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Abstract. We study the propagation of cosmological gravitational wave background (GWB)
produced by hydromagnetic sources in the early radiation era until the present day. Compared
to standard general relativity (GR), we study the effects that parameters of modified theories
of gravity, such as the run rate of the effective Planck mass αM and the tensor speed excess
αT, have on the present-day GW spectrum using numerical simulations beyond the WKB
approximation. While αT makes relatively insignificant changes to the GR solution, αM can
potentially introduce an enhancement to the spectral slopes of the energy spectrum in the
low-frequency regime depending on the chosen time evolution parameterization of αM. This
effect is additional to the damping or growth occurring equally at all scales that can be
predicted by the WKB approximation. We discuss the observational implications in light of
the recent observations by pulsar timing array collaborations and future detectors such as
SKA, LISA, and DECIGO.
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1 Introduction

The present day Hubble constant, H0, is measured to be around H0 ∼ 74 km/s/Mpc by astro-
physical tests using type Ia supernovae [1–3], lensed quasars [4], and megamaser-hosting galax-
ies [5]. On the other hand, cosmological tests of H0 constrain its value to H0 ∼ 67 km/s/Mpc
from cosmic microwave background (CMB) [? ] and baryon acoustic oscillations (BAO) [7]
experiments, assuming the standard ΛCDM (Λ cold dark matter) model of cosmology. These
measurements suggest the presence of a 4–5σ deviation discrepancy between the early- and
late-universe measurements of H0 [10], known as the Hubble tension. Besides the well-known
H0 tension, a number of other observational discrepancies within the ΛCDM model have been
reported, such as the S8 tension, where S8 ∝ σ8 Ω

1/2
mat,0 characterizes the structure growth rate

σ8 and today’s matter density Ωmat,0 [11]. A recent summary of over a dozen cosmological
tensions and their varied significance can be found in ref. [12].

In view of these tensions, ΛCDM, although being an extremely successful model, does
not provide a complete picture and it might be necessary to go beyond it. Since general
relativity (GR) is responsible for the gravity sector of ΛCDM, modifying ΛCDM often requires
modifying GR. Within the broad subject of modified gravity, a theorem due to Lovelock
proves the uniqueness of GR under four assumptions, and therefore provides four general
approaches of modifying GR by relaxing each of them. The theorem states that the only
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second-order, local gravitational field equations that can be derived from an action containing
only the metric tensor in four dimensions are the Einstein field equations (EFEs) [13, 14].
Therefore, modified gravity could be obtained by adding additional fields other than the
metric, constructing theories in a dimension other than four, including higher-than-second-
order derivatives, or introducing non-locality; see ref. [15] for a comprehensive review on
modified gravity.

Among the plethora of modified gravity mechanisms, we focus on scalar-tensor theo-
ries and the phenomenological effects in terms of the modified propagation of gravitational
waves (GWs) therein. The choice of scalar-tensor theories is due to their versatility. In
other words, apart from extending GR by the inclusion of additional fields, they can also
be viewed as the four-dimensional effective description of certain higher-dimensional mod-
els after a suitable dimensional reduction, or higher-derivative models after reformulation.
Therefore, many modified gravity models following three of the four approaches motivated
by circumventing Lovelock’s theorem can be comprised into scalar-tensor theories. In ad-
dition, generic four-dimensional scalar-tensor models with second-order derivatives can be
conveniently summarized in the Horndeski class [16? ? ]. As a result, Horndeski gravity in-
cludes a vast number of different models such as Brans-Dicke [17], quintessence [18], f(R) [19],
f(G) [20], k-essence [21], kinetic gravity braiding [22], galileon [23], etc. Moreover, certain
subclass within the Horndeski theories has been shown to ease the Hubble tension [26].

At the level of linear perturbation, Horndeski gravity introduces two parameters to
the standard GW equation—the tensor speed excess αT and the running of the effective
Planck mass αM. Although the multimessenger observation of the binary neutron star merger
GW170817 and its gamma-ray burst GRB 170817A [24] has put a tight constraint on the speed
of GWs, i.e., αT . O(10−15), and therefore the theory space of Horndeski gravity [25], a large
number of models of Horndeski gravity remains viable. In fact, this shows the constraining
power of GWs as a phenomenological probe. Comparing to αT, the constraints on αM are
much less stringent. Therefore, in the present work, we focus on exploring αM and its effects
on the energy spectrum of GWs. This subclass of Horndeski theories is also known as reduced
Horndeski theories. Specifically, we initialize a GW spectrum based on previous studies of
GWs sourced by primordial magnetohydrodynamic (MHD) turbulent fields in the early radia-
tion era—at the electroweak or QCD phase transitions (EWPT or QCDPT)—then propagate
it through cosmic history to obtain the present-day relic spectrum. This choice of the GW
spectral shape is for convenience but we show that the obtained results can be applied to
predict the expected GW spectrum from other sources in reduced Horndeski theories. We
then analytically and numerically compare the relic spectra in GR and Horndeski gravity, and
discuss their potential observational implications. The numerical solutions in this study are
obtained using the Pencil Code [27], which has been a tool for simulations of GWs from
primordial turbulent sources since the implementation of a GW solver [28].

Finally, note that an additional propagating degree of freedom (DOF) appears in Horn-
deski gravity as a consequence of the scalar field. However, we restrict the current study to
tensor-mode perturbations, since the amplitude of the scalar mode remains subdominant [29],
and the discussions of extra DOFs as a smoking gun for modified gravity overall might deserve
a separate study.

We introduce the propagation of tensor-mode perturbations described by the GW equa-
tion in modified theories of gravity in section 2. In section 3.1, we introduce the WKB
approximation, which is commonly used to describe approximate solutions to the GW equa-
tion in modified GR. Then, in section 4, we present some common temporal parameterizations
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of the Horndeski parameter αM through the cosmological history of the Universe that have
been used in the literature, and we present the numerical simulations that we perform to
solve the GW equation using the Pencil Code, along with the numerical solutions to the
Friedmann equations in section 5. We study, in particular, the additional effect on the GW
spectrum that is not found using the WKB approximation. Finally, we discuss potential
observational implications of reduced Horndeski theories compared to GR for the different
parameterizations of αM in section 6 and conclude in section 7.

Throughout the paper, we set c = 1, use the metric signature (−+ ++), and define the
gravitational coupling constant κ = 8πGN. We indicate with a prime derivatives with respect
to conformal time normalized by the conformal Hubble rate at the time of GW generation
ηH∗ and with a dot derivatives with respect to cosmic time t. Both times are related via the
scale factor as adη = dt.

2 Modified GWs on FLRW background

2.1 GW equation in Horndeski theories

The homogeneous and isotropic background is described by the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. Including tensor perturbations, the FLRW line element reads

ds2 = a2
(

dη2 + [δij + a−1hij(x, η)] dxi dxj
)
, (2.1)

where hij = ahphys
ij are the strains obtained by scaling the physical strains hphys

ij with the
scale factor a. In GR, the GW equation in Fourier space1 reads [28, 46]

h̃
′′(k,η)+

(
k2−a′′

a

)
h̃ij(k,η)= 6

a
T̃TT
ij (k,η),(2.3)

where H ≡ a′/a is the conformal Hubble rate normalized by H∗, and an asterisk refers
to a reference time in the early universe, e.g., the time at which the GWs were generated.
T̃TT
ij = ΛijlmT̃lm is the traceless-transverse (TT) projection of the normalized stress energy

tensor, i.e., divided by the radiation energy density Erad = 3H2/κ, being H ≡ ȧ/a the Hubble
rate at time η. The projection operator is Λijlm(k̂) = PilPjm − 1

2PijPlm, Pij(k̂) = δij − k̂ik̂j ,
and k̂ = k/k. The scale factor at η∗ is set to unity, and the wave numbers k are also
normalized by the conformal Hubble rate.

In Horndeski gravity [16], the action consists of the metric tensor and an additional scalar
field φ. Its linear perturbations on the FLRW metric can be characterized by four free pa-
rameters separable from the full theory [30]. These free parameters are all arbitrary functions
of the scalar field and its kineticity ∇µφ∇µφ. They respectively indicate the following:

• Kineticity αK, indicating the kinetic energy of scalar perturbations.

• Braiding αB, indicating the mixing of the scalar and tensor kineticities.

• Planck-mass run rate αM, denoting the time dependence of the effective Planck mass.
1We use the Fourier convention

h̃(k) =

∫
h(x) e−ik·x d3x, h(x) =

1

(2π)3

∫
h̃(k) eik·x d3k. (2.2)
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• Tensor speed excess αT, measuring the deviation of the speed of gravity from the speed
of light.

Out of the four parameters, however, only αM and αT enter and modify the GW equation.
As a result, the modifications generalize equation (2.3) to [31]

h̃′′ij(k, η) + αMHh̃′ij(k, η) +

(
c2

Tk
2 − αMH2 − a′′

a

)
h̃ij(k, η) =

6

a
T̃TT
ij (k, η), (2.4)

where cT denotes the GW propagation speed such that 1 + αT ≡ c2
T, and αM is the run rate

of the effective Planck mass M2
eff , parameterized as

αM =
d lnM2

eff

d ln a
. (2.5)

The graviton is massless in Horndeski gravity. However, a massive graviton could be included
by adding a mg 6= 0 in equation (2.4) as done in ref. [42] but we omit it in the present work.

2.2 Friedmann equations

In previous works using the Pencil Code (see section 5 for more details about the numerical
simulations), the simulations are restricted to specific eras, e.g., radiation (RD) or matter
domination (MD), using a constant equation of state (EOS), defined to be w ≡ p/ρ, being
p the pressure and ρ the energy density, such that w = 1/3 and 0 during RD and MD,
respectively. We also ignored the thermal history of the universe during RD, represented by
the relativistic g∗ and adiabatic gS DOFs. In GR, the previous formulation is justified since the
evolution of the physical strains hphys when the source is inactive (T∼0) can be approximated
to dilute as hphys∝a−1 if one neglects the evolving relativistic DOFs and transitions between
radiation, matter, and dark energy dominations (ΛD) [32]. In the present work, we focus on
including such effects and solve the GW equation in modified gravity, which presents richer
dynamics even when the source is inactive, from the time of GW generation up to present
time.

However, assuming a piece-wise EOS, such that w = 1/3, 0, and −1 during RD, MD, and
ΛD, respectively, would create discontinuities in the time evolution of a(η) and its derivatives
needed in equation (2.4). Therefore, to find a smooth a(η), we directly solve the Friedmann
equations,

ä

a
= −κ

6
ρ
(
1 + 3w

)
,

(
ȧ

a

)2

=
κ

3
ρ, (2.6)

where the dots denote derivatives with respect to cosmic time t. A more convenient form of
equation (2.6) can be expressed in terms of the energy density Ω(a) and a smooth w(a) as

ä

a
= −1

2
H2

0 Ω(a)
[
1 + 3w(a)

]
,

(
ȧ

a

)2

= H2
0 Ω(a), (2.7)

where Ω(a) is defined to be the ratio of total energy density to the present-day critical energy
density ρcrit,0 ≡ 3H2

0/κ, i.e.,

Ω(a) =
ρ(a)

ρcrit,0
= Ωrad(a) + Ωmat(a) + ΩΛ,0

=

(
a

a0

)−4 g∗
g0∗

(
gS

g0
S

)− 4
3

Ωrad,0 +

(
a

a0

)−3

Ωmat,0 + ΩΛ,0. (2.8)

– 4 –



Numerically we take the present-time values of ΩΛ,0 ' 0.684, Ωrad,0 ' 4.16 × 10−5 h−2, and
Ωmat,0 = 1 − Ωrad,0 − ΩΛ,0 ' 0.316, where h takes into account the uncertainties on the
present-time Hubble rate H0 = 100h km/s/Mpc. We set h ' 0.67 for the numerical studies,
using the value observed from the CMB, and g0

∗ ' 3.36 and g0
S ' 3.91 are the reference

relativistic and adiabatic DOFs at the present time2.
The evolution of the relativistic and adiabatic DOFs as a function of the temperature

during RD are taken from ref. [? ] and expressed as a function of a by taking a3T 3gS to be
constant, following an adiabatic expansion of the universe.

The characteristic EOS, corresponding to the energy density of equation (2.8), can be
computed combining equations (2.7) by taking the time derivative of the second equation and
introducing the first equation. This yields

Ω̇(a)

Ω(a)
= −3(1 + w)

ȧ

a
, (2.9)

which allows us to compute w(a) using equation (2.8),

w(a) =

(
1

3
Ωrad(a)− ΩΛ,0

)
Ω−1(a). (2.10)

Equation (2.9) justifies the expected evolution of Ω(a) used in equation (2.8): approximately
proportional to a−4 during the RD era, to a−3 during the MD era, and constant during ΛD.
During RD, the evolution of DOFs induces some modifications with respect to the a−4 evolu-
tion. In the transition between different eras, Ω(a) evolves smoothly among the asymptotic
behaviors. Equation (2.10) yields w = 1/3 for RD, w = 0 for MD, and w = −1 for ΛD,
as expected. In the intermediate times, the function w(a) transitions smoothly. With equa-
tions (2.8) and (2.10) explicitly in terms of a, we can compute the relevant quantities that
appear in the modified GW equation (2.4), given in equation (2.7), and expressed in terms
of the normalized conformal time ηH∗ as

H =
aH0

H∗
√

Ω(a),
a′′

a
=

1

2
H2
[
1− 3w(a)

]
, (2.11)

where the term H∗ appears due to our definition of the normalized H = a′/a, and we set
a∗ = 1 for consistency with our GW equation; see discussion below equation (2.3). Finally,
since equation (2.4) is expressed in terms of conformal time η but equation (2.11) is still
written in terms of a, we would like to substitute the variables via a(η), which can be obtained
using equation (2.7):

ȧ = H0 a
√

Ω(a)⇒ d
(
H0t

)
=

da

a
√

Ω(a)
⇒ H0

(
t− tini

)
=

∫ a

aini

da

a
√

Ω(a)
. (2.12)

This allows us to compute t(a) and then invert the relation to obtain a(t). Similarly, in
conformal time we have dt = adη, so we solve

H0

(
η − ηini

)
=

∫ a

aini

da

a2
√

Ω(a)
. (2.13)

2Note that neutrinos’ contribution to the radiation energy density is accounted for by taking g0∗ ' 3.36,
instead of g0∗ = 2 at the present day due to photons only. This leads to an excess in the calculation of the
radiation energy density after neutrinos become massive. However, this occurs when the radiation energy is
subdominant and hence, it does not affect our calculations.
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For the numerical integration, we set aini = 10−20 at tini = ηini = 0, which yields accurate
results for all a & 10−19.

In the present work, we consider that the GWs are generated during a phase transition
(in particular, at the EWPT or QCDPT) within the RD era. Assuming adiabatic expansion
of the universe, one can compute a∗/a0 as a function of the temperature T∗ and the adiabatic
DOFs,

a∗
a0
' 7.97 · 10−16 T∗

100 GeV

(
gS

100

)− 1
3

. (2.14)

Setting a∗ = 1, such that H∗ = H∗, this gives a value of the Hubble rate (valid during the
RD era),

H∗ = 2.066 · 1010 Hz

(
T∗

100 GeV

)2( g∗
100

) 1
2

, (2.15)

with η∗ = H−1
∗ . These results allow us to use the solutions from Friedmann equations and

adapt them to compute the variables that appear in equation (2.4), normalized to the specific
epoch of GW generation.

3 WKB approximation

3.1 Solution of the GW equation

Modifications of the GW propagation, in the absence of sources3 (i.e., Tij = 0), have been
studied using the WKB approximation [33, 34]. The WKB solution can be obtained using
the following ansatz

h̃ij(k, η) = h(k, η) eij = Aeij e
iB, (3.1)

where A and B are generic coefficients, and eij is the polarization tensor.4 Substituting this
into equation (2.4), one gets

2
A′

A
+
B′′

B′
+ αMH = 0⇒ A(η) = e−D, (3.2)

B′2 =
A′′

A
+ αMH

A′

A
+ c2

Tk
2 − αMH2 − a′′

a
≈ c2

Tk
2 ⇒ B = ±k(ηH∗ −∆T ), (3.3)

where, following the WKB approximation, we neglect the terms A′′/A, A′/A, H2, and a′′/a,
when compared to c2

Tk
2. In addition, we also neglect the term B′′/B′ ∼ c′T/cT ∼ 0. We have

defined the damping factor D and the time delay due to the effective GW speed ∆T that
appear in theories of modified gravity [33]

D(η) =
1

2

∫ ηH∗

1
αMH dη′, ∆T (η) =

∫ ηH∗

1
(1− cT) dη′. (3.4)

Hence, the solution is

h(k, η) = e−De±ik(ηH∗−∆T ) = e−D∓ik∆ThGR(k, η), (3.5)
3In the absence of sources, the GW equation [see equation (2.4)] does not depend on the wave vector k

but only on its modulus (the wave number) k. Hence, the solution can simply be expressed as a function of k.
4 In the absence of sources, the GW propagation of any polarization mode is the same, so we can just call

h the amplitude of each mode. If the produced GW signal is polarized, then for each mode we need to impose
the corresponding initial conditions.
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where D = ∆T = 0 in GR. For the initial conditions5 h(k, η∗) = h∗(k) and h′(k, η∗) = h′∗(k),
we get

h(k, η) = e−D
[
h∗(k) cos k(ηH∗ − 1−∆T ) +

h′∗(k) + 1
2α
∗
Mh∗(k)

kcT
sin k(ηH∗ − 1−∆T )

]
,

= e−D
[
h∗(k) cos k c̃T(ηH∗ − 1) +

h′∗(k) + 1
2α
∗
Mh∗(k)

kcT
sin k c̃T(ηH∗ − 1)

]
, (3.6)

where α∗M = αM(η∗) and c̃T(η) =
∫
cT dη′/(ηH∗ − 1). Note that the specific choice of initial

conditions does not allow to give a linear relation between h and hGR as done in ref. [33] and,
in general, h 6= e−D−ik∆ThGR, which is only true when referring to the particular solution
of the ODE, given in equation (3.5). This reduces to the solution in GR when cT = 1 and
αM = 0,

hGR(k, η) = h∗(k) cos k(ηH∗ − 1) +
h′∗(k)

k
sin k(ηH∗ − 1). (3.7)

In reduced Horndeski theories with αT = 0, the WKB solution yields

h̃ij(k, η) = e−D
[
h̃GR
ij (k, η) + 1

2eij
α∗Mh∗(k)

k
sin k(ηH∗ − 1)

]
. (3.8)

When αM = 0 and cT is a constant in time we find

h̃ij(k, η) = h∗(k) cos
[
cTk

(
ηH∗ − 1

)]
+
h′∗(k)

kcT
sin
[
cTk

(
ηH∗ − 1

)]
. (3.9)

3.2 Limitations of the WKB approximation

To obtain the WKB solution we have neglected some terms in equation (3.3) that would
otherwise appear in the solution. These terms can be expressed in the following way

A′′

A
+ αMH

A′

A
− αMH2 − a′′

a
= −1

2αM

(
1 + 1

2αM

)
H2 − 1

2α
′
MH−

a′′

a

(
1 + 1

2αM

)
, (3.10)

where we have used H′ = a′′/a−H2. Hence, the WKB assumption could break down when
at least one of these terms is not negligible when compared to k2c2

T. We have one term
that depends on αM, one term that depends on the time evolution of αM, and one term
that depends on a′′/a. The latter appears also in GR when WKB is used to approximate
the solution for the scaled strains, which do not decay (note that the decay of the physical
strains is already absorbed by the scale factor), as shown in equation (3.7). This term is
given in equation (2.11) and its upper bound can be found using Friedmann equations (using
h = 0.67),

a′′

a
≤ 1

2

Ωmat,0

Ωrad,0

g∗
g0∗

(
gS

g0
S

)− 4
3

H a∗
a0

. 4.5× 103H a∗
a0
, (3.11)

where the first inequality is an approximated value valid during the RD era and it decays
during MD. Hence, the upper bound is valid at all times and its specific value depends on

5In the current work, we focus on the propagation of a GW background after it has already been generated
and reached a stationary solution, and the source is no longer active. Since the propagation only depends
on k, the initial conditions can be computed from the 3D fields in Fourier space, after shell integration over
directions k̂, for each polarization mode.
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a∗/a0. For example, for GWs generated at the EWPT or at the QCDPT, this leads to the
following critical wave numbers, at which the WKB approximation might break down,

kEW
lim, a′′ ∼ 1.87 · 10−6H

√∣∣1 + 1
2αM

∣∣
cT

≤ 1.87 · 10−6

√∣∣1 + 1
2αM

∣∣
cT

, (3.12)

kQCD
lim, a′′ ∼ 5.90 · 10−5H

√∣∣1 + 1
2αM

∣∣
cT

≤ 5.90 · 10−5

√∣∣1 + 1
2αM

∣∣
cT

. (3.13)

In both cases, this term is subdominant up to very large superhorizon scales and it is bounded
by the values in equations (3.12) and (3.13) since H = η∗/η during RD era as can be seen
using equation (2.11). This limit can be modified by the inclusion of αM and αT but unless
they take large values these modifications are negligible.

On the other hand, two additional limitations to the WKB approximation appear due
to the αM parameter,

klim, αM
∼ H
cT

√∣∣∣∣αM

2

(
1 + 1

2αM

)∣∣∣∣ . 1

cT

√
|αM|

2
, klim, α′M

∼ H
cT

√
|α′M|

2
≤ 1

cT

√
|α′M|

2
, (3.14)

where we can neglect the term 1
2αM in front of 1 in the first limit for small values of αM.

Hence, the WKB limit can break down in Horndeski theories around the horizon or at larger
scales. In general, we expect the limit from αM to be more restrictive than that from α′M and
to dominate at the initial time when H = 1. However, this depends on the parameterization
of αM, which can give different results for both limits; see section 4.

3.3 GW spectrum using the WKB approximation

The spectrum of GW energy density can be expressed as

ΩGW(k, η) =
1

ρcrit,0

d ln ρGW

d ln k
=

1

6

(
H∗
H0

)2(a∗
a0

)4

kSh′(k, η), (3.15)

where 2Sh′ is the spectrum6 of the scaled strain derivatives,

〈h̃′ij(k, η) h̃′∗(k′,η)〉=(2π)6δ3(k−k′) 2Sh′ (k,η)
4πk2

,(3.17)

and it can be computed using the WKB approximation. Taking D′ = 1
2αMH, the modified

GW energy spectrum can be obtained using the WKB solution for reduced Horndeski theories,
given in equation (3.8),

ΩGW (k, η) = e−2DΩGR
GW(k, η)

×
(

1 + 1
2αT +

α∗M
2α2

MH2

32k4c2
T

+
α∗Mα

2
MH2

8k3c2
T

+
1

8k2

[
α2

MH2

(
1 +

1

c2
T

)
+ α∗M

2

]
+
α∗M
2k

)
. (3.18)

6 Following ref. [28], we define the spectrum Sh′(k, η) from the + and × polarization modes, giving an
extra factor of 2 due to the property

h̃′ij(k, η) h̃
′∗
ij (k, η) = 2

[
h′+(k, η)h

′∗
+ (k, η) + h′×(k, η)h

′∗
× (k, η)

]
. (3.16)
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At late times, H2 = (η∗/η)2 decreases, so we can neglect the terms that dilute with H2,

ΩGW(k, η � η∗) = 1
2e
−2DΩGR

GW(k, η)

[
1 + αT +

(
1 +

α∗M
2k

)2
]
. (3.19)

From equation (3.19), we can identify the IR and UV limiting ranges of the spectrum,

ΩIR
GW = ΩGW

(
k � 1

2α
∗
M, η � η∗

)
=
α∗M

2

8k2
e−2D ΩGR

GW(k, η), (3.20)

ΩUV
GW = ΩGW

(
k � 1

2α
∗
M, η � η∗

)
=
(

1 + 1
2αT

)
e−2D ΩGR

GW(k, η). (3.21)

Note that the factor α∗M
2 is part of the IR limit, indicating that the IR enhancement of the

form k−2 holds regardless of the sign of αM. The critical kcrit = 1
2α
∗
M marks the relative

strength of the O(k−2) term in equation (3.19), which means it also indicates where the IR
regime begins, i.e., k−2 becomes dominant.

Equation (3.18) shows that the GW spectrum in the IR regime can present up to k−4

GR spectrum but this and other terms vanish as time evolves since they are proportional to
H2. Hence, at late times, we end up with the GR spectrum amplified by e−2D at all wave
numbers with a k−2 enhancement in the IR regime, proportional to the additional 1

8α
∗
M

2

factor, as shown in equation (3.19). In the UV regime, we find the e−2D enhancement and an
additional factor 1 + 1

2αT.
We have found that, according to the WKB approximation, the parameter αM introduces

changes in the spectral shape at k ≤ kcrit = 1
2α
∗
M that do not dilute as time evolves and depend

on the value of αM only at the time of GW generation. On the other hand, note that, using
equation (3.14), the WKB approximation breaks down at k ∼ max(klim, αM

, klim, α′M
). This

means that when H ∼ 1, the spectral changes occur at wave numbers around and below the
critical kcrit, where the WKB approximation might not be valid (for cT ∼ 1).

Finally, we note that αT introduces no changes to the spectral shape. Instead, its impact
corresponds to an enhancement or depletion of the GW spectrum by a factor

∆ΩGW(k, η � η∗) =
ΩGW − ΩGR

GWe
−2D

ΩGR
GWe

−2D = 1
2

[
αT(η) +

α∗M
k

+
α∗M

2

4k2

]
, (3.22)

which includes the increase on amplitude from αM via the damping factor D. Note that we
define the increase on ΩGW(k) after compensating ΩGR

GW by e−2D to see the additional effects
of αM 6= 0 on the spectral shape and the change in amplitude due to αT 6= 0. The sign of αT

determines if the GW spectrum is amplified or decreased with respect to that obtained from
GR.

We investigate the resulting spectra in modified GR using numerical simulations in sec-
tion 5 with the objective to test the validity of the WKB approximation and its potential
limitations and to confirm the resulting GW spectra when Horndeski parameters are intro-
duced due to modified theories of gravity.

4 Phenomenological parameterizations

In Sec. 3.3, we noted that, according to the WKB approximation, αT 6= 0 induces modifica-
tions in the total GW energy density, but not in its spectral shape. Realistically, the tensor
speed excess at the present day is observationally constrained to be αT,0 . O(10−15) by the
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binary neutron star merger GW170817 and its gamma-ray burst GRB 170817A [24]. This
constraint can be circumvented if αT is either frequency- or time-dependent, such that larger
deviations could hide outside the LIGO-Virgo frequency band [35, 36] or in the past. In this
study, we show that even using larger values of αT, constant in time and frequency, the modi-
fications to the GW spectrum are negligible, which is seen from the WKB approximation and
can be confirmed with numerical simulations. Hence, from now on, we will focus on two cases:
(i) constant αT with αM = 0, and (ii) reduced Horndeski theories with αT = 0, allowing αM

to take different values as a function of time.
In particular, we are interested in the perspectives of negative values of αM, as they would

enhance the amplitude of the GW spectrum. Various constraints on the present-day value
αM,0 exist in the literature, but are significantly less stringent than those on αT. Analytically,
−1.0 . αM,0 . −0.5 is found (see figure 4 in [37]). This is compatible with the results from
Monte Carlo simulations, giving |αM,0| . O(1) (see figure 2 in [34]). On the other hand, the
Planck Collaboration reports a constraint on αM,0 & −0.1 (see table 8 of ref. [? ]). Note that
they parameterize αM = αM,0 (a/a0)n with n ∈ (0.5, 1). Taking these different constraints
into account, we explore a range of αM,0 ∈ [−0.5, 0.3].

Besides the simplest consideration of a constant αM in time, which we call choice 0, its
time-dependent forms can be written in accordance with specific gravity models [38]. Follow-
ing refs. [30, 31, 40], we choose phenomenological forms of αM as simplified parameterizations
motivated by effective descriptions of modified gravity [39]. Specifically:

αM(η) =



αM,0 (choice 0),

αM,0

[
a(η)

a0

]n
(choice I),

αM,0
1

Ω(η)
(choice II),

αM,0
1− Ωmat(η)/Ω(η)

1− Ωmat,0
(choice III),

(4.1)

where choices II and III give a value of αM proportional to the percentage of dark energy
density and the combination of dark and radiation energy densities, respectively, at each
time η compared to their relative amounts at the present time. For choice I, the following
conditions on the parameter values are needed in order to ensure the theory’s stability [41]:{

αM,0 > 0 : 0 < n < 3
2 Ωmat,0 ' 1

2 ,

αM,0 < 0 : n > 3
2 .

(4.2)

To provide an intuition on the aforementioned αM parameterizations, we show in figure 1
(left panel), for the different time dependencies given in equation (4.1), the evolution of
αMH, which characterizes the growth or damping produced by αM, according to the WKB
approximation [see equation (3.4)]. We also show the time evolutions of

√
αMH and

√
α′MH

(right panel), which correspond to the wave numbers at which the WKB approximation might
break down, according to equation (3.14). Figure 1 shows the time evolution from the time of
generation (e.g., EWPT) up to present time. We see that for choices 0 and III, αMH converges
to the same values during RD and ΛD, and only becomes different during MD, as expected.
On the other hand, for choices I and II, αMH is negligible for all of RD and most of MD
and rapidly increases later on, especially during ΛD. It converges for all parameterizations to
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Figure 1: Time evolution of αMH (left panel), which contributes to the change of ampli-
tude over time, hij ∼ e−D with D = 1

2

∫ η
αMH dη′, and klim, αM

/cT and klim, α′M
/cT (right

panel), which are the terms neglected compared to kcT under the WKB approximation; see
equation (3.14). All four parameterization choices (0 to III) are shown and, for illustrative
purposes, n = 1 is chosen. The main figures show the full evolution whereas the inset (in left
panel) shows only times after the onset of matter domination. we show in figure 1, for the
different time dependencies. We have taken η∗ to correspond to the EWPT for the specific
values in the axes, which puts the present time at η0/η∗ ' 2.38× 1013.

the value αM,0 at the present time. We have found in section 3.2 the values of k at which
the assumptions made by the WKB approximations do not hold. We see in figure 1 (right
panel) that for choices 0 and III, this limiting k is around the horizon scale at the time of
generation, i.e., cTklim, αM

∼
√
α∗M/2 and then it decreases into superhorizon scales since it

is proportional to H = η∗/η (this is because for these choices, αM ' α∗M during the RD era).
The term α′M � αM for choice III, as can be seen in figure 1. The ratio between αM and α′M
during the RD era can be found to be(

αM

α′M

) 1
2

III

∼ 102

(
a∗
a0

) 1
2

' 3× 10−6

(
a∗

8× 10−16

) 1
2

, (4.3)

which only becomes of order 1 towards the end of the RD era, when a∗/a0 ∼ 10−4, which
corresponds to times much later than the EWPT and the QCDPT. For choices I and II,
although the two terms are of the same order, αM

′∗ ∼ α∗M, their value at the time of GW
generation is much smaller than αM,0 (for all n > 0 in the choice I). For this reason, in these
cases the WKB estimate is completely valid and we do not expect to observe any relevant
spectral change, since the IR enhancement is determined by the value of α∗M, as seen in
equation (3.22).

Note that, since many efforts of modifying gravity are aimed at addressing the late-time
acceleration of the universe, the αM parameterization choices are commonly constructed to
be dominant in the late universe. This is indeed the case for choices I and II here. If one
considers only the MD and ΛD history of the universe, choice III is also well-motivated to
be relevant at late times. However, here we explore the entire history of the Universe from
well within RD, which means that αMH becomes dominant for choice III both at early and
late times. We note that the physical motivations of the choices here can be potentially
ambiguous. Even though there exists a wide range of discussions on modified gravity during
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inflation [31? ] and around recombination [? ? ], where αM is essentially a free function of
the scalar field, there seems to be a relative lack of numerical studies on the effects of αM

during RD (note, however, a brief discussion of αM = −1 during RD in ref. [? ]). Hence, we
emphasize that the aim of this work is to provide an understanding of the phenomenological
behavior of the GW spectrum due to αM for signals produced during RD.

5 Numerical solutions

To explore the limits and validity of the WKB approximation, we use the Pencil Code
to numerically solve the GW equation under modified gravity, given in equation (2.4). The
Pencil Code is a highly parallelized modular code that can be used to solve various dif-
ferential equations [27]. In the context of cosmological GWs, it has previously been used to
study GWs generated by hydrodynamic and MHD stresses in the early universe [? ]. It uses
a GW solver that advances the strains at each time step sourced by the anisotropic stresses
that are separately computed as the solution to the MHD equations [28]. Previous numerical
works solved the GW equation under GR, while in the present work, we have extended the
code to solve equation (2.4); see appendix A for further details on the numerical scheme.

5.1 Initial condition and time stepping schemes

In the current work, we focus primarily on the propagation rather than the production of
GWs. Therefore, we have adapted the Pencil Code to evolve an initial GW spectrum
in the absence of sources with a spectral shape and amplitude based on those obtained in
previous studies (see, e.g., refs. [42, 43]). Hence, equation (2.4) is solved in one-dimension,
i.e., in k > 0, in order to improve the efficiency of the code to study the propagation of a GW
background along the cosmological history of the universe. We take the initial spectrum for
the time derivative of the strains to be a smoothed double broken power law described by

Sh′(k, η∗) = S∗h′
2

1
α2

[
1 +

(
k∗
kb

)a−b](
k
k∗

)a
[
1 +

(
k
kb

)(a−b)α1
] 1
α1

[
1 +

(
k
k∗

)(b+c)α2
] 1
α2

, (5.1)

where S∗h′ is approximately the initial peak amplitude, η∗ = H−1
∗ corresponds to the time of

GW production during the RD era, and α1 = α2 = 2 are fixed smoothness parameters. We
choose the slope in the IR range to be k2, set by a = 2 (as is expected for causal sources
of GWs, as those produced for example during a phase transition) up to the break wave
number kb = 1, which corresponds to the horizon scale. At intermediate wave numbers,
kb ≤ k ≤ k∗, the slope becomes b = 0, as found, for example, for MHD turbulence in ref. [?
] and for sound waves in ref. [? ], although in both cases, the break kb is not exactly at
the horizon but depends on the dynamics of the source; see, e.g., ref. [43]. The peak wave
number is chosen to be k∗ = 10, followed by the slope in the UV range as k−

11
3 , set by

c = 11
3 . This corresponds to the spectrum obtained for Kolmogorov-like MHD turbulence [?

]. Note, however, that this part of the spectrum corresponds to subhorizon scales, which are
described accurately by the WKB approximation and, hence, the resulting spectral shape is
not expected to be modified in this range. On the other hand, around the horizon or at larger
scales, depending on the value of α∗M, the resulting GW spectral shape might be modified
by the inclusion of an additional IR branch ∼ k−2Sh′(k), as predicted in section 3.3 by the
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Figure 2: Expected WKB spectrum [see equation (3.19)] of the strain derivatives Sh′(k)
at late times due to non-zero α∗M at the time of generation for an initial GW background
characterized by a double broken power law, given in equation (5.1). The black curve indicates
the GR solution and the colored curves correspond to different values of α∗M, with the solid and
dashed ones being positive and negative values, respectively. Vertical dashed lines indicate
the estimated value of klim, αM

, below which the WKB approximation might break. The inset
zooms in on the behaviors around the horizon at k = kb = 1.

WKB approximation. Finally, the resulting spectrum is expected to be enhanced at all wave
numbers by a factor e−2D(1 + 1

2αT) owing to the presence of non-zero Horndeski parameters
αM and αT in modified gravity. After compensating by this enhancement, which affects
equally to all wave numbers, we model the spectral modifications using the function ξ(k),
such that ΩGW(k) ∝ ξ(k) ΩGR

GW(k) (see table 1). Figure 2 shows the resulting GW spectrum
estimated using the WKB approximation for different values of α∗M. Note, however, that the
assumptions made by the WKB approximation break down around the critical wave number
at which we expect the relevant spectral modifications.

Table 1 summarizes the input parameters for the numerical studies. The values of αT,0

are chosen to be much larger than the current constraints in order to later show the relative
insignificance of αT,0 even with unrealistically large values. The choices of αM,0 are made in
line with the limits discussed in section 4.

For series T0 (T0A–T0D), we evolve the solution entirely with increasing time steps,
such that ηnext = ηcurrent(1 + δnincr) with δnincr = 0.01, leading to equidistant points in
logarithmic time spacing. For series M0 (M0A–M0F), M1 (M1A–M1D), M2 (M2A–M2D),
and M3 (M3A–M3F), we keep the nonuniform time scheme during RD and MD but switch
to linear time steps during ΛD such that ηnext = ηcurrent + δη with δηH∗ = 5 × 109. We
chose such time evolutions to improve the accuracy of late-time results for reduced Horndeski
models, especially the modifications that they present in the IR limit (see last column in
table 1). We show in appendix B that decreasing the time step below δηH∗ = 5× 109 does
not affect the IR range of the spectra, which indicates that the observed modifications are
not due to numerical accuracy. Since series T0 does not exhibit k-dependent modifications,
it does not require the additional computational effort. The choice of time schemes and their
numerical accuracy is further discussed in appendix B.

In the simulations, we consider the initial time to be the EWPT with a temperature scale
T∗ ∼ 100GeV and the number of relativistic and adiabatic DOFs are gS ≈ g∗ ∼ 100, which

– 13 –



Parameters Run αM,0 n αT,0 ∆EGW/EGW ξ(k)

Choice 0 T0A 0 – −0.5 −2.5× 10−1 k0 ∀ k
(αT) T0B 0 – −0.2 −1.0× 10−1 k0 ∀ k

T0C 0 – 0.2 1.0× 10−1 k0 ∀ k
T0D 0 – 0.5 2.5× 10−1 k0 ∀ k

Choice 0 M0A −0.5 – 0 3.3× 107 k−2
IR & k0

UV

(αM) M0B −0.3 – 0 3.2× 104 k−2
IR & k0

UV

M0C −0.1 – 0 3.1× 101 k−2
IR & k0

UV

M0D −0.01 – 0 4.1× 10−1 k−2
IR & k0

UV

M0E 0.1 – 0 −9.7× 10−1 k0 ∀ k
M0F 0.3 – 0 −1.0× 100 k0 ∀ k

Choice I M1A −0.5 2 0 2.5× 10−1 k0 ∀ k
(αM) M1B −0.3 2 0 1.5× 10−1 k0 ∀ k

M1C −0.1 2 0 4.7× 10−2 k0 ∀ k
M1D 0.1 0.4 0 −2.2× 10−1 k0 ∀ k
M1E 0.3 0.4 0 −5.2× 10−1 k0 ∀ k

Choice II M2A −0.5 – 0 2.9× 10−1 k0 ∀ k
(αM) M2B −0.3 – 0 1.6× 10−1 k0 ∀ k

M2C −0.1 – 0 5.3× 10−2 k0 ∀ k
M2D 0.1 – 0 −5.0× 10−2 k0 ∀ k
M2E 0.3 – 0 −1.4× 10−1 k0 ∀ k

Choice III M3A −0.5 – 0 3.5× 108 k−2
IR & k0

UV

(αM) M3B −0.3 – 0 1.3× 105 k−2
IR & k0

UV

M3C −0.1 – 0 5.0× 101 k−2
IR & k0

UV

M3D −0.01 – 0 4.8× 10−1 k−2
IR & k0

UV

M3E 0.1 – 0 −9.8× 10−1 k0 ∀ k
M3F 0.3 – 0 −1.0× 100 k0 ∀ k

Table 1: Parameters used for the numerical studies: for all runs, k1 = 10−3 is the smallest
wave number and N = 46 000 is the number of grid points in one dimension. ∆EGW/EGW ≡
(EGW − EGR

GW)/EGR
GW indicates the relative changes to the total energy density at the present

time. In the last column, we briefly state the changes in the final energy spectrum represented
by ξ(k), such that ΩGW(k) ∝ ξ(k)ΩGR

GW(k).

yields the values of a∗ and H∗ in equations (2.14) and (2.15). With these values, we can then
solve equation (2.4) in units of the normalized time ηH∗, by mapping the parameterizations
in equation (4.1) αM(η) → αM(η/η∗) and using the results from Friedmann equations for H
and a′′/a (which are already normalized since a′ is computed as the derivative with respect
to ηH∗), given in equation (2.11). The effects on Sh′(k, η) of the specific choice of the time
at which the GWs are generated only appear via the relative magnitude of the terms a′′/a
and α′M that involve time derivatives (normalized by H∗) compared to k. These terms have
been parameterized in equations (3.11) and (4.3), respectively, and their magnitude has been
discussed. We have shown that the term a′′/a can only induce modifications to the solution at
scales several orders of magnitude above the horizon scale, while α′M is only of the order of αM

for choice III (see section 4) at very late times within the RD era. For other choices of αM(η),
either α′M = 0 (choice 0) or αM itself is orders of magnitude below its present-time value
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αM,0 (choices I and II). We find that the WKB approximation is expected to be valid around
k � klim, αM

∼
√
|α∗M|/2 and, on the other hand, it predicts an enhancement ξ(k) = k−2 in

the IR regime k . kcrit ≤ klim, αM
, which is not on the range of validity of the WKB estimate.

However, we characterize ξ(k) using numerical simulations and we find an IR enhancement
ξ(k) ∝ k−2 that does not in general follow the spectral shape predicted by WKB and that
can become shallower at smaller k.

The position of this spectral change is a fixed fraction of the Hubble horizon at the time
of generation, determined by the value of α∗M, that does not depend on the specific value of
η∗. Finally, the time of generation determines the range of frequencies where we observe the
signal as well as its amplitude via equation (3.15).

The peak amplitude S∗h′ can be chosen to represent a specific model. For example, a
value of S∗h′ = 3.5×10−10 is used in our runs (see table 1) and it would produce a normalized
initial total energy density7 E∗GW ' 10−9, which corresponds to a vortically turbulent source
energy density of roughly E∗turb ' 3q−1 × 10−4. This is related via

E∗GW = (qE∗turb/k∗)
2, (5.3)

where q is an empirically determined coefficient for a specific type of turbulence source E∗turb,
and is found to be of the order of unity or larger (up to ∼ 5), depending on the production
mechanism of the source [47? ? ].

5.2 Time evolution

For constant αT 6= 0 and αM = 0, the GW energy density stays constant in time and its
magnitude is modified by the specific value of αT, as it can be predicted from the analytical
solution to equation (2.4) in the absence of sources during RD, given in equations (3.9)
and (3.19) under the WKB approximation. We find excellent agreement between the WKB
estimate and the numerical solution of the GW spectra, enhanced by a factor 1 + 1

2αT. Note
that this corresponds to a boost of energy for αT > 0 and a depletion for αT < 0. The
relative changes upon the GR solutions are of order αT ∼ O(10−1) (see table 1), which are
much larger than the constraint αT,0 . O(10−15). Therefore, the changes due to realistic
values of αT on the total GW energy density are negligible.

Figure 3 presents the time evolution of the total GW energy density EGW(η) of the
runs in series M0 (upper left), M1 (upper right), M2 (lower left), and M3 (lower right). In
these runs, αM follows each of the parameterizations given in equation (4.1) and αT = 0.
The numerical solutions (dashed lines) and the WKB approximations (solid lines) agree on
the total GW energy density time dependence, enhanced or depleted by a factor e−2D.
Regardless of the specific parameterization, we find an enhancement or a suppression of EGW

over time for negative or positive values of αM,0, respectively.
Choices 0 and III yield similar results, with a time evolution EGW(η) ∼ η−αM,0 and

EGW(η) ∼ η−1.5αM,0 during RD era, and EGW ∼ η−2αM,0 and EGW(η) ∼ η0 during MD,
respectively. This agrees with the expectation since choice III mostly differs from choice 0
during MD. During RD, both parameterizations are almost the same and just differ by a
factor 1/(1 − Ωmat,0) ' 1.46, leading to the different scalings. In other words, the evolution

7 The turbulent and GW energy densities are normalized to the radiation energy density, such that EGW

during RD can be computed as

EGW(η) =
1

6

∫ ∞
0

Sh′(k, η) dk. (5.2)
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Figure 3: Time evolution of the total energy density EGW. On the upper right panel, solid
and dashed curves respectively indicate αM choice 0 and III, which overlap completely. The
two lower panels show the evolution during ΛD, with the corresponding insets showing the full
evolution. In all panels, the WKB estimate is shown as square dots and the GR solution as
the black solid line. All runs are initialized at EWPT such that the present day is represented
by η0/η∗ ' 2.38× 1013.

of EGW, proportional to a−αM when αM is constant (e.g., for choice 0, and for choice III
during RD era), is determined by the cosmic expansion itself. Note that choices 0 and III
induce an enhancement or suppression in the total energy, ∆EGW/EGW ≡ (EGW−EGR

GW)/EGR
GW,

that heavily depends on the values of αM,0, i.e., ∆EGW/EGW can range from O(10−1) at
αM,0 = −0.01 to O(107) (choice 0) and O(108) (choice III) with αM,0 = −0.5. In general,
choice III leads to a larger enhancement due to larger values of αM during RD than choice 0.
The potential implications of such a large GW energy density enhancement are discussed in
section 6.

For both choices I and II (see the upper right and lower left panels of figure 3), the
modified GW solutions remain close to their GR counterparts for most of the time, and
rapidly depart from GR as η enters ΛD and approaches the present day. This is expected
since αM is proportional to the scale factor and the dark energy density for choices I and II,
respectively, and hence, the values of αM are negligibly small for most of the cosmic history
until ΛD era. For this reason, for the same values of αM,0, the final values of EGW in both
of these cases are significantly lower than those in choices 0 and III, where the modifications
are accumulated from RD onward.

In figure 3, the differences between the WKB and the numerical solutions are indis-
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Figure 4: Relative error on the time series of the WKB approximation compared to the
numerical simulations, εWKB(EGW).

tinguishable. We quantify in figure 4 the relative error between the two, defined to be
εWKB(EGW) ≡ [EWKB

GW (η) − EGW(η)]/EGW(η). In all panels, there exists a brief but rela-
tive large error region, amounting to . 10%, around the initial time η∗. This is due to the
sinusoidal oscillations of each k mode that are present in GR and modified gravity alike [see
equations (3.7) and (3.8)]. After the initial oscillations settle down, εWKB(EGW) for choices
0 and III decrease over the majority of time in RD. Although they both increase somewhat
later on, the maximum error at the final time is only εWKB(EGW) ∼ 3%. For choices I and
II, due to the negligible impact of αM during RD, the GW solutions settle down to the same
magnitude after the initial oscillations. Therefore, the relative errors during RD remain zero.
During ΛD, the errors grow as the effects of αM become more significant. But this is also
limited, since at most εWKB(EGW) . 1% is found at the present day, lower than in choices 0
and III.

5.3 Energy spectrum

In figure 5, we show the final energy spectrum normalized against the initial amplitude S∗h′
and compensated by the factor e−2D to study the changes on the spectral shape. The sat-
urated spectra, averaged over oscillations at late times, are shown for the choice 0 of αM

parameterization, since the results from choice III exhibit similar spectral features, and the
rest of runs (αT choice 0, αM choices I and II) show the same spectral slopes as in GR. As a
reminder of the potential limitations of WKB approximation, we mark with vertical lines the
values of kEW

lim, a′′ (solid), k
QCD
lim, a′′ (dashed), and klim, αM

(dash-dotted). We note that klim, αM

occurs at wave numbers larger than the IR regime characterized by kcrit. This implies that
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Figure 5: Saturated final energy spectra compensated by the growth on the total GW energy
density e2DSh′(k)/S∗h′ for the runs with the choice 0 of αM parameterization. Left and right
panels represent negative and positive values of αM,0, respectively. The GR solution is shown
in black, while the dashed and dotted curves are the WKB approximation and numerical
solutions, respectively. Vertical dotted lines indicate the corresponding klim, αM
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Figure 6: Relation between kcrit and |α∗M| found in the numerical simulations (red crosses),
compared to the one expected from the WKB approximation (green squares).

the analytically calculated values of kcrit = |α∗M|/2 can potentially be unreliable. However,
figure 6 demonstrates that kcrit is numerically found to coincide with the analytic estimations
very well.

Comparing the numerical results to the expected spectra obtained using the WKB ap-
proximation [see figure 2], we note two main differences. In the first place, the IR enhancement
found under the WKB approximation only appears for negative values of αM,0 whereas for
positive values there are no significant modifications to the spectral shape. In addition, the
modifications to the spectral shape are slightly different to those predicted by the WKB esti-
mate. At wave numbers close to where the IR regime starts, k . kcrit, the k−2 enhancement
is reproduced by the numerical results, flattening that part of the original GR spectrum to
k0. But as k decreases, k � kcrit, the numerical spectra exhibit slopes steeper than k0 that
is not predicted by the WKB approximation, which maintains the k0 slope throughout all
scales k ≤ kcrit. The departure in the IR regime occurs at different scales depending on the
values of αM,0. For αM,0 = −0.01, this is the least obvious, where the enhanced spectrum
still keeps a roughly k0 shape even at k � kcrit. For αM,0 = −0.5, however, the difference
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Figure 7: Saturated final energy spectra around between kb and kpeak. In all panels, numer-
ical results are represented by scattered dots, WKB approximation is shown in solid curves,
and GR solution is in black.

becomes visible when k is still relatively close to the start of the IR regime at k ∼ kcrit.
In figure 7, we inspect the modified spectra between kb and kpeak, where the thick solid

lines are from WKB approximation [recall the inset of figure 2]. In terms of the spectrum
amplitudes, for all αM,0 < −0.01, we see that WKB underestimates in this subrange compared
to the numerical results. For αM,0 ≥ −0.01, WKB approximation gradually approaches but
does not seem to overshoot the numerical results. In terms of the spectral slopes, both WKB
and numerical solutions give the same results for all values of αM,0 considered. However,
note that the changes in the spectral slopes are extremely small, no more than k0.1 for all
|αM,0| < 0.5.

Finally, to quantify the departures of WKB approximation from numerical solutions, es-
pecially at k ≤ klim, αM

, we show the relative errors in the spectra as εWKB(Sh′) ≡ [Sh′(k)WKB−
Sh′(k)]/Sh′(k) in figure 8, calculated at the present time. We observe that for positive values
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Figure 8: Relative error εWKB(Sh′) in the saturated spectra at late times of the WKB
approximation compared to the numerical simulations. The vertical lines correspond to the
wave number klim, αM

, below which the WKB estimate is expected to break down.

of αM,0, the errors grow monotonically as k becomes smaller. In fact, εWKB(Sh′) ∼ k−2 is
found due to a consistent disagreement between spectral slopes k0 predicted by WKB for-
malism and ∼ k−2 obtained numerically. On the other hand, for negative values of αM,0,
εWKB(Sh′) also increase as k becomes smaller. But since αM,0 < 0 still produces certain de-
gree of IR enhancement in numerical results, the slope in the error spectrum does not become
as steep and depends on the corresponding values of αM,0. In both panels of figure 8, however,
the errors are limited at . 10% above klim, αM

.

6 Observational implications

To infer the observational prospects of detecting a modified GWB, we convert the linear
energy spectrum Sh′(k) directly obtained from the code to the commonly used logarithmic
energy spectrum ΩGW(f) via equation (3.15). The normalized wave numbers used in the code
are converted to the present-day physical frequencies via

f =
kH∗
2π

(a∗
a0

)
. (6.1)

As a result, the GR solution in the form of the double broken power law used in the numerical
simulations, i.e., Sh′(k) ∝ k2 and Sh′(k) ∝ k−2 in the low- and high wave number regimes,
becomes ΩGW(f) ∝ f3 in the IR and ΩGW(f) ∝ f−1 in the UV regimes, respectively.

Choosing the cases with the most pronounced modifications, we show in figure ?? the
results from series M0, where the solid black curves show GR solutions and colored ones
indicate αM,0 = −0.5 (blue), −0.3 (green), −0.1 (orange), and −0.01 (purple). Assuming
QCDPT as the initial time of GW production, the current-day ΩGW(f) peaks around the
nHz frequency band, shown by the fainter set of colored curves. If instead the initial time is
around EWPT, then ΩGW(f) today peaks closer to the mHz band, illustrated by the curves
in the same but darker colors. For these, we extend further into the IR and UV regimes with
dashed lines with slopes f1 and f−8/3, respectively. As a f2 spectral enhancement upon the
f3 slope of the GR solution in the IR, all curves corresponding to αM,0 < 0 already exhibit
f1 towards their low-frequency tails. On the other hand, we extend the UV tail with a slope
of f−8/3, in accordance to what is commonly found for turbulence-induced GWs.
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Figure 9: The present-day modified GW energy spectrum for parameter choice 0. Different
colors of the shades represent different initial peak amplitude. The shaded regions are bounded
by αM,0 = −0.01 and −0.1. Several detectors’ power-law sensitivity (PLS) curves are shown
for comparison: SKA, LISA, DECIGO, Big Bang Observatory (BBO), Einstein Telescope
(ET), and Cosmic Explorer (CE) are in gray, and NANOGrav and LVK are in light blue. All
PLS assumes a signal-to-noise ratio of 10 and an observation time of 4 years.

For observational comparisons, we plot in gray the power law sensitivity (PLS) curves
of proposed future detectors such as SKA [44], DECIGO, BBO [? ], LISA [46, 47], Einstein
Telescope (ET), and Cosmic Explorer (CE) [? ]. For current detectors, we show in light blue
the 2σ-confidence contour assuming a 30-frequency power law using the NANOGrav 12.5-year
dataset [45] and the PLS of the LIGO-Virgo-KAGRA (LVK) [? ] network.

There is a number of implications to unfold here. First, assuming a QCDPT origin and
a conservative amount of initial GWs at E∗GW ≈ 10−9 (upper panel of figure ??), αM,0 & −0.5
can already be excluded as it overshoots the NANOGrav contour. Smaller values such as
αM,0 = −0.3 and −0.1 amplify the otherwise unobserved GR solution to the NANOGrav and
the expected SKA ranges. Similarly for GWs from the EWPT epoch, αM,0 . −0.3 could
boost the GR solution, otherwise under the LISA and DECIGO curves, to be above them.
Assuming a more optimistic value of E∗GW ≈ 10−5 (lower panel of figure ??), which could
be due to a larger amount of E∗M ≈ 10−1, the constraints are correspondingly stronger. In
this case, NANOGrav could rule out αM,0 & −0.3 for GWs from the QCDPT epoch, whereas
for GWs from EWPT, a smaller αM,0 . −0.1 would be sufficient to boost a GR solution
to intersect with LISA and DECIGO detection ranges. Although these amplification effects
could in principle provide upper and lower bounds of |αM,0| (for αM,0 < 0), the present-day
amplitude of the GW spectrum is degenerate with respect to the value of αM,0 as well as
the initial GW amplitude, the latter of which contains a fair amount of uncertainty itself.
In addition to the GW amplitude, its spectral peaks and slopes are also crucial factors that
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affects the detectability. The discussions here are done rather qualitatively, where we inspect
the f−8/3 behavior (dashed lines) beyond the peak that, in reality, depends on the nature
of the turbulence source. The peak itself, which is assumed to occur at k∗ = 10 initially,
also varies depending on the physics of turbulence after the phase transitions. Therefore, in
practice, constraining |αM,0| via its amplification effects can be rather challenging.

On the other hand, αM,0 also introduces a spectral enhancement such that f3 → f1

in the low-frequency end. Assuming QCDPT as the GW production time, this feature lies
below the peak around nHz and thus outside the detectors in that frequency range. Assuming
EWPT as the initial time is more interesting, as the spectral enhancement could potentially
lift the low-frequency tails up into the nHz range of detectors such as NANOGrav and SKA.
Combining the low-frequency spectral enhancement and the overall amplitude boost, certain
values of αM,0 would be particularly interesting to explore, where the modified GW spectrum
could potentially be seen across nHz, mHz, and dHz detection ranges. For example, it could
happen for αM,0 . −0.3 if E∗GW ≈ 10−9 or αM,0 . −0.1 if E∗GW ≈ 10−5. This possibility
provides a way to reduce the degeneracy of parameters, especially with regards to the initial
GW energy E∗GW.

Finally, we note that values such as αM,0 = −0.3 or −0.5 could potentially dominate
the sensitivity budget of various detectors, mostly LISA and DECIGO but also SKA and
NANOGrav, especially if the GW amplitude E∗GW is large to begin with. If this actually
happens, then the said detectors would have extreme difficulties extracting subdominant GW
signals from other sources such as astrophysical objects, as they do not receive the significant
boost accumulated over longer periods of time as cosmological ones do. Therefore, an upper
bound could also be placed on |αM,0| in the event that GWs from closer-by astrophysical
sources are identified by, for example, LISA.

7 Conclusions

GWs in modified gravity theories exhibit features in their energy spectra different from what
can be expected from GR. We explored the significance of such features in terms of the
spectral slopes and amplitudes in different frequency ranges, under different functional forms
and values of two modification parameters – the running of effective Planck mass αM and the
tensor speed excess αT. We also compared the analytical WKB approximation and numerical
solutions and found that the former is not always in agreement with the latter, especially in
the low-frequency regimes at late times.

The current-day value of αT is already tightly constrained. In this paper we further found
the relatively insignificant modifications introduced by αT, even if taken to be unphysically
large values compared to its constraint. On the other hand, αM acts as an (anti-)damping
term in the GW equation and can impart changes to the energy spectrum of GWs produced
by MHD sources at EWPT and QCDPT with potential implications to future observations,
especially in the nHz and mHz frequency ranges.

In principle, the values of αM could be constrained by the spectral shape and amplitude
of the GW energy spectrum, especially since αM < 0 flattens the low-frequency tail of the
spectrum by a factor of f2 and boosts the overall amplitude of the spectrum. In practice, this
is a rather complex problem with parameter degeneracies, as the un-modified GW spectrum
could also have larger or smaller amplitude due to a range of possible source amplitudes to
begin with, in addition to the uncertainties of the GW spectral slopes that depend on the
physics of turbulence sources after the phase transitions. Combining multiple detectors at dif-
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ferent frequency ranges could help reducing the degeneracy. Identifying astrophysical sources
could also put constraints on αM. But overall, we provide a rather qualitative discussion here
and the utilization of GW spectrum from early-universe sources as a probe of the parameter
αM requires more detailed studies on various aspects of the subject.

Data availability. The source code used for the numerical solutions of this study, the
Pencil Code, is freely available [27]; see also ref. [48] for the numerical data.
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A Numerical scheme

Similar to what has been done in refs. [28, 49], we implement a matrix solver for the modified
GW equation. We start by simplifying the notations in equation (2.4) as

h′′+σh′+ω2h=GT
,(A.1)

where G ≡ 6/a(η), and

σ ≡ αMH , ω2 ≡ c2
Tk

2 − αMH2 − a′′

a
. (A.2)

Then from the characteristic equation

λ2 + σλ+ ω2 = 0, (A.3)

the eigenvalues λ can be obtained as

λ1,2 = −1

2

(
σ ∓

√
σ2 − 4ω2

)
. (A.4)

For δη � 1, we assume T(η)≈T(η+δη) , which is justified when considering MHD sources as their
characteristic time scales are typically much shorter than those of GWs, and λ′1,2 ≈ λ′′1,2 ≈ 0.
Then solutions for the strain quantities in equation (A.1) take the form of

h(η+δη)−ω−2GT(η+δη) = Ceλ1δη+D
eλ2δη

(A.5)

h′(η+δη) = Cλ1eλ1δη+D
λ2e

λ2δη,
(A.6)

where C and D are constant amplitude coefficients evaluated at η. Equivalently in matrix
form for h and h′ , the solutions can be rewritten as(

ωh− ω−1GT
h′

)
η+δη=

ωeλ1δη ωeλ2δη

λ1e
λ1δη λ2e

λ2δη

C
D


.(A.7)
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So the amplitude coefficients can be obtained as(
C
D

)
=

(
ωeλ1δη ωeλ2δη

λ1e
λ1δη λ2e

λ2δη

)−1(
ωh− ω−1GT

h′

)
η+δη

(A.8)

=
1

ω(λ2 − λ1)e(λ1+λ2)δη

(
λ2e

λ2δη −ωeλ2δη
−λ1e

λ1δη ωeλ1δη

)(
ωh− ω−1GT

h′

)
η+δη

(A.9)

lim
δη→0

(
C
D

)
=

1

ω(λ2 − λ1)

(
λ2 −ω
−λ1 ω

)(
ωh− ω−1GT

h′

)
η ,

(A.10)

where, in the last step, we used the fact that C,D are time-independent. Therefore, the time
evolution of the relevant quantities can be obtained via a matrix multiplication as(

ωh− ω−1GT
h′

)
η+δη=M

ωh− ω−1GT
h′


η,(A.11)

where

M =
1

λ1 − λ2

(
λ1e

λ2δη − λ2e
λ1δη ω(eλ1δη − eλ2δη)

ω−1λ1λ2(eλ2δη − eλ1δη) λ1e
λ1δη − λ2e

λ2δη

)
. (A.12)

In the case of σ = 0, ω2 = k2, the eigenvalues become λ1,2 = ±ik and the evolution matrix
reduces to

M =

(
cos kδη sin kδη
− sin kδη cos kδη

)
. (A.13)

Note that so far these are written in line with the convention of ref. [28]. However, in the
Pencil Code [27], the relevant evolution equation [equation (A.11)] is implemented as(

h− ω−2GT
ω−1h′

)
η+δη=M

h− ω−2GT
ω−1h′


η,(A.14)

whereM is the same as in equation (A.12).

B Numerical accuracy

Accuracy as a function of time intervals

In this section we attach a few case studies on numerical accuracy. Although the GW solver
in the Pencil Code has been made accurate to second order in time, this is only true when
the coefficients are constant in time. When the coefficients vary only slowly, the error is also
small, but depends on the length of the time step only to first order. This is demonstrated
in figure 10, where we show on the left panel the relative errors in the GW energy during
RD and MD, and on the right panel that during ΛD. Recall that during RD and MD, we use
increasing time steps, represented by nincr here. During ΛD, we revert back to linear time
steps, with the interval shown as ηincr in figure 10. Another way of seeing the time accuracy
is via figure 11, where we show the final energy spectrum (left panel) and its averaged results
(right panel) for run M0A. Different colors indicate the linear time intervals during ΛD and
the black curves are the spectrum obtained by running M0A entirely with increasing time
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Figure 10: Relative errors as a function of time intervals. Left panel : The accuracy during
RD (round dots) and MD (square dots) for αM,0 = −0.5 (blue) and αM,0 = −0.01 (green),
where δnincr is the difference in the time steps. Right panel : δηincr indicates the linear time
interval difference during ΛD.

Figure 11: Final energy spectrum EGW(k) (left) and the averaged results (right) for αM,0 =
−0.5 (run M0A). All runs are done with increasing time steps using nincr = 0.01 during RD
and MD but continue in linear time intervals (indicated by the colors) during ΛD. The black
dashed curves being the run M0A done entirely with increasing time steps with nincr = 0.01.

steps using nincr = 0.01. In other words, the colored curves only differ from the black one
from the linear time stepping during ΛD. We observe that all chosen values of δη produce
converging energy spectra in the small-k regime after averaging, although larger values of
δη result in more fluctuations in the un-averaged spectra. We also note that, compared to
results from hybrid time steps, the entirely nonuniform time steps underestimate the final
energy spectrum.
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