 , 0.05],

fφ/MPl ∈ [0.14 , 0.17] for Trh/T
ins
rh = 10−2

fφ/MPl ∈ [1.9 · 10−2 , 2.8 · 10−2] for Trh/T
ins
rh = 10−6

(Maximal estimate),

fφ/MPl ∈ [4.1 · 10−2 , 0.13] for Trh/T
ins
rh = 10−2

fφ/MPl ∈ [7.2 · 10−4 , 1.1 · 10−2] for Trh/T
ins
rh = 10−6

(Equilibrium estimate).

Let us also mention that the condition (4.46) on the nonbackreaction of the gauge fields on the

inflaton, displayed by the black bands, becomes a constraint only at low temperature, Trh/T
ins
rh .
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2 · 10−5 (3 · 10−6) for the Schwinger maximal (equilibrium) estimate. Finally, the condition for the

nonbackreaction of fermion currents on the gauge fields, which corresponds to fφ & 0.19MPl, is outside

the region of validity of the baryogenesis region, which shows that the Schwinger effect can never be

neglected in the baryogenesis analysis.

8 Some phenomenological considerations

In some chaotic inflation models, the mass of the inflaton is constrainted to a high value because of

the observational constraint on the scalar perturbations amplitude. In our model, though, we have

two terms in the inflaton potential: while inflation is controlled by the quartic term, dominant at

Planckian scales, the quadratic one controls reheating and low energy physics. Thus the value of the

inflaton mass is decoupled from the inflationary dynamics.

In previous sections, we have considered on the one hand the upper value of the inflaton mass as

m . QI , small enough to solve the instability problem of the Higgs potential, and on the other hand we

have roughly imposed m & 1 TeV on phenomenological grounds for the theory to not being excluded

by present experimental data. In fact, an inflaton mass at the TeV scale could have implications for

low energy physics. Therefore, in this section we will make some considerations from the point of view

of collider physics and the Standard Model in the presence of the inflaton field with the interactions

appearing in the Lagrangian (2.2).

The naturalness problem

First of all, our theory has two hierarchically separated scales, the inflaton mass m and the Higgs

mass mh = 125.25 GeV, with m � mh. As such, the theory should exhibit a hierarchy problem,

which in general implies an unnatural fine-tuning of the parameters. In the absence of any symmetry

protecting the EW scale from the high-scale UV physics, one has either to accept the fine-tuning (as

it is customary done in the Standard Model) or to lower the value of the mass m as much as possible.

More quantitatively, the coupling in the Lagrangian µφ|H|2 =
√

2δλm|H|2 generates a contribution to

the Higgs mass term µ2
h through the one-loop radiative corrections. In the limit µ → 0 (i.e. δλ → 0),

there is an enhanced Z2 symmetry φ → −φ indicating that any value of µ, as small as it can be, is

natural in the sense of ’t Hooft, since in this limit the symmetry is recovered. Moreover, this coupling

induces a correction to the parameter µ2
h in the Lagrangian as [83]

∆µ2
h ' − δλ

8π2
m2 log

m2

m2
h

. (8.1)

Naturalness would then require |∆µ2
h| . µ2

h = m2
h/2, which translates into the bound

m . 1.2 TeV , (8.2)

where we have considered the typical value of the coupling δλ ' 0.1. This leads to the exciting

possibility of having an inflaton with an O(TeV) mass, which does not spoil naturalness, solve the

problem of the instability of the EW minimum, and has phenomenological implications for present

and future colliders.

The Higgs-inflaton mixing

Near the vacuum, the potential for the Higgs and φ fields is given by

V (φ,H) = −
√

2δλmφ|H|2 +
1

2
m2φ2 − µ2

h|H|2 + λ0|H|4 . (8.3)
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The vacuum is defined as the solution to the minimum equations ∂V/∂φ = ∂V/∂h = 0, which provides

〈h〉 = v = 246 GeV and 〈φ〉 = vφ, with

µ2
h = λv2, vφ =

√
δλ
2

v2

m
, (8.4)

where the parameters δλ and λ were defined in Eqs. (2.11) and (2.17), respectively.

In the presence of the parameter δλ, there is a mixing between the Higgs h and φ fields given by

the squared mass matrix at the minimum

M2 =

(
2(λ+ δλ)v2 −

√
2δλmv

−
√

2δλmv m2

)
. (8.5)

This matrix is diagonalized by an orthogonal rotation with angle α 20 as

(
cα sα
−sα cα

)
M2

(
cα −sα
sα cα

)
=

(
m2
h̃

0

0 m2
φ̃

)
, (8.6)

such that the mass eigenstates are

h̃ = cα h+ sα φ, φ̃ = cα φ− sα h , (8.7)

and the mass eigenvalues are

m2
h̃, φ̃

m2
=

1

2
+ (λ+ δλ)

v2

m2
∓
√

1

4
− (λ− δλ)

v2

m2
+ (λ+ δλ)

2 v4

m4
. (8.8)

In this way the physical mass eigenstate h̃ is associated with the Standard Model Higgs, with a

mass mh̃ = 125.25 GeV, while φ̃ is the physical singlet, and both of them are coupled to the SM fields

through the mixing angle α.

Hence this theory predicts then the existence of a scalar φ̃ that decays mainly into the channel

φ̃→ h̃h̃ with a decay rate

Γ(φ̃→ h̃h̃) =
κ2m

32π

√√√√1 −
4m2

h̃

m2
φ̃

, κ =
√

2δλcα(1 − 3s2α) + 6sαc
2
α(λ+ δλ)

v

m
. (8.9)

which was responsible for the reheating in Sec. 5. Contour lines of Γ(φ̃ → h̃h̃) are exhibited in the

upper left panel of Fig. 10 in the parameter space (m, δλ). As we can see, typically the width of the

resonance φ̃ is around a few GeV. As was already stated in Sec. 5, there are also subleading decay

channels into SM particles (X ∈ SM), as φ̃ → XX̄, induced by the mixing with the Higgs, with very

suppressed branching fractions

B(φ̃→ XX̄) = B(h̃→ XX̄) · s2α
Γh̃
Γφ̃

(8.10)

as Γh̃ ' 4c2α MeV in the SM, Γφ̃ ' Γ(φ̃→ h̃h̃) ' few GeV, so that s2αΓh̃/Γφ̃ � 1.

20We are using the notation cα ≡ cosα, sα ≡ sinα, tα ≡ tanα.
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Electroweak precision constraints

The doublet-singlet mixing can affect the electroweak precision observables (EWPO) through changes

in the gauge boson propagators. Explicit expressions for the modified scalar contributions to the W

and Z propagators are given in Refs. [84, 85]. In particular the contribution to the S and T oblique

parameters from the new physics, ∆S ≡ SNP − SSM and ∆T ≡ TNP − T SM, are found to be given by

∆T ' 3

16π

s2α
s2W

[(
1

c2W

m2
h̃

m2
h̃
−m2

Z

log
m2
h̃

m2
Z

−
m2
h̃

m2
h̃
−m2

W

log
m2
h̃

m2
W

)
−
(
mh̃ → mφ̃

)]
(8.11)

and

∆S =
s2α

12π

[
m̂6
h̃
− 9m̂4

h̃
+ 3m̂2

h̃
+ 5 + 12m̂2

h̃
log(m̂2

h̃
)

(m̂2
h̃
− 1)3

−
(
m̂h̃ → m̂φ̃

)]
(8.12)

where we are defining masses in units of mZ , i.e. m̂X ≡ mX/mZ .

The model predictions, Eqs. (8.11) and (8.12), must be compared with the experimental values,

given by [62]

∆T = 0.05 ± 0.06, ∆S = 0.0 ± 0.07 (8.13)

and 92% correlation between the S and T parameters. This gives rise to a ∆χ2(m, δλ) distribution,

which defines the allowed region in the parameter space (m, δλ), exhibited in all panels of Fig. 10.

In particular we display, in orange shading, the region in the parameter space (m, δλ) for which

∆χ2(m, δλ) < 5.99, that corresponds to the bound at 95% C.L. As we can see, for large values of the

parameter δλ the lower bound on m can be near the TeV scale.

LHC constraints

In this section we will consider several constraints arising from LHC physics where we are led to the

exciting possibility to explore the inflaton sector at present and future high energy colliders and, in

particular, at the LHC.

- The Higgs signal strength

From Eq. (8.7) we see that the coupling of the mass eigenstate h̃ to the SM particles, is suppressed,

with respect to the coupling of the SM Higgs h, by the factor cα. Given that, the signal strength

modifier rfi for a specific process i→ h̃→ f , is given by

rfi =
σi Bf

(σi)SM BfSM
' c2α (8.14)

where σi is the production cross section for the initial state into h̃, and Bf its branching fraction on

the final state. For the last equality we have considered that the production cross section is suppressed

by c2α while the branching fraction is approximately equal to the SM one. Experimental data from

ATLAS [86] and CMS [87] provide the global values

r = 1.11+0.09
−0.08 (ATLAS), r = 1.17 ± 0.1 (CMS) (8.15)

which are consistent with a value of r = 1 (the SM prediction) with ∼ 10% error, thus providing a

lower bound on cα as

c2α & 0.9. (8.16)
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Figure 10: Contour lines in the plane (m/TeV, δλ) of the decay rate Γ(φ̃ → h̃h̃)/GeV (top left panel), the

quartic parameter at the weak scale λ(mW ) (top right panel) as well as the Higgs trilinear (bottom left panel)

and quartic (bottom right panel) couplings normalized to the SM values with the regions of validity defined by

the signal strength modifier (8.16) (blue) and the constraints from the electroweak parameters (8.13) (orange)

superimposed. One should read the contour lines in black that pass through the overlapping region, and hence

that satisfy both constraints. As discussed in Sec. 2.2, for m ∼ O(TeV), to solve the stability problem and

after imposing that the theory remains in the perturbative regime up to the high scale, the parameter δλ is

constrained to be in the region 0.05 . δλ . 0.2.

For m � v the mixing angle is sα '
√

2δλ(v/m) � 1 so that the bound (8.16) is easily satisfied.

However for TeV values of m the bound (8.16) translates into a lower bound on the value of m. We

shade in blue, in all panels of Fig. 10, the region in the parameter space (m, δλ), where this constraint

is satisfied. In particular we see that, for δλ = 0.1, the bound (8.16) is satisfied for m & 0.4 TeV. For

m ' 1 TeV and δλ = 0.1, the mixing is given by c2α ' 0.988, which is not excluded by the actual LHC

data.

- Trilinear and quartic Higgs couplings

As the light state h̃ is to be identified with the SM Higgs, with mass mh̃ = 125.25 GeV, for any fixed

value of the parameter δλ the experimental value of the Higgs mass fixes the value of the quartic

parameter at the weak scale, λ(mW ), at a different value than in the SM case. In the upper right

panel of Fig. 10 we plot contour lines of λ(mW ) in the parameter space (m, δλ). As we can see

λ(mW ) > λSM(mW ), and only for values of m→ ∞ one recovers the SM value.

Moreover, the mixing of the Higgs with the singlet φ modifies, in the broken phase, the trilinear
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λ3 and quartic λ4 SM couplings. Recent experiments on di-Higgs searches are putting bounds on

these two parameters by looking for possible departures with respect to the SM values λSM3 ≡ vλSM
and λSM4 ≡ λSM. In our theory the h-φ mixing angle α generates such a departure. After going

to the broken phase by means of the shifts φ̃ → φ̃ + ṽφ, h̃ → h̃ + ṽ (where ṽ ≡ cα v + sα vφ and

ṽφ ≡ cα vφ − sα v), and integrating out the field φ̃, which yields the value

φ̃ = cα

[√
δλ
2

(1 − 3s2α) + 3(λ+ δλ)sαcα
v

m

]
h̃2

m
+ · · · , (8.17)

one gets the Higgs potential, in the broken phase,

V (h̃) =
1

2
m2
h̃
h̃2 + λ3h̃

3 +
1

4
λ4h̃

4 + · · · (8.18)

where the ellipses are higher order terms, giving rise to powers h̃n (n > 4) in the potential, and

λ3 = c3α v

[
λ+ δλ − tα

√
δλ
2

m

v

]
,

λ4 = c4αλ+ c2α(−c4α − 4s4α + 4c2αs
2
α + c2α)δλ

−6
√

2δλ c
3
αsα(c2α − 2s2α)(λ+ δλ)

v

m
− 18s2αc

4
α(λ+ δλ)2

v2

m2
.

(8.19)

The model can then, in the future, be excluded or confirmed by experimental data on trilinear

(and quartic) Higgs couplings data. Notice that in the limit m � mh the mixing angle behaves as

sα '
√

2δλ v/m so that λ3 ' λSM3 and λ4 ' λSM4
21, and the decoupling is automatic. We plot

in the bottom panels of Fig. 10 contour lines of the trilinear and quartic couplings, normalized to

the corresponding SM values, as functions of the parameters m and δλ. At present, with 89 fb−1

of LHC data, the triple Higgs coupling has been constrained by the ATLAS collaboration to be

λ3/λ
SM
3 = 4.0+4.3

−4.1, excluding it outside the interval [−3.2 , 11.9] at 95% C.L. [88], while the CMS

collaboration finds λ3/λ
SM
3 = 0.6+6.3

−1.8, excluding it outside the interval [−3.3 , 8.5] at 95% C.L. [89].

Theoretical studies based on the HE-LHC at
√
s = 27 TeV and 15 ab−1 luminosity foresee exploring

the interval range λ3/λ
SM
3 ∈ [0.6 , 1.46] at 68% C.L. [90], while a future 100 TeV hadron collider could

achieve the trilinear coupling measurement within better than 5% accuracy [91], thus potentially

imposing strong constraints on m from the plots in Fig. 10.

- Heavy Higgs production

Finally the state φ̃ can be produced at the LHC by the same mechanisms of Higgs production with a

cross section given by

σ(pp→ φ̃+X) = s2α σ(pp→ H +X) (8.20)

where H is a heavy SM-like Higgs with a mass equal to m. Using the results of inclusive cross sections

for σ(pp→ H) for the leading mechanism of gluon-gluon fusion (ggf) [92] we plot, in Fig. 11, the cross

section σggf (pp → φ̃) as a function of m for two relevant values of the parameter δλ for m . 1 TeV

and a center of mass energy
√
s = 13 TeV. Given that, as we have explained earlier in this section

B(φ̃→ h̃h̃) ' 1, we can compare these cross sections with the SM cross sections for di-Higgs production

σ(pp→ hh) given by σSM
ggf (hh) ' 33.5 fb [93].

21Of course, in the limit m � v, λ ' λSM as exhibited in the top right panel of Fig. 10.
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Figure 11: Plots of cross section σ(pp → φ̃) in fb for relevant values of δλ = 0.05, 0.15. The dots (stars)

are the 95% C.L. upper bound from ATLAS [94] (CMS [95]), that bring the approximate constraint m & 0.55-

0.7 TeV, depending on the value of δλ.

The predicted cross sections in Fig. 11 are compared with the present experimental upper bounds

at 95% C.L. on the production of a scalar field (φ̃) which decays into two Higgs bosons, from ATLAS

with luminosities 27.5-36.1 fb−1 [94] and CMS with luminosity 35.9 fb−1 [95], at present LHC center

of mass energies,
√
s = 13 TeV (see Fig. 11). We conclude from here that the present lower bounds

on the value of m are

m & 0.55 (0.7) TeV @ 95% C.L., for δλ = 0.05 (0.15), (8.21)

while in the future much stronger bounds could be achieved.

9 Conclusion

In this paper, we have explored the possibility of modifying the Higgs inflation theory by means of

the introduction of an extra scalar field φ, with the Ricci coupling (g/2)φ2R, and an interaction term

µφh2 to solve the stability problem of the electroweak vacuum. Both fields, φ and h, participate in

the dynamics of inflation through the two-field potential V (φ, h), which has the shape of a valley in

which they are related by simple analytical expressions so that we can express one field in term of the

other. This allows us to define the true inflaton field χ as the one following the valley with canonical

kinetic term although we kept the description in terms of φ for mathematical convenience.

A key point is that we have considered for the φ field a quartic coupling λφ and a mass m, such

that inflation is driven by the quartic coupling term, while reheating is driven by the mass term.

The Lagrangian coupling δλ = µ2/2m2 triggers a positive contribution to the β function of the Higgs

quartic coupling such that, if the mass scale m is in the range 1 TeV . m . QI , where QI ' 1011 GeV

is the instability scale of the electroweak potential, the instability problem of the electroweak vacuum

can be solved just by roughly imposing the mild constraint δλ . O(1).

We find that the beginning of inflation φ = φ∗ (N∗ = 60) is mainly driven by the scalar field φ,

and since the amplitude of density perturbations is fixed by the φ quartic coupling (and not by the

Higgs quartic coupling), the main problem of Higgs inflation is easily solved with g . 1. On the other

hand, the end of inflation (N ' 0), where the hypermagnetic helicity will be produced, is equally
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driven by both the scalar φ and the Higgs h quartic terms, so that the role played by the Higgs field is

relevant. Both regimes are separated, for g ' 0.01 (0.05), by a critical value of the field φc/MPl ' 10

(4), which corresponds to the critical number of e-folds Nc ' 12 (2). After imposing the Planck and

BICEP/Keck conditions on the slow roll parameters and the unitarity condition φ∗ . MPl/g (see

however footnote 1 for a nuance) we obtain the allowed interval on the parameter g, 0.01 . g . 0.05,

which translates into the prediction for the cosmological observables in agreement with observations,

and with a Hubble parameter almost saturating the Planck upper bound Hobs
∗ < 6 · 1013 GeV:

0.965 . ns . 0.967, 0.047 & r & 0.012, 5.5 · 1013 GeV & H(φ∗) & 2.8 · 1013 GeV

During the last e-folds of inflation we generate maximally helical magnetic fields that will source the

BAU via the (B+L) anomaly of the SM during the EWPT [10–21]. This results from the introduction

of a coupling of the Chern-Simons term of the hypercharge gauge group with the inflaton, as φYµν Ỹ
µν ,

with coupling strength MPl/fφ, that breaks the CP symmetry. This effective CP breaking operator can

be easily obtained from a UV completion with a CP-violating Yukawa coupling of φ to a hypercharged

vector like heavy fermion, as it is shown in App. A. This source of CP-violation is needed by the

Sakharov conditions [1], the two other conditions being provided by the chiral anomaly of the SM,

which violates the baryon number, and the helical magnetic fields conversion to baryon asymmetry at

the EWPT, which happens during EW sphalerons freeze out, when they go out of thermal equilibrium.

We have undertaken both backreation processes, namely the one of the gauge fields on the inflaton,

and the one of the thermally produced chiral fermions on the gauge fields, known as the Schwinger

effect. The latter significantly reduces the amount of electromagnetic energy and helicity generated

at the end of inflation as, for fφ/MPl . 0.19, we have to trade their exponential behavior with two

polynomial cases: the maximal and the equilibrium estimates. This raises the effective coupling of the

CP-violating term MPl/fφ, thus compensating its lowest overall value since electromagnetic fields are

simultaneously weakened.

As for the former issue, we have found a critical value of the coupling strength of φ to gauge

bosons in the CP-violating operator, f cφ, such that for fφ & f cφ, the backreaction of the gauge field

on the inflaton can be neglected. In particular we find f cφ/MPl ' 0.02 (7 · 10−4) for the Schwinger

maximal (equilibrium) estimate. On the contrary, for fφ . f cφ, the field φ is strongly coupled to the

gauge fields, the backreaction of the latter on the inflaton equations of motion cannot be neglected,

and the preheating of the Universe proceeds by the nonperturbative production of gauge fields. In this

paper we have concentrated in the case fφ & f cφ, where the field φ is weakly coupled to the gauge fields,

the backreaction of gauge fields on the inflaton dynamics can be neglected and the Universe reheating

proceeds by the perturbative decay of the inflaton into SM particles. Besides, we have considered the

constraints from non-Gaussianity of primordial fluctuations, and baryon isocurvature perturbations,

and find that they have no influence on our model.

Concerning the value of the baryon asymmetry of the Universe generated at the EW crossover,

ηB depends on the value of the reheat temperature Trh, and in particular on its ratio with respect

to the reference instant reheat temperature Trh/T
ins
rh (in our model T ins

rh ' 2 · 1015 GeV). As we are

imposing no backreaction of gauge fields on the inflaton dynamics, and reheating should proceed by

perturbative inflaton decays, the value of Trh/T
ins
rh depends on the inflaton decay width Γχ. In our

model the inflaton mainly decays through the channel χ→ hh, with a width which increases with the

value of the inflaton mass m and ranges in the interval 1 GeV . Γχ . 109 GeV, which corresponds to

10−6 . Trh/T
ins
rh . 10−2, for 1 TeV . m . 5 · 1010 GeV.
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Moreover, as helicity is converted into baryon asymmetry at the EWPT, while it was produced at

the end of inflation, it has to survive MHD processes between these two times. By imposing that the

magnetic Reynolds number is bigger than unity, and that the chiral plasma instability effect does not

washout the produced gauge fields, the available parameter window is reduced by an amount which

depends on the value of the reheating temperature. We have shown that all these constraints are

satisfied for a large range of the parameters fφ and Trh, very insensitive to the value of the parameter

g, inside its allowed range from cosmological observables:

fφ/MPl ∈ [0.14 , 0.17] for Trh/T
ins

rh = 10−2

fφ/MPl ∈ [1.9 · 10−2 , 2.8 · 10−2] for Trh/T
ins

rh = 10−6
(Maximal estimate)

fφ/MPl ∈ [4.1 · 10−2 , 0.13] for Trh/T
ins

rh = 10−2

fφ/MPl ∈ [7.2 · 10−4 , 1.1 · 10−2] for Trh/T
ins

rh = 10−6
(Equilibrium estimate)

The complete available parameter region is summarized in Fig. 9.

Notice that the fact that the inflaton potential has both quadratic and quartic terms allows

to decouple the mass m from the actual value of the amplitude of density perturbations, which in

the absence of a quartic term would fix its value to m ' 1012 GeV (or smaller at the price of the

introduction of a curvaton scalar), allowing any value m < QI in order to stabilize the electroweak

vacuum. This is achieved by the contribution, to the Higgs quartic coupling β function, provided by the

coupling δλ in the Lagrangian term,
√

2δλmφ |H|2. We have found for the parameter δλ the absolute

bounds, δλ & 0.05 in order to solve the stability problem, and δλ . 0.35 to not spoil the perturbativity

of the theory, although its particular range depends on the actual value of m. Nevertheless, values

m � mh create a naturalness/fine-tuning problem, essentially given by the fact that there appears

a loop correction to the Higgs squared mass term µ2
h. It translates into a fine-tuning of the order of

4π2/(δλρ
2 log ρ2) where ρ ≡ m/mh. While for δλ ' 0.1 and m = 1010 GeV the fine tuning is ∼ 10−14

(similar to the SM fine-tuning), and for m = 10 TeV it is ∼ 0.01, there is essentially no fine-tuning

for values m . 1 TeV. This leads to the exciting possibility of a light inflaton which could possibly be

detected by direct measurements at LHC and/or future colliders.

The key point here was that the Lagrangian term
√

2δλmφ |H|2 creates a φ-h mixing, sizable

for low values of the mass m, leading to an interesting phenomenology for high energy colliders. In

fact all the collider phenomenology is triggered by the mixing angle α. The mass eigenstates (φ̃, h̃),

where h̃ should be identified with the experimentally detected Higgs with a mass equal to 125.25

GeV, are related to the weak states (φ, h) by a rotation with angle α. This fact triggers that λ(mW )

be different from λSM(mW ) ' 0.13, which leads to predictions on the ratios λ3/λ
SM
3 and λ4/λ

SM
4

which could be probed by future experiments, as HE-LHC and/or a 100 TeV collider. The mixing

is already bounded by present ATLAS and CMS results on the SM Higgs signal strengths, which

provides the bound m & 0.3 (0.45) TeV for δλ = 0.05 (0.15). It also generates a contribution to the

oblique electroweak observables, and yields for e.g. δλ = 0.15 the lower bound m & 0.5 TeV. Finally,

the mixing is responsible for the inflaton production and decay. In particular φ̃ → h̃h̃, triggered by

the coupling δλ, is the main decay channel, while other decay channels into the SM particles, via

the mixing sα, are subleading. The inflaton φ̃ can also be produced mainly by the gluon-gluon fusion

mechanism through its Higgs mixing. Present data from ATLAS and CMS translate into lower bounds

m & 0.55 (0.7) TeV at 95% C.L. for δλ = 0.05 (0.15).
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There are a number of research lines which could be safely explored in the future. First of all,

we have considered models of inflation based on the Ricci coupling φ2R, and a φ dependent potential

dominated, for large values of φ, by the quartic coupling. This kind of theories, when considered

in the Einstein frame, give naturally rise, for large values of φ, to flat potentials, appropriate for

inflation, without invoking any particular symmetry. It is clear that similar results could be obtained

for theories with a Ricci coupling as F (φ)R, and a Jordan frame potential behaving, for large values

of φ, as U(φ) ' F 2(φ). In particular it would be interesting to see what kind of theories would

produce enough baryon asymmetry in the presence of a period of preheating, by the nonperturbative

production of gauge fields. A very recent work [51] has already explored a general class of inflationary

potentials and shown consistency with cosmological observables. In particular our model, labeled

therein by (n, p) = (2, 4), give results for the cosmological observables, which are in good agreement

with this paper. These general theories are therefore good candidates to generate also the observed

value of the BAU, provided they contain the inflaton coupling to the Chern-Simons term. In addition,

as far as we are aware of, there are no in-depth studies in the literature of preheating mechanisms

taking into account the Schwinger effect, which has led us to make some shortcuts in this article.

Therefore we leave for future work a more rigorous study of nonperturbative production of gauge

fields at preheating, leading to the BAU, that takes this effect into account. Lastly, at the level

of particle physics it remains as an exciting playground the possibility of detecting the inflaton at

present or future colliders, or that future experimental results on the production of heavy scalars,

coupled to the SM fields, or on the measurements of the trilinear and quartic Higgs couplings, by

di-Higgs production, could start cornering the present theory and put stronger bounds on the mass of

the inflaton and its mixing with the SM Higgs.
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A UV completion for CP-violation

CP-violation in our model is driven by the effective dimension-five operator

S��CP = −
∫
d4x

φ

4f̃φ
Yµν Ỹ

µν (A.1)

where Y µν is the hypercharge field strength.

A simple UV completion generating such effective operator can be a massive (with mass M)

hypercharged vectorlike fermion ψ with a CP-violating Yukawa coupling to φ as

L = −ψ̄L(M + |λψ|eiθλφ)ψR + h.c. = −|λψ|φ
[
cos θλψ̄ψ + sin θλψ̄iγ5ψ

]
(A.2)

where CP-violation is induced by the angle θλ. The CP-even φYµνY
µν , and CP-odd φYµν Ỹ

µν , cou-

plings are generated by loop diagrams where the fermion ψ propagates in the loop and emits two gauge
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bosons Yµ, via the cos θλ and sin θλ couplings in Eq. (A.2), respectively. The corresponding Feynman

diagrams are finite and thus one gets f̃φ ∝ M . For maximal CP-violation, i.e. θλ = ±π/2, only the

coupling φYµν Ỹ
µν is generated such that

M ' |λψ|g2Y
4π2

f̃φ ' 8 · 1015 GeV |λψ| (f̃φ/MPl) . (A.3)

- Stability of the inflationary potential

The UV completion here proposed could affect the stability of the inflationary potential through

radiative corrections in the high energy theory. In fact, the coupling in Eq. (A.2) provides a correction

to the β function of the coupling λφ, similar to the correction to the β function of the Higgs quartic

coupling coupling βλ from the top quark Yukawa coupling. This contribution comes from the box

diagram with four φ external legs, where the fermion ψ is exchanged, and the resulting contribution

to βλφ
is given by

∆βλφ
= −2|λψ|4

16π2
θ(t− tM ), t− tM = log (Q/M). (A.4)

Notice that the correction given by Eq. (A.4) is negative, as it arises from a fermion loop, which can

lead the coupling λφ to negative values and thus destabilize the whole inflationary scenario, a process

similar to the destabilization of the EW vacuum by the loop corrections induced by the top quark. It

is then required to prevent such destabilization. A sufficient condition to not destabilize the quartic

inflaton coupling, without any tuning of parameters, is to impose |λψ| . λ
1/4
φ which translates, using

the typical value, from Fig. 4, λφ ' 10−12, into |λψ| . 10−3, and so into an upper value of the ψ-mass

as

M . 1013 GeV(f̃φ/MPl). (A.5)

Notice that in the limit λψ → 0 the UV Lagrangian has the enhanced Z2 symmetry, φ → −φ, and

thus any small value of λψ is natural in the sense of ’t Hooft. For instance, values of λψ ∼ 10−12

would lead to values of M ' O(TeV).

- Naturalness problem

The UV completion brings a new naturalness problem as there is the hierarchy of masses M � mh.

In fact, the presence of the vectorlike fermion ψ coupled to the field φ through the coupling (A.2),

along with the φ-h mixing generates the Lagrangian

L = |λψ|sα h̃ ψ̄iγ5ψ + |λψ|cα φ̃ ψ̄iγ5ψ (A.6)

whose first term provides at one-loop (for scales Q &M) a contribution to the mass parameter µ2
h as

∆µ2
h ' 1

4π2
s2α |λψ|2M2 log

M2

m2
h

(A.7)

which would require, for large values of M , a fine-tuning. In particular, the naturalness condition

∆µ2
h . m2

h/2 implies, for m ' 1 TeV, the upper bounds on M and |λψ| given by

M . (7.6, 2.5, 0.8) · 108 GeV, |λψ| . (1, 3, 10) · 10−6 , (A.8)

where the values in parenthesis correspond to f̃φ/MPl = (0.1, 0.01, 0.001), respectively, and where we

have used δλ = 0.15.
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Of course the second term of (A.6) can create a second naturalness problem, as M � m by

radiative corrections providing a one-loop contribution to m2
φ̃

as

∆m2
φ̃
' 1

4π2
c2α |λψ|2M2 log

M2

m2
(A.9)

However, once we have solved the naturalness problem between M and mh, as m2 � m2
h, the second

naturalness problem between M and m is automatically solved as, for all values in Eq. (A.8), it turns

out that ∆m2
φ̃
/m2 ' 0.4.

- Cosmological problems

The Lagrangian (A.2) has the (ψ number) discrete Z2 symmetry ψ → −ψ making the fermion ψ

cosmologically stable, inconsistent with direct Dark Matter detection, and possibly overclosing the

Universe. A simple way out is explicitly breaking the Z2 symmetry. For instance we can identify

ψ ≡ E with a heavy vectorlike, SU(2) singlet, lepton E = (EL, ER)T , with hypercharge -1, as the

SM right-handed leptons eRi
. We can then generate a tiny mixing of e.g. the third generation leptons

with E by means of the Yukawa coupling Y ′
3

LE = −MĒLER − Y3 ¯̀
L3
HτR − Y ′

3
¯̀
L3
HER + h.c. (A.10)

The mixing in (A.10) generates a mass matrix as

(
τ̄L ĒL

)
M
(
τR
ER

)
, M =

(
m3 m

′
3

0 M

)
(A.11)

where m3 = Y3v/
√

2 is the τ -lepton mass in the absence of the mixing with the heavy fermion, and

m′
3 ≡ Y ′

3v/
√

2. One can diagonalize the mass matrix M with left and right unitary transformations,

with angles θL and θR, respectively, as

Md = U†
LMUR, UL/R =

(
sin θL/R cos θL/R

− cos θL/R sin θL

)
. (A.12)

In the limit M � m3,m
′
3 we get

sin θL ' m′
3

M

[
1 +

m2
3

M2
+ · · ·

]
, sin θR ' m3m

′
3

M2

[
1 +

m2
3 −m′2

3

M2
+ · · ·

]
. (A.13)

As a consequence of the mixing the mass eigenfunctions are shifted as

τR → τR +
m3m

′
3

M2
ER, ER → ER − m3m

′
3

M2
τR. (A.14a)

τL → τL +
m′

3

M
EL, EL → EL − m′

3

M
τL. (A.14b)

and the mass eigenvalues as

m3 → mτ = m3

[
1 − m′2

3

2M2
+ · · ·

]
, M →M

[
1 +

m′2
3

2M2
+ · · ·

]
(A.15)

by which the fermion E decays as E → Hτ , as well as to leptons and gauge bosons through the

mixing with τL and τR, as E → Wντ or E → τZ, τγ. These decays prevent the heavy fermion from

overclosing the Universe.
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B Baryon isocurvature perturbations

Baryon isocurvature perturbations can be generated by the presence of strong gauge fields [81]. To

be conservative, in this section we will consider the case where the generated gauge fields are as

strong as possible: where one neglects the backreaction from the fermionic Schwinger currents (the

backreactionless case). Borrowing the notation from [81], we have in our case for the symmetric and

antisymmetric combinations, S(k) = (|A+(k)|2 + |A−(k)|2)/2 and A(k) = (|A+(k)|2 − |A−(k)|2)/2.

For the case of maximally helical gauge fields one obtains

S(k) ' A(k) ' |A+|2
2

' 1

4kλ

(
k

kλ

)− 1
2 e2πξ

ξ
exp

(
−4

√
k

kλ

)
, (B.1)

where we are choosing e.g. A+(k) as the amplified mode, and (4.23) was used together with the

definition kλ = aEHE/2ξ ' 1012 GeV, which corresponds to the spectrum peak of A+. Writing

B2 ' 2ρB in term of kλ, and using (4.27a), we obtain a relation for the spectrum given by [81]

A(k) ' 1024π2

315

B2

k5λ

(
k

kλ

)− 1
2

exp

(
−4

√
k

kλ

)
. (B.2)

It may be interesting to note that in these terms, the magnetic field and the helicity are written as

B2 ' 1

4π2

315

1024

e2πξ

2ξ
k4λ, H ' 2

7

B2

kλ
. (B.3)

From this we can estimate the baryon isocurvature perturbation at the BBN as

S2
B,BBN ' 7

√
π

20
√

3

(
kd
kλ

)3(
kλ

kEWPT
λ

)3

+ O
(
kd
kλ

)5

, (B.4)

where kd is the comoving neutron diffusion scale at the BBN, k−1
d ' 0.0025 pc. From the expansion

ratio kd/kλ ∼ 10−42, we can see that Eq. (B.4) is suppressed provided that kλ/k
EWPT
λ is not too big,

which we will next demonstrate.

Eq. (B.4) should be evaluated at the time of baryon asymmetry production at TEWPT ' 135 GeV,

hence the rescaling for the wave number kλ. At first glance, this rescaling could appear to be exactly

one since kλ is comoving, but because of the peculiar dynamic of the plasma decribed by the MHD

equations, comoving quantities do scale with the expansion of the Universe after reheating, as already

stated in section 7.1.

We shall now study how the comoving coherence length scales until the EWPT. Every plasma

quantity (field amplitude, correlation length, wave number) evolves adiabatically from reheating until

the eddy turnover temperature Tt ' vTrh where v is the typical bulk velocity of the plasma. For T < Tt
the scaling regime depends on the value of the electric Reynolds number at the end of inflation. The

velocity of the plasma is

Re < 1 ⇒ v ≈ 2.9 · 10−10 `BY
ρBY

H3
E

(
HE

1013 GeV

) 3
2
(
Trh
T ins
rh

)
(B.5a)

Re > 1 ⇒ v ≈ 5.3 · 10−6

√
ρBY

H2
E

(
HE

1013 GeV

)(
Trh
T ins
rh

) 2
3

(B.5b)

50



For Rrh
e < 1, as Re grows with time, we eventually reach the point where it becomes one, at temper-

ature [20]

T1 ≡ T (Re = 1) = Rrh
e Tt. (B.6)

Once Re > 1, the scaling regimes for comoving quantities become (7.4b) until recombination.

In summary, the magnetic energy and correlation length scale adiabatically until the eddy turnover

temperature Tt, then they scale according to (7.4a) until Re = 1, where the regime changes to

(7.4b) until recombination. However we compute the scaling only until TEWPT = 135 GeV since the

comparison with the neutron diffusion scale must be done at the EWPT temperature [81]. This yields

a total dilution factor for comoving quantities as

BEWPT
Y

Brh
Y

=

(
TEWPT

T1

) 1
3
(
T1
Tt

) 1
2

, (B.7a)

`EWPT
BY

`rhBY

=

(
TEWPT

T1

)− 2
3
(
T1
Tt

)−1

. (B.7b)

We stress that Tt and T1 depend on v, which in turn depends on `BY
and ρB . For values of the

parameters space yielding the correct BAU, e.g. for g = 0.01, fφ = 0.15MPl and Trh ' 10−2 T ins
rh (blue

region in Fig. 8) we find that Tt ' 2 · 108 GeV and T1 ' 3 · 107 GeV. Then we get that the comoving

quantities BY and `BY
get scaled between the reheating and EWPT temperatures as

BEWPT
Y

Brh
Y

∼ 10−2,
`EWPT
BY

`rhBY

∼ 104. (B.8)

Going back to the baryon isocurvature perturbation (B.4), we hence have

(
kλ

kEWPT
λ

)3

∝
(
Trh
T ins
rh

)−4

,

(
kλ

kEWPT
λ

)3

∼ 10−13, (B.9)

which therefore get for the observable S2
B,BBN an exceedingly small value. A similar result is obtained

for all allowed values of the parameters (g, fφ, Trh), so for our model the prediction is S2
B,BBN ' 0.

This result also holds for the case where the Schwinger effect is considered, as in this case gauge fields

are much weaker than in the backreactionless case studied above, and so their contribution to S2
B,BBN

is expected to be much smaller.
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Abstract

Previous studies demonstrate that the inflaton, when coupled to the hypercharge Chern-Simons

density, can source an explosive production of helical hypermagnetic fields. Then, in the absence of

fermion production, those fields have the capability of preheating the Universe after inflation and

triggering a successful baryogenesis mechanism at the electroweak phase transition. In the presence

of fermion production however, we expect a strong damping of the gauge fields production from

the fermion backreaction, a phenomenon called Schwinger effect, thus jeopardizing their original

capabilities. Using numerical methods we study the backreaction on the generated gauge fields

and revisit the processes of gauge preheating and baryogenesis in the presence of the Schwinger

effect. We have found that gauge preheating is very unlikely, while still having a sizable window

in the parameter space to achieve the baryon asymmetry of the Universe at the electroweak phase

transition.
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1 Introduction

Cosmological inflation [1–3] is nowadays a well-established paradigm to solve the classical (flatness,

horizon, . . . ) problems of the Standard Cosmological Model, and to generate the primordial density

perturbations giving rise to the present Universe structure. The achievements of cosmological inflation

usually require the presence of one (or several) scalar field –the inflaton– giving rise to physics beyond

the Standard Model (SM) of Particle Physics (BSM). In this way, along with the classical problems of

the SM (hierarchy problem, baryogenesis, strong CP-problem, dark matter,...), cosmological inflation

provides yet another motivation for BSM physics.

Although the existence of a period of cosmological inflation is pretty well stablished by obser-

vational cosmological data [4], there is no consensus on a detailed model. An interesting candidate

for the inflaton is a pseudoscalar field ϕ, denoted in this paper as axionlike particle1, which can then

couple to the Chern-Simons density Fµν F̃
µν of a U(1) gauge field. In this case, and depending on the

size of the coupling of the inflaton to the Chern-Simons term, there can be an explosive production

of helical gauge fields at the end of inflation [7–9]. This exponential production can dominate the

energy density of the Universe during the coherent oscillations of the inflaton around its minimum, a

phenomenon dubbed as gauge preheating [10–12], and lead to a rapid production of inhomogeneities

sourcing a significant gravitational wave background, leading to strong constraints on the inflaton

Chern-Simons coupling from the Planck (and future CMB-S4) limits on the net energy density in

gravitational waves [5, 6].

When the gauge field is identified with the SM hypercharge, Yµ, with strength Yµν , the inflaton

coupling to the Chern-Simons density Yµν Ỹ
µν gives rise to the production of helical hypermagnetic

fields which can then survive until the electroweak phase transition (crossover), and trigger the baryon

asymmetry of the Universe (BAU) [13–18]. However, in the presence of strong gauge fields, light

fermions charged under the gauge group are produced by the backreaction of gauge fields that source

the fermion equations of motion (EoM) [19, 20]. The corresponding currents can then, in turn,

backreact on the produced gauge fields, a phenomenon called Schwinger effect (see e.g. Ref. [21]). The

backreaction of fermion currents on the produced gauge fields acts as a damping force in the explosive

production of helical gauge fields, and many of the conclusions from the gauge field production should

be revised in the presence of the Schwinger effect2, in particular those concerning the preheating

capabilities and the baryogenesis mechanism.

In this paper, we will study the effect of the Schwinger particle production on the helical hyper-

magnetic fields produced at the end of inflation, and in particular its influence on the gauge preheating

efficiency and baryogenesis capability. In order to consider the backreaction of the produced gauge

fields on the inflationary equations of motion and that of the Schwinger effect on the gauge field pro-

duction, we will use numerical methods, in particular, the fourth order Runge-Kutta (RK4) algorithm.

Our numerical results are validated as they overlap with some recent semianalytical methods and the

gradient expansion formalism of Refs. [22–25]. Our general finding is that the gauge field production is

much less explosive than in the absence of the Schwinger effect, which will jeopardize the conclusions

concerning the possibility of gauge preheating, although they leave an open window for baryogenesis.

The contents of this paper are as follows. In Sec. 2 we present the general lines of the model and

the methods we will consider, including the relevant equations of motion in momentum space and

1With an (obvious) abuse of language, we are identifying in this paper axions with axionlike (or pseudoscalar)

particles, which allow a wider choice for inflationary potentials [5, 6].
2One possible way out is if there are no light charged fields when gauge fields are produced, a condition that is not

fulfilled here.
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the observable quantities we will compute. In Sec. 3 we will present numerical results for the gauge

sector assuming the slow roll conditions in the inflaton equations of motion. In order to check the

validity of our approach, numerical results will be compared with some estimates from the literature,

namely the backreactionless solution, the Schwinger equilibrium and maximal estimates as well as

the gradient expansion formalism where dynamical results are obtained analytically and numerically

in configuration space. Some details about the numerical methods will be explained in App. A. In

Sec. 4 we will perform the full numerical calculation for two kinds of models that predict cosmological

observables in agreement with the observed values: the α-attractor models and the quartic hilltop

models. In all cases the gauge preheating efficiency does not seem good enough to ensure complete

reheating, which has to be completed by other perturbative or nonperturbative mechanisms. Moreover

we have reanalyzed the baryogenesis predictions in the presence of the Schwinger effect and found a

sizable window where the BAU is correctly predicted. Again, some details about the numerical methods

we used are described in App. B. Finally, our conclusions are presented in Sec. 5.

2 The model

The model action is given by

S =

∫
d4x

[√−g
(
1

2
∂µϕ∂

µϕ− 1

4
YµνY

µν − V (ϕ)

)
− ϕ

4fφ
Yµν Ỹ

µν

]
+

∫
d4x

√−g i ψ̄�Dψ, (2.1)

where ϕ is the pseudoscalar inflaton, V the inflaton potential, and fφ provides the inverse coupling of

the inflaton to the Chern-Simons term. Y µν is the field strength of the hypercharge gauge field Y µ

and Ỹ µν = 1
2ϵ
µνρσYρσ its dual tensor. We also have included the interaction of fermionic currents,

corresponding to hypercharge QY fermions, with the hypercharge fields (encoded in the covariant

derivative Dµ ≡ ∂µ − g′QYAµ). All gauge field quantities are U(1) hypercharge fields, i.e. AY , EY ,

BY , etc. To make the notation lighter, we drop the index Y as there will be no ordinary electromagnetic

fields in this work.

2.1 Equations of motion

Variation of the action with respect to ϕ and the hypercharge gauge field Aµ = (A0,A) leads to the

gauge equations of motion in the radiation gauge, A0 = 0 and ∇ ·A = 0,

ϕ̈+ 3Hϕ̇+ V ′(ϕ) =
E ·B
a4fφ

, (2.2a)

(
∂2

∂τ2
−∇2 − a ϕ̇

fφ
∇×

)
A = J , (2.2b)

where we have used Yµν Ỹ
µν = −4E · B and Jµ = (ρc,J) = ig′QY ψ̄γ

µψ. We assume that initially

the Universe does not contain any asymmetry of charged particles and that these ones are produced

only later in particle-antiparticle pairs. Therefore, we set the charge density to zero, ρc = 0. Finally,

the current J is given by the Ohm’s law

J = σE = −σ∂A
∂τ

, (2.3)

where σ is the generalized conductivity, which will be defined later.

As it can be seen from the above system, we use cosmic time t for the inflaton dependence and

the conformal time τ , defined by gµν = a2(τ) ηµν , for the gauge field dependence. We denote the

4



derivative with respect to conformal time τ with a prime and the derivative with respect to the cosmic

time t with a dot, e.g. a′ = da/dτ and ȧ = da/dt. The Hubble parameter is defined as H = ȧ(t)/a(t)

where a is the scale factor. We assume a homogeneous inflaton with only zero mode, ϕ(t,x) = ϕ(t).

We now quantize the gauge field A in momentum space

A(τ,x) =
∑

λ=±

∫
d3k

(2π)3
[
ϵλ(k) aλ(k)Aλ(τ,k) e

ik·x + h.c.
]
, (2.4)

where λ is the photon polarization, and aλ(k) (a
†
λ(k)) are annihilation (creation) operators that fulfill

the canonical commutation relations

[aλ(k), a
†
λ′(k

′)] = (2π)3δλλ′δ(3)(k − k′) . (2.5)

The polarization vectors ϵλ(k) satisfy the conditions3

k · ϵλ(k) = 0 , k × ϵλ(k) = −iλk ϵλ(k) ,
ϵ∗λ′(k) · ϵλ(k) = δλλ′ , ϵ∗λ(k) = ϵλ(−k) ,

(2.6)

where k ≡ |k|. Therefore, the equation of motion for the gauge modes yields

A′′
λ + σA′

λ + k

(
k − λ

a ϕ̇

fφ

)
Aλ = 0 . (2.7)

In some special cases (σ = 0 and slow-roll inflation), this equation can be solved analytically, and we

will do it in Sec. 3.1. In the general case, we will solve it using numerical methods.

2.2 Observable quantities

Once we obtain a solution to the modes Aλ, we can compute the (hyper)electromagnetic energy

densities as

ρE ≡ 1

a4

∫ kc

kmin

dk
k2

4π2

(
|A′

+|2 + |A′
−|2
)
, (2.8a)

ρB ≡ 1

a4

∫ kc

kmin

dk
k4

4π2

(
|A+|2 + |A−|2

)
. (2.8b)

The upper integration limit comes because subhorizon modes have an oscillatory behavior and should

be regarded as quantum fluctuations. Therefore, such modes do not contribute to the above classical

observables and are excluded from the integration. More details and precise value of kc will be given

in Sec. 2.3. For the lower integration limit kmin, see Eq. (A.5).

In this work, we will also make use of the (hyper)magnetic helicity and its derivative, defined as

H ≡ lim
V→∞

1

V

∫

V

d3x
⟨A ·B⟩
a3

=
1

a3

∫ kc

kmin

dk
k3

2π2

(
|A+|2 − |A−|2

)
, (2.9a)

G ≡ 1

2a

dH
dτ

= − lim
V→∞

1

V

∫

V

d3x
⟨E ·B⟩
a4

. (2.9b)

3A simple realization can be given in terms of a real basis with the orthonormal vectors (k/|k|, ei), (i = 1, 2), such

that k · ei = e1 · e2 = 0 and ei · ei = 1, with ϵλ ≡ (e1 + iλe2)/
√
2, from where identities (2.6) follow.
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In the case of one Dirac fermion with massm and hypercharge QY , the conductivity can be written

as4 [19]

σ =
|g′QY |3
6π2

a

H

√
2ρB coth

(
π

√
ρB
ρE

)
exp

{
− πm2

√
2ρE |g′QY |

}
, (2.10)

where g′ ≃ 0.4 is computed at the characteristic scale µ ≃ (⟨E⟩2 + ⟨B⟩2)1/4 where the Schwinger

effect takes place [24]. This estimation is valid in the case of collinear electric and magnetic fields, an

assumption that we have numerically checked by verifying that

cos θ ≡ |G|
2
√
ρEρB

≃ 1, (2.11)

where θ is the spatial angle between E and B.

Moreover, the massless hypercharged fermions that are continuously produced during inflation

have an energy density given by

ρψ = lim
V→∞

σ

V

∫

V

d3x
⟨A ·E⟩
a4

=
σ

a4

∫ kc

kmin

dk
k2

2π2

d

dτ

(
|A+|2 + |A−|2

)
(2.12)

Notice that the observable quantities ρE , ρB , ρψ, H and G are physical5, while the fields A, E and B

as well as the conductivity σ and current J are comoving.

Concerning the Higgs vacuum expectation value, there are two possibilities during the inflationary

period:

i) The first possibility, which we will consider throughout this paper, is that ⟨h⟩ = 0, and so the

electroweak symmetry is unbroken during the inflationary period. In order to ensure unbroken

electroweak symmetry and hence massless SM fermions, which all contribute to the conductivity

(2.10), we assume that the SM Higgs field h remains stabilized at the origin in field space by

a large mass term throughout the inflationary period. Such a large mass can, e.g., be induced

by a nonminimal coupling to the Ricci curvature scalar as L = 1
2ξh

2R with ξ > 3/16 (see

e.g. Ref. [26]). Hence, we get

σ ≃ 41 g′3

72π2

a

H

√
2ρB coth

(
π

√
ρB
ρE

)
. (2.13)

ii) The second possibility is that the electroweak symmetry is broken during the inflationary period.

In this case after ∆N e-folds of inflation, there is a Gaussian distribution of values of the

Higgs field with zero mean and variance ⟨h2⟩ = H2∆N/(4π2) with probability P (h,∆N) ∝
exp(− 1

2
h2

⟨h2⟩ ) dominated by the values h ≲
√

⟨h2⟩, see Ref. [26]6. In this case, the electroweak

symmetry is broken and the hypercharge field strength Yµν in Eq. (2.1) is projected onto the

electromagnetic field strength Fµν with a coupling to the inflaton given by fφ/ cos
2 θW where θW

4As the conductivity σ relates J and E in (2.3), it is a comoving quantity, i.e. it scales with the Universe expansion.

Our definition differs from the one in [23, 24] where the authors used a physical conductivity that we will denote σ̂ in

this paper, their relation being σ = a σ̂.
5They relate to the comoving ones ρc

E
, ρc

B
, Hc, and Gc by the relations ρc

B,E
= a4ρB,E , Hc = a3H, Gc = a4G.

6The SM Higgs potential is still unstable at a value of the Higgs field h = hI ≃ 1011 GeV and the condition for

P (hI ,∆N) < e−3∆N (so that it is unlikely to find the Higgs away from its EW vacuum in any of the e3∆N causally

disconnected regions formed during inflation) implies HE <
√

2/3πhI/∆N , a condition that is not fulfilled by any of

the models of inflation we have considered. Therefore this possibility would require stabilization of the Higgs potential

by some new physics.
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is the electroweak angle. Now the conductivity for the hypermagnetic field in Eq. (2.10) should

be replaced by a similar expression for the magnetic field, with the replacement |g′QY | → |eQ|,
where e = gg′/

√
g2 + g′2 and Q is the fermion electric charge. The condition for a fermion f

to contribute to the magnetic conductivity πm2
f <

√
2ρE |eQf | translates into the condition, for

the fermion Yukawa coupling,

Yf ≲ 0.45
( ρE
H4

)1/4√
|Qf |, (2.14)

and we have computed all couplings at the characteristic scale µ ≃ (⟨E⟩2 + ⟨B⟩2)1/4 where the

Schwinger effect takes place. If the three generations of fermions satisfy the above condition then

the conductivity for the magnetic field is given by Eq. (2.13) with the replacement 41g′3

72π2 → e3

π2 .

We have checked that, in this case, the results for fφ ≲ 0.2Mpl are consistent with all three

generation fermions contributing to the magnetic conductivity. For fφ ≳ 0.2Mpl only the top

quark does not contribute. Given that 41g′3/72 ≃ 0.37 while e3 ≃ 0.36, at the scales where the

Schwinger effect takes place, we have found that the results in this second case are qualitatively

similar to those for the previous case, which will be worked out in detail in this paper.

Considering then the case i) above, the conductivity (2.13) yields a nontrivial integro-differential

system as the damping term grows with the magnetic energy and hence backreacts on the amount of

produced electric/magnetic fields. We aim to solve this setup of the Schwinger effect numerically. In

the next sections we will consider specific cases where this system can be further simplified.

2.3 The gauge vacuum

At very early times, when |aϕ̇| ≪ kfφ, the modes are in their Bunch-Davies (BD) vacuum, hence

Aλ(τ, k) =
1√
2k

e−ikτ (τ → −∞). (2.15)

Initially, we can consider all the modes in the BD vacuum (which would be possible by initializing the

numerical simulation such that a0 ≪ k0/H0). In that case, since |A+| = |A−|, the fields E and B are

plane waves perpendicular to each other, as G = 0 in (2.11) yields cos θ = 0. Therefore, there is no

Schwinger effect and σ = 0.

It has recently been shown that in the presence of the conductivity σ, the BD vacuum amplitude

of the modes that are still in the vacuum get damped by the ones that left it [23]. Indeed, consider we

are at a time a∗ where modes k > k∗ are still in the BD vacuum, while modes k < k∗ were amplified

by both tachyonic and parametric instabilities from Eq. (2.7). Then, the equation of motion for modes

such that |a∗ϕ̇(τ∗)| ≪ kfφ does not reduce to a plane wave in the presence of a non-zero σ, but instead

to A′′
λ + σA′

λ + k2Aλ = 0, and Eq. (2.15) is not a solution anymore. To derive the generalized BD

vacuum, we write the gauge equation of motion (2.7) in cosmic time:

Äλ + (σ̂ +H) Ȧλ +
k

a

(
k

a
− λ

ϕ̇

fφ

)
Aλ = 0, (2.16)

where we used the identity a−2A′′
λ = Äλ + HȦλ, and perform the transformation Aλ =

√
∆Aλ

with [23]

∆(t) = exp

{
−
∫ t

−∞

σ̂(t′) dt′
}
. (2.17)
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We recall that we have defined σ̂ = σ/a as the physical conductivity in footnote 4. The above equation

hence becomes

A′′
λ +

[
k

a

(
k

a
− λ

ϕ̇

fφ

)
−

˙̂σ

2
− σ̂2

4
− Hσ̂

2

]
a2A = 0, (2.18)

where we used the fact that ∆̇(t) = −σ̂(t)∆(t). A mode crosses the horizon when the expression in

the square brackets vanishes for the first time at least for one polarization, at k = kc. The modes in

the vacuum are then characterized by k ≫ kc. This yields the momentum of the mode that crosses

the horizon at time t, namely the cutoff of the integrals:

kc =

∣∣∣∣∣
aϕ̇

2fφ

∣∣∣∣∣+

√√√√
(
aϕ̇

2fφ

)2

+
a2

2

[
˙̂σ + σ̂

(
σ̂

2
+H

)]
. (2.19)

Deep inside the horizon, when the first term in square brackets of (2.18) dominates, the solution

must satisfy the BD condition (2.15). As we have seen, in the presence of finite conductivity, this

equation does not fully describe the gauge-field mode function inside the horizon, as the damped BD

condition includes an exponential damping factor

Aλ(τ, k) =

√
∆(t)

2k
e−ikτ (τ → −∞). (2.20)

The bottom line of this section is that the modes still in their BD vacuum see their amplitudes

damped because of the effect of the modes that left their vacuum earlier and participate in the

equations of motion (2.2a) and (2.7). The parameter ∆ was first introduced in the context of the

gradient expansion formalism in Ref. [23], where it was dynamically solved, while in Ref. [24] it was also

considered as a free parameter and validated the corresponding procedure by numerical calculations.

In order to compare with results from the gradient expansion formalism in configuration space, we

will also both compute ∆ numerically and consider it as a free parameter, although our final results

will be based upon the dynamical calculation of ∆.

3 Slow Roll Analysis

The slow-roll inflation paradigm has been used by many authors to compute the amount of electromag-

netic energy density [7, 27, 28], or baryogenesis through helicity [8, 9, 16, 18] at the end of inflation,

with or without taking into account the Schwinger effect. Here we aim to validate our numerical

results by comparison with the known analytical results at the end of inflation.

In this section we will take ϕ as a slowly rolling inflaton field such that ϕ̈ ≃ 0, 3Hϕ̇ ≃ −V ′(ϕ),

and so we can consider ϕ̇ and H = HE as constant. Doing so, we are neglecting the gauge field

backreaction in the right-hand side of Eq. (2.2a), a hypothesis that we have consistently checked a

posteriori. The results of this section will be model independent, within the hypothesis of the slow

roll approximation.

3.1 Absence of Schwinger effect

Here we are assuming there is no Schwinger effect7, i.e. σ = 0, hence we can rewrite (2.7) as

A′′
λ + k

(
k + λ

2ξ

τ

)
Aλ = 0, (3.1)

7This condition should be considered as being fulfilled by some physical systems, as e.g. systems with no massless

fermions, more than as an approximation to the full (more realistic) case.
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where, following the slow roll equations,

ξ = − ϕ̇

2HEfφ
(3.2)

is a constant. Since we are in de Sitter space, we can use the scale factor definition a = −(Hτ)−1 and

solve (3.1) asymptotically. At early time, when |kτ | ≫ 2ξ, the modes are in their BD vacuum given

by (2.15), as here ∆ = 1. When |kτ | ∼ 2ξ, one of the modes develops both parametric and tachyonic

instabilities leading to exponential growth while the other stays in the vacuum. During the last e-folds

of inflation, i.e. |kτ | ≪ 2ξ, the growing mode has the solution [8, 27]

Aλ ≃ 1√
2k

(
k

2ξaEHE

) 1
4

exp

{
πξ − 2

√
2ξk

aEHE

}
, (3.3)

where aE and HE are, respectively, the scale factor and the Hubble parameter at the end of inflation.

Here, as we assume a slow roll regime, we consider HE constant and we take the convention aE = 1.

Using (2.8) and (2.9) we can compute all electromagnetic quantities:

ρE ≃ 63

216
H4
E

π2ξ3
e2πξ, ρB ≃ 315

218
H4
E

π2ξ5
e2πξ, H ≃ 45

215
H3
E

π2ξ4
e2πξ, G ≃ 135

216
H4
E

π2ξ4
e2πξ. (3.4)

These results are only valid when the absence of backreaction on the inflaton equation of motion (2.2a)

is guaranteed, hence when |G/V ′(ϕ)| ≪ fφ. This model-dependent condition puts a lower bound on

the parameter fφ or, equivalently, a higher bound on ξ. Using the slow roll equations and the definition

of the slow roll parameters, this parameter can be written as

ξ =
Mpl

fφ

√
ϵ

2
, (3.5)

where ϵ = (M2
pl/2) (V

′/V )2. Therefore, at the end of inflation, where by definition ϵ = 1, one has

ξ = Mpl/
√
2fφ, and the no backreaction condition in Eq. (2.2) provides the bound ξ < 5.73 (or

equivalently fφ > 0.12Mpl). In Fig. 1 we show, with orange lines, the quantities ρE , ρB , H and G
evaluated at the end of inflation obtained from the analytical backreactionless solutions from Eqs. (3.4),

while the blue dots are the numerical solutions, which correspond to the case σ = 0 (no Schwinger

effect) and correspondingly ∆ = 1. We have used a Runge-Kutta method which is explained in App. A.

3.2 Presence of Schwinger effect

The Schwinger effect is taken into account by means of the conductivity σ in Eq. (2.7), as given by

Eq. (2.10) [19]. The growth of σ with time then backreacts on the gauge field, as the damping term

grows in its differential equation. We will compare our numerical calculations with three analytical

(or semianalytical) results: the Schwinger maximal and equilibrium estimates [19, 24], as well as the

gradient expansion formalism [22–24]. From the numerical point of view however, we aim to solve

Eq. (2.7) with σ computed at each time step using (2.13). The details about the numerics will be

displayed in Sec. 3.3.

Schwinger equilibrium estimate

In this case, the backreaction of the chiral fermions on the gauge fields is taken into account by just

replacing the parameter ξ with the effective one [19]

ξeff = ξ − 41 g′3

144π2
coth

(
π

√
ρB
ρE

) √
2ρE
H2
E

, (3.6)
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Figure 1: Electric ρE and magnetic ρB energy densities, and the helicity H and its derivative G, at the end

of inflation (i.e. for ϵ(aE) = 1), in units of HE, as functions of the coupling fφ assuming ∆ constant. We see

the plots confirm the result from Fig. 1 of [24]. Here, we also assumed ξ constant.

in the backreactionless solutions (3.4). This amounts to solving

63

215π2

e2πξeq

ξ3eq
=

(
144π2

41 g′3

)2

(ξ − ξeq)
2 tanh2

(√
5

4

π

ξeq

)
, (3.7)

which provides the function ξeq = ξeq(ξ) that we plug in (3.4) instead of the bare ξ to obtain the

quantities ρEeq, ρ
B
eq, Heq and Geq. These equilibrium estimates are shown with a purple line in the plots

of Fig. 1.

Schwinger maximal estimate

In this case, we assume the exponential behaviors of the backreactionless solutions to be valid until

they saturate the maximal value that we will display hereafter. We numerically determine the value

of crossing, which happens for ξ ≃ 4.4-4.7 depending on each quantity.

The maximum helicity density can be estimated as the solution of [19]

|E|2 + |B|2 = ξeff |E| |B|. (3.8)

This replacement yields an equation relating the |E| and |B| fields that can be solved analytically. We

then choose, as definition of our maximal estimate, the solution (|E|, |B|) of (3.8) that maximizes the
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product |E| · |B| 8. This yields for ξ ≫ 1

ρEmax ≃ 8

9

(
72π2

41 g′3

)2

ξ2H4
E , (3.9a)

ρBmax ≃ 8

81

(
72π2

41 g′3

)2

ξ4H4
E , (3.9b)

Hmax =
2Gmax

3HE
≃ 32

81

(
72π2

41 g′3

)2

ξ3H3
E . (3.9c)

The maximal estimates for the quantities ρEmax, ρ
B
max, Hmax and Gmax are shown with a pink line

in the plots of Fig. 1.

Gradient expansion formalism

This method was introduced in Refs. [22–24] and transforms the EoM for the vector field A into EoM

for observable quantities, in particular the electric E and magnetic B fields. As the spatial gradients

in the EoM do always appear as rotE and rotB, the EoM can be written as an infinite series in

terms of the bilinears E(n) = ⟨E · rotnE⟩/an, G(n) = ⟨E · rotnB⟩/an and B(n) = ⟨B · rotnB⟩/an,
with n = 0, 1, . . . . In this way the coupled system of EoM for the fields E and B transforms into

a system of coupled differential equations for the quantities E(n), B(n) and G(n). This system is not

block diagonal in the space of the n index so that the system has to be truncated to find solutions.

Moreover, the parameter ∆(t) in Eq. (2.17), which suppresses the gauge-field amplitude on small

scales depends on the conductivity at all times t′ < t. So, a precise determination of ∆(t) would

require a complete analytical solution of the infinite-dimensional system of equations. While ∆ was

dynamically computed in Ref. [23], for the sake of simplicity and generality, it was considered as a free

parameter in Ref. [24] and fixed to the values ∆ = 1, 10−2, 10−4, 10−6. In our numerical approach

we will consider ∆ as a function of the conductivity σ, as the initial condition for E and B are plane

waves, such that E ·B = 0 and therefore initially σ = 0 and so ∆ = 1. However, as time is evolving

E and B will become collinear, and a nonvanishing conductivity will appear, as well as the function

∆(t) < 1. In order to compare our numerical results with those from Ref. [24], we also will eventually

enforce ∆ to be a constant in our code. Upon considering a constant value of ∆, our results will agree

pretty well with those obtained in the gradient expansion formalism, see Fig. 1. In the more realistic

cases where we just compute the value of ∆(t), we will see that at the beginning t = t0, just very deep

inside the inflationary period, ∆(t0) = 1, while the value of ∆ will decrease very fast and at the end

of inflation t = tE , ∆(tE) ≪ 1.

3.3 Numerical results at the end of inflation

We will find it more convenient to change the variable from the time t to the scale factor a. The gauge

field equation of motion (2.7) then becomes

∂2Aλ
∂a2

+
1

a

(
2 +

σ

aHE

)
∂Aλ
∂a

+
k

a3HE

(
k

aHE
− 2λξ

)
Aλ = 0. (3.10)

We recall that, as we are considering the slow roll regime in this section, we do not need to solve the

equation of motion for ϕ.

8Notice that our definition of maximal solution departs from that given in Refs. [19, 24], where the fields |E| and |B|
are separately maximized, while we are maximizing the product |E| · |B|, the relevant quantity for the baryon asymmetry

generation.
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The Bunch-Davis solutions can now be written as

Aλ(a, k) =

√
∆(a)

2k
eik/aHE

∂Aλ
∂a

(a, k) =

√
∆(a)

a2HE

(
−i
√
k

2
− σ

2

1√
2k

)
eik/aHE

(a→ 0), (3.11)

with

∆(a) = exp

{
−
∫ a

a0

σ(a′)

a′2HE
da′
}
. (3.12)

The technical details of the numerical simulations for solving Eq. (3.10), subject to the boundary

conditions (3.11), can be found in App. A. We display in Fig. 2 the spectra of all the observable

quantities in order to see how the BD vacuum is dominating the spectra for large k and how the cutoff

kc(a), given by (2.19), efficiently removes that part of the integration. The difference between the BD

vacuum and the damped BD vacuum is also clear, as the first goes like k3 whereas the second goes like

∆(a)k3 with ∆ decreasing with time. Hence the asymptotic behaviors are not superimposed since ∆

changes. Finally, we also see explicitly how the growth of ρE and ρB with the scale factor a is due to

the increase in amplitude of the spectrum hump and its shift to larger values of k. For this illustrative

purpose we used a constant value of ξ. Here we have fixed fφ = 0.1Mpl, while for other values of this

parameter the plots are similar.

Before moving to the full numerical results, we will compare our slow roll based inflaton numerical

results with the recent literature on the subject.

Figure 2: Spectra of the magnetic energy (top left), electric energy (bottom left), helicity (top right) and

its derivative (bottom right), i.e. the integrands of (2.8) and (2.9), for different values of a during inflation

simulation. Here we used variable σ(a) and ∆(a) with constant ξ. The color matching dashed vertical lines

show the cutoff values kc(a) computed from (2.19).
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3.3.1 Constant ∆ and ξ approximation

We will first assume that the parameters ∆ and ξ are constants. As we already mentioned, the

parameter ∆ was fixed to constant values in Ref. [24] while ξ, as defined in Eq. (3.2), is often considered

as a constant in the slow roll approximation. In Fig. 1, we displayed several results already present in

the literature that we successfully reproduced with our numerical method. First the backreactionless

case, where there is no conductivity, by simply enforcing σ = 0 (therefore ∆ = 1) in the code. The

data set are displayed in blue and match the corresponding analytical value given by Eq. (3.4). Then,

in order to reproduce results from [24], we considered a non-zero conductivity given by (2.13) while

assuming ∆ constant during inflation, thus making it a free parameter. In Fig. 1, we plot the quantities

ρB , ρE , H and G at the end of inflation for chosen values of ∆. We can see that the results agree well

with those using the gradient expansion formalism in Ref. [24].

3.3.2 Variable ∆ and ξ

The benefit of the slow roll approximation is that the results look “model independent”. However,

the tradeoff comes with the need of having a constant parameter ξ as the slow roll regime implies

an approximately constant ϕ̇. Besides, we know that this parameter can also be expressed in terms

of the slow roll parameter ϵ (see Eq. (3.5)), which is indeed small and constant during inflation but

then quickly becomes unity during the last e-folds. We also know that the modes produced during

the last e-folds are the ones that contribute the most to the integrals (2.8) and (2.9), as all the modes

previously generated get washed out by the Universe expansion.

All these observations lead us to conclude that the most important contribution to the quantities

ρE , ρB , H and G is taking place during an epoch when the constant ξ approximation loses its relevance.

Hence, in this section, we will instead specify an inflation model, namely the Starobinsky potential,

and make its study in the slow roll regime with a function ξ(a) that can be obtained from the model.

We have chosen in this section the Starobinsky potential as it provides a realistic model of inflation,

and will be a particular case of a more general class of models we will consider to make predictions

using the full solution of the system. The purpose of this section will thus be to assess the goodness

of the slow roll approximation when computing the full solution to the system (2.2).

The Starobinsky potential is given by

V = Λ4

[
1− exp

{
−
√

2

3

|ϕ|
Mpl

}]2
. (3.13)

Using the slow roll regime, the inflaton field ϕ is given by

√
2

3

ϕ(a)

Mpl
= − log

(aE
a

) 4
3 −W−1

[
−βe−β

(aE
a

)− 4
3

]
− β + log β, β = 1 +

2√
3

(3.14)

where Wn is the nth branch of the Lambert function. The value of the function ξ is then given by

ξ(a) =

√
2

3

Mpl

fφ

1

exp
[√

2
3
φ(a)
Mpl

]
− 1

. (3.15)

In Fig. 3, we display in blue results for the Starobinsky model, for various values of ϵ, when σ and

∆ vary dynamically. Although the slow roll approximation loses its relevance for values of ϵ closer to

1 (an issue we address in the next section), we already see a difference with the plots in Fig. 1. This

is because, no matter the value of the initial time, the function ∆(a) rapidly goes to extremely small
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values, thus killing the BD modes that would have been amplified at the very end of inflation and that

would have contributed the most to the integrals (2.8) and (2.9). With a constant ∆, this suppression

is less effective and the tachyonic amplification yields higher energy densities and helicity.

Figure 3: Comparison between the slow roll approximation and the full solution for the Starobinsky model.

The analytical estimates are given for ϵ = 1. As expected, the slow roll computation diverges from the full

solution as inflation is nearing the end, since the slow roll approximation is only valid in the regime ϵ ≪ 1.

Hence the slow roll computation overshoots the value of all quantities, closer to the value given by the Schwinger

equilibrium estimate for fφ ≲ 0.05Mpl. As expected, we also have compared both analysis, slow roll and full

solution, for values of a such that ϵ(a) ≪ 1 (in particular ϵ = 10−1, 10−2, 10−3) and found good agreement.

4 Full Analysis

In this section, we are not using the slow roll hypothesis for the inflaton equation of motion and

consider the full solution to the system (2.2) in specific models of inflation. We will choose a set of

inflationary models that are well known to be in agreement with all cosmological constraints. Also,

we do not assume any peculiar geometry of the Universe.

The equations to be solved during inflation are the system (2.2) written in terms of the variable a.

Unlike in the previous section, the current change of variables must take into account that the Hubble

parameter is not constant, but moreover we have da
dt = ȧ = aH, and we will define the auxiliary

quantity F as

F = − a

H

dH

da
= − a

2H2

dH2

da
. (4.1)
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We will relate it to the Friedmann equations

H2 =
ρ

3M2
pl

, (4.2a)

ä

a
= −3p+ ρ

6M2
p

, (4.2b)

which combine themselves into

a

2

dH2

da
=
dH

dt
=
ä

a
−H2 = −p+ ρ

2M2
p

, (4.3)

where the total energy density and pressure are

ρ =
1

2
ϕ̇2 + V + ρEM + ρψ, (4.4a)

p =
1

2
ϕ̇2 − V +

ρEM

3
+
ρψ
3
. (4.4b)

Hence we have

H2F = −a
2

dH2

da
=

1

M2
pl

(
1

2
ϕ̇2 +

2

3
ρEM +

2

3
ρψ

)
. (4.5)

and the system (2.2) becomes

d2ϕ

da2
+

4−F
a

dϕ

da
+
V ′(ϕ)

a2H2
+

G
a2H2fφ

= 0 (4.6a)

d2Aλ
da2

+
1

a

(
2−F +

σ

aH

) dAλ
da

+
k

a2H

(
k

a2H
− λ

fφ

dϕ

da

)
Aλ = 0. (4.6b)

The Hubble parameter can be computed from the Friedmann equation (4.2a), where ρ is given

by (4.4a). This way, we can compute the value of H and F at each time step recursively to feed

the equations of motion, like we already do for σ and G. The BD vacuum modes are identical to

the previous case, see Eqs. (3.11). Finally, for comparison purposes, we can define a generalized time

dependent instability parameter ξ(a) as

ξ(a) = − a

2fφ

dϕ

da
(4.7)

such that it corresponds to the definition (3.2). The simulations show that this parameter, obtained

from full solution computation, significantly differs from the slow roll one at the very end of inflation.

4.1 Full numerical results at the end of inflation

In this subsection we will compare our results at the end of inflation, where we are making a full nu-

merical analysis of the EoM, with those obtained using the slow roll approximation for the inflationary

potential. For the sake of comparison we will concentrate on the Starobinsky model given by (3.13).

In this current framework, we see in Fig. 3 that the four studied quantities, namely ρB , ρE , H and G,
are much closer to the Schwinger equilibrium estimate at the end of inflation.

We present in Fig. 3 the values of the physical observables evaluated at various stages of inflation,

i.e. various values of the scale factor a, from ϵ(a) = 10−3 to ϵ(a) = 1, as a function of the coupling fφ
for the Starobinsky model. We superimpose the analytical results from Secs. 3.1 and 3.2, and hence
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the backreactionless solution as well as the Schwinger maximal and equilibrium estimates. From the

plots we see that for fφ ≲ 0.05Mpl the equilibrium estimate is a good approximation, especially for

ρE where the predictions of maximal and equilibrium estimates merge. We also verify that cos θ ≃ 1

hence satisfying the assumption on parallel electric and magnetic fields leading to the conductivity

definition (2.10).

In this setup, our numerical code is computing a value of the conductivity σ and ∆ for each time

step, hence we got the functions σ(a) and ∆(a). The variation and presence of ∆(a) is not without

effect on the final results. Indeed, the smallest (k ≫ HE) modes are the ones that most contribute

to the integrals (2.8) and (2.9). Without the Schwinger effect, these modes are produced last, just

at the end of inflation, and only briefly leave the horizon. They therefore should have a significant

impact on preheating. When the Schwinger effect prevents their generation, by reducing them by a

≪ 1 factor, while they are still in the BD vacuum, we can ask ourselves about the effectiveness of

gauge preheating. It was shown in previous studies of gauge preheating [12] that its efficiency mainly

depends on the electromagnetic energy fraction available at the end of inflation ρEM/ρtot. To shed

light on the last point, we will extend, in the next section, our numerical results beyond the end of

inflation when the inflaton is coherently oscillationg around its potential minimum. We will do that

in a set of particularly interesting phenomenological models that we describe in the next section.

4.2 Inflationary models

We will here introduce two classes of models that all satisfy the cosmological constraints. They should

be considered as a sample of possible models, and they are just chosen for illustrative purposes, as

they do not exhaust by any means the allowed inflationary models.

4.2.1 α-attractor models

The α-attractor potential is given by [29]

Vα(ϕ) = Λ4
α

[
1− exp

{
−
√

2

3α

|ϕ|
Mpl

}]2
. (4.8)

Setting α = 1 yields the R2 model or Starobinsky potential (3.13). To make the comparison interesting,

we choose to have 1 ≤ α ≤ 100, where cosmological observables are correctly reproduced. In the slow

roll approximation, the field value at the end of inflation is

ϕE =

√
3α

2
Mpl log

(
1 +

2√
3α

)
. (4.9)

We can readily compute ϕ∗, and evaluate the slow roll parameters N∗ = 60 e-folds before the

end of inflation. The slow roll parameters and the cosmic observables are in agreement with the

cosmological contraints for the range

1 ⩽ α ≲ 100. (4.10)

In particular, for α = 1 (100) we get

ϵ∗ ≃ 0.00019 (0.00387), η∗ ≃ −0.0159 (−0.00331)

ns ≃ 0.967 (0.97), r∗ ≃ 0.003 (0.062), HE ≃ 0.82 (1.13) · 1013 GeV.
(4.11)

in agreement with the observed values [4]

nobs
s ≃ 0.9649± 0.0042, robs∗ ≲ 0.06, Hobs

∗ ≲ 6 · 1013 GeV (95%CL). (4.12)
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Using the observed value of As from Ref. [4], Aobs
s = 2.2 · 10−9, we fix the vacuum energy. The

result depends on α and is approximately given by Λα ≃ 3.4 · 10−3 α1/5Mpl. We then obtain the

values Λ1 = 3.152 · 10−3Mpl and Λ100 = 8.313 · 10−3Mpl.

Figure 4: Inflaton kinetic and potential energy density, as well as electric, magnetic and fermion energy

density ratios to the initial total energy density of the Universe for the α-attractor models with α = 1 (upper

panels) and α = 100 (lower panels). The vertical gray lines display the value a for which ϵ(a) = 1 and the

dashed line shows the expected scaling of the dominant sector.

4.2.2 Hilltop quartic models

The hilltop model potential is given by [30]

Vh(ϕ) = Λ4
h

[
1−

(
ϕ

µ

)p]2
. (4.13)

The case p = 4 can be compatible with the Planck measurements. There are two ways for the field to

relax to the minimum at ϕ = µ, with different initial conditions:

1. ϕ∗ > ϕE : In this case the field ϕ > µ is relaxing in a potential region that can be approximated

by Vh ∼ ϕ8, and thus, the slow roll conditions are not met, as chaotic inflation is ruled out.

2. ϕ∗ < ϕE : In this case the field ϕ < µ is relaxing in a flat potential region and the model predicts

correct inflationary observables for a large range of the parameter. In this work, we will study

this option.
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The slow roll parameters and the cosmic observables are in agreement with the contraints for the

range

10Mpl ≲ µ ≲ 50Mpl. (4.14)

We fix the vacuum energy from the constraint on the amplitude of scalar fluctuations. The result

depends on µ and is approximately Λh ≃ 6 · 10−4 µ2/3M
1/3
pl . We then have the values Λh = 3.243 ·

10−3Mpl for µ = 10Mpl and Λh = 8.081 · 10−3Mpl for µ = 50Mpl.

In particular, for µ = 10 (50)Mpl we get

ϵ∗ ≃ 0.00021 (0.0041) η∗ ≃ −0.0207 (−0.00328)

ns ≃ 0.957 (0.97) r∗ ≃ 0.00335 (0.0654), HE ≃ 0.64 (1.1) · 1013 GeV.
(4.15)

Figure 5: Inflaton kinetic and potential energy density, as well as electric, magnetic and fermion energy

density ratios to the initial total energy density of the Universe for the hilltop models with µ = 10Mpl (upper

panels) and µ = 50Mpl (lower panels). The vertical gray lines display the value a for which ϵ(a) = 1 and the

dashed line shows the expected scaling of the dominant sector.

4.3 Numerical results beyond the end of inflation

Now that we have established a method to numerically compute the quantities ρE , ρB , ρψ, H and G,
we aim to study the system evolution past ϵ = 1, and the onset of reheating. Indeed, the system (4.6)

describes the most general interaction of the zero mode of both hypercharge gauge and inflaton fields.

In particular, no assumption was made on the Universe geometry, hence there is no specific reason to

stop its numerical computation at the end of inflation. We will also find it convenient to present some
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numerical results using as the variable the number of e-folds before the end of inflation N , instead of

the scale factor a, and related to it by

N = − log
aE
a

(4.16)

such that N = 0 corresponds to the time aE when ϵ(aE) = 1.

Figure 6: Time evolution of the electromagnetic to total energy density fraction, during and after inflation for

various values of the coupling fφ. The upper panels correspond to the α-attractor model with α = 1 (top left)

and α = 100 (top right) and the lower panels to the hilltop model with µ = 10Mpl (bottom left) and µ = 50Mpl

(bottom right).

We show the postinflationary energy breakdown for selected value of fφ, for the α-attractor models

in Fig. 4, α = 1 (upper panels) and α = 100 (lower panels), and the hilltop models of inflation in

Fig. 5, with µ = 10Mpl (upper panels) and µ = 50Mpl (lower panels). From the inflaton behavior,

we see that the Universe enters a matter domination era as ρφ ∼ a−3. For high enough values of

fφ, i.e. fφ ≳ 0.1Mpl, we reproduce the results shown in Ref. [12], whereas for fφ ≲ 0.1Mpl the

electric and magnetic fields exhibit a different behavior: the former decays faster than the latter

while oscillating. This is due to the fact, already mentioned in Ref. [23], that the energy density for

the electric component E = −A′ is much more sensitive to the Schwinger effect than the magnetic

component B, because it directly couples to the conductivity in the gauge field equation of motion

(2.7). On the other hand, the magnetic component reflects spatial effects, as it is defined byB = ∇∧A.

In this work, we do not consider the inflaton spatial effects, ∇ϕ, because this would require one to

implement real fermion interactions in a lattice simulation. Hence, for low values of fφ, when the

Schwinger effect is strongly affecting the system, the behavior of ρB is expected to be subject to

changes when the spatial effects are enabled; namely we expect to see a faster decay, like that of

ρE . As also observed in Ref. [23], the electric field, which is dominant during inflation, becomes

19



subdominant afterwards. Finally, we can see that for low values of fφ the fermion energy density

dominates the radiation energy density at the end of inflation as already highlighted in Ref. [23].

The authors of Ref. [12] quote a sufficient criterion for gauge preheating to happen, namely that

at least an 80% fraction of the total energy density of the Universe is electromagnetic energy. In the

absence of the Schwinger effect, they found that this criterion is satisfied for values fφ ≲ 0.1Mpl.

However, as expected, the Schwinger effect significantly reduces the share of electromagnetic energy,

as shown on Fig. 6 for the considered models, which displays the ratio ρEM/ρtotal for the four previous

considered cases. We can see that the maximum is attained with a value ∼ 10−3, which precludes any

gauge preheating, at least for fφ ≳ 0.01Mpl. Another conclusion from Ref. [12] is that the spatial effects

of the inflaton become relevant for sufficiently low values of fφ and contribute to preheating. Since we

are neglecting them in our simplified calculation, any negative statement concerning the possibility of

gauge preheating due to the lack of enough electromagnetic energy should be a conservative one.

Figure 7: Maximum value of the electromagnetic to total energy fraction as a function of fφ for the four

considered models: α-attractor models, with α = 1, 100, and hilltop models, µ = 10, 50Mpl. Preheating seems

unlikely to occur.

The final results from our analysis can be summarized in Fig. 7, where we plot the maximum

value of the electromagnetic to total energy fraction as a function of fφ (preheating efficiency) for the

Starobinsky model, the α-attractor model with α = 100 and the hilltop models with µ/Mpl = 10, 50.

For fφ ≳ 0.01Mpl, we obtain
ρEM

ρtot
≲ 0.01, (4.17)

which seems to prevent gauge preheating as its efficiency is far from the value of ∼ 0.8 established in

the numerical analysis of Ref. [12].

4.4 End of reheating

If gauge preheating does not occur, the inflaton will eventually decay by perturbative processes which

depend on the inflaton total decay width Γφ. Therefore at the time trh ∼ 1/Γφ, the inflaton has

completely decayed and the radiation domination era starts.

Results from last sections have shown that shortly after inflation ends, the Universe is dominated

by matter, hence we can approximate the Hubble parameter by

H ≃
(aE
a

) 3
2

HE , H ≃ 2

3t
, (4.18)
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where HE ≡ H(aE), such that

arh ≃ aE

(
3HE

2Γφ

) 2
3

(4.19)

is the end value after reheating by inflaton perturbative decays. Of course arh is a model-dependent

quantity, which depends on the value of Γφ, which in turn, depends on the couplings of the inflaton

to the matter.

In particular, the coupling 1/fφ of the inflaton to the hypercharge Chern-Simons density provides

a channel for the perturbative decay of the inflaton into a pair of hyperphotons A, as ϕ → AA. This

decay has a width given by [10]

Γ(ϕ→ AA) ≃
m3
φ

64πf2φ
. (4.20)

where mφ is the inflaton mass given by

m2
φ =

∂2V

∂ϕ2

∣∣∣∣
φ=φmin

. (4.21)

For the α-attractor (hilltop quartic) model, we have ϕmin,α = 0 (ϕmin, h = µ) and

m2
φ, α =

4Λ4
α

3αM2
pl

, m2
φ, h =

32Λ4
h

µ2
. (4.22)

In the simplest case where the inflaton is only coupled to the hypercharge gauge bosons through

the Chern-Simons density, the total width is Γφ = Γ(ϕ → AA). Using the masses found above we

have that

Γφ ≃ 12 (3.0) · 10−18 ·
M3

pl

f2φ
, (4.23)

for α = 1 (100) in the α-attractor models, and

Γφ ≃ 4.2 (21) · 10−19 ·
M3

pl

f2φ
, (4.24)

for µ = 10 (50)Mpl in the hilltop models.

The value of the scale factor and the temperature at reheating, arh and Trh, are given by

arh
aE

≃ 0.4

(
Trh
T ins
rh

)−4/3

,
Trh
T ins
rh

≃
√

Γφ
HE

. (4.25)

Consequently we can express arh and Trh as functions of all the involved parameters, namely fφ, and

α (µ) for α-attractor (hilltop quartic) model. In particular, the relevant parameter for baryogenesis is

the ratio Trh/T
ins
rh given by

Trh
T ins
rh

≃ 1.9 (0.8) · 10−4

(
0.01

fφ/Mpl

)
, (4.26)

for α = 1 (100) in the α-attractor models, and

Trh
T ins
rh

≃ 0.4 (0.7) · 10−4

(
0.01

fφ/Mpl

)
, (4.27)

for µ = 10 (50)Mpl in the hilltop models. As we will see in the next section the obtained values of

the ratio Trh/T
ins
rh are fully consistent with the general baryogenesis results, see Fig. 8, provided that
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fφ ≲ 0.03Mpl.

In the presence of extra couplings of the inflaton to matter, the predictions for the inflaton decay

width, Eqs. (4.23) and (4.24), and the reheating temperature, Eqs. (4.26) and (4.27), will change in

a model-dependent way, as well as the model predictions concerning the generation of the baryon

asymmetry.

Of course in the hypothetical case where the explosive production of gauge fields should have

prevailed over the perturbative inflaton decays, gauge preheating would have taken place over a few

e-folds after the end of inflation. As we see from the previous results, this is never the case and gauge

preheating is never strong enough to reheat the Universe after the period of cosmological inflation.

This result does not preclude that, in the presence of a strong coupling λ of the inflaton with some

other field, e.g. a scalar (or a fermion), there could exist an explosive production of that scalar (or

fermion), triggering preheating of the Universe after inflation [31].

4.5 Baryon asymmetry

Before concluding this paper we wish to make a small comment on the baryogenesis issue at the

electroweak phase transition. In Ref. [18], we presented a model of inflation that leads to a successful

BAU. The effective potential for the inflaton, labeled therein as χ, was the Starobinsky potential9,

and we did consider the Schwinger equilibrium and maximal estimates. Hence it is straightforward,

using our numerical analysis in this paper, to make an update of the final results for the BAU for

inflation driven by the α-attractor models with α = 1.

As all details are explained in Secs. 6 and 7 of Ref. [18], we skip them here and go straight to

the final result. First of all we show in Fig. 8 the analogous plot to Fig. 9 of Ref. [18], namely the

parameter space that provides a successful BAU. In particular, we display in blue the region where

Figure 8: The baryogenesis window in the parameter space (fφ, Trh/T
ins
rh ) for the Starobinsky potential (α-

attractor model with α = 1). The dashed line corresponds to Eq. (4.26).

9In fact, we used in Ref. [18] an scalar field φ non-minimally coupled with gravity as L = − 1
2
gφ2R+ . . . , which yields

for the canonically normalized field χ in the Einstein frame an α-attractor potential with α = 1+ 1
6g

∈ [4.3, 17.6], where

the lower bound was coming from imposing the naive unitarity bound gφ2 < M2
pl
. As the dependence in α (hence in g)

is tiny, we choose to show in the present paper the result for α = 1, hence for the Starobinsky potential (which would

correspond in Ref. [18] to the limit g ≫ 1).
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the asymmetry parameter meets its observational value given by

ηB ≃ 4 · 10−12 fθW
H
H3
E

(
HE

1013 GeV

) 3
2
(
Trh
T ins
rh

)
≃ 9 · 10−11, (4.28)

where we have imposed the observed value [32] in the right-hand side. Following Refs. [16, 17] we define

the parameter fθW , which encodes all the details of the EW phase transition and its uncertainties, as

fθW = − sin(2θW )
dθW
d lnT

∣∣∣∣
T=135 GeV

, 5.6 · 10−4 ≲ fθW ≲ 0.32. (4.29)

In addition to their dependence on the gauge sector observables, the quantities used in this section

vary according to the ratio of the reheating over the instant reheating temperature. This parameter

hence adds to fφ in the parameter space. The reheating temperature is computed as

Trh =

(
90

π2g∗

) 1
4 √

ΓφMpl, (4.30)

where g∗ = 106.75 is the SM number of relativistic degrees of freedom, and we define T ins
rh as a reference

temperature given by the above equation with Γφ ≃ HE , which is obtained from the simulation. It

would correspond to the reheating temperature for instant reheating, and takes the value T ins
rh ≃

2.87 · 1015 GeV. Using Eq. (4.26) it is possible to link the reheat temperature to the parameter fφ.

The corresponding plot is shown in Fig. 8 which shows that it provides a wide window for baryogenesis.

Second, we display in orange the region where the magnetic Reynold’s number at reheating Rrh
m is

bigger than one, hence ensuring that the required magnetohydrodynamical conditions are fulfilled for

the (hyper)magnetic fields to survive until the electroweak crossover. As we are in the viscous regime,

it can be computed as [18]

Rrh
m ≈ 5.9 · 10−6 ρBℓ

2
B

H2
E

(
HE

1013 GeV

)(
Trh
T ins
rh

) 2
3

, (4.31)

where ℓB is the physical correlation length of the magnetic field given by

ℓB =
2π

ρB a3

∫ kc

dk
k3

4π2

(
|A+|2 + |A−|2

)
, (4.32)

which can be numerically computed during the simulation in the same way as the other observables.

Third, and last10, we show in green the condition on the chiral plasma instability (CPI) temper-

ature, ensuring that the CPI time scale is long enough to allow all right-handed fermionic states to

come into chemical equilibrium with the left-handed ones via Yukawa coupling interactions (so that

sphalerons can erase their corresponding asymmetries in particle number densities) before CPI can

happen. The estimated temperature at which CPI takes place is

TCPI/GeV ≈ 4 · 10−7 H2

H6
E

(
HE

1013 GeV

)3(
Trh
T ins
rh

)2

. (4.33)

The constraint TCPI ≲ 105 GeV (the temperature at which eR comes into chemical equilibrium)

guarantees that the CPI cannot occur before the smallest Yukawa coupling reaches equilibrium and

10Besides, we checked that the generation of baryon isocurvature perturbation provides no constraint.
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all particle number density asymmetries are erased, preventing thus the cancellation of the helicity

generated at the reheating temperature.

Therefore, as we can see from Fig. 8, the resulting baryogenesis window for the Starobinsky

potential is close to the Schwinger equilibrium estimate for fφ ≲ 0.06Mpl, just as the corresponding

results on helicity and magnetic energy density suggest (see the green dots of Fig. 3). However, for

fφ ≳ 0.06Mpl there is no space for the BAU, as the production of gauge fields is too weak, unlike in

the previous results from Ref. [18]. In addition to this we have seen that the reheating temperature

is constrained by the model, see Eq. (4.26), as we can see from Fig. 8 and compatibility of the model

reheating temperature with the baryogenesis results translates into the baryogenesis region on the

parameter fφ
fφ ≲ 0.03 .Mpl (4.34)

Finally, one of the results of this paper is then that baryogenesis at the electroweak phase transition

is favored by low reheating temperatures, in the range 10−6 T ins
rh ≲ Trh ≲ 10−3 T ins

rh .

5 Conclusions

In this paper, we have studied by means of numerical computations the effect of the Schwinger particle

production on the helical hypermagnetic fields produced at the end of inflation. The inflaton field ϕ

can decay, through its coupling to the Chern-Simons density φ
4fφ

Yµν Ỹ
µν , into helical hypermagnetic

fields in a nonperturbative process. When exiting the vacuum, the gauge modes are strong enough to

create particle/antiparticle pairs of light fermions, which contribute to the electrical conductivity of

the plasma. The backreaction of fermion currents on the produced gauge fields acts as a damping force

in the explosive production of helical gauge fields. This effect, called Schwinger effect, was already

considered in numerous studies of inflation and/or baryogenesis, where some analytical and numerical

estimates were computed, mainly in configuration space while our calculation is done in momentum

space.

The equations of motion are in fact a nontrivial integro-differential system. It was solved numer-

ically by using a fourth order Runge-Kutta method, with details being displayed in the Appendices.

The computed observables of interest are the electric and magnetic energy density, the helicity as well

as the helicity time derivative. We assumed a homogeneous inflaton with only zero mode, hence we

did not treat any spatial effects. Besides, we also ensured the convergence of the algorithm and its

invariance to the initial conditions.

First of all we have checked that we recover previous results in the slow roll inflation regime by

making the same approximations required by an analytical resolution. In this way, we validate our

code, i.e. we verify that our code produces the right results in known cases such as the backreactionless

case, where the Schwinger effect is turned off, and the gradient expansion formalism, where the Bunch-

Davies parameter ∆ was first introduced.

In a second step, still in the slow roll regime, we considered a specific model of inflation, namely

the Starobinsky potential, in order to account for the instability parameter as a function, ξ(a), instead

of the constant imposed by the analytical approximations. That way, we could also implement the

effects of a function ∆(a) obtained from the plasma evolution on the gauge production itself.

We then simulated, in a third step, the full system, where neither the slow roll conditions nor

the Universe geometry (e.g. de Sitter) are imposed. In order words, the inflaton equation of motion

was computed alongside with the gauge one, taking the backreaction of the latter to the former into

account along with the Schwinger effect. We compare our result to the previous setup and found
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perfect agreement as long as the slow roll conditions are met. When inflation is near its end, the full

solution diverges from the slow roll results and produces, as expected, less energy density and helicity.

Finally we will comment on the implication about two related topics: gauge preheating and

baryogenesis. As our code is free from any geometrical issues, and only requires a model of inflation,

we let the simulations run until the onset of reheating to compute the electromagnetic to total energy

density ratio. We choose two well-known classes of models that satisfy the cosmological constraints

as illustrative examples. Previous studies have quoted a sufficient criterion for gauge preheating to

happen, namely that this fraction should be at least ≳ 80% [12]. However, our numerical estimates

suggest that the Schwinger effect significantly reduces the share of electromagnetic energy for the

considered models and preheating is unlikely to occur. Moreover, since we are neglecting all spatial

effects, any negative statement concerning the possibility of gauge preheating due to the lack of

electromagnetic energy should be a conservative one. On the other hand our results do apply to the

considered class of inflationary models. They show a certain degree of model dependence, so we cannot

exclude a qualitatively different result for models of inflation other than the considered ones.

On the other hand, as a successful baryogenesis does depend on a delicate equilibrium between

the amount of helicity, magnetic energy density, and magnetic correlation length, damped fields do

not necessarily mean no baryon asymmetry in the late Universe. Actually, as a result of our numerical

calculation, we have found there is still a window in the parameter space for baryogenesis to happen

as long as fφ ≲ 0.05Mpl, while consistency from the perturbative decay channel of the inflaton into

hypergauge bosons implies the bound fφ ≲ 0.03Mpl. Moreover, baryogenesis is favored for low enough

values of the reheating temperature Trh ≲ 10−3 T ins
rh . Of course, the baryogenesis predictions should,

to some extent, depend on the model of inflation. In this way, our result here is restricted to the

Starobinsky model and should be considered just as a “proof of existence” for baryogenesis in the

presence of the Schwinger effect.

These two comments should be viewed as hints for future studies that address the production of

gauge fields at the end of inflation. Of course, a full lattice simulation of the Schwinger effect involving

fermions remains to be done.
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A Numerical method: the slow roll case

We provide here the technical details for the solution of Eq. (3.10) subject to the initial condition

(3.11). For convenience, we implement the numerical computation in units of HE . Writing

xλ(a) = Aλ(a), yλ(a) =
dAλ
da

(a), (A.1)
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Eq. (3.10) becomes the following system:

d

da

(
xλ
yλ

)
=

(
0 1

k
a3

(
2λξ − k

a

)
− 1
a

(
σ
a + 2

)
)(

xλ
yλ

)
⇔ dx

da
= f(a,x). (A.2)

To perform each time step ∆a, we use the fourth order Runge-Kutta (RK4) algorithm:

λ1 = f(ai,xi) (A.3a)

λ2 = f
(
ai +

1
2∆a,xi +

1
2∆aλ1

)
(A.3b)

λ3 = f
(
ai +

1
2∆a,xi +

1
2∆aλ2

)
(A.3c)

λ4 = f (ai +∆a,xi +∆aλ3) (A.3d)

ai+1 = ai +∆a (A.3e)

xi+1 = xi +
1
6∆a(λ1 + 2λ2 + 2λ3 + λ4) (A.3f)

Note that x is complex, hence we solve the above system for both real and imaginary parts but with

their specific initial conditions. These are mode-dependent as it takes longer for modes with bigger

wave number to leave the BD vacuum. Therefore, we choose as initial condition for each mode

ak,0 =
k

xBD
, (A.4)

where we choose the factor xBD in order to make sure that we initialize the gauge field sufficiently

deep inside the Hubble radius. Its exact value is subject to analysis and is discussed later. As we can

see from (2.8) and (2.9), high values of k are dominating the integral hence large modes are negligible

compared to small ones. This makes us to choose a lower bound on the k range such that the initial

time of the simulation is

a0 =
kmin

xBD
. (A.5)

In that way, at a0 we make sure that all the modes are in their respective vacua, which implies σ = 0

as explained above.

In practice, this means that the modes with k > xBDa are given by the following relations

Re(xBD
λ,i ) =

√
∆i

2k
cos

k

ai
, (A.6a)

Im(xBD
λ,i ) =

√
∆i

2k
sin

k

ai
, (A.6b)

Re(yBD
λ,i ) =

1

a2i

√
∆i

2

(√
k sin

k

ai
− σi

2
√
k
cos

k

ai

)
, (A.6c)

Im(yBD
λ,i ) =

1

a2i

√
∆i

2

(
−
√
k cos

k

ai
− σi

2
√
k
sin

k

ai

)
(A.6d)

while the others are evolving with the RK4 algorithm.

The time steps are distributed on a logarithmic scale

log ai − log ai−1 = log ai+1 − log ai, (A.7)

so that the discretization is the same for each order of magnitude. This means ∆a grows exponentially

with a. The advantage of this method is that there is a refinement of the grid for small values of a, at

the beginning of inflation. The same is done for the discretization in k.
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We explored the numerical convergence of the solution, both in the number of ai’s, labeled as Na,

and in the number of kj ’s, labeled as Nk. Provided that Na > 2000 and Nk > 200, the simulations

are very stable and the output does not depend on the discretization. For big values of fφ, fφ ≳ 0.1,

we can even lower the number of time steps needed.

Besides, we must choose the BD penetration factor xBD such that it produces trustable results. We

have done a numerical analysis and conclude that depending on the value of Na, a range 20 < xBD < 50

yields trustable results. We hence choose throughout this work the following values

xBD = 20, Na = 500, 1000, 2000, Nk = 300. (A.8)

At each time step, we compute the electric and magnetic energy density as

ρiE =

∫ kic

kmin

dk
k2

4π2

(
|y+i (k)|2 + |y−i (k)|2

)
, (A.9a)

ρiB =
1

a4i

∫ kic

kmin

dk
k4

4π2

(
|x+i (k)|2 + |x−i (k)|2

)
, (A.9b)

where we choose

kic = aiξ +

√

(aiξ)
2
+
a2i
2

[
σi − σi−1

ai − ai−1
+
σi
ai

(
σi
2ai

+ 1

)]
. (A.10)

such that we cut off the spectra to retain only modes outside the horizon. The helicity (2.9a) and its

derivative (2.9b) become

Hi =
1

a3i

∫ kic

kmin

dk
k3

2π2

(
|x+i (k)|2 − |x−i (k)|2

)
, (A.11a)

Gi =
1

a2i

∫ kic

kmin

dk
k3

2π2

(
|x+i (k)y+i (k)| − |x−i (k)y−i (k)|

)
. (A.11b)

In the numerics, these integrals are performed numerically over the range of k that takes Nk discrete

values. If the Schwinger effect is taken into account, we turn on the possibility of having σ computed

at each time step ai of the numerical computation with

σi+1 =
41 g′3

72π2
ai

√
2ρiB coth

(
π

√
ρiB
ρiE

)
(A.12)

and injected into the calculation of the next step. Otherwise, we keep it zero. Last, the fermion energy

density is computed as

ρiψ =
σi
a2i

∫ kic

kmin

dk
k2

π2

∑

λ=±

[
Re(xλi )Re(y

λ
i ) + Im(xλi )Im(yλi )

]
. (A.13)

Finally, we stop the simulation at a = aE . Quantities at that time are compared to the known

analytical results. The color matching dashed vertical lines in Fig. 2 show the cutoff values kic computed

from (A.10). They agree perfectly with the point where the BD vacuum modes become dominant for

large k.
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B Numerical method: full analysis

The numerical implementation follows from the previous case. Defining the variables

w = ϕ, x =
dϕ

da
, yλ = Aλ, zλ =

dAλ
da

(B.1)

we transform the above coupled system of differential equations (4.6) into the system

dw

da
= x (B.2a)

dx

da
= − G

a2H2fφ
− 4−F

a
x− V ′(w)

a2H2
(B.2b)

dyλ
da

= zλ (B.2c)

dzλ
da

=
k

a2H

(
λ

fφ
x− k

a2H

)
yλ −

1

a

(
2−F +

σ

aH

)
zλ (B.2d)

which is equivalent to writing
dx

da
= f(a,x). (B.3)

We recall that w, x ∈ R and yλ, zλ ∈ C. Similarly to the previous calculation with the slow roll

approximation, we use the RK4 algorithm (A.3) with the values of H, σ, F and G computed at each

time step.

Inflaton initial condition could be set to

w0 = ϕ∗, x0 = 0. (B.4)

However, the number of e-folds sets the initial time as a0 = e−|N∗| ∼ 10−26, which is too small a

number for the numerical implementation. We then proceed as follows. For a ≲ kmin/xBD, and

sufficiently low kmin, the gauge field modes stay in their vacuum and the total contribution to ∆(a) is

negligible. Hence we do not need to perform the numerical simulation before that time, as the inflaton

is the main player, so we can solve its equation of motion analytically. Instead, we fix the start of

the simulation like before, at a0 = kmin/xBD and we compute the corresponding number of e-folds N

which leads us to the corresponding value of ϕ(N). Therefore, the initial condition must be set to w0

such that ∫ w0

φE

V (ϕ)

V ′(ϕ)
dϕ = −M2

pl log a0 (B.5)

and, using ϕ̇ ≃ −V ′(φ)
3H which is valid at the early stages of inflation,

x0 = −V
′(w0)

3a0H2
0

. (B.6)

As for the gauge field, initial conditions are set in the same way as in the slow roll approximation, see

App. A.
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R2-Higgs inflation stands out as one of the best-fit models of Planck data. Using a covariant
formalism for the inflationary dynamics and the production of helical gauge fields, we show
that the observed baryon asymmetry of the Universe (BAU) can be obtained when this model

is supplemented by a dimension-six CP-violating term ∼ (R/Λ2)BµνB̃
µν in the hypercharge

sector. At linear order, values of Λ ≃ 2.5×10−5 MP produce, in the R2-like regime, sufficient
helical hypermagnetic fields to create the observed matter-antimatter asymmetry during the
electroweak crossover. However, the Schwinger effect of fermion pair production can play
a critical role in this context, and that scale is significantly lowered when the backreaction
of the fermion fields on the gauge field production is included. In all cases, the helical field
configurations can remain robust against washout after the end of inflation.
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1 Introduction

Cosmic inflation [1–3] elegantly addresses a plethora of observations, ranging from the flatness of
the Universe, over resolving the horizon and exotic relics problems, all the way to seeding the
primordial density perturbations giving rise to the large-scale structure of the Universe that we see
today. In parallel, it can explain the cosmic microwave background (CMB) anisotropies measured
by experiments such as Planck [4]. While there are several alternatives to inflation, among these
models, Starobinsky or R2 [1, 5–8] inflation, where pure General Relativity (GR) is extended by
an additional scalar curvature term R2, is one of the best-fitting models of current data [4].

In the dual scalar-tensor theory, the presence of the R2 term makes the scalar degree of freedom
dynamical, which can account for cosmic inflation. After the discovery of the Higgs boson at the
Large Hadron Collider (LHC) [9, 10], the theory essentially contains two scalar degrees of freedom.
Indeed, if the Higgs field Φ couples non-minimally to the Ricci scalar R via a term ξHR|Φ|2,
with ξH as the nonminimal coupling, the Higgs field itself can induce inflation [11–17] (for earlier
works which employed similar mechanisms, see [18–25]). In pure Higgs inflation, i.e. without the
presence of such R2 term, a scale of unitarity violation emerges [26–29]. This may not pose a
threat to inflationary dynamics, see Ref. [30]. However, during the preheating stage, longitudinal
gauge bosons with momenta beyond the unitarity cut-off scale are violently produced [31–33]. The
perturbative unitarity is restored up to the Planck scale due to the presence of R2 term in R2-
Higgs inflation [34] (see also e.g. [35–46]). Moreover, R2-Higgs inflation (or the Starobinsky-Higgs
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inflation), which features both the R2 and R|Φ|2 terms, is also the best-fit model for the Planck
data.

Following on from these successes, it is not unreasonable to correlate the R2-Higgs inflation to
the other shortcomings of the current microscopic theory of interactions, the Standard Model of
Particle Physics (SM). One such shortfall is the observed matter-antimatter asymmetry (or the
Baryon asymmetry) of the Universe, BAU. The existence of the BAU is a strong indicator of the
presence of interactions beyond the SM. A range of particle physics experiments, chiefly at the
LHC, are searching for such interactions at the currently largest available energy scales of O(TeV).
If the fundamental scale of the mechanism behind the BAU is tied to a higher scale, it might
be possible that tell-tale effects at present or even future colliders could remain absent. In the
SM, the CP-violation from the CKM matrix is not sufficient for baryogenesis [47–49]. Further,
the electroweak phase transition in the SM is a continuous crossover [50] rather than the typically
desired strong first-order transition to drive the departure from thermal equilibrium condition as
part of Sakharov’s criteria [51]. However, even at the crossover, the out-of-equilibrium condition can
be met if the source and washout decay rates are different and shut off at different epochs [52, 53].
If the inflaton field couples to the CP-odd hypercharge Chern-Simons density FF̃ , with F and
F̃ denoting the field-stress tensor of a U(1) gauge field (which mixes with the hypercharge gauge
field) and its dual, respectively, helical hypermagnetic fields can be abundantly produced at the
end of inflation [54–59]. The helical hypermagnetic fields may then create the observed baryon
asymmetry at the electroweak crossover [53, 60–65].

In this article, we investigate baryogenesis in R2-Higgs inflation from CP-violating dimension-six
Chern-Simons density ∼ (R/Λ2)BµνB̃

µν , where R is the Ricci scalar and Bµν is the field stress
tensor of U(1)Y hypercharge in the Jordan frame (see also Refs. [66–70] for similar discussions).
This term can be considered within the context extended theories of gravity (or rather, f(R,ϕ,Bµ)
gravity), and it elegantly connects high-scale BAU to inflationary dynamics without requiring
additional fields beyond the SM. Adopting the covariant formalism due to the non-canonical kinetic
terms in R2-Higgs inflation, our linear order analysis, with Λ ∼ 10−5MP, demonstrates that the
produced helical hypermagnetic fields are sufficient to account for the BAU. We take into account
effects that could lead to a washout of the helicity stored in the gauge sector (e.g. the chiral plasma
instability) alongside observational bounds on a range of associated phenomena that prevent total
freedom of the possible field configurations.

In the presence of strong gauge fields, light fermions charged under the gauge group are produced
by the backreaction of gauge fields that source the fermions equation of motion [71, 72]. The
corresponding currents can then, in turn, backreact on the produced gauge fields, a phenomenon
called the Schwinger effect, see e.g. Ref. [73]. The backreaction of fermion currents on the produced
gauge fields acts as a damping force during the explosive production of helical gauge fields, and
many of the conclusions from the gauge field production should be revised in the presence of the
Schwinger effect. In particular, it has been shown that, although the amount of gauge energy
density is suppressed, which jeopardizes the gauge preheating capabilities, there is still a window
for the baryogenesis mechanism, see Ref. [65]. Also, one possible way out is if there are no light,
charged fermion fields when gauge fields are produced, for instance by the use of a special Froggatt-
Nielsen mechanism such that all fermion Yukawa couplings stay large at the end of inflation, while
they relax after inflation to the measured values [74]. However, in this paper, we will stay agnostic
on the fermions effect in the plasma and provide the results with and without the Schwinger effect.

We organize this paper as follows. We start with outlining the action and derive the relevant
equations of motion (EoM) for different fields in Sec. 2, followed by the inflationary dynamics in the
covariant formalism in Sec. 3. The production of hypermagnetic fields and subsequent generation
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of the BAU are discussed, respectively, in Sec. 4 and Sec. 5. We summarize with some discussion
in Sec. 6. Finally, we present some technical computational details through appendices A-E.

2 The Starobinsky-Higgs Action

In pure GR with a canonically coupled scalar theory, without the presence of R2, the conformal
mode of the metric is known to have a wrong-sign kinetic term. The Starobinsky inflation model,
which extends pure GR with an additional scalar curvature term R2, falls within the so-called
general f(R) theory of gravity. In its dual scalar-tensor theory, the presence of the R2 term
makes the scalar degree of freedom dynamical, which can then account for cosmic inflation. R2-
Higgs inflation (or Starobinsky-Higgs inflation), which features all possible dimension-four terms
i.e. both the R2 and R|Φ|2 terms also provide best-fit models of the Planck data. The model has
two dynamical scalar degrees of freedom, one appearing from the gravity sector and one entering
as part of the Higgs field Φ.

We briefly discuss the action and its transformation properties in the metric formalism assuming
the affine connection to be the Levi-Civita connection. The action in the Jordan frame of R2-Higgs
inflation, along with a dimension-six CP-odd term coupling Ricci scalar and U(1)Y gauge boson,
is given by

SJ =

∫
d4x

√−gJ
[
M2

P

2
f(RJ ,Φ, Bµ)− gµνJ (∇µΦ)

†∇νΦ− V (Φ,Φ†)− 1

4
gµρJ gνσJ BµνBρσ

− 1

4
gµρJ gνσJ W i

µνW
i
ρσ −

∑

f

gµνJ f̄ eaµγ̃a∇f
νf

]
,

(2.1)

and we adopt a mostly-plus convention for the metric (−1,+1,+1,+1). From here on, for no-
tational simplicity, we will remove the sum over fermions

∑
f in the fermion quadratic terms,

which will remain implicit. The Bµν and W i
µν are field stress tensors of the U(1)Y and SU(2)L

gauge groups, respectively, Φ is the Higgs field, RJ the Ricci scalar in the Jordan frame, and
MP =

√
1/ (8πG) = 2.435 × 1018 GeV, where G is the Newton’s constant and MP the reduced

Planck mass. We use the convention ϵ0123 = 1 for the Levi-Civita tensor. The covariant derivatives
are defined as

∇µ = Dµ + ig′
1

2
QYfBµ + ig

1

2
τ ·Wµ, (2.2a)

∇f
µf =

(
Df
µ + ig′

1

2
QYfBµ + ig

1

2
τ ·Wµ

)
f, (2.2b)

with QYf denoting the U(1)Y hypercharge, τ are the Pauli matrices, and g′ and g are respective
gauge couplings. Dµ is the usual covariant derivative with respect to the space-time metric gJµν
and Df

µ ≡ ∂µ + Γµ is the covariant derivative of spinors, with Γµ as the spin affine connection.
Here eaµ is the so-called vierbein and γ̃a is Minkowski space gamma matrices (see Appendix A for
details of the formalism and the definition of Γµ). The corresponding field-stress tensors for the
U(1)Y and SU(2)L gauge fields are

Bµν = DµBν −DνBµ, W i
µν = DµW

i
ν −DνW

i
µ − g

3∑

j,k=1

ϵijkW
j
µW

k
ν . (2.3)

The Higgs potential V (Φ,Φ†) and f(RJ ,Φ, Bµ) are given as1

V (Φ,Φ†) = λ|Φ|4, (2.4a)

1 For large configuration values of the Higgs field we can consistently neglect the mass term of the Higgs potential,

which triggers electroweak symmetry breaking.
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f(RJ ,Φ, Bµ) = RJ +
ξR
2M2

P

R2
J +

2ξH
M2

P

|Φ|2RJ − 2

Λ2M2
P

ϵµνρσ√−gJ
BµνBρσRJ . (2.4b)

The Higgs field has hypercharge +1 and is decomposed in the standard way (we will comment on
our gauge choice further below)

Φ =
1√
2


0

h


 . (2.5)

With this choice, Eq. (2.1) becomes

SJ =

∫
d4x

√−gJ
[
M2

P

2
f(RJ , h, Bµ)−

1

2
gµνJ (Dµh)Dνh− V (h)

− 1

4
gµνJ g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

− 1

8
gµνJ h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)

− 1

4
gµρJ gνσJ BµνBρσ −

1

4
gµρJ gνσJ W i

µνW
i
ρσ − gµνJ f̄ eaµγ̃a∇f

νf

]
,

(2.6)

with

V (h) =
λ

4
h4, f(RJ , h, Bµ) = RJ +

ξR
2M2

P

R2
J +

ξH
M2

P

h2RJ − 2

Λ2M2
P

ϵµνρσ√−gJ
BµνBρσRJ . (2.7)

The dynamics of the scalar degrees of freedom are easily captured once we move from the Jordan
frame to the Einstein frame via a Weyl transformation. We first introduce an auxiliary field Ψ and
rewrite the action in Eq. (2.6) as

SJ =

∫
d4x

√−gJ
[
M2

P

2

(
f(Ψ, h, Bµ) +

∂f(Ψ, h, Bµ)

∂Ψ
(RJ −Ψ)

)
− 1

2
gµνJ (Dµh)(Dνh)− V (h)

− 1

4
gµνJ g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

− 1

8
gµνJ h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)

− 1

4
gµρJ gνσJ BµνBρσ −

1

4
gµρJ gνσJ W i

µνW
i
ρσ − gµνJ f̄ eaµγ̃a∇f

νf

]
.

(2.8)

The variation with respect to Ψ gives the constraint Ψ = RJ as long as ∂2f(Ψ, h, Bµ)/∂Ψ
2 ̸= 0.

We now define a physical degree of freedom Θ as

Θ =
∂f(Ψ, h, Bµ)

∂Ψ
(2.9)

such that the action Eq. (2.8) can be cast into

SJ =

∫
d4x

√−gJ
[
M2

P

2
ΘRJ − U(Θ, h, Bµ)−

1

2
gµνJ (Dµh)(Dνh)− V (h)− 1

4
gµρJ gνσJ BµνBρσ

− 1

4
gµνJ g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

− 1

8
gµνJ h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)

− 1

4
gµρJ gνσJ W i

µνW
i
ρσ − gµνJ f̄ eaµγ̃a∇f

νf

]
,

(2.10)
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with the definition

U(Θ, h, Bµ) =
M2

P

2
[Ψ(Θ)Θ− f(Ψ(Θ), h, Bµ)]

=
M4

P

4ξR

(
1−Θ+

ξH
M2

P

h2 − 2

Λ2M2
P

ϵµνρσ√−gJ
BµνBρσ

)2

.

(2.11)

To formulate the action in the Einstein frame, we perform the metric redefinition (Weyl transfor-
mation)

gJµν =
1

Θ
gEµν , gµνJ = Θ gµνE , and

√−gJ =
1

Θ2

√−gE . (2.12)

Under this transformation, the Ricci scalar transforms as

RJ = Θ

[
RE + 32EΘ− 3

2
gµνE Dµ(lnΘ)Dν(lnΘ)

]
, (2.13)

with 2E = gµνE DµDν . Ignoring the surface term, the action of Eq. (2.8) now becomes

SE =

∫
d4x

√−gE
[
M2

P

2
RE − 3M2

P

4
gµνE Dµ(lnΘ)Dν(lnΘ)− 1

2Θ
gµνE (Dµh)(Dνh)− VE

− 1

4
gµρE gνσE BµνBρσ −

1

4Θ
gµνE g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

− 1

8Θ
gµνE h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)
− 1

4
gµρE gνσE W i

µνW
i
ρσ −

1

Θ
gµνE f̄ eaµγ̃a∇f

νf

]
,

(2.14)

with

VE =
1

Θ2
[V (h) + U(Θ, h, Bµ)] . (2.15)

Finally, we perform the field redefinition

ϕ =MP

√
3

2
lnΘ. (2.16)

to arrive at the action in the form

SE =

∫
d4x

√−gE
[
M2

P

2
RE − 1

2
GIJg

µν
E Dµϕ

IDνϕ
J − VE(ϕ

I)− 1

4
gµρE gνσE BµνBρσ

− 1

4
gµρE gνσE W i

µνW
i
ρσ −

1

4
e
−
√

2

3

φ
MP gµνE g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

− 1

8
e
−
√

2

3

φ
MP gµνE h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)
− e

−
√

2

3

φ
MP gµνE f̄ eaµγ̃a∇f

νf

]
.

(2.17)

The multi-field ϕI ∈ {ϕ, h} alongside the field-space metric GIJ

Gϕϕ = 1, Gϕh = Ghϕ = 0, Ghh = e
−
√

2

3

φ
MP (2.18)

highlight that we are working with a non-canonical kinetic term as alluded to above (see Appendix B
for the corresponding field-space Christoffel symbols). The potential VE(ϕ

I), consistently truncated
at dimension-six level, reads

VE(ϕ
I) = e

−2
√

2

3

φ
MP

[
λ

4
h4 +

M4
P

4ξR

(
1− e

√

2

3

φ
MP +

ξH
M2

P

h2 − 2

Λ2M2
P

ϵµνρσ√−gE
e
2
√

2

3

φ
MPBµνBρσ

)2]



7

= V0(ϕ
I) +

2M2
P

ξRΛ2
F (ϕI)e

√

2

3

φ
MPBµνB̃

µν , (2.19)

with

V0(ϕ
I) =

λ

4
h4e

−2
√

2

3

φ
MP +

M4
P

4ξR
F 2(ϕI), (2.20a)

F (ϕI) = 1− e
−
√

2

3

φ
MP +

ξH
M2

P

h2e
−
√

2

3

φ
MP , B̃µν =

1

2
√−gE

ϵµνρσBρσ. (2.20b)

Note that the unmodified Starobinsky potential is recovered when the term that contains BµνB̃
µν

is absent.

We can now turn to the EoMs of the different fields in Eq. (2.17). By varying Eq. (2.17) with
respect to the field ϕ, we obtain

2ϕK + ΓKIJ g
αν
E Dαϕ

IDνϕ
J −GKMVE,M + gµνE XK

µν = 0, (2.21)

identifying ΓKIJ as the field-space Christoffel symbols and

XK
µν =

1

4

√
2

3

1

MP
GK1e

−
√

2

3

φ
MP g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

− 1

2
e
−
√

2

3

φ
MPGK2g2h

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

+
1

8

√
2

3

1

MP
GK1e

−
√

2

3

φ
MP h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)

− 1

4
GK2e

−
√

2

3

φ
MP h

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
)

+

√
2

3

1

MP
δ K
1 e

−
√

2

3

φ
MP gµνE f̄ taµγ̃a∇f

νf.

(2.22)

Note that all the terms in XK
µν are quadratic in the gauge fields.

The energy-momentum tensor Tµν describes relevant quantities of the inflationary dynamics such
as energy density or pressure. One can derive the Einstein-Hilbert equation from the action SE by
varying it with respect to gµνE

REµν −
1

2
gEµνRE =

1

M2
P

(
LMgEµν − 2

δ(LM )

δgµνE

)
(2.23)

and identify Tµν as

Tµν =

(
LMgEµν − 2

δ(LM )

δgµνE

)
. (2.24)

Appendix C provides the full expression of Tµν for the model considered in this work.

The EoM for the gauge field Bµ is given as

gµαE gνβE DαBµν +
8M2

P

ξRΛ2
Dα

(
F (ϕI)e

√

2

3

φ
MP

)
B̃αβ +

[
g′

4
e
−
√

2

3

φ
MP gµβE h2(gW 3

µ − g′Bµ)

]

−
ig′QYf

2
e
−
√

2

3

φ
MP gµβE f̄ eaµγ̃af = 0,

(2.25)
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and those for the W i
µ fields are found to be

gµαE gνβE DαW
i
µν − ggµβE gνσE

3∑

j,k=1

ϵijkW
j
µνW

k
σ − g

4
gµβE e

−
√

2

3

φ
MP h2W i

µ +
ig

2
e
−
√

2

3

φ
MP gµβE f̄ eaµγ̃aτ

if = 0,

with W i
µ =

{
gW i

µ, if i = 1, 2

gW 3
µ − g′Bµ, if i = 3

. (2.26)

We define Wµ, Zµ and Aµ in the usual way

Wµ =
W 1
µ − iW 2

µ√
2

, W †
µ =

W 1
µ + iW 2

µ√
2

Aµ = sin θWW
3
µ + cos θWBµ, Zµ = cos θWW

3
µ − sin θWBµ,

(2.27)

with e = g sin θW = g′ cos θW , and electroweak angle θW . We can express the W i
µ and Bµ fields in

terms of Wµ, Zµ and Aµ by inverting the above equations.

Given that we are in the broken phase, for which h0 ̸= 0, where h0 is the homogeneous background
field as we shall see shortly, we can consider the trivial solution W i

µ = 0 from the mass term in
Eq. (2.26) as the variation is small compared to the background field. This means that we can

set Wµ = W †
µ = 0 and Zµ = cos θWW

3
µ − sin θWBµ = 0 which implies that Bµ = cos θWAµ and

W 3
µ = sin θWAµ. We will therefore retain only the photon field Aµ, replacing Bµ with cos θWAµ

in the corresponding Chern-Simons term. Put differently, the production of photon fields proceeds
unsuppressed compared to the other heavy gauge bosons.

We now turn to some comments related to the gauge fixing in Eq. (2.5). The Higgs doublet
contains, apart from the radial degree of freedom h, three Goldstone bosons χ⃗. Using SU(2)L
gauge invariance, and fixing the corresponding gauge parameter α⃗(x) as α⃗(x) = −χ⃗(x) (unitary
gauge), the Goldstone bosons disappear from the Lagrangian and the Higgs doublet reduces to
Eq. (2.5). There is still the U(1) gauge invariance that can be used to fix the Coulomb gauge
for the electromagnetic field ∂iAi = 0. This is done by fixing the hypercharge gauge field Bµ as
∂iBi = − tan θW∂

iW 3
i . Moreover, in regions where the electric charge density is zero, it turns

out that A0 = 0 (the radiation gauge we use in this paper). Therefore, the EoM for the Aµ field
simplifies to

gµαE gνβE DαFAµν +
8 cos2 θWM

2
P

ξRΛ2
∂α

(
F (ϕI)e

√

2

3

φ
MP

)
F̃αβA

= ieQf e
−
√

2

3

φ
MP gµβE f̄ eaµγ̃af,

(2.28)

with Qf = 1
2QYf + T3f , where T3 is the third component of weak isospin.

Similarly, one can find the general covariant Dirac equation as

gµνE eaµγ̃a(∇f
νf) = 0. (2.29)

3 Inflationary Dynamics in the Covariant Formalism

We now study the inflationary dynamics of our two-field scenario with the non-canonical kinetic
term (i.e. with a nontrivial field-space manifold) following the covariant formalism discussed in
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Refs. [33, 75, 76] (see also Refs. [31, 77–88]). Focussing on linear order perturbations, we decompose
the fields into classical background (φI) and perturbation parts (δϕI) as

ϕI(xµ) = φI(t) + δϕI(xµ), (3.1)

with φI(t) = {φ(t), h0(t)}. The space-time dynamics can be described by the perturbed spatially
flat Friedmann-Robertson-Walker (FRW) metric, which is expanded as [89–91]

ds2 = −(1 + 2A)dt2 + 2a(t)(∂iB)dxidt+ a(t)2 [(1− 2ψ)δij + 2∂i∂jE ] dxidxj . (3.2)

a(t) denotes the scale factor, t parametrizes cosmic time, and A,B, ψ and E characterize the scalar
metric perturbations. Like the scalar fields, the space-time metric is also considered up to first order
in the perturbations. In the following, when deriving the background and perturbation equations
for scalar and gauge fields, we shall adopt the longitudinal gauge, i.e. B = E = 0.

One may define covariant field fluctuationsQI (covariant with respect to the field-space metric) that
connect ϕI(xµ) and φI(t) along the geodesic of the field-space manifold with affine connection κ.
Concretely, we can take ϕI(κ = 0) = φI , ϕI(κ = κ′) = φI + δϕI and Dκϕ

I |κ=0 = dϕI/dκ|κ=0 ≡ QI ,
such that with these conditions, the unique field-space vector QI connects ϕI and φI [75]. Note
here, that Dκ is the covariant derivative with respect to the affine connection. The field fluctuations
δϕI can be expressed in a series of QI as [75, 85]

δϕI = QI − 1

2
ΓIJKQIQJ +

1

3!

(
ΓIMNΓ

N
JK − ΓIJK,M

)
QIQJQM + . . . , (3.3)

where the Christoffel symbols ΓIJK are evaluated at the background field order. The field fluctua-
tions δϕI(xµ) are gauge-dependent quantities under both the field-space transformation φI → φ′I ,
as well as the space-time transformation xµ → x′µ. This is motivation to formulate gauge-
independent Mukhanov-Sasaki variables, which are a linear combinations of space-time metric
perturbation ψ and covariant field fluctuations QI as [90, 92, 93]

QI = QI +
φ̇I

H
ψ. (3.4)

We remark that, while φI is not a vector of the field-space manifold, QI , φ̇I and QI all transform,
indeed, as vectors of the field-space manifold. The QI is doubly covariant with respect to both
space-time and field-space transformations to first order in the perturbations. It is useful to define
the covariant derivative of vectors SI and SI in the field-space as

DJS
I ≡ ∂JS

I + ΓIJKS
K , DJSI ≡ ∂JSI − ΓKIJSK . (3.5)

It is convenient to also define a covariant derivative with respect to cosmic time t

DtS
I ≡ φ̇JDJS

I = ṠI + ΓIJKS
J φ̇K , (3.6)

see also Refs. [83, 84, 94–96].

We turn to the stress-energy tensor Tµν , which can be written for the homogeneous, isotropic and
spatially flat metric g̃Eµν = diag(−1, a2(t), a2(t), a2(t)) as

Tµν = (p+ ρ)UµUν + p gµν , (3.7)

with a choice of Uµ = (1, 0, 0, 0) for the fluid four-velocity. For a spatially flat metric, employing
Eq. (3.7) and the Einstein equations, we get the Friedmann equations for the background order

H2 =

(
ȧ

a

)2

=
1

3M2
P

ρ, and Ḣ = − 1

2M2
P

(p+ ρ), (3.8)
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where p and ρ are pressure and energy density, respectively. We can compare the 00 and ij
component of Eq. (2.24) and Eq. (3.7) to get expressions for pressure p and energy density ρ,

ρ = T00, p =
1

3a2

3∑

i=1

Tii. (3.9)

At the considered background order, employing the explicit expression of Eq. (C.5) (see Ap-
pendix C), the (inflaton) pressure and energy density reduce to

ρ =
1

2
GIJ φ̇

I φ̇J + V0(φ
I), (3.10a)

p =
1

2
GIJ φ̇

I φ̇J − V0(φ
I), (3.10b)

yielding the equation of state

w =
p

ρ
=
GIJ φ̇

I φ̇J − 2V0
GIJ φ̇I φ̇J + 2V0

. (3.11)

Furthermore, the Hubble parameter and its derivative with respect to cosmic time take the form

H2 =

(
ȧ

a

)2

=
1

3M2
P

(
1

2
GIJ φ̇

I φ̇J + V0(φ
I)

)
, (3.12a)

Ḣ = − 1

2M2
P

(
GIJ φ̇

I φ̇J
)
. (3.12b)

The EoMs for the background fields φI and the perturbations QI at linear order can be derived
utilizing Eq. (3.4), and Eq. (2.21)

Dtφ̇
I + 3Hφ̇I +GIJV0,J = 0, (3.13a)

D2
tQ

I + 3HDtQ
I +

k2

a2
δIJQ

J +MI
LQ

L = 0, (3.13b)

with

MI
L = GIJ(DLDJV0)−RI

JKLφ̇
J φ̇K − 1

M2
Pa

3
Dt

(
a3

H
φ̇I φ̇L

)
, (3.14)

and the field-space Riemann tensor RI
JKL. All relevant quantities such as V0, G

IJ , ΓIJK , RI
JKL in

Eqs. (3.13) are evaluated at background order. Moreover, as the field-space metric GIJ and M IJ

are diagonal in this approximation, the first-order perturbations do not mix the different QI . Note
also that the EoMs for background and perturbations do not depend on the gauge fields for our
linear-order considerations.

To study perturbations, we can find a set of unit vectors that differentiate between adiabatic and
entropy directions. Firstly, we define the length of the velocity vector φ̇I in field-space defined as

σ̇ =
√
GIJ φ̇I φ̇J =

√
ρ+ p (3.15)

and the corresponding unit vector

σ̂I =
φ̇I

σ̇
. (3.16)
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With this, we can rewrite Eq. (3.13a) to reproduce a single-field model with a canonically normal-
ized kinetic term. The slow-roll parameters ϵ and η are

ϵ = − Ḣ

H2
=

3σ̇2

σ̇2 + 2V0
, (3.17a)

η = M2
P

Mσσ

V0
, (3.17b)

with Mσσ ≡ σ̂I σ̂
JMI

J = σ̂I σ̂J(DIDJV0). Inflation ends when the slow-roll parameter reaches
ϵ = 1, and we denote the corresponding cosmological time as tend in the following.

The field-space directions orthogonal to σ̂I are given by

ŝIJ = GIJ − σ̂I σ̂J , (3.18)

and σ̂I and ŝIJ tensors are related by relations [31]

σ̂I σ̂I = 1, ŝIJ ŝIJ = N − 1, σ̂I ŝ
IJ = 0 for each J. (3.19)

N = 2, and I, J = 1, 2 in our two-field scenario. We can now decompose the perturbations in the
directions of σ̂I and ŝIJ as

Qσ = σ̂IQ
I , (3.20)

δsI = ŝIJQ
J , (3.21)

with Qσ and δsI being referred to as adiabatic and entropy perturbations, respectively. We also
define a “turning vector” ωI as the covariant rate of change of σ̂I ,

ωI = Dtσ̂
I . (3.22)

The turning vector is orthogonal with respect to σ̂I , ωI σ̂
I = 0, the corresponding unit vector is

ω̂I =
ωI

ω
, (3.23)

with ω = |ωI | =
√
GIJωIωJ .

With these definitions in place, we can now define the entropy perturbations as

Qs = ω̂IQ
I , (3.24)

which are conveniently normalized to give

S =
H

σ̇
Qs. (3.25)

The gauge-invariant curvature (adiabatic) perturbation R [90, 91, 97]

R = ψ − H

ρ+ p
δq, (3.26)

with ρ, p as defined above, and δq given by ∂iδq = −T0i evaluated at background order (cf.
Appendix C) together with Eqs. (3.3) and (3.4)

δq = −GIJ φ̇IδϕJ = −σ̇σ̂I
(
QI − φ̇I

H
ψ

)
. (3.27)
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Therefore, R takes the compact form

R = ψ +
H

σ̇2
σ̇σ̂I

(
QI − σ̇

σ̂I

H
ψ

)
=
H

σ̇
Qσ, (3.28)

at linear order. In the presence of entropy perturbations, the gauge-invariant curvature perturba-
tion does not need to be conserved, Ṙ ̸= 0. The non-adiabatic pressure perturbation is given by
[91, 97]

δpnad = δp− ṗ

ρ̇
δρ = −2σ̂I∂IV

3Hσ̇
ϵm + 2σ̇

(
ωIδs

I
)
. (3.29)

with ϵm as the comoving density perturbation. For super-horizon scales k ≪ aH, the only source
of non-adiabatic pressure stems from δsI . This means that Ṙ ̸= 0 will not vanish even at the
k ≪ aH scale and ωIδs

I will source Qσ and hence Ṙ.

The gauge invariant curvature perturbation is defined as [90, 97]

⟨R(k1)R(k2)⟩ = (2π)3δ(3)(k1 + k2)PR(t; k1) (3.30)

and PR(t; k) = |R|2. The dimensionless power spectrum for the adiabatic perturbation is given by

PR(t; k) =
k3

2π2
|R|2. (3.31)

Similarly, the power spectrum for the entropy perturbations is

PS(t; k) =
k3

2π2
|S|2. (3.32)

To find the power spectra of the curvature and isocurvature (entropy) perturbations, Eqs. (3.31)
and (3.32), we utilize the quantities H, ϵ and unit vectors such as σ̂I , ω̂I ,. . . , from the solutions of
the Eqs. (3.12a) and (3.13a) while Qσ and Qs are evaluated using the solutions of mode equations
from Eq. (3.13b). For a given Fourier mode k, we calculate the different power spectra at the
t = tend numerically as a function of k as

PR(k) = PR(tend; k), PS(k) = PS(tend; k), (3.33)

where tend denotes the time when inflation ends, i.e. when ϵ = 1.

The spectral index ns of the power spectrum of the curvature perturbation is defined as

ns = 1 +
d lnPR(k)

d ln k
. (3.34)

As we will discuss in the next section, although our scenario involves scalar fields h and ϕ, we
shall primarily focus on a scenario where the dynamics are essentially described by single field-like
inflation. In such a case, the spectral index can be calculated as

ns(t∗) ≈ 1− 6ϵ(t∗) + 2η(t∗), (3.35)

where t∗ denotes the time when the reference scale exited the horizon and the tensor-to-scalar ratio
is given by r ≈ 16ϵ.

We choose three benchmark points to highlight quantitatively the implications of consistent infla-
tion parameter choices when contextualized with baryogenesis. These are summarized in Tab. I
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BP ξR ξH φ(tin) [MP] h0(tin) [MP]

a 2.35× 109 10−3 5.5 2× 10−4

b 2.55× 109 1 5.5 8.94× 10−4

c 2.2× 109 10 5.4 5.00× 10−3

TABLE I: Benchmark points chosen for our analysis. Scales are given in units of the Planck mass MP.
See text for details.
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FIG. 1: The power spectra of the adiabatic and isocurvature modes and the spectral index ns for the
parameter values of BPa in Tab. I.

alongside the required initial field values to satisfy Planck 2018 measurements: At the pivot scale
k = k∗, the amplitude of PR(k) should match the scalar amplitude measurement of Ref. [4]

As = (2.099± 0.014)× 10−9 at 68% CL. (3.36)

As a guideline for our parameter choices and the initial values of the background fields, we follow the
valley approximation that we discuss in Appendix D. We note that, whilst finding the parameter
sets, we also ensure that the isocurvature mode remains orders of magnitude smaller than the
curvature perturbation. The background equations are solved with initial conditions φ(tin) and
h0(tin) as in Tab. I, with vanishing time derivatives; tin denotes the initial time for our numerical
analysis in the following. The perturbation equations (3.13b) are solved with approximate initial
conditions for a Fourier mode k

QI(t) ≃ H√
2k3

(
i+

k

aH

)
exp

{
i
k

aH

}
, (3.37)

sufficiently in the past such that the Hubble parameter at tin remains approximately constant. In
practice, we initialize the QI and their derivatives about four e-foldings before they exit the horizon
for each mode.

In Fig. 1, we show the evolution of power spectra PR and PS (for the pivot scale k = k∗) and the
spectral index ns for BPa. Note, when calculating both power spectra, we solve Eq. (3.31) and
Eq. (3.32) numerically without any assumption related to slow-roll. It is clear from Fig. 1 that the
isocurvature mode is orders of magnitude smaller than the adiabatic mode and both power spectra
freeze out once they exit the horizon. We remark that while finding the power spectrum we always
check the orthogonality conditions of Eq. (3.19) in our numerical analysis. In the following, we
interchangeably use the cosmological time t and the number of e-foldings before the end of inflation
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FIG. 2: The evolution of the background fields φ and the h0 for the parameter values of BPa in Tab. I.
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FIG. 3: The Hubble function H and the inflaton energy density ρ as in Eq. (3.10a) for the parameter
values of BPa given in Tab. I.

which is defined as

N ≡ ln
a(t)

a(tend)
. (3.38)

The pivot scale k∗ exits the horizon N∗ = 57, 59.3, 54.9 e-foldings before the end of inflation for
BPa, BPb, and BPc, respectively. For illustration, we also show the fields’ time evolution in Fig. 2
for BPa, while, the evolution of the Hubble parameter and the inflaton energy density are shown
in Fig. 3. It is also clear from Fig. 1 that the spectral index ns lies within the Planck 2018 range
when the reference scale exits the horizon. The corresponding values of the tensor-to-scalar ratios
are r∗ ∼ 0.003, which is consistent with expected values for R2-Higgs inflation.

4 Gauge Field Production

The EoM for the gauge field Aµ of Eq. (2.28) can be rewritten as

1√−gE
∂α

(√−gEgµαE gνβE FAµν

)
+

8 cos2 θWM
2
P

ξRΛ2
∂α

(
F (ϕI)e

√

2

3

φ
MP

)
F̃αβA

− ieQf e
−
√

2

3

φ
MP gµβE f̄ eaµγ̃af = 0,

(4.1)

without the presence of a torsion term FAµν = DµAν −DνAµ = ∂µAν − ∂νAµ. One can identify
the fermion current

jµ =
∑

f

ieQf e
−
√

2

3

φ
MP gµνE f̄ eaν γ̃af (4.2)
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that sources the Schwinger effect.

Neglecting the Schwinger effect

First, we consider the scenario without Schwinger effect i.e. when the fermion current is negligible.
This is possible if the fermion field values are small. One can now separate the space and time
component of the Aµ field. The time component of Eq. (2.25) at linear order in the perturbations
is

− 1

a2
∂i (∂iA0 − ∂0Ai) = 0, (4.3)

which, in temporal gauge A0 = 0, reduces to ∂iȦi = 0. The spatial components of Eq. (2.25) are
found to be

Äi +HȦi −
1

a2
∂j (∂jAi − ∂iAj)−

ξH

a
ϵijk (∂jAk − ∂kAj) = 0. (4.4)

where

H =
ȧ

a
, ξ =

4 cos2 θWM
2
P

ξRΛ2H
∂0

(
F (φI)e

√

2

3

ϕ
MP

)
. (4.5)

In momentum space, using the notation A ≡ A⃗

A(t,x) =

∫
d3k

(2π)3/2
Ã(t,k)e−ik·x, (4.6)

with |k| = k, Eq. (4.4) reads

¨̃
A+H ˙̃

A+
k2

a2
Ã+

2iξH

a
(k× Ã) = 0. (4.7)

The Ã field can be written in terms of transverse components as

Ã =
∑

λ=±
Ãλ(t,k) ϵ̂λ(k), with k · ϵ̂λ(k) = 0, ik× ϵ̂λ(k) = λk ϵ̂λ(k). (4.8)

so that, using conformal time τ (with ∂0 = ∂t = a−1∂τ ), the EoM for the transverse components
becomes

∂2τ Ã
λ + ω2

λÃ
λ = 0, (4.9)

with

ω2
λ(τ, k) = k2 + 2λξHak. (4.10)

In order to quantize the gauge fields, we first integrate Eq. (4.9) by parts to get the action quadratic
in the fields

Sλ =

∫
dτ Lλ =

∫
dτ d3k

[
1

2
|∂τ Ãλ|2 −

1

2
ω2
λ(τ, k)|Ãλ|2

]
. (4.11)

As we deal with non-canonical kinetic terms, we apply the quantization procedure detailed in
Ref. [98]. The canonical momentum of the transverse modes are

πλ(τ,k) =
δLλ

δ
(
∂τ Ãλ(τ,−k)

) , (4.12)
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with the commutation relation expressed as

[
Ãλ(τ,k), ∂τ Ã

λ′(τ,q)

]
= iδλλ′δ(k+ q). (4.13)

The field operator Ãλ(τ,k) can be written as creation and annihilation operators

Ãλ(τ,k) = âλ
k
uλk(τ) + âλ−k

uλk(τ), (4.14)

and the mode equations for the gauge fields are then

üλ +Hu̇λ +
ω2
λ

a2
uλ = 0. (4.15)

From these mode functions, we can compute the gauge observables, namely the magnetic and
electric fields’ energy densities, magnetic helicity and its derivative, defined as

ρB =
1

a4

∫ kc

kmin

dk
k4

4π2

∑

λ

|uλ|2, (4.16a)

ρE =
1

a4

∫ kc

kmin

dk
k2

4π2

∑

λ

|∂τuλ|2, (4.16b)

H =
1

a3

∫ kc

kmin

dk
k3

2π2
(
|u+|2 − |u−|2

)
, (4.16c)

G =
1

2

∂H
∂t

, (4.16d)

with the cut-off value given by [65, 99]

kc = 2 |aH ξ| , (4.17)

defined by the condition ω2
λ(τ, kc) = 0 satisfied by the helicity λ such that sign(λξ) = −1. The

corresponding U(1)Y quantities are linked to the electromagnetic ones via

ρBY
= ρB cos2 θW ρEY

= ρE cos2 θW

HY = H cos2 θW GY = G cos2 θW
(4.18)

In general, the integration limits should cover all modes from zero to infinity, however, not all
modes are amplified during inflation. At the time t, the cut-off mode kc is found by the solution
of ωλ = 0; essentially this is when a mode k = kc crosses the horizon for the first time (at least
for one helicity). The modes k ≫ kc are not excited during inflation and can be neglected for the
estimation of the above observable quantities. We will discuss kmin shortly.

In order to find ρB, ρE , H and G we solve Eq. (4.15) numerically via fourth-order Runge-Kutta
(RK4) method in discrete time steps. We outline the details in Appendix E. For the i-th time step,
the gauge field modes are initialized with the Bunch-Davies (BD) initial condition as [100]

uλ(k, ti) ≃
1√
2k
e−iωiti , u̇λ ≃ −i ωi√

2k
e−iωiti , (4.19)

with ωi = ka−1(ti). It is practically not possible to go to the infinite past. Hence, to ensure that all
modes remain well within the horizon at the initial time step tin, we chose kmin = xBDa(tin)H(tin)
with xBD = 100. On the one hand, if a mode k remains well within the horizon, k > xBD a(ti)H(ti),
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FIG. 4: In the upper panel we plot the energy densities ρB and ρE with Λ = 2.55× 10−5 MP for the BPa
summarized in Tab. I. The lower panel corresponds to the hyperhelical magnetic fields H and G for

identical parameter choices.

we directly assume the BD solutions for the modes instead of applying the RK4 method for any
subsequent time step. On the other hand, all superhorizon modes are solved with the RK4 method.
For the numerical solution discussed below, we employ 25k time steps.

In Fig. 4, we show the evolution of ρB, ρE , H and G for BPa with Λ = 2.55 × 10−5MP for
illustration. Similar values are found for the other benchmark points. We remark that we have
compared our numerical results to the analytical approximation of the magnetic and electric fields’
energy densities, magnetic helicity, and its derivative as in Ref. [65] and find good agreement.

Relevance of the Schwinger effect

We now turn to the impact of the Schwinger effect. The fermion current of Eq. (4.2) can be
expressed as

jµ = (ρc,J) (4.20)

The current and the gauge field are related by Ohm’s law

J = σcE = −σc ∂τA, (4.21)

where the conductivity σc has been defined as a comoving quantity. The physical conductivity σph
relates to the comoving one via σc = a σph. In the case of one Dirac fermion f with mass mf and
charge Qf under a U(1) group with coupling g, the comoving conductivity associated to f can be
written as [71]

σcf =
|g Qf |3
6π2

a

H

√
2ρB coth

(
π

√
ρB
ρE

)
exp

{
−

πm2
f√

2ρE |g Qf |
−
√

2

3

φ

MP

}
, (4.22)
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where mf ≡ mf (h0) = mf (v)h0/v and so that

σc =
∑

f

σcf =
∑

ℓ

σcℓ +Nc

∑

q

σcq, (4.23)

with ℓ = e, µ, τ ; q = u, d, c, s, t, b, Nc = 3 being the number of colors. Last, since we are in the
broken phase, we identify g as the electric charge g ≡ e ≃ 0.71 at the scale in which inflation takes
place.

This conductivity is to be distinguished from the conductivity of a thermal plasma after reheating
in a radiation-dominated universe. We stress that the above is the conductivity at the end of
inflation, before the reheating, produced by fermion pair formation from the magnetic field. Also,
this estimation is valid in the case of collinear electric and magnetic fields, an assumption that
we have numerically checked. Finally, the electric and magnetic fields are assumed to be slowly
varying, as we expect the hypercharge gauge field to reach a stationary configuration, where the
tachyonic instability and the induced current balance each other. We have verified in our numerical
simulation that this is indeed the case.

In the presence of the fermion current, Eq. (4.7) becomes

¨̃
A+ (H + σph)

˙̃
A+

k2

a2
Ã+

2iHξ

a
(k× Ã) = 0, (4.24)

which, for the transverse components in conformal time reads as

∂2τ Ã
λ + σc ∂τ Ã

λ + ω2
λÃ

λ = 0, (4.25)

which can be recast as

∂2τ Ã
λ +

(
∂

∂τ
log(∆(τ))

)
∂τ Ã

λ + ω2
λÃ

λ = 0, (4.26)

with

∆(τ) = exp

{∫ τ

−∞
σc(τ

′) dτ ′
}
. (4.27)

Integrating Eq. (4.26) by parts as in the previous subsection, one can now define the canonical
momentum for the transverse modes as

πλ(τ,k) =
δLλ

δ
(
∂τ Ãλ(τ,−k)

) = ∆(τ)∂τ Ã
λ′(τ,k), (4.28)

and the commutation relation now becomes [98]
[
Ãλ(τ,k), ∂τ Ã

λ′(τ,q)

]
= i

1

∆(τ)
δλλ′δ(k+ q), with, Ãλ(τ,k) = âλ

k
uλk(τ) + âλ−k

uλk(τ). (4.29)

The mode equations for the gauge fields in the presence of the Schwinger effect become

üλ + (H + σc)u̇
λ +

k

a

(
k

a
+ 2λHξ

)
uλ = 0, (4.30)

and the cut-off momenta kc is now modified to

kc = |aH ξ|+
√
(aH ξ)2 +

a2

2

[
σ̇ph + σph

(σph
2

+H
)]
. (4.31)
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FIG. 5: Energy breakdown for ξR = 2.35× 109, ξH = 10−3 and Λ = 2× 10−5MP at the end of inflation
and the onset of reheating. We show a comparison between the absence and the presence of the Schwinger

effect for the quantities ρi(N )/ρ(N ), i = E,B, ψ. When the Schwinger effect is strong, like here, the
fermion energy density can dominate over the gauge density. Still, all energy shares are reduced in the

presence of the Schwinger effect.

At early times solution of the mode equations of Eq. (4.30) are represented by WKB solution [33, 98]

uλ(τ) =
1√
2

1√
∆(τ)ωλ(τ, k)

e
−i

∫ τ

τin
dτ ′ωλ(τ

′,k)
(4.32)

as long as |∂τωλ

ωλ
| ≪ 1. In practice, we utilize the early-time solution for the modes

uλ(τ) =
1√
2

1√
∆(τ)ωλ(τ, k)

e−ikτ (4.33)

to find relevant, observable quantities. From Eq. (4.30) and Eq. (4.31), we find the energy densities
for BPa and display them in the right panel of Fig. 5.

Due to the coupling between the fermion and gauge sectors, massless hypercharged fermions are
continuously produced during inflation. They are massless as long as the EW symmetry remains
intact and thus contribute to the energy density of relativistic radiation as

ρψ = lim
V→∞

σc
V

∫

V
d3x

⟨A ·E⟩
a4

=
σc
a4

∫ kc

kmin

dk
k2

2π2
d

dτ

∑

λ

|uλ|2. (4.34)

It has been shown in Ref. [99] that the fermion energy density can easily dominate over the energy
densities of E and B fields at the end of inflation. This situation has been chosen as an example
in Fig. 5 where we display the energy fraction ρi(N )/ρ(N ), i = E,B, ψ at the end of inflation and
the onset of reheating. We show a direct comparison between the presence and the absence of the
Schwinger effect. While for Λ ≳ 4 × 10−5MP the difference is an order one factor, the Schwinger
effect reduces the amount of electromagnetic energy and helicity up to two orders of magnitude
for Λ ≃ 2.4 × 10−5MP, see Fig. 7. This is because the presence of the Schwinger effect trades an
exponential behaviour in ξ with a polynomial one.

When the gauge share dominates at least by 80%, the Universe will reheat before the perturbative
decay of the inflaton [100], a phenomenon called gauge preheating. As in Ref. [65], we found that
preheating is unlikely since the ratio is ∼ 10−6 at most. However, the huge damping in both energy
and helicity does not preclude a window in the parameter space where the BAU is achieved, as we
will see in the next section.
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5 Baryogenesis

To generate a baryon asymmetry, the Sakharov conditions [51] must be met: (i) the system must
contain a process that violates the baryon number, (ii), this process also violates C/CP symmetries,
(iii) this process occurs out of thermal equilibrium. In the SM, the CP-violating term from the
CKM matrix phase is too small to induce a significant baryon asymmetry at a low energy scale,
hence we included the dimension-six CP-odd term between Ricci scalar and U(1)Y gauge boson.
On the other hand, in the symmetric phase of the EW plasma, the SM exhibits a chiral anomaly
that is enough to source the present-day BAU. The anomaly expresses the fact that the B + L
anomaly, the U(1)Y helicity and the weak sphaleron are connected as

∆NB = ∆NL = Ng

(
∆NCS −

g′2

16π2
∆HY

)
. (5.1)

The factor Ng = 3 is the number of fermion generations and g′ is the U(1)Y gauge coupling. Under
the thermal fluctuation of the SU(2)L gauge fields, the Chern-Simons number NCS is diffusive,
resulting in the rapid washout of both lepton NL and baryon NB numbers. On the contrary, a
helical primordial magnetic field acts as a source, and a net baryon asymmetry can remain after
the EW phase transition.

In Refs. [53, 60], the effects of the helicity decay and sphaleron washout balance have been studied
within a careful analysis of the transport equations for all SM species during the EWPT. As a
result, a non-zero baryon-to-entropy ratio ηB remains in the broken phase while the transformation
of baryon asymmetry back into helicity is avoided. The novelty of the mechanism lies in the
introduction of a time-dependent (temperature-dependent) weak mixing angle θW (T ) which enters
an additional source of the baryon number into the kinetic equation. When the EW symmetry
breaking occurs at T ≃ 160 GeV, the primordial hypermagnetic field becomes an electromagnetic
field. However, the electroweak sphaleron remains in equilibrium until T ≃ 130 GeV and threatens
to washout the baryon asymmetry. Therefore proper modeling of the epoch 160 GeV ≳ T ≳

130 GeV is critical to an accurate prediction of the relic BAU.

The behavior of θW (T ) is confirmed by analytic calculations [50], and numerical lattice simula-
tions [101]. We follow Refs. [60, 61] and model it with a smooth step function

cos2 θW =
g2

g′2 + g2
+

1

2

g′2

g′2 + g2

(
1 + tanh

[
T − Tstep

∆T

])
(5.2)

which, for 155GeV ≲ Tstep ≲ 160GeV and 5GeV ≲ ∆T ≲ 20GeV, describes reasonably well
the analytical and lattice results for the temperature dependence. Consequently, it is possible to
generate the observed BAU from a maximally helical magnetic field that was generated before
the EW crossover. Indeed, including all contributions, the Boltzmann equation for the baryon-to-
entropy ratio ηB reads

dηB
dx

= −111

34
γW sph ηB +

3

16π2
(g′2 + g2) sin(2θW )

dθW
dx

HY

s
, (5.3)

where x = T/H(T ), with H(T ) being the Hubble rate at temperature T , HY the hypermagnetic
helicity that is initially present and s the comoving entropy density of the SM plasma given by
s = (2π2/45)g∗T 3. Furthermore, γW sph = 6ΓW sph/T

4 is the dimensionless transport coefficient
for the EW sphaleron which, for temperatures T < 161 GeV, is found from lattice simulations to
be [102]

γW sph ≃ exp

{
−147.7 + 107.9

T

130GeV

}
. (5.4)
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The Boltzmann equation (5.3) has been numerically solved in Ref. [60] and the baryon-to-entropy
ratio ηB was found to become frozen, i.e. η̇B = 0, at a temperature T ≃ 135 GeV. As expected,
this is close to the temperature T ≃ 130 GeV at which EW sphalerons freeze out. Setting the RHS
of Eq. (5.3) to zero and solving for ηB yields

ηB ≃ 4 · 10−12 fθW
HY

H3(tend)

(
H(tend)

1013GeV

) 3

2

(
Trh
T ins
rh

)
, (5.5)

where the (instant) reheating temperature is

Trh =

(
90

π2g∗

) 1

4 √
Γϕ, T ins

rh =

(
90

π2g∗

) 1

4 √
H(tend), (5.6)

and Γϕ is the total decay width of the inflaton that reheats the universe after inflation.

All the details on the EWPT dynamics are encoded in the parameter fθW which is subject to
significant uncertainties

fθW = − sin(2θW )
dθW
d log T

∣∣∣∣
T=135 GeV

, 5.6 · 10−4 ≲ fθW ≲ 0.32. (5.7)

The bounds on fθW are given by varying Tstep and ∆T in the ranges given below Eq. (5.2). The
result Eq. (5.5) is a main ingredient of this work as it directly relates the amount of the final BAU
to the amount of hypermagnetic helicity available at the EWPT.

The production of hypermagnetic fields nevertheless happens at the inflationary scale, hence one
must ensure that the helicity is preserved as the Universe cools down in the radiation-dominated
era that follows reheating. A rough estimate is to require that the magnetic Reynolds number
Rm is bigger than unity, as this implies that the effects of magnetic induction are dominating
over magnetic diffusion in the thermal plasma. On the other hand, the electric Reynolds number
Re determines in which regime the plasma evolves and informs us how to calculate the magnetic
Reynolds number, see e.g. Refs. [62, 64]. In our work, we found that we are in the viscous regime,
Re < 1, and hence we need to satisfy the constraint

Rrh
m ≈ 5.9 · 10−6

ρBY
ℓ2BY

H(tend)2

(
H(tend)

1013GeV

)(
Trh
T ins
rh

) 2

3

> 1, (5.8)

where ℓBY
is the hypermagnetic characteristic size given by

ℓBY
=

2π

ρB a3

∫ kc

kmin

dk
k3

4π2

∑

λ

|uλ|2. (5.9)

The magnetohydrodynamics description of the plasma also admits a CP-odd term that can induce
a helicity cancellation because of the fermion asymmetry back-transformation into helical gauge
fields with opposite sign. This is because the energy configuration in the gauge sector is more
favorable than in the fermion sector [103], a phenomenon called chiral plasma instability (CPI).
Thus, one must ensure that all fermion asymmetry created alongside the helical field during inflation
is erased by the action of the weak sphaleron for 1012 GeV ≳ T ≳ 130 GeV. Because the weak
interaction only couples to left-handed fermions, the right-handed fermions are protected from the
washout until their Yukawa interaction becomes relevant in thermal equilibrium. The right-handed
electron eR is the last species to come into chemical equilibrium, at temperatures ∼ 105GeV, thus
its asymmetry survives the longest. Therefore, to efficiently erase the fermion asymmetry, while
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FIG. 6: These figures display a scan of the parameter Λ with the first set of initial conditions, see BPa in
Tab. I without Schwinger effect. Top panels: Magnetic and electric energy density (left) and their ratio

with the inflation energy density (right). Middle panel: baryon asymmetry ηB (left) and Reynolds
numbers (right) with their corresponding constraints in red. Bottom panels: CPI temperature with

constraint in red (left) and baryogenesis parameter space (right).

preserving the helicity in the gauge sector, before the CPI can happen, one must require that
[62, 103]

TCPI ≈ (4 · 10−7 GeV)
H2
Y

H(tend)6

(
H(tend)

1013GeV

)3( Trh
T ins
rh

)2

≲ 105 GeV. (5.10)

In Figs. 6 and 7, we display the main results for the baryogenesis mechanism both in the presence
and absence of the Schwinger effect. In both figures, the top panels display the electromagnetic
energy and energy ratio to the background energy density. In the middle panels we show the
quantities ηB(Λ, fθW ), Rm(Λ) and Re(Λ). On the left, the red line must be in between the two
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FIG. 7: Similar to Fig. 6, these figures again display a scan of the parameter Λ with the first set of initial
conditions, BPa in Tab. I including the Schwinger effect. Top panels: Magnetic and electric energy density
(left) and their ratio with the inflation energy density (right). Middle panel: baryon asymmetry ηB (left)

and Reynolds numbers (right) with their corresponding constraints in red. Bottom panels: CPI
temperature with constraint in red (left) and baryogenesis parameter space (right). We did not display the

CPI temperature on this last plot as the CPI is no longer a constraint.

curves to meet the constraint. On the right, the only constraint is that Rm is above the red line.
Finally, at the bottom, we present the CPI temperature as a function of Λ and the regions where
the different constraints are met. On the bottom left panel, the curve should be below the red line.
On the right one, we shall seek the overlapping region. In this last plot, we add the temperature
ratio Trh / T

ins
rh as a supplementary parameter. We see that the window is larger in the presence

of the Schwinger, which also totally removes the constraint on TCPI. Indeed, the backreactionless
mechanism tends to overshoot the BAU, an issue addressed by the presence of the Schwinger effect
which therefore acts as a BAU facilitator.



24

6 Summary and Conclusions

We have discussed baryogenesis in the context of R2-Higgs inflation, involving the CP-violating
dimension-six term proportional to (R/Λ2)BµνB̃

µν . We adopt a fully covariant formalism for
both inflationary dynamics and gauge field production. Our linear order analysis shows that if
Λ ∼ 3×10−5MP, sufficient helical hypermagnetic fields are produced, which can lead to the observed
BAU during the electroweak crossover. Smaller values of Λ imply an overproduction of baryons.
Once the Schwinger effect is included, the energy densities ρE and ρB are suppressed, but there is

a subtlety: the Schwinger effect is exponentially suppressed by a factor ∼ exp
(
−
√

(2/3)φ/MP

)
,

which dilutes its relevance during the inflationary epoch, but becomes pronounced around and
after the end of inflation. The Schwinger effect can then lead to baryogenesis for smaller values
Λ ∼ 2.2× 10−5MP. We also find that when the Schwinger effect is included, the radiation density
ρψ can dominate over the electromagnetic densities ρE and ρB, cf. Fig. 5.

We have primarily focused on the Starobinsky-like regime in our linear order analysis. In the
mixed R2-Higgs scenario, a smaller Λ may generate BAU without the Schwinger effect. This can
be understood from Eq. (2.25) where a smaller ξR and moderately large ξH (i.e. the mixed R2-
Higgs like regime) can induce inflation, while BAU can be triggered by a larger scale Λ. However,
a larger ξH may lead to an exponential growth of isocurvature modes (see e.g. Refs. [78, 104, 105])
in our backreactionless scenario although such a mode is suppressed during inflation. Moreover, in
such a scenario, one would need to take into account non-perturbative effects. In our analysis, we
have not considered the impact of decay and self-resonance. Thus, the ratio Trh/T

ins
rh is essentially

a free parameter in our analysis. We leave a more detailed analysis of (p)reheating and particle
production for future work. It has been pointed out that the helical gauge fields may source
non-gaussianity [106, 107], which may result in moderate constraint to the parameter space for
baryogenesis without the Schwinger effect [64]. In the presence of the Schwinger effect, the produced
helical gauge fields are much weaker and we expect those constraints to be harmless. However, one
needs to be careful when interpreting results from Refs. [106, 107] as they focus on a single field. In
our multi-field model, a proper estimation of non-gaussianity requires considering perturbations up
to third order. This would induce several new contributions from field-space Riemann tensor [76]
and is beyond the scope of our work.

While there are many avenues to achieve the observed BAU, baryogenesis driven by a dimension-
six CP-odd term ∼ (R/Λ2)BµνB̃

µν provides a motivated approach to address BAU within the
framework of R2-Higgs inflation. This approach critically rests on the presence of an effective
dimension-six term, but it does not require additional degrees of freedom beyond the SM. In
parallel, such dimension-six terms can also shed light on the UV sensitivity of R2-Higgs inflation
as discussed in, e.g. Refs. [108, 109].
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A The Vierbein Fields

The vierbein fields eaµ are defined as follows: The metric in the Jordan frame gJµν can be re-
lated at every point to a Minkowski tangent space ηab via the vierbein, which obeys the following
orthogonality conditions

eaµe
ν
a = δνµ, eaµe

µ
b = δab , gJµν = eaµe

b
νηab and γµ = eaµγ̃a, (A.1)

where γ̃a are the Minkowski γ-matrices. The γµ satisfy {γµ, γν} = 2gµνJ in curved space-time. The
spin-affine connection is given by

Γµ =
1

2
ωµ abσ

ab with σab =
1

4
[γ̃a, γ̃b]. (A.2)

The spin-connection ω a
µ b is defined as [110]

ω a
µ b ≡

(
eaνe

β
bΓ

ν
µβ − eβb ∂µe

a
β

)
. (A.3)

B Field-Space Metric and Christoffel Symbols

The field-space GIJ metric is given by

Gϕϕ = 1, Ghh = e

√

2

3

φ
MP , Gϕh = Ghϕ = 0. (B.1)

The corresponding non-vanishing Christoffel symbols are therefore

Γϕhh =
e
−
√

2

3

φ
MP√

6MP

, Γhϕh = Γhhϕ = − 1√
6MP

. (B.2)

C Einstein Equation and Stress-Energy Tensor

The action SE can be rewritten in the following way

SE =

∫
d4x

√−gE
(
M2

P

2
RE + LM

)
, (C.1)

where LM is all terms in the action other than RE . Varying the action with respect to gµνE we get

0 = δSE

=

∫
d4x

(
M2

P

2

δ(
√−gERE)
δgµνE

+
δ(
√−gELM )

δgµνE

)
δgµνE (C.2)

=

∫
d4x

(
M2

P

2

(
RE

δ(
√−gE)
δgµνE

+
√−gE

δ(RE)

δgµνE

)
+
√−gE

δ(LM )

δgµνE
+ LM

δ(
√−gE)
δgµνE

)
δgµνE .

Utilizing δ(
√
−gE)

δgµν
E

= −1
2

√−gEgEµν , δ(RE)
δgµν

E

= REµν and ignoring the surface term we get

REµν −
1

2
gEµνRE =

1

M2
P

Tµν (C.3)
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where

Tµν =

(
LMgEµν − 2

δLM
δgµνE

)
, (C.4)

which is found to be

Tµν =

[
GIJDµϕ

IDνϕ
J + gαβE BαµBβν + gαβE W i

αµW
i
βν +

1

2
e
−
√

2

3

φ
MP g2h2

(W 1
µ − iW 2

µ)√
2

(W 1
ν + iW 2

ν )√
2

+
2M2

P

ξRΛ2
√−gE

F (ϕI)e

√

2

3

φ
MP

(
2gEµαϵ

αβρσBνβBρσ +
1

8
gEµνϵ

αβρσBαβBρσ

)

+
1

4
e
−
√

2

3

φ
MP h2

(
gW 3

µ − g′Bµ
) (
gW 3

ν − g′Bν
) ]

−

gEµν

(
1

2
GIJg

αβ
E Dαϕ

IDβϕ
J + V0(ϕ

I) +
2M2

P

ξRΛ2
√−gE

F (ϕI)e

√

2

3

φ
MPBαβB̃

αβ

+
1

4
gαρE gβσE BαβBρσ +

1

4
gαρE gβσE W i

αβW
i
ρσ +

1

4
e
−
√

2

3

φ
MP gαβE g2h2

(W 1
α − iW 2

α)√
2

(W 1
β + iW 2

β )√
2

+
1

8
e
−
√

2

3

φ
MP gαβE h2

(
gW 3

α − g′Bα
) (
gW 3

β − g′Bβ
))

+ e
−
√

2

3

φ
MP f̄ eaµγ̃a∇f

νf.

(C.5)

D The Valley Approximation

In this section, we detail aspects of the so-called valley approximation for V0. In this approximation,
the system essentially behaves as a single-field scenario. Firstly, for positivity of the potential at
the inflationary scale, one requires

λ+
ξ2H
4ξR

> 0. (D.1)

For solving the background equations and the inflationary dynamics we focus on the R2-like regime
and the initial condition of the valley approximation derives from

∂V0
∂h

= 0, (D.2)

which gives three solutions

h = 0, and h = ±

√
e

√

2

3

φ
MP − 1√

4λ+
ξ2
H

ξR

√
ξH
ξR
MP. (D.3)

One may choose the trivial solution h = 0, or the solution with a positive sign for convenience.

E Numerical Solutions of the Electromagnetic Equations

In the following, we summarize the details of solving the mode equation of Eq. (4.15) in cosmological
time t using the RK4 method

üλ +Hu̇λ +

(
k2

a2
+

8 cos2 θWM
2
P

ξRΛ2a
∂0

(
F (φI)e

√

2

3
φ/MP

)
λk

)
uλ = 0. (E.1)
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Firstly, as required for the RK4 method, we rewrite the above equation as two first order equations

duλ

dt
= yλ and,

dyλ

dt
= −yλH −

(
k2

a2
+

8 cos2 θWM
2
P

ξRΛ2a
∂0

(
F (φI)e

√

2

3
φ/MP

)
λk

)
uλ (E.2)

The equations are essentially in the form of

duλ

dt
= f(uλ, yλ, t), and

dyλ

dt
= g(uλ, yλ, t), (E.3)

with

f(uλ, yλ, t) = yλ,

g(uλ, yλ, t) = −yλH −
(
k2

a2
+

8 cos2 θWM
2
P

ξRΛ2a
∂0

(
F (φI)e

√

2

3
φ/MP

)
λk

)
uλ.

(E.4)

Now the task is to find out uλ and y for each time step utilizing the RK4 method. This is provided
by

uλi+1 = uλi +
1

6
(l0 + 2l1 + 2l2 + l3) ,

yλi+1 = yλi +
1

6
(m0 + 2m1 + 2m2 +m3) ,

(E.5)

with

l0 = δt f(uλi , y
λ
i , ti),

m0 = δt g(uλi , y
λ
i , ti),

l1 = δt f(uλi +
1

2
l0, y

λ
i +

1

2
m0, ti +

1

2
δt),

m1 = δt g(uλi +
1

2
l0, y

λ
i +

1

2
m0, ti +

1

2
δt),

l2 = δt f(uλi +
1

2
l1, y

λ
i +

1

2
m1, ti +

1

2
δt),

m2 = δt g(uλi +
1

2
l1, y

λ
i +

1

2
m1, ti +

1

2
δt),

l3 = δt f(uλi + l2, yi +m2, ti),

m3 = δt g(uλi + l2, yi +m3, ti),

(E.6)

where δt is the time step. The Bunch-Davis initial conditions for the modes uλ and y are given in
Eq. (4.19).

One can in principle fix the number of modes Nk in each time step within [kmin, kc] for the inte-
gration of Eqs. (4.16). However, this makes the initialization of the modes in the next time step
more involved. This is because as kc increases in each time step, keeping Nk fixed each time would
require some more involved initialization for subsequent time steps. We can take a simpler route
and keep the number of k modes the same for all time steps. This ensures that the number of
modes Nk and the corresponding modes are identical at each time step. In practice, we take a
large range [kmin, kmax] with kmax = Ca(tnumend)H(tnumend) where tnumend is the numerical end
of our simulation. We chose C = 100 to ensure that kc(tnumend) < kmax and divide the range
[kmin, kmax] into Nk = 200 intervals. In each time step, we then numerically interpolate Eqs. (4.16)
in [kmin, kmax] and truncate the numerical integration up to the corresponding kc values. Increasing
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Nk to higher values does not significantly impact our results. For further details of the numerical
procedure, we refer the reader to Ref. [65].

In the presence of the Schwinger effect the corresponding equation of motion, Eq. (4.30), is solved
numerically using similar methods as those described above.
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We investigate the impact of preheating on baryogenesis in R2-Higgs inflation. In this scenario,

the inclusion of a dimension-six operator (R/Λ2)Bµν
‹Bµν abundantly generates helical hypermag-

netic fields during inflation, leading to a baryon asymmetric Universe at the electroweak crossover.
Focusing on the R2-like regime, we first derive the relevant dynamics of preheating using a doubly-
covariant formalism. We find that preheating can happen for the Higgs, transverse gauge and
Goldstone bosons, however, it is dependent on the value of the non-minimal coupling ξH between
the Standard Model Higgs field and the Ricci scalar. We identify the preheating temperature to
determine the appropriate scale Λ for driving baryogenesis, which is around Λ ∼ 2.2 (2.6)×10−5 MP

for ξH ∼ 1 (10). Our results represent the most accurate estimation of the scale of gravity induced
baryogenesis in R2-Higgs inflation to date. Areas for further improvement are identified.
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1 Introduction

The existence of the baryon asymmetry of the Universe (BAU) is firmly established by various cosmological obser-
vations such as the cosmic microwave background and big-bang nucleosynthesis. However, its origin still remains
unclear. If the fundamental scale of the mechanism behind the BAU is tied to a higher scale than the electroweak one,
it might be possible that telltale effects at present, or even future, colliders could remain absent. One such high-scale
mechanism provides, in the Jordan frame [1], an additional source of CP violation via a (CP-odd) dimension-six

operator (R/Λ2)Bµν
‹Bµν , where R is the Ricci scalar and Bµν is the field stress tensor of the hypercharge U(1)Y . We

will refer to this mechanism as gravity assisted baryogenesis from here onwards. In this case, even at the electroweak
crossover of the Standard Model (SM), the out-of-equilibrium condition can be met if the source and washout decay
rates are different and shut off at different epochs [2, 3]. The CP-violating dimension-six Chern-Simons density can
abundantly produce helical hypermagnetic fields at the end of inflation #1. These helical hypermagnetic fields #2

may then create the observed baryon asymmetry at the electroweak crossover [3, 15–20].

This mechanism can seamlessly be integrated into inflationary scenarios such as R2-Higgs inflation [21–29] since the

(R/Λ2)Bµν
‹Bµν term can also be considered within the context of f(R) gravity (or, rather here, f(R,Φ, Bµ) gravity).

In the dual scalar-tensor theory, the R2 term is manifest as a dynamical scalar degree of freedom, which, along with
the Higgs field Φ, couples to the Chern-Simons density, resulting in the production of hypermagnetic fields at the
end of inflation. It should also be noted that R2-Higgs inflation, like R2 [30–34] inflation and Higgs inflation [35–41]
(for similar mechanisms, see e.g. [42–49]), is one of the best-fit models of the Planck data [50]. Further, unlike Higgs

#1 This term, not directly connected to BAU but in the context of hypermagnetic field production, has been discussed in, e.g., Refs. [4–8].
#2 See also Refs. [9–14] for the production of helical hypermagnetic fields due to inflaton dynamics.
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inflation, where longitudinal gauge bosons are violently produced well beyond the unitarity cut-off scale [51–53],
the unitarity scale is restored up to the Planck scale in R2-Higgs inflation [22]. Thus, high-scale baryogenesis via

(R/Λ2)Bµν
‹Bµν can be elegantly connected to the R2-Higgs model without requiring additional degrees of freedom

beyond the SM ones.

It is not surprising that, in the gravity assisted baryogenesis, the production of hypermagnetic fields highly depends on
the inflationary dynamics. The baryon-to-entropy ratio is also highly sensitive to the value of the magnetic Reynolds
number which in turn highly depends on the exact (p)reheating temperature [1, 15, 18–20]. In addition, the latter is
also highly dependent on the value of quantum hypermagnetic energy density when preheating is complete. Therefore,
the exact amount of baryon asymmetry will be model-dependent as it makes use of specific (p)reheating results #3.
An improved understanding of these dynamics brings about major improvements in the precision of predictions since
we do not need to rely on estimates as in previous studies but directly determine the thermal plasma temperature, the
relevant energy densities and the scale factor ratio at reheating and the end of inflation. Previous studies performed
by the current authors treated such effects as effective parameters [1], while a detailed analysis of how (p)reheating
impacts gravity assisted baryogenesis was missing. This will entail us to find a more precise value for the Λ required
for baryogenesis.

In this work, taking R2-Higgs inflation as a benchmark model for inflation, and focusing primarily on the R2-like
regime, we study the impact of preheating and particle production in the mechanism of gravity assisted baryogenesis.
Adopting the doubly-covariant formalism and including all perturbations at the linear order, we study the preheating
dynamics of the scalar and gauge sectors. In Ref. [53], Sfakianakis and van de Vis did provide a similar detailed
analysis of linear fluctuations during preheating in Higgs inflation in the Einstein frame. In our case, the field space
of the inflationary dynamics consists of five fields: one dynamical scalar degree of freedom arising due to the R2

term and four from the Higgs SU(2)L doublet, corresponding to the physical Higgs and the three Goldstone bosons.
The background dynamics are governed by the R2 scalar alongside the physical Higgs boson; the three would-be
Goldstone bosons are treated as perturbations. Our results include the full SU(2)L × U(1)Y gauge dynamics in a
complete analysis.

The inflaton’s self-resonance turns out to not be efficient enough for preheating. However, Higgs fluctuations can lead
to preheating if the non-minimal coupling ξH between the Ricci scalar R and the Higgs is ≳ 10. We also show that
for ξH ∼ 10, the transverse modes of the Z and W boson can lead to gauge preheating. For tiny ξH values, gauge
preheating might be induced if Λ is sufficiently small. We shall see that such a small value of Λ would, however,
lead to an overproduction of baryon asymmetry. Further, Goldstone bosons may also preheat the Universe even for
ξH ∼ 1 (see also Refs. [28, 52, 54–58] for Goldstone/longitudinal gauge boson preheating in R2-Higgs inflation). Our
results show that the Goldstone bosons can preheat the Universe mildly faster than any other fields and, hence, they
determine the reheating temperature needed for the baryogenesis computation.

We organize this paper as follows. First, we start with outlining the action and derive the relevant equations of motion
(EoM) for the different fields in Sec. 2. We discuss the inflationary dynamics in the covariant formalism in Sec. 3. The
production of inflaton and Higgs fluctuations are studied in Sec. 4, and the production of the Z, W and Goldstone
bosons is presented in Sec. 5. The production of hypermagnetic fields and subsequent generation of the BAU are
discussed, respectively, in Sec. 6 and Sec. 8. We discuss reheating in Sec. 7. Finally, we summarize and conclude in
Sec. 9. Some technical and computational details are relegated to App. A.

2 The action

We start with the action in the Jordan frame given by

SJ =

∫
d4x

√−gJ
ï
M2

P

2
f(RJ ,Φ, Bµ,W

i
µ)− gµνJ (∇µΦ)

†∇νΦ− V (Φ,Φ†)− 1

4
gµρJ gνσJ BµνBρσ − 1

4
gµρJ gνσJ W i

µνW
i
ρσ

ò
,

(2.1)

where MP =
√

1/ (8πG) ≈ 2.4× 1018 GeV is the reduced Planck mass and G is Newton’s constant. Throughout this
work, we follow the mostly-plus convention (−1,+1,+1,+1) for the metric,

√−gJ is the determinant of the metric,
and we choose the ϵ0123 = 1 convention for the Levi-Civita tensor. RJ and Φ denote the space-time Ricci scalar and

#3 In the absence of efficient preheating, thermalization proceeds through perturbative reheating.
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the Higgs doublet, Bµν and W i
µν are the field stress tensors of the U(1)Y and SU(2)L gauge groups, respectively. The

covariant derivative with the SM gauge groups is defined as

∇µ = Dµ + ig′
1

2
QYf

Bµ + ig T ·Wµ, (2.2)

where g′ and g are U(1)Y and SU(2)L couplings. QYf
is U(1)Y hypercharge and T = τ/2 are the weak isospin

generators derived from the three Pauli matrices τ . The field-stress tensors for the U(1)Y and SU(2)L gauge fields
can be written as

Bµν = DµBν −DνBµ, W i
µν = DµW

i
ν −DνW

i
µ − g

3∑

j,k=1

ϵijkW
j
µW

k
ν , (2.3)

where Dµ is the covariant derivative of the space-time metric gJµν . We have thus far ignored the fermions in Eq. (2.1)
but shall return later part of the paper. The Higgs potential V (Φ,Φ†) and f(RJ ,Φ, Bµ,W

i
µ) are given as

V (Φ,Φ†) = λ|Φ|4, (2.4a)

f(RJ ,Φ, Bµ,W
i
µ) = RJ +

ξR
2M2

P

R2
J +

2ξH
M2

P

|Φ|2RJ − 2

Λ2M2
P

ϵµνρσ√−gJ
BµνBρσRJ − 2

Λ2M2
P

ϵµνρσ√−gJ
W i

µνW
i
ρσRJ . (2.4b)

The mass term in the Higgs potential is neglected as it plays no role for the inflationary dynamics.

To transition from a generic f(RJ ,Φ, Bµ,W
i
µ) gravity to the respective scalar-tensor theory, we perform a Legendre

transformation by first introducing an auxiliary field Ψ and rewrite Eq. (2.1) as

SJ =

∫
d4x

√−gJ
ï
M2

P

2

Ç
f(Ψ,Φ, Bµ,W

i
µ) +

∂f(Ψ,Φ, Bµ,W
i
µ)

∂Ψ
(RJ −Ψ)

å

− gµνJ (∇µΦ)
†∇νΦ− V (Φ,Φ†)− 1

4
gµρJ gνσJ BµνBρσ − 1

4
gµρJ gνσJ W i

µνW
i
ρσ

ò
.

(2.5)

We can introduce a physical degree of freedom

Θ =
∂f(Ψ,Φ, Bµ,W

i
µ)

∂Ψ
(2.6)

and re-express Eq. (2.5) as

SJ =

∫
d4x

√−gJ
ï
M2

P

2
ΘRJ − U(Θ,Φ, Bµ,W

i
µ)− gµνJ (∇µΦ)

†∇νΦ− V (Φ,Φ†)

− 1

4
gµρJ gνσJ BµνBρσ − 1

4
gµρJ gνσJ W i

µνW
i
ρσ

ò (2.7)

with

U(Θ,Φ, Bµ,W
i
µ) =

M2
P

2
[Ψ(Θ)Θ− f(Ψ(Θ),Φ, Bµ)]

=
M4

P

4ξR

ïÅ
1−Θ+

ξH
M2

P

|Φ|2 − 2

Λ2M2
P

ϵµνρσ√−gJ
BµνBρσ − 2

Λ2M2
P

ϵµνρσ√−gJ
W i

µνW
i
ρσ

ã2ò
.

(2.8)

Next, we Weyl-rescale the metric

gJµν =
1

Θ
gEµν , gµνJ = Θ gµνE ,

√−gJ =
1

Θ2

√−gE , (2.9)

to write the action Einstein frame as

SE =

∫
d4x

√−gE
ï
M2

P

2
RE − 3M2

P

4
gµνE Dµ(lnΘ)Dν(lnΘ)− 1

2Θ
gµνE (∇µΦ)

†∇νΦ− VE

− 1

4
gµρE gνσE BµνBρσ − 1

4
gµρE gνσE W i

µνW
i
ρσ

ò (2.10)
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with

VE =
1

Θ2

[
V (Φ,Φ†) + U(Θ,Φ, Bµ,W

i
µ)
]
, (2.11)

RJ = Θ

ï
RE + 32EΘ− 3

2
gµνE Dµ(lnΘ)Dν(lnΘ)

ò
. (2.12)

We have ignored the surface term 2E = gµνE DµDν in the action SE . With the field redefinition

ϕ =MP

…
3

2
lnΘ, (2.13)

Eq. (2.10) finally becomes

SE =

∫
d4x

√−gE
ï
M2

P

2
RE − 1

2
gµνE DµϕDνϕ− e

−
√

2

3

φ
MP gµνE (∇µΦ)

†∇νΦ− VE

− 1

4
gµρE gνσJ BµνBρσ − 1

4
gµρE gνσE W i

µνW
i
ρσ

ò
.

(2.14)

We now turn our attention to the Higgs and gauge fields. The QY = +1 Higgs field decomposes as

Φ =
1√
2

Ñ
ϕ3 + iϕ4

h+ iϕ2

é
. (2.15)

It is customary to perform a basis transformation for gauge bosons from the electroweak W i
µ, Bµ to the mass and

QED charge basis Wµ, Zµ, Aµ as

W 1
µ =

W+
µ +W−

µ√
2

, W 2
µ =

i√
2

(
W+

µ −W−
µ

)
,

W 3
µ = sWAµ + cWZµ, Bµ = cWAµ − sWZµ,

(2.16)

where e = sW g = cW g′ with shorthand sW and cW for the sine and cosine of the electroweak Weinberg angle θW .
In the following, we will consider equations of motion (EoM) at the linear order. We therefore expand the action
Eq. (2.14) to quadratic order

SE =

∫
d4x

√−gE
ï
M2

P

2
RE − 1

2
GIJg

µν
E Dµϕ

IDνϕ
J − VE(ϕ

I)− 1

4
gµρE gνσE FAµνFAρσ − 1

4
gµρE gνσE FZµνFZρσ

− 1

2
gµρE gνσE F+

WµνF
−
Wρσ − e

−
√

2

3

φ
MP gµνE

Å
g2Z
8
h2ZµZν +

gZ
2

[(Dµh) ϕ2 − (Dµϕ2)h]Zν +
e2

4s2W
h2W+

µ W
−
ν +

ie

2
√
2sW

Dµh
[
W−

ν (ϕ3 + iϕ4)−W+
ν (ϕ3 − iϕ4)

]
− ie

2
√
2sW

[
W−

ν Dµ(ϕ3 + iϕ4)−W+
ν Dµ(ϕ3 − iϕ4)

]
h

ã
,

(2.17)

introducing ϕI ∈ {ϕ, h, ϕ2, ϕ3, ϕ4}, gZ = e/(sW cW ), and the 5×5 field space metric GIJ whose non-vanishing elements
are

Gφφ = 1, Ghh = e
−
√

2

3

φ
MP , Gφiφi

= e
−
√

2

3

φ
MP with i = 2, 3, 4. (2.18)

We have treated Goldstone and gauge bosons as perturbations, i.e. they do not acquire any background values while
deriving Eq (2.17). The potential VE(ϕ

I) reads

VE(ϕ
I) = e

−2
√

2

3

φ
MP


λ
4

(
h2 +

4∑

i=2

ϕ2i

)2

+
M4

P

4ξR

{
1− e

√
2

3

φ
MP +

ξH
M2

P

(
h2 +

4∑

i=2

ϕ2i

)

− 2

Λ2M2
P

ϵµνρσ√−gE
e
2
√

2

3

φ
MPBµνBρσ − 2

Λ2M2
P

ϵµνρσ√−gE
e
2
√

2

3

φ
MPW i

µνW
i
ρσ

}2



≈ V0(ϕ
I) +

2M2
P

ξRΛ2
F (ϕI)e

√
2

3

φ
MP

Å
FAµν

‹Fµν
A + FZµν

‹Fµν
Z + 2F+

Wµν
‹F−µν
W

ã
,

(2.19)
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where we have further introduced

F (ϕI) = 1− e
−
√

2

3

φ
MP − ξH

M2
P

(
h2 +

4∑

i=2

ϕ2i

)
e
−
√

2

3

φ
MP , (2.20)

V0(ϕ
I) =

λ

4

(
h2 +

4∑

i=2

ϕ2i

)2

e
−2

√
2

3

φ
MP +

M4
P

4ξR
F 2(ϕI), (2.21)

‹Fµν
A =

1

2
√−gE

ϵµνρσFAρσ, ‹Fµν
Z =

1

2
√−gE

ϵµνρσFZρσ, ‹F±µν
W =

1

2
√−gE

ϵµνρσF±
Wρσ. (2.22)

The field stress tensors for the massive and massless gauge bosons are

FAµν = DµAν −DνAµ = ∂µAν − ∂νAµ, (2.23a)

FZµν = DµZν −DνZµ = ∂µZν − ∂νZµ, (2.23b)

F±
Wµν = DµW

±
ν −DνW

±
µ = ∂µW

±
ν − ∂νW

±
µ . (2.23c)

Since the field-stress tensors are torsionless, the covariant derivatives become partial derivatives. Furthermore, in the
linearized approximation, the field-stress tensors have reduced to the abelian case.

Varying the action, the equation of motion of the scalars fields ϕI can be written as

2ϕK + ΓK
IJ g

αν
E Dαϕ

IDνϕ
J −GKMVE,M

+GKMe
−
√

2

3

φ
MP

Ç…
2

3

1

MP

å
gανE (∂αϕ)

Å
gZ
2
δ3MhZν +

ie

2
√
2sW

[
W−

ν (δ4M + iδ5M )−W+
ν (δ4M − iδ5M )

]
h

ã

−GKMe
−
√

2

3

φ
MP gανE

Å
gZ
2
Dα

(
δ3MhZν

)
+

ie

2
√
2sW

Dα

[(
W−

ν (δ4M + iδ5M )−W+
ν (δ4M − iδ5M )

]
h
)ã

−GKM

ï
e
−
√

2

3

φ
MP gµνE δ3M

Å
gZ
2
(Dµh)Zν

ã
+ e

−
√

2

3

φ
MP gµνE δ4M

Å
ie

2
√
2sW

Dµh
(
W−

ν −W+
ν

)ã

+ e
−
√

2

3

φ
MP gµνE δ5M

Å
ie

2
√
2sW

Dµh
(
iW−

ν + iW+
ν

)ãò
= 0,

(2.24)

where ΓK
IJ are the Christoffel symbols associated with field-space metric. The EoMs for the Z boson, W± bosons

and photon are

gµαE gνβE DαFZµν+
8M2

P

ξRΛ2
∂α

(
F (ϕI)e

√
2

3
φ/MP

) ‹Fαβ
Z − e

−
√

2

3

φ
MP gµβE

Å
g2Z
4
h2Zµ +

gZ
2

(ϕ2Dµh− hDµϕ2)

ã
= 0, (2.25)

gµαE gνβE DαF
±
Wµν+

8M2
P

ξRΛ2
∂α

(
F (ϕI)e

√
2

3
φ/MP

) ‹F±αβ
W − e

−
√

2

3

φ
MP gµβE

Å
e2

4s2W
h2W±

µ ± ie

2
√
2sW

Dµh (ϕ3 ± iϕ4)

∓ ie

2
√
2sW

Dµ(ϕ3 ± iϕ4)h

ã
= 0, (2.26)

gµαE gνβE DαFAµν+
8M2

P

ξRΛ2
∂α

(
F (ϕI)e

√
2

3
φ/MP

) ‹Fαβ
A = 0. (2.27)

3 Inflationary dynamics

The preheating after inflation depends on the background and perturbation dynamics. We closely follow covariant
formalism as discussed in Ref. [53, 59, 60], which is suited for multifield inflation with non-canonical kinetic terms as
encountered in our scenario. We decompose the ϕI(xµ) fields into a homogeneous classical background part (φI) and
a perturbation (δϕI) part

ϕI(xµ) = φI(t) + δϕI(xµ). (3.1)

In the following, t labels the cosmic time and φI(t) = {φ(t), h0(t)}, i.e. only the Higgs and inflaton fields acquire
background field values while the Goldstone modes ϕ2, ϕ3 and ϕ4 are perturbations. The perturbed spatially flat
Friedmann-Robertson-Walker (FRW) metric can be expanded to linear order as [61–63]

ds2 = −(1 + 2A)dt2 + 2a(t)(∂iB)dxidt+ a(t)2 [(1− 2ψ)δij + 2∂i∂jE ] dxidxj , (3.2)
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where a(t) is scale factor. A,B, ψ and E characterize the scalar metric perturbations. In this work, we adopt the
longitudinal gauge where the scalar perturbations B and E vanish.

Utilizing Eq. (2.24) and Eq. (3.1), we find the EoMs for the background fields as

Dtφ̇+ 3Hφ̇+GφJV0,J = 0, (3.3a)

Dtḣ0 + 3Hḣ0 +GhJV0,J = 0, (3.3b)

where

DtA
I ≡ φ̇JDJA

I = ȦI + ΓI
JK φ̇

JAK , (3.4a)

DJA
I ≡ ∂JA

I + ΓI
JKA

K . (3.4b)

We draw the reader’s attention to the fact that the covariant derivative DI of field space GIJ shall not be confused
with the covariant derivative Dµ of space-time metric gJµν . The Hubble function is defined as

H2 =

Å
ȧ

a

ã2
=

1

3M2
P

Å
1

2
GIJ φ̇

I φ̇J + V0(φ
I)

ã
, (3.5)

Ḣ = − 1

2M2
P

Å
GIJ φ̇

I φ̇J

ã
. (3.6)

We solve the equations (3.3) and (3.5) together while simultaneously performing consistency check such that Ḣ
estimated from Eq. (3.5) matches Eq. (3.6) with adequate precision. We define the number of e-foldings relative to
the end of inflation as

N ≡ ln
a(t)

a(tend)
, (3.7)

which we will use in the following interchangeably with the cosmic time t. The background energy density is

ρinf =
1

2
GIJ φ̇

I φ̇J + V0(φ
I), (3.8)

where GIJ is evaluated at the background field order.

The field fluctuations δϕI(xµ) are gauge-dependent quantities. However, we can construct covariant field fluctuations
QI(xµ) which connect the scalar fields ϕI(xµ) with their background fields φI(t) along a unique geodesic of the
field-space manifold such that the field fluctuations can be written as [59, 64]

δϕI = QI − 1

2
ΓI

JKQKQJ +
1

3!

(
ΓI

MNΓN
JK − ΓI

JK,M

)
QKQJQM + . . . . (3.9)

This motivates one to consider gauge-independent Mukhanov-Sasaki variables for the field fluctuations expressed
as [62, 65, 66]

QI = QI +
φ̇I

H
ψ, (3.10)

which is doubly covariant with respect to field-space and space-time transformations. The quantities QI , φ̇I and QI

transform like vectors in the field-space manifold. In our five-field case, at the linear order, we thus have

Qφ = Qφ +
φ̇

H
ψ = δφ+

φ̇

H
ψ, (3.11a)

Qh = Qh +
ḣ0
H
ψ = δh+

ḣ0
H
ψ, (3.11b)

Qφi = Qφi = δϕi = ϕi, (i = 2, 3, 4) (3.11c)

Inserting Eq. (3.10) and Eq. (3.2) in Eq. (2.24), we find the EoMs for the gauge independent QI at linear order as

D2
tQ

φ + 3HDtQ
φ − ∇2

a2
Qφ +Mφ

φQ
φ = 0, (3.12)
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D2
tQ

h + 3HDtQ
h − ∇2

a2
Qh +Mh

hQ
h = 0, (3.13)

D2
tQ

φ2 + 3HDtQ
φ2 − ∇2

a2
Qφ2 +Mφ2

φ2
Qφ2 +

gZ
2

ïÇ…
2

3

1

MP

å
φ̇h0Z0 − 2ḣ0Z0 + h0g

αν
E (DαZν)

ò
= 0, (3.14)

D2
tQ

φ3 + 3HDtQ
φ3 − ∇2

a2
Qφ3 +Mφ3

φ3
Qφ3 +

ie

2
√
2sW

ïÇ…
2

3

1

MP

å
φ̇h0

(
W−

0 −W+
0

)
− 2ḣ0

(
W−

0 −W+
0

)

+ gανE h0Dα

(
W−

ν −W+
ν

) ò
= 0, (3.15)

D2
tQ

φ4 + 3HDtQ
φ4 − ∇2

a2
Qφ4 +Mφ4

φ4
Qφ4 +

ie

2
√
2sW

ïÇ…
2

3

1

MP

å
φ̇h0

(
iW−

0 + iW+
0

)
− 2ḣ0

(
iW−

0 + iW+
0

)

+ gανE h0Dα

(
iW−

ν + iW+
ν

) ò
= 0, (3.16)

with

MI
L = GIJ(DLDJVE)−RI

JKLφ̇
J φ̇K − 1

M2
Pa

3
Dt

Å
a3

H
φ̇I φ̇L

ã
, (3.17)

where the RI
JKL is the field-space Riemann tensor. Here all relevant quantities such as V0, G

IJ , ΓI
JK , RI

JKL are
evaluated at background order. In contrast to Ref. [1], which focused on the unitary gauge for the Higgs sector, the
EoMs for the perturbations Qφ2 , Qφ3 and Qφ4 now depend on the Z and W bosons at linear order. Reference [1]
solely focused on the production of the hypermagnetic fields at the end of inflation; the reheating temperature was
treated as a free parameter. Therefore, the choice of unitary gauge was not relevant for the estimation of baryon
asymmetry. However, for the present study of preheating, as is clear from the last terms involving Z and W bosons
in the respective Eqs. (3.14), (3.15) and (3.16), the unitary gauge becomes ill-defined (specifically at zero crossings of
the background fields).

Finally, and for later convenience, we re-express the EoMs of the scalar field fluctuations in conformal time τ such that
line element becomes ds2 = a2(τ)ηµνdx

µdxν with the rescaled variables XI(xµ) ≡ a(t)QI(xµ). Hence, performing
the replacements Z0 → Z0/a, W

±
0 →W±

0 /a and ∂0 → ∂τ/a, we find new EoMs

D2
τX

φ −
ï
∇2 − a2

Å
Mφ

φ − 1

6
REG

φ
φ

ãò
Xφ = 0, (3.18)

D2
τX

h −
ï
∇2 − a2

Å
Mh

h − 1

6
REG

h
h

ãò
Xh = 0, (3.19)

D2
τX

φ2 −
ï
∇2 − a2

Å
Mφ2

φ2
− 1

6
REG

φ2

φ2

ãò
Xφ2 + a gZh0 (ΥZ0 − Z ′

0) = 0, (3.20)

D2
τX

φ3 −
ï
∇2 − a2

Å
Mφ3

φ3
− 1

6
REG

φ3

φ3

ãò
Xφ3 + a

ie√
2sW

h0

ï
Υ
(
W−

0 −W+
0

)
−
(
W−′

0 −W+′
0

) ò
= 0, (3.21)

D2
τX

φ4 −
ï
∇2 − a2

Å
Mφ4

φ4
− 1

6
REG

φ4

φ4

ãò
Xφ4 + a

ie√
2sW

h0

ï
Υ
(
iW−

0 + iW+
0

)
−
(
iW−′

0 + iW+′
0

) ò
= 0, (3.22)

where we defined

Υ(τ) =
φ′

√
6MP

− a′

a
− h′0
h0
. (3.23)

In these equations, as in the following, we have introduced the shorthand notation (′) for derivatives with respect to
conformal time τ .

3.1 Gauge choice and equations of motion of the gauge and Goldstone bosons

We have already mentioned that the unitary gauge becomes ill-defined at the zero crossing of the background field h0
(see also Refs. [52, 53]). We, therefore, choose the Coulomb gauge to study the dynamics of field fluctuations. In the
Coulomb gauge, we have ∂iZ

i = 0 and ∂iW
±i = 0 and the Goldstone bosons are dynamical.
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3.1.1 Z bosons

We begin with the EoM for the Z boson. The time (i.e. β = 0) and space (i.e. β = i) components of Eq. (2.25) at
linear perturbation order in conformal time are

−∂i (∂iZ0 − Z ′
i) + a2 e

−
√

2

3

ϕ
MP

Å
g2Z
4
h20Z0 +

gZ
2

(ϕ2h
′
0 − h0ϕ

′
2)

ã
= 0, (3.24)

−∂τ (∂τZi − ∂iZ0) + ∂j (∂jZi − ∂iZj)− a2 e
−
√

2

3

ϕ
MP

Å
g2Z
4
h20Zi −

gZ
2
h0∂iϕ2

ã

+
4M2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
ϵijk (∂jZk − ∂kZj) = 0. (3.25)

One can move to momentum space by considering

Z0(τ,x) =

∫
d3k

(2π)
3 Z̃0(τ,k)e

−ik·x, Zi(τ,x) =

∫
d3k

(2π)
3 Z̃i(τ,k)e

−ik·x, (3.26)

where the Z̃ ≡
Ä
Z̃i(τ, k⃗)

ä
field can be written in terms of transverse and longitudinal components as

Z̃(τ,k) =
∑

λ=±,L

Z̃λ(τ,k) ϵ̂λZ(k), (3.27)

with

ik · ϵ̂±Z (k) = 0, ik · ϵ̂LZ(k) = |k| = k, ik× ϵ̂±Z (k) = ±k ϵ̂±Z (k), ϵ̂λZ(k)
∗ = ϵ̂λZ(−k). (3.28)

The Coulomb gauge condition for the Z boson then implies

∂iZ
i = ∂i

(
gikEZk

)
= gikE ∂iZk =

1

a2
∂iZi = 0, (3.29)

which translates in the momentum space to

kiZ̃i = ηijkiZ̃
j = kjZ̃

j = k · Z̃ = 0. (3.30)

Inserting Eq. (3.27) in Eq. (3.30), we get Z̃L = 0 as a consequence of the gauge condition and Eq. (3.28). Using the
gauge condition of Eq. (3.29) in Eqs. (3.24)-(3.25) and going to momentum space, we find

Z̃0 = e
−
√

2

3

ϕ
MP

gZ
2KZ

Ä
h0ϕ̃

′
2 − ϕ̃2h

′
0

ä
, (3.31)

Z̃ ′′
i + a2KZZ̃i + iki

Å
Z̃ ′
0 + a2 e

−
√

2

3

ϕ
MP

gZ
2
h0ϕ̃2

ã
+ i

4M2
P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
ϵijm(kjZ̃m − kmZ̃j) = 0, (3.32)

where we have defined

KZ =
k2

a2
+m2

Z , m2
Z =

g2Z
4
e
−
√

2

3

ϕ
MP h20. (3.33)

The three-components of Eq. (3.32) can then be brought to the form

ï
Z̃′′ + a2KZZ̃

ò
+ ik

ß
Z̃ ′
0 + a2 e

−
√

2

3

ϕ
MP

gZ
2
h0ϕ̃2

™
+

8iM2
P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ãÄ
k× Z̃

ä
= 0. (3.34)

This is a system of three differential equations. A linear combination of them is obtained by multiplying both sides

of Eq. (3.34) by ik and utilizing Eq. (3.30): all terms in square bracket go to zero since ik · ϵ̂±Z (k) = 0 and Z̃L = 0.

The last term vanishes due to k ·
Ä
k× Z̃

ä
≡ 0. In the end, we obtain the equation

Z̃ ′
0 = −a2 e−

√
2

3

ϕ
MP

gZ
2
h0ϕ̃2. (3.35)
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Together, Eqs. (3.31) and (3.35) imply a constraint for the scalar fields. We can now use these Eqs. (3.31) and (3.35)

alongside the gauge condition to remove the Z fields from the EoM of Xφ2 . This makes ϕ̃2 dynamical in place of the
longitudinal component of the Z boson. Finally, multiplying ϵ̂±Z (k) to both sides of Eq. (3.34), we obtain the EoM
for the transverse modes (the two remaining equations)

∂2τ Z̃
λ + (ωλ

Z)
2 Z̃λ = 0, with (λ = ±), (3.36)

where

(ωλ
Z(τ, k))

2 = a2KZ + λk
8M2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
= k2 + a2m2

Z(τ) + ζλ(τ, k), (3.37)

where, we identify

ζλ(τ, k) = λk
8M2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
. (3.38)

We shall return to the impact of different terms in (ωλ
Z(τ, k))

2 shortly.

3.1.2 W± bosons

An identical consideration as for the Z bosons leads for the time and space components of Eq. (2.26) to

− ∂i
(
∂iW

±
0 −W±′

i

)
+ a2 e

−
√

2

3

ϕ
MP

Å
e2

4s2W
h20W

±
0 ± ie

2
√
2sW

ï
(ϕ3 ± iϕ4)h

′
0 − h0(ϕ

′
3 ± iϕ′4)

òã
= 0, (3.39)

− ∂τ
(
∂τW

±
i − ∂iW

±
0

)
+ ∂j

Ä
∂jW

±
i − ∂iW

±
j

ä
− a2 e

−
√

2

3

ϕ
MP

Å
e2

2s2W
h20W

±
i ∓ ie

2
√
2sW

h0(∂iϕ3 ± i∂iϕ4)

ã

+
4M2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
ϵijk
Ä
∂jW

±
k − ∂kW

±
j

ä
= 0. (3.40)

We can again go in the momentum space, where the W̃± fields can be written in terms of transverse and longitudinal
components as

W̃±(τ,k) =
∑

λ=±,L

W̃±,λ(τ,k) ϵ̂λW (k), (3.41)

with

ik · ϵ̂±W (k) = 0, ik · ϵ̂LW (k) = |k| = k, ik× ϵ̂±W (k) = ±k ϵ̂±W (k), ϵ̂λW (k)∗ = ϵ̂λW (−k). (3.42)

The Coulomb gauge condition gives

∂iW
±i = ∂i

(
gikEW

±
k

)
= gikE ∂iW

±
k =

1

a2
∂iW

±
i = 0 (3.43)

and it translates to

kiW̃
±
i = ηijkiW̃

±j = kjW̃
±j = k · W̃± = 0. (3.44)

Inserting Eq. (3.41) in Eq. (3.44), we obtain again W̃±,L = 0 similar to the previous section. Using the gauge condition
of Eq. (3.43) in Eq. (3.39) and going to momentum space, we then find

W̃±
0 = ∓ e

−
√

2

3

ϕ
MP

ie

2
√
2sWKW

ï
(ϕ3 ± iϕ4)h

′
0 − h0(ϕ

′
3 ± iϕ′4)

ò
, (3.45)

W̃±′′
i + a2KW W̃±

i + iki

Å
W̃±′

0 ± a2 e
−
√

2

3

ϕ
MP

ie

2
√
2sW

h0(ϕ̃3 ± iϕ̃4)

ã

+ iki
4M2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
ϵijm(kjW̃

±
m − kmW̃

±
j ) = 0, (3.46)
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with

KW =
k2

a2
+m2

W , m2
W =

e2

4s2W
e
−
√

2

3

ϕ
MP h20. (3.47)

Likewise, the three components of Eqs. (3.46) read as

ï
W̃±′′ + a2KWW̃±

ò
+ ik

ß
W̃±′

0 ± a2 e
−
√

2

3

ϕ
MP

ie

2
√
2sW

h0(ϕ̃3 ± iϕ̃4)

™

+
8iM2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ãÄ
k× W̃±

ä
= 0.

(3.48)

Applying the same procedure as for the Z boson, and using Eq. (3.48), we find

W̃±′
0 = ∓ a2 e

−
√

2

3

ϕ
MP

ie

2
√
2sW

h0(ϕ̃3 ± iϕ̃4). (3.49)

Combing Eqs. (3.45) and (3.49), we can remove two degrees of freedom each from W± making the Goldstone ϕ3 and

ϕ4 dynamical, leaving a constraint on the Goldstone fields ϕ̃3 and ϕ̃4. Finally, from Eq. (3.48) we get the EoM for
the transverse modes

∂2τW̃
±,λ + (ωλ

W )2 W̃±,λ = 0 with (λ = ±). (3.50)

where

(ωλ
W (τ, k))2 = a2KW + λk

8M2
P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
= k2 + a2m2

W (τ) + ζλ(τ, k). (3.51)

3.1.3 Goldstone bosons

As discussed earlier, the Goldstone bosons are dynamical in the Coulomb gauge. The gauge choices remove the
longitudinal components of the Z and W± and constraint equations for each fields. In the case of the Z boson, these
equations, namely Eq. (3.31) and Eq. (3.35), can be used to make the ϕ2 field dynamical. This is obtained as follows:
We first rewrite the Eq. (3.20) in momentum space as

D2
τ
‹Xφ2 +

Ä
k2 + a2m2

eff,(φ2)

ä ‹Xφ2 + a gZh0
Ä
ΥZ̃0 − Z̃ ′

0

ä
= 0, (3.52)

where we used the gauge condition ∂iZ̃i = 0 and defined

m2
eff,(φi)

= Mφi

φi
− 1

6
REG

φi

φi
, (i = 2, 3, 4). (3.53)

We then employ Eqs. (3.31) and (3.35) to get the EoM of the ‹Xφ2 as

D2
τ
‹Xφ2 + E(φ2)(τ, k)Dτ

‹Xφ2 + ω2
(φ2)

(τ, k)‹Xφ2 = 0, (3.54)

where

E(φ2)(τ, k) = 2
m2

Z

KZ
Υ, (3.55a)

ω2
(φ2)

(τ, k) = k2 + a2
Ä
m2

eff,(φ2)
+m2

Z

ä
+ E(φ2)Υ. (3.55b)

Similarly, Eqs. (3.21) and (3.22) lead to

D2
τ
‹Xφ3 + E(φ3)(τ, k)Dτ

‹Xφ3 + ω2
(φ3)

(τ, k)‹Xφ3 = 0, (3.56a)

D2
τ
‹Xφ4 + E(φ4)(τ, k)Dτ

‹Xφ4 + ω2
(φ4)

(τ, k)‹Xφ4 = 0, (3.56b)

with

E(φ3)(τ, k) = E(φ4)(τ, k) = 2
m2

W

KW
Υ, (3.57a)
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ω2
(φ3)

(τ, k) = k2 + a2
Ä
m2

eff,(φ3)
+m2

W

ä
+ E(φ3)Υ, (3.57b)

ω2
(φ4)

(τ, k) = k2 + a2
Ä
m2

eff,(φ4)
+m2

W

ä
+ E(φ4)Υ. (3.57c)

It is clear that all gauge bosons are decoupled from Eqs. (3.54) and (3.56). Furthermore, as only ϕ and h acquire

background field values, the EoMs of the Goldstone bosons are decoupled not only from the EoMs of ‹Xφ and ‹Xh,
they are also decoupled from each other.

4 Inflaton and Higgs quanta production

We now proceed with the quantization of the ϕ and h fields, and the production of the respective particles. For this,
we follow closely Refs. [51, 67], which consider non-trivial field space manifolds relevant to our analysis. The GIJ

matrix is diagonal and only depends on ϕ1 = ϕ, whereas the 3×3 lower block of MI
J matrix involving the Goldstones

is diagonal. Therefore, we can reduce the upper 2 × 2 block of MI
J in our scenario to a two field model with ϕ and

h. Quantization of the three Goldstone bosons is discussed separately in the following section alongside the massive

gauge bosons. One may still have nonzero Mφ
h and Mh

φ if h0 and ξH are not vanishingly small. The second order

action involving the inflaton and Higgs fluctuations QI (with I = {1, 2}) can be derived as in [51, 59]

S
(2)
(φh) =

∫
d3x dt a3

ï
− 1

2
gµνE GIJDµQ

IDνQ
J − 1

2
MIJQ

IQJ

ò
, (4.1)

where GIJ , MIJ are evaluated at background order and gµνE ≡ (−1, a2(t), a2(t), a2(t)) is the unperturbed spatially
flat FLRW metric. The latter action can be written in conformal time and with the rescaled variables XI(xµ) as

S
(2)
(φh) =

∫
d3x dτ

[
−1

2
ηµνGIJ(DµX

I)(DνX
J)− 1

2
MIJX

IXJ

]
, (4.2)

with

MIJ = a2
Å
MIJ − 1

6
GIJRE

ã
, with RE =

6a′′

a3
. (4.3)

The energy momentum tensor for the field fluctuation is given for the linearized theory as

T (φh)
µν = GIJ(DµX

I)(DνX
J) + ηµν

[
−1

2
ηαβGIJ(DαX

I)(DβX
J)− 1

2
MIJX

IXJ

]
, (4.4)

with T
(φh)
00 denoting the associated energy density.

Transforming to momentum space, one can recast Eq. (4.2) into the form

S(φh) =

∫
dτ L(φh) =

∫
dτ

d3k

(2π)3

ï
1

2

∣∣∣∂τ ‹XI
∣∣∣
2
− 1

2
ω2
(I)(τ, k)

∣∣∣‹XI
∣∣∣
2
ò
, (4.5)

with

ω2
(I)(τ, k) =

Ä
k2 + a2m2

eff,(I)(τ)
ä
. (4.6)

The effective masses are given by

m2
eff,(φ)(τ) = Mφ

φ − 1

6
RE =

1

a2
M

φ
φ, m2

eff,(h)(τ) = Mh
h − 1

6
RE =

1

a2
M

h
h. (4.7)

We identify

m2
1,(I) = G(I)J(D(I)DJVE), (4.8a)

m2
2,(I) = −R(I)

JK(I)φ̇
J φ̇K , (4.8b)
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m2
3,(I) = − 1

M2
Pa

3
Dt

Å
a3

H
φ̇(I)φ̇(I)

ã
, (4.8c)

m2
4,(I) = −RE

6
, (4.8d)

without summing over (I), such that

m2
eff,(I) =

∑

k

m2
k,(I). (4.9)

One advantage of writing the action in Eq. (4.5) (and consequently also Eqs. (3.18) and (3.19)) in conformal time as

opposed to cosmic time is the absence of terms linear in Dτ
‹XI . Hence, the canonical momentum in momentum space

is found as

ˆ̃πI(τ,k) = ∂τ
ˆ̃
XI(τ,k), (4.10)

with

ï
ˆ̃
XI(τ,k), ˆ̃πJ(τ,q)

ò
= i(2π)3δIJδ(3)(k+ q), (4.11)

where we have elevated the classical field fluctuations ‹XI to their respective quantized
ˆ̃
XI versions.

The quantized fluctuations
ˆ̃
XI(τ,k) can be decomposed in momentum space as

ˆ̃
XI(τ,k) =

∑

m

[
uIm(τ, k)âm(k) + uI∗m (τ, k)â†m(−k)

]
, (4.12)

where m ∈ {1, 2} for {ϕ, h}. uIm(τ, k) corresponds to the associated mode functions of the creation and annihilation
operators âm(k) and â†m(−k). These are defined as

âm(k) |0⟩ = 0, ⟨0| â†m(k) = 0, (4.13)

and obey the usual commutator relationships

[âm(k), ân(q)] =
[
â†m(k), â†n(q)

]
= 0,

[
âm(k), â†n(q)

]
= (2π)3δmnδ

(3)(k− q). (4.14)

Note that, we have N = 2 second order differential equations for the ‹Xφ and ‹Xh, the parametrization in Eq. (4.12)
leads to N2 complex mode functions uIm(τ, k), and hence 2N2 real-valued scalar functions. However, these two
fluctuations are coupled through the EoMs viaMI

J . This implies 2N(N−1) constraints, leading to 2N2−2N(N−1) =
2N = 4 independent solutions. The mode functions can be parametrized as

uIm(τ, k) = t(m,I)(τ, k)e
I
m(τ), (4.15)

where the t(m,I)(τ, k) are complex scalar functions and eIm(τ) are vielbeins of the field-space metric. Note, x(m,I) is
not a field space vector, but the index I in brackets denotes individual species and is not summed over. The vielbeins
satisfy the following conditions

δmneIm(τ)eJn(τ) = GIJ(τ), (4.16)

and are real functions. For any arbitrary vector AI in field space, we have,

Am = emI A
I , AI = eImA

m,

emI e
I
n = δmn , emI e

J
m = δIJ .

(4.17)

The covariant derivative of the vielbeins in terms of the spin connection reads

DIe
m
J = −ωmn

I enJ , (4.18)

with ωmn
I = −ωnm

I antisymmetric in the internal indices. Further, since the ωmn
I is antisymmetric, the covariant

derivative with respect to conformal time vanishes

Dτe
m
J = 0, (4.19)
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for all m and J .

We take t(1,φ)(τ, k) = v1k(τ), t(2,φ)(τ, k) = v2k(τ), t(1,h)(τ, k) = y1k(τ) and t(2,h)(τ, k) = y2k(τ) for the quantization
of Eq. (4.12). Hence, we get,

ˆ̃
Xφ =

îÄ
v1k(τ)e

φ
1 (τ)â1(k) + v2k(τ)e

φ
2 (τ)â2(k)

ä
+
Ä
v∗1k(τ)e

φ
1 (τ)â

†
1(−k) + v∗2k(τ)e

φ
2 (τ)â

†
2(−k)

äó
, (4.20a)

ˆ̃
Xh =

î(
y1k(τ)e

h
1 (τ)â1(k) + y2k(τ)e

h
2 (τ)â2(k)

)
+
Ä
y∗1k(τ)e

h
1 (τ)â

†
1(−k) + y∗2k(τ)e

h
2 (τ)â

†
2(−k)

äó
. (4.20b)

Going into momentum space and utilizing the quantization above, from the EoMs in Eq. (3.18) and (3.19) we get

v′′1k + ω2
(φ) v1k e

φ
1 = −a2Mφ

h y1k e
h
1 , (4.21a)

v′′2k + ω2
(φ) v2k e

φ
2 = −a2Mφ

h y2k e
h
2 , (4.21b)

y′′1k + ω2
(h) y1k e

h
1 = −a2Mh

φ v1k e
φ
1 , (4.21c)

y′′2k + ω2
(h) y2k e

h
2 = −a2Mh

φ v2k e
φ
2 , (4.21d)

with ω2
(I) given by Eq. (4.6).

We are now equipped with necessary tools to derive the energy density. The comoving vacuum averaged energy
density is defined as

ρ(φh) =

∫
d3x
¨
T

(φh)
00

∂
=

∫
d3k

(2π)3
〈
ρk,(φh)

〉
=

∫
d3k

(2π)3
ρvevk,(φh), (4.22)

where we recall we are only considering ϕI ∈ {ϕ, h} in this section. Taking the 00-component of T
(φh)
00 and expressing

different fluctuation fields in momentum space via

F (t, x⃗) =

∫
d3k

(2π)
3 f̃(t,k)e

−ik·x,

we can perform one momentum integration via the Dirac delta function that appears after performing the position

space integral. In ρk,(φh), which is a quadratic function of fluctuations, one fluctuation is ‹XJ(τ,−k). The energy
density spectra is therefore read

ρk,(φh) =
1

2
GIJ

Ä
Dτ
‹XI(τ,k)

ä Ä
Dτ
‹XJ(τ,−k)

ä
+

1

2

(
k2GIJ + MIJ

) ‹XI(τ,k)‹XJ(τ,−k). (4.23)

Inserting Eq. (4.12) in Eq. (4.23) we get energy density per mode k of the quantized fluctuations as

ρvevk,(φh) =
〈
ρk,(φh)

〉
=

1

2

∑

m,n

ï
δmn

Å
GIJ t

′
(m,I)t

∗′
(n,J) +

(
k2GIJ + MIJ

)
t(m,I)t

∗
(n,J)

ã
eIme

J
n

ò

= ρ
(φ)
k + ρ

(h)
k + ρintk ,

(4.24)

with

ρ
(φ)
k =

1

2
Gφφ

î
(|v′1k|2 + ω2

(φ) |v1k|2)eφ1eφ1 + (|v′2k|2 + ω2
(φ) |v2k|2)eφ2eφ2

ó
, (4.25a)

ρ
(h)
k =

1

2
Ghh

î
(|y′1k|2 + ω2

(h) |y1k|2)eh1eh1 + (|y′2k|2 + ω2
(h) |y2k|2)eh2eh2

ó
, (4.25b)

ρintk =
1

2
(Mφh + Mhφ)

î
v1ky

∗
1ke

h
1e

φ
1 + v2ky

∗
2ke

h
2e

φ
2

ó
, (4.25c)

where we used Eq. (4.6) and Eq. (4.7).

As we already discussed, in this paper we primarily focus on the R2-like regime and assume that the background
value of h0 is much smaller than φ, which essentially reduces our scenario to a single field attractor-like scenario. We
consider three benchmark points (BP) [1] for our analysis, summarized in Tab. I. The BPa is deep in the R2-like
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BP ξR ξH ϕ(tin) [MP] h0(tin) [MP]

a 2.35× 109 10−3 5.5 2× 10−4

b 2.55× 109 1 5.5 8.94× 10−4

c 2.2× 109 10 5.4 5.00× 10−3

Table I. Benchmark points chosen for our analysis. Scales are given in units of the Planck mass MP. See text for details.

regime with ξH being negligibly small. We can therefore expect this scenario to behave practically like Starobinsky
inflation. BPb and BPc parametrize mixed R2-Higgs scenarios, with ξH = 1 for BPb and ξH = 10 for BPc. For
all three BPs, the corresponding scalar amplitude, spectral index and tensor-to-scalar ratio are in agreement with
the Planck 2018 data [50] within the 95% confidence level (CL) interval [1]. We have checked that the off-diagonal

elements Mφ
h ∼ 0 and Mh

φ ∼ 0 and, hence, MI
J is essentially diagonal for all three BPs. Consequently, the

vielbeins also are diagonal, eφ2 ∼ 0, eh1 ∼ 0 and ‹Xφ and ‹Xh depend only on the scalar mode functions v1k(τ) and
y2k(τ), respectively. Therefore, Eq. (4.21a) and Eq. (4.21d) essentially satisfy source-free EoMs while Eq. (4.21b) and
Eq. (4.21c) vanish. We are left with

v′′1k + ω2
(φ) v1k ≃ 0, (4.26a)

y′′2k + ω2
(h) y2k ≃ 0, (4.26b)

and the energy densities for the inflaton and Higgs fluctuations per mode read

ρ
(φ)
k =

1

2
Gφφ

Ä
|v′1k|2 + ω2

(φ)|v1k|2
ä
eφ1e

φ
1 =

1

2

Ä
|v′1k|2 + ω2

(φ)|v1k|2
ä
, (4.27a)

ρ
(h)
k =

1

2
Ghh

Ä
|y′2k|2 + ω2

(h)|y2k|2
ä
eh2e

h
2 =

1

2

Ä
|y′2k|2 + ω2

(h)|y2k|2
ä
, (4.27b)

ρintk = O(h2) ∼ 0. (4.27c)

Note that equation of motion of the mode functions are decoupled for all three BPs. It is worth noting that, in
the single field like regime v1k corresponds to the mode function for the adiabatic mode while y2k corresponds to
isocurvature mode [1, 68].

Let us take a closer look at the different contributions to m2
eff,(φ) and m

2
eff,(h) as displayed in Fig. 1 for all three BPs.

The dominant contribution to m2
eff,(φ) for all three BPs before the end of inflation arises from m2

4,(I), which turns

m2
eff,(φ) large and negative. After inflation, m2

1,(φ) provides the largest but positive contributions to m2
eff,(φ) for all

three BPs. The same behavior is observed for the Higgs field for BPa, the dominant contribution to m2
eff,(h) before the

end of the inflation stems again from m2
4,(h). However, for BPb and BPc, m2

1,(h) overpowers m
2
4,(h). After the end of

inflation, m2
1,(h) constitutes the largest contribution tom2

eff,(h) for all three BPs, which oscillates around the minimum.

This oscillation, makes m2
eff,(h) negative periodically with largest amplitude for BPc, due to the comparably larger

value of ξH for BPc. We note that if m2
eff,(I) < 0, modes with k2/a2 <

∣∣∣m2
eff,(I)

∣∣∣ will experience tachyonic instability,

which may lead to exponential growth in energy density. In the case of a tachyonic regime, we shall use the definition

ω2
(I)(τ, k) =

(
k2 +

∣∣∣a2m2
eff,(I)(τ)

∣∣∣
)
, (4.28)

instead of Eq. (4.6) when computing the energy density [69]. This is because the standard definition of the occupation
number, which was extensively used in modeling preheating, is only valid for m2

eff,(I) ⩾ 0. We shall return to the

impact of m2
eff,(I) on preheating shortly.

The energy densities in Eqs. (4.40) are not vacuum-subtracted. To identify the latter, we first define the Bunch-Davies
(BD) vacuum as

v1k = cφ1

Å
1− i

kτ

ã
e−ikτ + cφ2

Å
1 +

i

kτ

ã
eikτ , (4.29a)

y2k = ch1

Å
1− i

kτ

ã
e−ikτ + ch2

Å
1 +

i

kτ

ã
eikτ . (4.29b)
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Figure 1. The effective masses m2

eff,(I) (black) for φ (left) and h (right) as in Eq. (4.7) and their respective contributions
(4.8) for BPa (upper row), BPb (middle row) and BPc (lower row). See text for details.

The normalization v1kv
∗′
1k − v′1kv

∗
1k = i and y2ky

∗′
2k − y′2ky

∗
2k = i yields constraints

|cφ1 |2 − |cφ2 |2 =
1

2k
, (4.30a)

|ch1 |2 − |ch2 |2 =
1

2k
. (4.30b)

Here, variations in the mode functions v1k and y2k could be accompanied by respective annihilation operators such

that ‹Xφ and ‹Xh remains unchanged. Each such solution corresponds to a different vacuum, however, we may require
that the vacuum state |0⟩ is the minimum energy state (ground state) of the Hamiltonian.

The Hamiltonian for the inflaton and Higgs fluctuations is written as

Ĥ =

∫
d3k

(2π)3

¨
T

(φh)
00

∂

=
1

2

∫
d3k

(2π)3

îÄ
|v′1k|2 + ω2

(φ)|v1k|2
ä Ä
â†1(k)â1(k) + δ3(0)

ä
+
Ä
|y′2k|2 + ω2

(h)|y2k|2
ä Ä
â†2(k)â2(k) + δ3(0)

äó
. (4.31)

The vacuum expectation value of the Hamiltonian is

¨
Ĥ
∂
=

∫
d3k

(2π)3

î
ρ
(φ)
k δ3(0) + ρ

(h)
k δ3(0)

ó
, (4.32)

where δ3(0) is divergent and arises due to integrating an infinite volume as usual. At sufficiently early times i.e.
τ → −∞, the vacuum choice of Eqs. (4.29) leads to

v1k = cφ1e
−ikτ + cφ2e

ikτ , (4.33a)
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y2k = ch1e
−ikτ + ch2e

ikτ , (4.33b)

where along with the constraints Eqs. (4.30),
¨
Ĥ
∂
minimized if

cφ1 =
1√
2k
, cφ2 = 0, ch1 =

1√
2k
, ch2 = 0. (4.34)

Therefore, the desired vacuum solutions (i.e. the so-called BD vacuum) at early times become

vBD
1k =

1√
2k
e−ikτ , yBD

2k =
1√
2k
e−ikτ . (4.35)

The physical BD-vacuum energy is identified as

ρBD
(φ) =

1

2a4

∫
d3k

(2π)3

Ä
|vBD

1k

′|2 + ω2
(φ)|vBD

1k |2
ä
, (4.36a)

ρBD
(h) =

1

2a4

∫
d3k

(2π)3

Ä
|yBD

2k

′|2 + ω2
(h)|yBD

2k |2
ä
. (4.36b)

At sufficiently early times and for large modes we have k2/a2 ≫ |m2
eff,(I)(t)|. Hence ω2

(I) ≃ k2, and the vacuum energy

becomes for both fields

ρBD
(I) =

∫
dk

k2

2π2a4
ρBD
k,(I) =

1

a4

∫
dk

k3

4π2
. (4.37)

The energy density of the inflaton and Higgs quanta is then obtained by removing the BD vacuum from the classical
solution as

ρq(φ) = ρ(φ) − ρBD
(φ) , (4.38a)

ρq(h) = ρ(h) − ρBD
(h) . (4.38b)

It is, however, computationally less challenging to solve Eqs. (4.26) in cosmic time. Therefore, we rewrite them in
cosmic time as

v̈1k +Hv̇1k +

Å
k2

a2
+m2

eff,(φ)(t)

ã
v1k ≃ 0, (4.39a)

ÿ2k +Hẏ2k +

Å
k2

a2
+m2

eff,(h)(t)

ã
y2k ≃ 0. (4.39b)

Utilizing, Eq. (4.22), and Eqs. (4.27c), we can find the corresponding (physical) energy densities for ϕ and h fluctuations
in cosmic time

ρ(φ) =

〈
ρφc (x

µ)
〉

a4
=

1

a2

∫
k2

4π2
dk

ï
|v̇1k|2 +

Å
k2

a2
+
∣∣∣m2

eff,(φ)(t)
∣∣∣
ã
|v1k|2

ò
, (4.40a)

ρ(h) =

〈
ρhc (x

µ)
〉

a4
=

1

a2

∫
k2

4π2
dk

ï
|ẏ2k|2 +

Å
k2

a2
+
∣∣∣m2

eff,(h)(t)
∣∣∣
ã
|y2k|2

ò
. (4.40b)

To solve the Eqs. (4.39) in cosmic time we use the BD initial condition and initialize all relevant modes about ∼ 5
e-foldings before the end of inflation, N ∼ −5

lim
t→−∞

v1k(k, t) = lim
t→−∞

y2k(k, t) =
e−

ikt
a√
2k

, lim
t→−∞

v̇1k(k, t) = lim
t→−∞

ẏ2k(k, t) = − i

a

…
k

2
e−

ikt
a . (4.41)

After solving Eqs. (4.39) and evaluating ρ(φ) and ρ(h) in cosmic time, one can plug them in Eqs. (4.38) to find
respective energy densities.

In Fig. 2, we plot the spectra (solid) of the energy densities for ϕ and h alongside the BD spectra (dashed) for all three
BPs for different N . The figure allows us to identify the upper limit of the k, i.e., the corresponding value where the
bare spectra match the BD ones. Once the upper limit is identified, we evaluate the quantum energy densities for ϕ
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Figure 2. Spectra of k2

2π2a4 ρk,(I) (solid) and k2

2π2a4 ρ
BD
k,(I) (dashed) for φ (left) and h (right) as given in Eqs. (4.37) and (4.38)

for BPa (upper row), BPb (middle row) and BPc (lower row).

and h via Eqs. (4.38). In practice, we generate all spectra with wave number close to the unitarity cut-off kUV (which
is MP in case of R2-Higgs inflation [22, 24]). However, to find the quantum energy density from Eqs. (4.38), we utilize
an adaptive numerical code that considers only those modes for which the relative error between ρk and ρBD

k is about
10% with ρk > ρBD

k , ensuring vacuum is subtracted properly. The lower limit of the relevant modes in Eqs. (4.38), on
the other hand, is chosen from different dynamics. Since thermalization during (p)reheating proceeds through particle
interactions, the relevant modes are those which reside within the horizon at the time of consideration. Modes that
are super-horizon are so-called frozen-in and cannot take part in such processes [53]. In our numerical analysis, this is
done via the same adaptive code that only includes modes that have large enough physical wave-numbers to be inside
the horizon at the time that we are considering. Further, for solving Eqs. (4.39), we have ensured that all modes are
initialized deep inside the horizon such that the dynamics at the onset of preheating is captured.

We show the energy densities ρq(φ) (blue), ρq(h) (red) and the background energy density ρinf (black) in Fig. 3. For

BPa and BPb, both ρq(φ) and ρ
q
(h) are much smaller than ρinf , which is well above the plotted range and not displayed.

The ρq(φ) remains practically unchanged between all the BPs primarily because of the value of ξR, which is practically

the same for all three BPs. Around the end of inflation, ρq(φ) receives a tachyonic (exponential) amplification, which

can be easily understood as m2
eff,(φ) < 0 in Fig. 1. This is due to m2

4,(φ) dominating over all other terms in m2
eff,(φ)

before the end of inflation. After inflation, m2
1,(φ) dominates and oscillates but never goes below zero. We then find

the production of inflaton quanta will not preheat the Universe.

The situation changes for ρq(h) due to the range of ξH values for different BPs. For BPa, m2
eff,(h) remains negative

before the end of inflation due to negative m2
4,(h), however, after the end of inflation m2

1,(h) dominates and becomes

periodically negative due to zero crossing of h0 condensate, as can be seen from Fig. 1. But this is not sufficient to
drive tachyonic growth of ρq(h) due to a small amplitude, rather we observe a damping of ρq(h) as displayed in Fig. 3.

This is chiefly due to the smallness of ξH ∼ 10−3 for BPa, which is essentially deep inside R2-like regime. In contrast,



19

-3 -2 -1 0 1 2 3

10
-27

10
-25

10
-23

10
-21



ρ (I)q [M
P4
]

-3 -2 -1 0 1 2 3 4

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20



ρ (I)q [M
P4
]

ϕ
h

-3 -2 -1 0 1 2 3 4

10
-20

10
-15

10
-10

10
-5



ρ (I)q [M
P4
]

Figure 3. The energy densities ρq(φ) (blue) and ρq(h) (red) as defined in Eqs. (4.38) for the three benchmark points. The black

line displays the background energy density ρinf .

for BPb and BPc, m2
eff,(h) is large positive for N < 0 but oscillates for N ≳ 0. For BPb, after the end of inflation,

m2
eff,(h) does not go below zero in the plotted range N ≲ 3 (see Fig. 1). Thus, ρq(h) does not undergo tachyonic growth

for BPb and ρq(h) still remains much smaller than ρinf . As a result, for BPb, Higgs production will lead to inefficient

and incomplete preheating. In contrast, for BPc, m2
eff,(h) turns negative for N ≳ 0, but the amplitude becomes

small as we approach N ≳ 1.5. Therefore, in the initial stage of preheating, ρq(h) experiences tachyonic growth, but

parametric resonance takes over for the later part of the preheating. We find successful preheating for BPc which is
completed at N ∼ 3. Here we understand “completion” of preheating as the point in the time evolution when ρq(h)
becomes equal to the background energy density ρinf . A more conservative approach is adopted by Ref. [53] where the
authors understand completion of preheating as ρq(h) ∼ 0.1ρinf (the linear analysis is not reliable when ρ

q
(h) approaches

ρinf). Our results for baryogenesis are not significantly impacted by the choice between these conventions. We also
remark that the growth in ρq(h) beyond N ∼ 3 for BPc is indicative of the breakdown of our linear order estimation.

This growth is expected to be shut off once the decay of the produced particles, backreaction and rescattering effects
are taken into account. We shall discuss this in more detail in Sec. 7.

5 Production of Z, W and Goldstone bosons

In this section, we focus on a detailed discussion of particle production of gauge and Goldstone bosons.

5.1 Equations of motion and quantization

We consider the second-order action involving Goldstone and gauge bosons

S
(2)
G =

∫
d3x dt a3

[
−1

2
gµνE GIJDµQ

IDνQ
J − 1

2
MIJQ

IQJ

− e
−
√

2

3

ϕ
MP gµνE

{
(
QJ∂µh0 − h0∂µQ

J
)Å
δ3J
gZ
2
Zν +

ie

2
√
2sW

ï
(δ4J + iδ5J)W

−
ν − (δ4J − iδ5J)W

+
ν

òã

+
g2Z
8
h20ZµZν +

e2

4s2W
h20W

+
µ W

−
ν

}
− 1

4
gµρE gνσE FZµνFZρσ − 1

2
gµρE gνσE F+

WµνF
−
Wρσ

− M2
P

ξRΛ2
F (φI)e

√
2

3

ϕ
MP

ϵµνρσ

a3
FZµνFZρσ − 2M2

P

ξRΛ2
F (φI)e

√
2

3

ϕ
MP

ϵµνρσ

a3
F+
WµνF

−
Wρσ

]
,

(5.1)

where I, J = {3, 4, 5} everywhere, except inside F (φI) where φI ∈ {φ, h0}. In conformal time, the action becomes

S
(2)
G =

∫
d3x dτ

[
−1

2
ηµνGIJ(DµX

I)(DνX
J)− 1

2
MIJX

IXJ

− a e
−
√

2

3

ϕ
MP η00

Å
XJ(∂τh0)− h0(∂τX

J) +
∂τa

a
h0X

J

ãÅ
δ3J
gZ
2
Z0 +

ie

2
√
2sW

ï
(δ4J + iδ5J)W

−
0 − (δ4J − iδ5J)W

+
0

òã

− a2 e
−
√

2

3

ϕ
MP ηµν

Å
g2Z
8
h20ZµZν +

e2

4s2W
h20W

+
µ W

−
ν

ã
− 1

4
ηµρηνσFZµνFZρσ − 1

2
ηµρηνσF+

WµνF
−
Wρσ (5.2)
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− M2
P

ξRΛ2
F (φI)e

√
2

3

ϕ
MP ϵµνρσFZµνFZρσ − 2M2

P

ξRΛ2
F (φI)e

√
2

3

ϕ
MP ϵµνρσF+

WµνF
−
Wρσ

]
.

We first proceed to quantize the Z and W bosons. With Eq. (5.2), and aided by Eqs. (3.36) and (3.50), the quadratic
actions for the respective fields can be written as

Sλ
W,Z =

∫
dτ Lλ

W,Z =

∫
dτ

d3k

(2π)3

[Å
1

2
|∂τ Z̃λ|2 − 1

2
(ωλ

Z(τ, k))
2|Z̃λ|2

ã

+

Å
1

2
|∂τW̃+,λ|2 − 1

2
(ωλ

W (τ, k))2|W̃+,λ|2
ã
+

Å
1

2
|∂τW̃−,λ|2 − 1

2
(ωλ

W (τ, k))2|W̃−,λ|2
ã]
.

(5.3)

The canonical momenta for the Z and W in Fourier space are therefore

ˆ̃πλ
Z(τ,k) = ∂τ ‹̂Zλ(τ,k), (5.4a)

ˆ̃πλ
W±(τ,k) = ∂τ

ˆ̃
W∓,λ(τ,k), (5.4b)

with the commutation relations
ï
‹̂Zλ(τ,k), ˆ̃πλ′

Z (τ,q)

ò
= i(2π)3δλλ′δ(k+ q), (5.5a)

ï
ˆ̃
W±,λ(τ,k), ˆ̃πλ′

W±(τ,q)

ò
= i(2π)3δλλ′δ(k+ q), (5.5b)

where the field operators are given as

‹̂Zλ = zλk (τ)â
λ
Z(k) + zλ∗k (τ)âλ†Z (−k), (λ = ±) (5.6a)

ˆ̃
W+,λ = wλ

k (τ)â
λ
W (k) + wλ∗

k (τ)b̂λ†W (−k), (λ = ±) (5.6b)

where â†W , b̂†W are the creation operators for W+ and W−, respectively. These obey the usual commutation relations

ï
âλZ(k), â

λ′
Z (q)

ò
= 0,

ï
â†λZ (k), â†λ′Z (q)

ò
= 0,

ï
âλZ(k), â

λ′†
Z (q)

ò
= (2π)3δλλ′δ3(k− q), (5.7a)

ï
âλW (k), âλ′W (q)

ò
= 0,

ï
â†λW (k), â†λ′W (q)

ò
= 0,

ï
âλW (k), âλ

′†
W (q)

ò
= (2π)3δλλ′δ3(k− q). (5.7b)

Similar commutation relations hold for b̂λW while all commutation relationships between âW , b̂W vanish. Inserting
Eqs. (5.6) in the Eq. (3.36) and Eq. (3.50), the mode equations of the W and Z fields can be found as

zλk
′′
+ (ωλ

Z)
2 zλk = 0 (λ = ±), (5.8a)

wλ
k

′′
+ (ωλ

W )2 wλ
k = 0 (λ = ±). (5.8b)

The quantization of the Goldstone bosons is a bit more involved. This is due to the presence of friction term Dτ
‹XI

(with I = ϕ2, ϕ3, ϕ4) in the respective EoMs. We start by recasting Eqs. (3.54), (3.56a) and (3.56b) into the form

S(φi) =

∫
dτ L(φi) =

∫
dτ

d3k

(2π)3
∆(I)

ï
1

2

∣∣∂τXI
∣∣2 − 1

2
ω2
(I)(τ, k)

∣∣XI
∣∣2
ò
, (5.9)

with

∆(I) = exp

ß∫ τ

−∞

E(I)(τ ′, k) dτ ′
™
. (5.10)

E(I)(τ, k) and ω2
(I)(τ, k) are provided in Sec. 3.1.3. As we deal with non-canonical kinetic terms, we apply the

quantization procedure detailed in Ref. [70]. We can quantize the fields as in before as

ˆ̃
Xφ2 =

ï
sk(τ)e

φ2(τ)â3(k) + s∗k(τ)e
φ2(τ)â†3(−k)

ò
, (5.11a)
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ˆ̃
Xφ3 =

ï
qk(τ)e

φ3(τ)â4(k) + q∗k(τ)e
φ3(τ)â†4(−k)

ò
, (5.11b)

ˆ̃
Xφ4 =

ï
rk(τ)e

φ4(τ)â5(k) + r∗k(τ)e
φ4(τ)â†5(−k)

ò
, (5.11c)

and the canonical momentum can be found as

ˆ̃πI(τ,k) = ∆(I)∂τ
ˆ̃
XI(τ,k), (5.12)

with
ï
ˆ̃
XI(τ,k), ˆ̃πJ(τ,q)

ò
=

i

∆(I)
(2π)3δIJδ(k+ q), (5.13)

and similar commutation relations between creation and annihilation operators as in the previous section. From
Eqs. (3.54), (3.56a) and (3.56b), we obtain the EoMs of the mode functions as

s′′k + E(φ2)(τ, k) s
′
k + ω2

(φ2)
(τ, k) sk = 0, (5.14a)

q′′k + E(φ3)(τ, k) q
′
k + ω2

(φ3)
(τ, k) qk = 0, (5.14b)

r′′k + E(φ4)(τ, k) r
′
k + ω2

(φ4)
(τ, k) rk = 0. (5.14c)

We have checked numerically that the constraints imposed by Eqs. (3.31) and (3.35) on the Goldstone boson ϕ̃2, and

(3.46) and (3.49) on the Goldstones ϕ̃3 and ϕ̃4, are consistent with the EoM of the corresponding mode functions
Eqs. (3.54) and (3.56a)-(3.56b), respectively.

5.2 Energy density

We can define the physical energy density associated with the Goldstone and gauge bosons as

ρG =
1

a4

∫
d3x

〈
TG
00

〉
=

1

a4

∫
d3k

(2π)3
⟨ρk,G⟩ =

1

a4

∫
d3k

(2π)3
ρvevk,G, (5.15)

where the energy-momentum tensor can be derived from Eq. (5.2) as

TG
µν = GIJ(DµX
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J) + 2a e
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−1

2
ηαβGIJ(DαX
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J)− 1

2
MIJX

IXJ
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]
. (5.16)

We can also find the energy density per Fourier mode of the of scalar field fluctuations in momentum space

ρk,G =
1

2
GIJ(Dτ
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4s2WKW
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+
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iZ̃
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i
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ïKZ
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Z̃iZ̃i +KW W̃+

i W̃
−
i

ò
+O(‹X3), (5.17)
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where we have used Eqs. (3.31) and (3.44), as well as the gauge conditions described in Eqs. (3.30) and (3.44). As
the different fields do not mix, we can decompose ρvevk,G into gauge and Goldstone energy densities

ρvevk,G = ρZk + ρWk + ρ
(φi)
k . (5.18)

We are now ready to consider the Z and W boson cases before turning to the Goldstone bosons.

5.2.1 Z and W bosons

From Eq. (5.17), we see that the energy densities for W and Z bosons are separated out as

ρZk =
∑

λ=±

ï∣∣∣zλ′k
∣∣∣
2
+ a2KZ

∣∣∣zλk
∣∣∣
2
ò
, (5.19a)

ρWk = 2
∑

λ=±

Å∣∣∣wλ′
k

∣∣∣
2
+ a2KW

∣∣∣wλ
k

∣∣∣
2
ã
. (5.19b)

To find the respective vacuum-subtracted energy densities, we have to minimize the associated Hamiltonian

ĤW,Z =

∫
d3x

〈
TG
00, WZ

〉
=

1

2

∫
d3k

(2π)3

∑

λ=±

ï (
|zλ′k |2 + (ωλ

Z)
2|zλk |2

) Ä
âλ†Z (k)âλZ(k) + δ3(0)

ä

+ 2
(
|wλ′

k |2 + (ωλ
W )2|wλ

k |2
) Ä
âλ†W (k)âλW (k) + δ3(0)

ä ò
,

(5.20)

(TG
00, WZ is the energy associated with Z and W ). As before, ĤW,Z can be minimized by the BD vacuum solution

zλk,BD =
1√
2k
e−ikτ , wλ

k,BD =
1√
2k
e−ikτ . (5.21)

The corresponding energy densities, obtained from Eqs. (5.19), are

ρBD
Z =

∫
dk

k2

2π2a4
ρBD
k,Z =

1

a4

∫
dk

k3

π2
, (5.22a)

ρBD
W =

∫
dk

k2

2π2a4
ρBD
k,W =

1

a4

∫
dk

2k3

π2
, (5.22b)

where, at sufficiently early times and for large modes, (ωλ
Z,W )2 → k2. The quantum gauge energy density is obtained

by removing the BD vacuum from the classical solution as

ρqZ = ρZ − ρBD
Z , (5.23a)

ρqW = ρW − ρBD
W . (5.23b)

When finding the energy densities, we solve Eqs. (5.8a) and (5.8b) in cosmic time.

In Fig. 4, we display the different contributions to ω+
Z

2
, Eq. (3.37), for all three BPs. For BPa (first column of Fig. 4),

as the non-minimal coupling ξH is small, the impact of m2
Z is suppressed compared to ζ+ (see Eq.(3.37)). This is

visible from the cyan and orange solid lines, respectively. However, for BPb and BPc, the larger non-minimal coupling

renders m2
Z more dominant compared to ζλ. This can be seen from the second and third columns of Fig. 4. ω−

Z

2

shows a similar behavior, except for a sign change of the CS term. We also find that the different contributions of

ωλ
W

2
follow a similar pattern, and we choose to not repeat these here.

The behavior of (ω+
Z )

2 of Fig. 4 has severe implications for the energy densities of the Z and W bosons, Fig. 5. For
BPa, as the ζλ term dominantes, ρqZ and ρqW both scale as 1/Λ. However, for BPb and BPc, as the non-minimal
coupling becomes larger, the m2

Z term overpowers ζλ. We, therefore, see parametric resonance taking over. We find
that Z boson production can preheat the Universe within 2 e-foldings after the end of inflation for both BPb and
BPc. For W production, the preheating is completed within N ≈ 4 (N ≈ 2) for BPb (BPc). We remark that gauge
preheating is also possible for BPa if Λ ≲ 2 × 10−5 MP, however, we shall see below that such values of Λ will
overproduce hypermagnetic fields and imply an overproduction of the observed baryon asymmetry. Note that the
produced Z boson W boson can decay into SM matter. We will return to this in Sec. 7.
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Figure 4. Relative strength of different terms of (ω+
Z )2 in Eq. (3.37) for BPa (left panel), BPb (middle panel) and BPc (right

panel). The upper panel conforms k = a(tend)H(tend) while the lower panel is for k = 10 a(tend)H(tend). The blue, cyan,
orange, and red lines in each figure display k2/a2, m2

Z , ζ
+ and a combination of m2

Z plus ζ+. We set Λ = 2× 10−5 MP

throughout.
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Figure 5. The energy densities ρqZ (upper row) and ρqW (lower row) for various values of Λ for the benchmark points BPa
(left column), BPb (middle column) and BPc (right column). The black line displays the background energy density ρinf .

5.2.2 Goldstone bosons

The Goldstone fields do not mix. Therefore, we can further decompose VEV energy density ρ
(φi)
k from Eq. (5.18) into

the ϕi VEV energy density as

ρ
(φi)
k = ρ

(φ2)
k + ρ

(φ3)
k + ρ

(φ4)
k (5.24)
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Figure 6. Different terms in ω2

(φ2)
(τ, k)/a2. On the bottom panels, the magenta, green, red and black lines correspond to

k2/a2, m2
eff,(φ2)

, m2
Z and E(φ2)Υ/a2, see Eq. (3.55b), for all three BPs. Here as a reference we set k = a(tend)H(tend). We can

see that the spikes correspond to the zero-crossings of h0 (blue lines) displayed on the upper panels. See text for detailed
explanation.

with

ρ
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k =

1

2

{Å
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ã
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2
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Z
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∗
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}
, (5.25a)

ρ
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2
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∗
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}
, (5.25b)

ρ
(φ4)
k =

1

2

{Å
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ã
|r′k|

2
+

[
k2 + a2m2

eff,(φ4)
− m2
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KW
Υ2

]
|rk|2 −

m2
W

KW
Υ (r′kr

∗
k + r∗′k rk)

}
, (5.25c)

where Υ was defined in Eq. (3.23).

Before solving Eqs. (5.14) to find the energy densities, let us briefly discuss the different contributions to ω2
(I) and

their impact on preheating. For this purpose, we take ϕ2 as a representative field for the Goldstone bosons, and
we checked that ϕ3 and ϕ4 show a similar behavior (with m2

Z replaced by m2
W ). In Fig. 6, we have plotted the

different contributions to ω2
(φ2)

(τ, k) for k = a(tend)H(tend) for illustration. It is clear, around the end of inflation,

m2
Z dominates over all other terms but soon after, the last term associated with E(φ2) dominates every time h0 crosses

zero, resulting in spike-like structures. The spikes have the amplitude

ω2
(φ2)

∣∣∣
h0=0

= k2 + a2
ï
m2

eff,(φ2)
+
g2Z
2

a2

k2
e
−
√

2

3

ϕ
MP h′20

ò
, (5.26)

which is well below the unitarity cut-off scale. For comparison, we have also plotted k2/a2 for the k = a(tend)H(tend)
in magenta in the lower panels and the evolution of h0 in blue in the upper panels. It is clear that the spikes are
smaller for BPa, which is deep in the R2-like regime with ξH ≪ 1. However, they increase significantly for BPb and
BPc due to a comparably larger ξH . As we will see shortly, such spikes induce a growth of the corresponding modes
leading to preheating of the Goldstone bosons (see Refs. [26, 28, 52–54, 56] for similar discussions) without violating
unitarity.

To solve Eqs. (5.14), we make the change of variable s̄k =
√

∆(φ2) sk to write

s̄′′k(τ, k) + ω̄2
(φ2)

s̄k(τ, k) = 0, (5.27a)

q̄′′k (τ, k) + ω̄2
(φ3)

q̄k(τ, k) = 0, (5.27b)

r̄′′k(τ, k) + ω̄2
(φ4)

r̄k(τ, k) = 0, (5.27c)

where

ω̄2
(I) = ω2

(I) −
E ′
(I)

2
−

E2
(I)

4
. (5.28)
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Figure 7. The energy densities ρq(φ2)
and ρq(φ3)

for the benchmark points BPa through c from left to right. We recall that

ρq(φ3)
= ρq(φ4)

. The black line displays the background energy density ρinf .

At sufficiently early times, when all modes of interest are deep inside the horizon (i.e. k ≫ aH), the frequencies
become ω̄2

(I) → k2 and the solutions of Eqs. (5.27) reduce to plane waves

sk =
e−ikτ

√
2k∆(φ2)

, qk =
e−ikτ

√
2k∆(φ3)

, rk =
e−ikτ

√
2k∆(φ4)

. (5.29)

Hence, by taking Eq. (5.29) as the initial conditions, Eqs. (5.27) will enable us to find the evolution of the relevant
modes from sub-horizon to super-horizon scales. Here, unlike the BD solution of all other fields, the appearance of the
∆(I)s is due to the presence of additional friction terms in Eqs. (5.14) as shown above. At early times, for the relevant

modes, we simultaneously have k2/a2 ≫ |m2
eff,(I)(t)| and m2

Z,W /KZ,W → 0. As before, Eq. (5.29) will minimize the

associated Hamiltonian.

The energy density associated with vacuum for the Goldstone modes reads

ρBD
(φi)

=
1

4π2a4

∫
dk

k3

∆(φi)(k, τ)
. (5.30)

The quantum Goldstone energy densities are obtained by removing the BD vacua from the respective classical solutions
as

ρq(φi)
= ρ(φi) − ρBD

(φi)
, with i = 2, 3, 4. (5.31)

Note that we have solved the respective EoMs in cosmic time.

We show the ρq(φ2)
and ρq(φ3)

as function of N in Fig. 7 in blue and red, respectively. We recall that ω2
(φ3)

= ω2
(φ4)

and ρq(φ3)
= ρq(φ4)

. We find that for all of our BPs no particles are produced before the end of inflation. However, the

spike behavior in ω2
(φ2)

and ω2
(φ3)

induces a growth of the energy densities for BPb and BPc. We find that preheating

is possible for both BPb and BPc. In case of BPb, the preheating is complete for N ≈ 3 (N ≈ 1.9 for the BPc).
However, there is a subtlety. For BPb, the preheating is completed via the ϕ3 field, whereas, for BPc it is completed
by ϕ2. This is primarily due to mZ > mW and the evolution of h0. For both these BPs, initially ρq(φ2)

rises faster due

to the heaviness of the Z boson while ρq(φ3)
remains constant. At a later time, the “spike forest” becomes denser which

overpowers the mild mass difference between Z and W . Therefore, the delayed growth of ρq(φ3)
plateaus when the

spikes are more abundant. The exponential growth of ρq(φ3)
for BPc is not shown in the right panel of Fig. 7 because

the initial growth of ρq(φ2)
is sufficiently high enough to preheat the Universe. We stress again that our linearized

result here does not include decay, which we shall discuss in Sec. 7.

6 Production of the electromagnetic field

Following the same steps as in the previous sections, we now consider the production of electromagnetic (EM) field.
The time component (β = 0) of Eq. (2.27) at linear order in the perturbations is

− 1

a2
∂i (∂iA0 − ∂0Ai) = 0, (6.1)
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and the spatial components (β = i) are

− ȧ
a
(∂0Ai − ∂iA0)− ∂0 (∂0Ai − ∂iA0) +

1

a2
∂j (∂jAi − ∂iAj)

+
4M2

P

ξRΛ2a
∂0

Å
F (φI)e

√
2

3

ϕ
MP

ã
ϵijk (∂jAk − ∂kAj) = 0.

(6.2)

We move to conformal time dτ = dt/a(t) such that the line element becomes ds2 = a2(τ)ηµνdx
µdxν . Hence, perform-

ing the replacements A0 → A0/a, ∂0 → ∂τ/a, we find that the above two equations written in comoving coordinates
are

− ∂i (∂iA0 −A′
i) = 0, (6.3)

− ∂0 (∂0Ai − ∂iA0) + ∂j (∂jAi − ∂iAj) +
4M2

P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ã
ϵijk (∂jAk − ∂kAj) = 0. (6.4)

As before, we can transform to momentum space by

A0(x
µ) =

∫
d3k

(2π)
3 Ã0(τ,k)e

−ik·x, Ai(x
µ) =

∫
d3k

(2π)
3 Ãi(τ,k)e

−ik·x, (6.5)

where the ‹A field can be written in terms of transverse and longitudinal components as

‹A(τ,k) =
∑

λ=±,L

Ãλ(τ,k) ϵ̂λA(k), (6.6)

with

ik · ϵ̂±A(k) = 0, ik · ϵ̂LA(k) = |k| = k, ik× ϵ̂±A(k) = ±k ϵ̂±A(k), ϵ̂λA(k)
∗ = ϵ̂λA(−k). (6.7)

We are free to choose any gauge for the EM field regardless of our choice of gauge for the massive gauge bosons.
Choosing the Coulomb gauge for the EM field, we have ∂jA

j = 1
a2 ∂jAj = 0. This reduces in momentum space to

ik · ‹A = 0, and removes one degree of freedom from the EM field. Utilizing Eq. (6.7), the gauge condition ik · ‹A = 0

translates to ÃL(t,k) = 0, i.e. the longitudinal component of the photon vanishes. Further, inserting the gauge

condition ÃL(t,k) = 0 in Eq. (6.1), we find that A0 = 0, so that the photon is left with two independent (transverse)

degrees of freedom. This is unchanged by the presence of F‹F term as expected. Notice the stark difference between
the photon and the massive gauge bosons discussed earlier. In the former case the constraint equations from the gauge
condition render the Goldstone bosons ϕ2, ϕ3 and ϕ3 dynamical, while for the photon only two transverse degrees of
freedom are dynamical.

In momentum space and conformal time, Eq. (6.4) reads

ï
‹A′′ + k2‹A

ò
+

8iM2
P

ξRΛ2
∂τ

Å
F (φI)e

√
2

3

ϕ
MP

ãÄ
k× ‹A

ä
= 0. (6.8)

The EoM for the transverse components becomes

∂2τ Ã
λ + (ωλ

A)
2Ãλ = 0, (λ = ±) (6.9)

with

(ωλ
A(τ, k))

2 = k2 + ζλ(τ, k), (6.10)

where ζλ(τ, k) is given by Eq. (3.38), as well as ÃL = 0.

In order to quantize the EM fields, we first integrate the photon part of the Lagrangian by parts to get the action
quadratic in the fields

Sλ
A =

∫
dτ Lλ

A =

∫
dτ

d3k

(2π)3

ï
1

2
|∂τ Ãλ|2 − 1

2
(ωλ

A)
2|Ãλ|2

ò
. (6.11)
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The canonical momentum of the transverse modes are

π̂λ
A(τ,x) =

∂Lλ
A

∂
Ä
∂τ Âλ(τ,x)

ä = ∂τ Â
λ(τ,x), (6.12)

with the commutation relation expressed as
ï
Âλ(τ,x), π̂λ

A(τ,y)

ò
= iδλλ′δ(x− y). (λ = ±) (6.13)

In momentum space these expressions become

ˆ̃πλ
A(τ,k) = ∂τ

ˆ̃
Aλ(τ,k), (6.14)ï

ˆ̃
Aλ(τ,k), ˆ̃πλ

A(τ,q)

ò
= i(2π)3δλλ′δ(k+ q) (λ = ±). (6.15)

The field operator
ˆ̃
Aλ(τ,k) can be written as creation and annihilation operators

ˆ̃
Aλ(τ,k) = uλk(τ)â

λ
A(k) + uλ∗k (τ)âλ†A (−k) (λ = ±) (6.16)

that obey
ï
âλA(k), â

λ′
A (q)

ò
= 0,

ï
â†λA (k), â†λ′A (q)

ò
= 0,

ï
âλA(k), â

λ′†
A (q)

ò
= (2π)3δλλ′δ3(k− q). (6.17)

Inserting Eq. (6.16) in Eq. (6.9), the mode equations of A can be found as

uλk
′′
+ (ωλ

A)
2 uλk = 0 (λ = ±). (6.18)

As in the last section, we can define the physical energy density as

ρA =
1

a4

∫
d3x

〈
TA
00

〉
=

1

a4

∫
d3k

(2π)3
⟨ρk,A⟩ =

1

a4

∫
dk

k2

2π2
ρvevk,A, (6.19)

where the EM energy-momentum tensor can be derived from the action (2.17)

S
(2)
A =

∫
d3x dτ

ï
−1

4
ηµρηνσFAµνFAρσ − M2

P

ξRΛ2
F (φI)e

√
2

3

ϕ
MP ϵµνρσFAµνFAρσ

ò
(6.20)

as

TA
µν = ηµν

ï
−1

4
ηαρηβσFAαβFAρσ

ò
+ ηρσFAµρFAνσ. (6.21)

Moving to momentum space and the helical basis (6.7), we find that the EM energy density is

ρvevk,A =
∑

λ=±

ï
1

2

∣∣∣uλ′k
∣∣∣
2
+
k2

2

∣∣∣uλk
∣∣∣
2
ò
, (6.22)

where we used Eq. (6.16) and the gauge conditions A0 = 0 and ∂iAi = 0. The first term is the electric component,
and the second is the magnetic one. The BD vacuum solution as before is

uλk,BD =
e−ikτ

√
2k

, uλ′k,BD =

…
k

2
e−ikτ (6.23)

with energy density

ρBD
A =

∫
dk

k2

2π2a4
ρBD
k,A =

1

a4

∫
dk

k3

2π2
. (6.24)

As in the other cases, the quantum EM energy density is obtained by removing the BD vacuum from the classical
solution as

ρqA = ρA − ρBD
A . (6.25)

We display the result in Fig. 8 for all the BPs. Preheating from photon production seems then possible only for low
values of the scale Λ. We will not consider this case in this paper as for such low values of the cutoff the rate of
baryon asymmetry production is too large. See also discussion in Sec. 9.
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Figure 8. The energy densities ρqA for various values of Λ and all the benchmark points. The black line displays the
background energy density ρinf .
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Figure 9. Comparison of different masses for the three BPs after end of inflation.

7 Reheating temperature

Our discussion in the preceding sections regarding preheating for different fields did not include effects such as decay
and scattering of the produced particles. These interactions are, of course, not summarized in the action of Eq. (2.17)
since they are beyond the linearized approximation we adopted throughout this paper. Nonetheless, these nonlinear
effects may indeed dampen the strength of preheating and, in some cases may completely shut down preheating for
certain species. We leave out a detailed estimation for separate work but briefly discuss their qualitative impact, in
particular for those fields which display the capability of preheating the Universe.

Let us begin with the decay of the produced particles. For the case of Higgs and inflaton quanta, both Higgs and
Goldstone bosons can preheat for BPc and BPb but the Goldstones preheat faster. The produced Higgs as well as the
Goldstone particles may decay into SM fermions and gauge bosons. For pure Higgs inflation, it has been found that
the decay of Higgs particles into gauge bosons ZZ, WW is kinematically disallowed [53]. Our model is quite similar
in this regard. In Fig. 9, we plot how |meff,(h)|, |meff,(φ2)| and |mZ | evolve in comparison to h0. It is clear that |mZ |
is heavier than both |meff,(h)| and |meff,(φ2)| for most times during preheating except when h0 = 0. For the case of
the Higgs in our qualitative discussion, we find that the duration when |mZ | < |meff,(h)| is too small to deplete the
energy density of the Higgs. The same holds for |meff,(φ3)| (|meff,(φ2)|) for BPb (BPc), where the effective masses of
the respective gauge bosons are larger than those of Goldstone bosons such that decays into gauge bosons are not
allowed. The situation is different for the case of decays to fermions as discussed in Ref. [53]. For lighter fermions, the
decays of the Higgs and Goldstone quanta into fermions are kinematically allowed. However, one needs a decay rate
much greater than the Hubble expansion rate for the decay to efficiently deplete the energy densities. This is only
possible for the heaviest fermions due to the largeness of their Yukawa couplings. However, even in this instance, as
in Ref. [53], we find the duration is too small to deplete the produced particles in our back-reactionless analysis.

The decays of the Z andW bosons into fermions may lead to a significant reduction of the energy densities. Similarly,
the Z boson can decay to two scalar bosons. To illustrate the impact of these decays, we consider Z and W boson
decays into fermions [55, 71]#4

ΓZ(τ) =
g2Z

8π2 cos2 θW
mZ(τ)

Å
7

2
− 11

3
sin2 θW +

49

9
sin4 θW

ã
, (7.1)

#4 Note here that Z and W decay rates include decay to all fermions and averaged over all polarization. We ignore the polarization
averaging effect and utilize these expressions for the transverse modes.
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Figure 10. The ΓZ/H and ΓW /H shown, in the left panels, in blue and red respectively for BPb (top) and BPc (bottom).
The energy densities of the Z (middle) and W (right) taking into account the particle decay for the BPb (top) and BPc
(bottom), see Eq. (7.3). The black line displays the background energy densities ρinf for the respective BPs.

ΓW (τ) =
3g2

16π
mW (τ), (7.2)

where the time-dependent Z and W masses have been defined in Eqs. (3.33) and (3.47). These decays may deplete
the density of the produced gauge quanta if ΓZ,W /H ≫ 1. While these decay rates can be directly incorporated into
the respective mode equations to estimate their impact, for simplicity we follow the approximate expression for the
modified energy densities as in [53]

ρq(τ) → ρq(τ) exp

ß
−
∫ τ

τ0

dτ ′ Γ(τ ′)

™
(7.3)

where τ0 is the time when ΓZ,W /H becomes ≫ 1 for the respective particles. The modified energy densities of the
W and Z bosons are shown in Fig. 10. It is clear that the completion of the Z preheating takes longer for the BPs,
in comparison with the results shown in Fig. 5. For the W boson, the decay may completely shut off preheating for
BPb; completion takes longer for BPc. The case of BPa is more involved as for small Λ there will be an explosive
production of all the gauge fields. However, it was shown that the gauge fields will trigger the production of fermion
anti-fermion pairs in the electromagnetic plasma that will strongly reduce the energy density, see e.g. Refs. [20, 72].
This backreaction (dubbed the Schwinger effect) may jeopardize any gauge preheating. Hence, we will conservatively
consider that there is no preheating for the BPa benchmark point.

Finally, while a more detailed study is required for the consideration of nonlinear effects, we turn to a qualitative
discussion of rescattering and its potential relevance for preheating. In Fig. 11, we combine the effective mass
information at a representative time of Fig. 9 into a computation of representative 2 → 2 scattering processes. The
rate of particle conversion can be approximated as

Γ = nσβ, (7.4)

in natural units where β is the velocity of a representative W in the plasma. We can further estimate the number
density as

ni ≃
ρi
mi

(7.5)

for a particle species i. The energy densities for, e.g., the gauge bosons are collected in Sec. 5.2.1. We obtain the cross
section in Eq. (7.4) keeping the full mass, background field, and centre-of-mass dependencies. There is interesting
phenomenology toward the end of inflation; W particles can quickly convert into fermions and Higgs bosons, and
vice versa. If the low-mass particles are sufficiently relativistic, they can convert back to vector bosons as indicated
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Figure 11. Representative conversion rates WW → ee, WW → hh, and hh → ee as a function of the Hubble constant and
the W/h velocity β for a typical epoch at the end of inflation characterized by h0 ≃ 10−5MP , meff,(h) ∼ 2.5× 10−5MP ,

mW ∼ 4× 10−5MP , from Fig. 9. (Right) comparison of WW → hh and WW → ee conversion as a function of the W
velocity.

BP preheating field(s) Nrh arh ρrh [M4
P] Trh [GeV]

a – – – – –

b φ3, φ4 3.05 21 5× 10−14 5× 1014

c φ2 1.83 6.2 10−13 6× 1014

Table II. Preheating summary in the benchmark points chosen for our analysis. Values given are approximate.

in Fig. 11 (left). This is also true for fermions with sufficient energy very close to unity to transfer kinetic energy
to heavy particle creation (these processes are not shown) as well as for any other crossed process shown in Fig. 11.
Compared to the change of occupation number resulting from the particle decay discussed above, however, we see
that particle conversion turns out to be insignificant and will not quantitatively impact the preheating implications
that are derived from the particle decay in isolation. Again this is consistent with the findings of Ref. [53].

In the following, for definiteness, we take the completion of preheating exactly when ρinf = ρ
(q)
(X) (with X is any fields),

corresponding to a cosmic time trh, i.e. arh, i.e. Nrh. The energy density at the time arh, namely ρrh is therefore
identified with the thermal bath energy density

ρinf(arh) ≡ ρrh =
grhπ

2

30
T 4
rh, (7.6)

from which we can extract the (p)reheating temperature Trh relevant for baryogenesis. Note, as we stressed before,
our linearized results here neglect back-reaction of the excited modes onto the background condensates; this limitation
should be kept in mind. We summarize which fields can preheat the Universe individually and table the corresponding
value Trh in Table II. The impact of Trh on the geometric baryogenesis will be discussed shortly.

8 Baryogenesis

The baryon asymmetry of the Universe is characterized, in its entropic version, by the parameter

ηB =
nb − nb̄

s
, (8.1)

where nb − nb̄ is the difference between the baryon and anti-baryon number density and s the comoving entropy
density of the SM plasma. The best fit of CMB anisotropy puts the contraint [73]

ηB = (8.70± 0.11)× 10−11 (95% CL). (8.2)

Besides and for completeness, the observed abundances of all the Big Bang Nucleosynthesis (BBN) isotopes today
coincide within the range value [74]

8.2× 10−11 ⩽ ηB ⩽ 9.2× 10−11 (95% CL), (8.3)
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as all the light element abundances depend on ηB , compatible with the CMB measurement.

The SM Higgs mass measurement of 125 GeV favors a smooth electroweak crossover at temperatures around
180 GeV ≳ T ≳ 130 GeV. At first glance, this might jeopardize an electroweak baryogenesis scenario as the Sakharov
conditions impose that baryon number and C/CP-violating processes occur in a non-equilibrium environment [75].
However, by carefully analyzing the transport equations for all SM species during the EWPT, it was shown in
Refs. [3, 15] that the difference between chirality sources and sphaleron washout yields an out-of-equilibrium configu-
ration even for the crossover; the chiral anomaly of the SM provides a baryon+lepton violating process, which is then
sufficient to generate the BAU. The anomaly expresses the fact that the B + L charges, the U(1)Y helicity, and the
weak sphaleron are connected as

∆NB = ∆NL = Ng

Å
∆NCS − g′2

16π2
∆HY

ã
, (8.4)

where the factor Ng = 3 is the number of fermion generations. Under the thermal fluctuation of the SU(2)L gauge
fields, the Chern-Simons number NCS is diffusive, resulting in the rapid washout of both lepton NL and baryon NB

numbers. In contrast, a helical primordial magnetic field acts as a source, and a net baryon asymmetry can remain
after the EW phase transition. These two observations open the possibility of a baryogenesis mechanism within the
SM electroweak theory although physics beyond the SM is needed to provide a strong enough CP violation at a higher-
dimensional operator level. Indeed, the SM CP-violating term from the CKM matrix phase is too small to induce
a significant baryon asymmetry at a low energy scale. In our scenario, the dim-6 interaction term ϵµνρσBµνBρσRJ

fulfills this role.

The proper modelling of the epoch 160 GeV ≳ T ≳ 130 GeV is critical for an accurate prediction of the relic BAU.
We will rely on a mechanism that introduces a time-dependent (temperature-dependent) weak mixing angle θW (T )
which enters an additional source of the baryon number into the kinetic equation, see Refs. [3, 15]. The angle behavior
is confirmed by analytic calculations [76], and numerical lattice simulations [77]. We follow Refs. [15, 16] and model
it with a smooth step function

cos2 θW =
g2

g2Z
+

g′2

2g2Z

Å
1 + tanh

ï
T − Tstep

∆T

òã
, (8.5)

which, for 155 GeV ≲ Tstep ≲ 160 GeV and 5 GeV ≲ ∆T ≲ 20 GeV, describes reasonably well the analytical and
lattice results for the temperature dependence. We will now present the main lines of this mechanism and refer the
reader to Refs. [1, 3, 15, 17–19, 78] and references therein for further background details.

The Boltzmann equation for the baryon-to-entropy ratio ηB reads [15]

dηB
dx

= −111

34
γW,sph ηB +

3g2Z
16π2

sin(2θW )
dθW
dx

HY

s
, (8.6)

where x = T/H(T ) and HY is the hypermagnetic helicity that is initially present. Furthermore, γW,sph = 6ΓW sph/T
4

is the dimensionless transport coefficient for the EW sphaleron, which, for temperatures T < 161 GeV, is found from
lattice simulations to be [79]

γW sph ≃ exp

Å
−147.7 + 107.9

T

130 GeV

ã
. (8.7)

The Boltzmann equation (8.6) has been numerically solved in [15] and the baryon-to-entropy ratio ηB was found to
become frozen, i.e. dηB/dx = 0, at a temperature T ≃ 135 GeV. As expected, this is close to T ≃ 130 GeV at which
EW sphalerons freeze out. Setting the RHS of Eq. (8.6) to zero and solving for ηB yields

ηB =
255

592

g2Z
π3

√
10g∗

HY

(Trharh)3
fθW
MP

T

γW sph

∣∣∣∣
T=135 GeV

, (8.8)

where we used that

s =
2π2

45
g∗(Trharh)

3, g∗ = 106.75. (8.9)
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Figure 12. The helicity HA for various values of Λ and all the benchmark points BPa, BPb and BPc, from left to right.

The parameter fθW encodes all the details on the EWPT dynamics with significant uncertainties

fθW = − sin(2θW )
dθW
d log T

∣∣∣∣
T=135 GeV

, 5.6× 10−4 ≲ fθW ≲ 0.32. (8.10)

Provided that the magnetic induction prevails over the dissipation effects in the plasma between reheating and the
EWPT (see hereafter), we can estimate the hypermagnetic helicity at the start of the EWPT as

HY = HA(arh) cos2 θW , (8.11)

where HA is the helicity of the EM field defined as

HA =
1

a3

∫
dk

k3

2π2

∑

λ=±

λ
∣∣∣uλk
∣∣∣
2

(8.12)

that depends on time (or alternatively on the scale factor a or the e-folding number N ) and on Λ, see Fig. 12. The
Z boson contribution vanishes from HY in Eq. (8.11) because the massive fields are screened or decay away quickly
compared to the time scale on which the baryon asymmetry evolves [15]. Because the BD solution (6.23) is the
same for both helicities, i.e. u+k,BD = u−k,BD, the BD vacuum contribution to the helicity vanishes, hence no vacuum
subtraction is needed.

We can read the values of Trh, ρrh and arh from Tab. II. BPa, for which preheating is not evident and the relevant
quantities have to be approximated, has been discussed in detail in our previous work, see Ref. [1]. In this work, we
base the baryogenesis mechanism on the preheating results detailed in the previous section, and we will, therefore,
mainly focus on BPb and BPc. Of course, in all these cases, a detailed calculation of the perturbative reheating in
the R2-Higgs inflation model is needed to further improve on our findings.

The relation (8.11) holds only when the helicity is conserved between reheating and the electroweak crossover. To
guarantee that the magnetic induction dominates over dissipation in the plasma, we must require that the magnetic
Reynolds number Rm evaluated at reheating is bigger than unity as

Rm ≈ 2αY
cσ
cν

ρqBY

ρrh

Ç
ℓqBY

Trh

arh

å2

> 1, (8.13)

where cσ ≈ 4.5 and cν ≈ 0.01 are respectively the conductivity and the kinematic viscosity factors of the plasma
[80, 81] and αY = g′2/4π. The former equation (as well as Eq. (8.18) hereafter) is valid only for Re < 1, where

Re ≈
2α4

Y

c2ν
log
(
α−1
Y

)2 ρqBY

ρrh

Ç
ℓqBY

Trh

arh

å2

(8.14)

is the electric Reynolds number. In Fig. 13 we show that this regime applies for the relevant values of Λ in BPb and
BPc. In the last two expressions, ρqBY

is the quantum hypermagnetic energy density that can be computed as

ρqBY
= ρqA,B(arh) cos2 θW , (8.15)
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fθW = 0.32

fθW = 5.6 × 10
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Figure 13. Baryogenesis parameter space for BPb (top) and BPc (bottom). On the left panels we show the asymmetry
parameter in function of Λ and fθW . The red line must be in between the light and dark blue curves to meet the
observational constraint ηB = 8.7× 10−11. On the right panels we display the two contraints, Rm > 1 and TCPI < 105 GeV in
function of Λ. To meet these contraints, both curves must be in between the horizontal red lines. We also display quantity Re

on which there is no constraint, see text tor detail.

with the EM magnetic energy

ρA,B =
1

a4

∫
dk

k4

4π2

∑

λ=±

∣∣∣uλk
∣∣∣
2
, ρqA,B = ρA,B − ρBD

A,B , ρBD
A,B =

ρBD
A

2
, (8.16)

and ℓqBY
is the hypermagnetic characteristic size given by

ℓqBY
=

2π

ρqA,B a
3

[∫
dk

k3

4π2

∑

λ=±

∣∣∣uλk
∣∣∣
2
−
∫
dk

k2

4π2

]
, (8.17)

where we performed a vacuum subtraction. Note that ℓqBY
= ℓqB .

The last constraint arises from the CP-odd term present in the magnetohydrodynamics description of the plasma. As
the energy configuration in the gauge sector is more favorable than in the fermion sector [82], a helicity cancellation
is induced because of the fermion asymmetry back-transformation into helical gauge fields with opposite sign. This
phenomenon is called chiral plasma instability (CPI). Thus, one must ensure that all fermion asymmetry created
alongside the helical field during inflation is erased by the action of the weak sphaleron for 1012 GeV ≳ T ≳ 130 GeV.
Hence to preserve the helicity in the gauge sector, before the CPI can happen, we must require that TCPI ≲ 105 GeV,
where [17, 82]

TCPI ≈
4α5

Y

π4cσ
log
(
α−1
Y

)Å2133
481

ã2 H2
Y

H(tend)T 4
rh

»
a9rh a(tend)

. (8.18)

Using Eqs. (8.8), (8.13), (8.18) and the values from Table II, we display in Fig. 13 the baryogenesis parameter space.
The following ranges on Λ meet all the constraints and hence yield a successful BAU:

2.07× 10−5MP ≲ Λ ≲ 2.30× 10−5MP for BPb,

2.52× 10−5MP ≲ Λ ≲ 2.76× 10−5MP for BPc.
(8.19)
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We observe that the smaller the reheating temperature, the smaller the coupling Λ needs to be to achieve the BAU.
This is in agreement with our result for the BPa in Ref. [1] although there the reheating temperature was left as a
free parameter.

9 Summary and Outlook

In this work, we studied the implications of the preheating on gravity assisted baryogenesis in R2-Higgs inflation,
namely how preheating can impact on baryogenesis at the electroweak crossover from the production of helical
hypermagnetic fields. To this end, we adopted the doubly-covariant formalism for both inflationary dynamics and
gauge field production. We derived the equations of motion and energy densities for the inflaton, Higgs background
fields, and relevant perturbations at linear order. This includes the inflationary fields, the W±, Z bosons, the photon,
and the three Goldstone fields. The Coulomb gauge was used, as the unitary gauge becomes ill-defined at Higgs
zero-crossings. Hence, the Goldstone bosons remained dynamical in our discussion. The preheating is governed by
the field-space manifold, the dynamics of the background condensates, the respective effective masses and the coupled
metric perturbations.

We primarily focused on R2 and mildly mixed R2-Higgs-like regimes, however expressions and the formalism can
be applied to other regimes of ξR and ξH . We highlight different phenomenological possibilities by identifying three
benchmark points: a deep R2-like scenario with ξH ≈ 10−3 (BPa), ξH ≈ 1 (BPb) and a mixed R2-Higgs scenario
with ξH ≈ 10 (BPc) (see Tab. I). We find that the Higgs quanta and transverse modes of the W boson can preheat
the Universe for BPc for ξH ≈ 10, while the Z boson can provide successful preheating for both BPb and BPc. The
Goldstone sector can also preheat for BPb and BPc. We find that for both BPb and BPc, the Goldstone bosons can
preheat the Universe faster than any other field: at N ≈ 3 and N ≈ 1.8 , respectively (see Fig. 7). In all cases,
preheating never happens for BPa unless Λ is small. We remark that our results for preheating are in good agreement
with previous studies in this model [26, 28], however, we find that ξH ≈ 1 is also sufficient for preheating of the
ϕ3 field at N ≈ 3. This is caused predominantly by the spikes in ω2

(I) due to the presence of the E(I) term for the

Goldstones as also discussed in Ref. [52].

We find that the value of Λ, required for baryogenesis does depend on ξH indirectly via the reheating temperature.
We identify a window around Λ ∼ 2.2 (2.6) × 10−5MP for ξH ≈ 1 (10) where the observed baryon asymmetry of
the Universe can be achieved. As preheating happens earlier for larger ξH , leading to larger reheating temperature,
a larger value of Λ is required for successful baryogenesis. However, our analysis also reveals that sufficiently small
values of Λ could lead to gauge preheating as found in Fig. 5 and Fig. 8 for BPa. Nevertheless, based on earlier findings
from Ref. [1] and pending further investigation into fermion-gauge boson backreaction, we expect the inclusion of the
Schwinger effect to significantly impact our results. Importantly, incorporating the Schwinger effect is unlikely to alter
the successful sourcing of baryon number density (see also Refs. [1, 20]). Moreover, the relevance of the Schwinger
effect dramatically depends on the value of the fermion masses at high values of the background Higgs field, and so
on the mechanism for the generation of fermion masses at high scales. For instance a particular Froggatt-Nielsen
mechanism was presented in Ref. [83] where there is no Schwinger effect for the Standard Model at inflationary scales,
while reproducing the fermion spectrum at electroweak scales. In that case, small values of Λ are disfavored as they
tend to overproduce the baryon asymmetry.

Our work systematically builds upon previous studies [1, 19, 83] by explicitly computing, for the first time, the
reheating time, temperature, and energy without taking them as effective parameters in the model. One remaining
uncertainty regarding the baryogenesis mechanism, which we leave for future work, concerns the specific dynamics
of the electroweak crossover, particularly the evolution of the weak mixing angle from zero to its low-energy value.
In the present analysis, we ensured that the helicity generated during reheating is preserved until the electroweak
scale by carefully considering the plasma’s Reynolds number and verifying that the chiral plasma instability does not
impact our results. We also remark that for our preheating dynamics, we adopted a naive effective approach related
to how decays impact the produced quanta instead of incorporating them in the EoMs directly. Furthermore, we
have also not discussed how the produced particles backreact on both the background condensates (see Ref. [56]). In
addition, we have ignored fermions from the picture to a large extent; they can impact significantly via the Schwinger
effect as discussed in [1, 19, 20, 83]. This requires a first principle derivation of all EoMs retaining terms beyond the
linear order in this doubly covariant formalism including fermions and gauge bosons. This is beyond the scope of the
current work and we leave a dedicated analysis of non-linear effects for future work.
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A Gauge boson spectra

We provide the spectra for the Z, W and photon for illustration in comparison to corresponding BD-spectra. This is
utilized to evaluate the corresponding energy densities for the respective fields. See main text for details.
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Figure 14. Spectra of the transverse mode of the Z boson and the corresponding BD spectra for different values of N .
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Figure 15. Same figure as Fig. 14 but for the transverse W boson.
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Figure 16. Same figure as Fig. 14 but for the photon.
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