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We study the evolution of magnetic fields coupled with chiral fermion asymmetry in the framework
of chiral magnetohydrodynamics with zero initial total chirality. The initial magnetic field has a
turbulent spectrum peaking at a certain characteristic scale and is fully helical with positive helicity.
The initial chiral chemical potential is spatially uniform and negative. We consider two opposite
cases where the ratio of the length scale of the chiral plasma instability (CPI) to the characteristic
scale of the turbulence is smaller and larger than unity. These initial conditions might be realized in
cosmological models such as certain types of axion inflation. The magnetic field and chiral chemical
potential evolve with inverse cascading in such a way that the magnetic helicity and chirality cancel
each other at all times. The CPI time scale is found to determine mainly the time when the magnetic
helicity spectrum attains negative values at high wave numbers. The turnover time of the energy-
carrying eddies, on the other hand, determines the time when the peak of the spectrum starts to
shift to smaller wave numbers via an inverse cascade. The onset of helicity decay is determined
by the time when the chiral magnetic effect becomes efficient at the peak of the initial magnetic
energy spectrum. When spin flipping is important, the chiral chemical potential vanishes and the
magnetic helicity becomes constant, which leads to a faster increase of the correlation length, as
expected from magnetic helicity conservation. This also happens when the initial total chirality is
imbalanced. Our findings have important implications for baryogenesis after axion inflation.

I. INTRODUCTION

Relativistic plasmas are described by the evolution
equations of chiral magnetohydrodynamics (MHD) [? ?

? ? ? ? ? ? ? ]. Chirality enters in two distinct ways:
first, through a nonvanishing chiral chemical potential,
µ̃5, and second, through nonvanishing magnetic helicity
density, A ·B, where B = ∇ ×A is the magnetic field
expressed in terms of the vector potential A.

It has been known for some time that fermion chirality
can be transferred into magnetic helicity and vice versa
through the chiral anomaly [? ? ]. The transfer of
fermion chirality to magnetic helicity occurs through an
instability [? ] known as the chiral plasma instability
(CPI) [? ]. This instability is the fastest at a specific
wave number, whose value depends on the chiral chemical
potential. The transfer from magnetic helicity to chiral
chemical potential does not involve any instability, but
occurs just through a nonvanishing nonlinear source term
in the evolution equation for the chiral chemical potential
[? ? ? ]. These differences in the evolutions of the
chiral chemical potential and magnetic field can lead to

nontrivial dynamics, which has triggered a lot of research
[? ? ? ]. Since fermion chirality is tightly related to
the baryon and lepton asymmetries at high temperature
in the early Universe, their co-evolution with magnetic
helicity in the context of cosmology has also extensively
studied [? ? ? ? ? ? ? ? ? ].

Previous investigations mostly assumed an initial im-
balance between fermion chirality and magnetic helicity.
This leads to a conversion of fermion chirality to a max-
imally helical magnetic field [? ]. Also just spatial fluc-
tuations can lead to magnetic field production [? ? ]. In
many investigations, however, the initial fermion chirality
is nonvanishing while initial magnetic helicity is zero or
vice versa. Such chiral asymmetry, which can trigger the
CPI, could be generated [? ? ? ] in GUT baryogenesis
in the early Universe [? ? ? ? ? ] or weak interac-
tions in compact stars [? ? ? ? ? ] (see also Ref. [?
] and references therein). However, numerical studies
on other interesting initial conditions are still lacking,
where fermion chirality is exactly opposite to magnetic
helicity. Such an initial condition is expected if the chiral
symmetry in the fermion sector is only broken through
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the topological density, ∂µJ
µ
5 = −e2Fµν F̃

µν/(8π2
~
2c), or

the chiral anomaly [? ? ], with Jµ
5 being the chiral cur-

rent and e2Fµν F̃
µν/(8π2

~
2c) being the topological den-

sity. Since the topological density can be written as a
total derivative of the magnetic helicity density, the sum
of chiral asymmetry and magnetic helicity vanishes when
they are generated [? ].
Configurations with vanishing total chirality are inter-

esting not only in the context of chiral MHD, but also
in particle physics and cosmology. At a high enough
temperature realized in the early Universe, the electron
Yukawa interaction becomes inefficient for T & 105 GeV
[? ? ]. There we find the conservation of the total chi-

rality because of ∂µJ
µ
eR = −g2Y Yµν Ỹ

µν/(16π2
~
2c) with

Jµ
eR being the right-handed electron current and Y µν be-

ing the field strength of the hypercharge gauge field with
gauge coupling gY . For instance, in a certain class of
axion inflation, configurations with zero net chirality are
generated during inflation [? ], which can be the origin of
the observed baryon asymmetry of the Universe [? ? ? ]
and it could explain the proposed intergalactic magnetic
field; see, however, Ref. [? ] for the baryon overpro-
duction problem and Ref. [? ] for the too large baryon
isocurvature problem. The main purpose of this paper is
to perform a full numerical chiral MHD simulation under
the initial condition of vanishing total chirality and pro-
vide a better understanding of the nonlinear dynamics in
this case.
Before we begin our investigations, it is useful to re-

call the main findings of earlier work where the total
chirality was mostly different from zero. Following the
work of Ref. [? ], who studied a system consisting of the
gauge field and the chiral chemical potential, but with-
out fluid velocity fields, and with the initial condition
〈A · B〉 6= 0, µ̃5 = 0, three stages can be identified: (i)
exponential decline of the magnetic helicity together with
an increase of µ̃5, followed by (ii) a continued decrease
of the typical peak wave number kp, while µ̃5 stays at
its maximum value with 〈A · B〉 being essentially zero,
and (iii) a phase when all the fermion chirality µ̃5 gets
transferred back to magnetic helicity. As expected, owing
to magnetic helicity conservation, and because the mag-
netic field from the CPI is maximally helical, the mag-
netic energy density 〈B2〉/2 decays at late times such
that 〈B2〉ξM ≈ const, where ξM ≡ k−1

p is the magnetic

correlation length. In other words, both 〈B2〉 and kp de-

cay in the same fashion, but, unlike the expected t−2/3

scaling found previously for helical turbulence [? ? ?

? ], they find a t−1/2 scaling both for 〈B2〉 and kp.
For sufficiently strong initial magnetic fields, the mag-
netic Reynolds number can be much larger than unity
and the eddy turnover scale much longer than the es-
timated inverse peak momentum scale, if equipartition
between the magnetic fields and fluid velocity fields is
established. This suggests that the effect of the fluid ve-
locity cannot be negligible in general.
The earlier analytic study of Ref. [? ] was revisited

using direct numerical simulations of chiral MHD [? ].

At large magnetic Reynolds numbers, the authors found
clear evidence for a t−2/3 scaling of both 〈B2〉 and kp
at late times. They also found that the initial evolution
is not exponential, as suggested in Ref. [? ], but linear
in time. However, they only considered the case where
the initial fermion chirality was zero. When it is finite
and balancing exactly the magnetic helicity, the mag-
netic field decays in a way similar to the case of a strong,
nonhelical field [? ], where the decay is governed by the
conservation of the Hosking integral [? ? ? ]. This in-
tegral describes the strength of magnetic helicity fluctu-
ations on different length scales and has the dimensions
of cm9 s−4, which implies the scalings ξM ∝ t4/9 and
〈B2〉 ∝ t−10/9 [? ]. The general validity of the Hosking
integral was further demonstrated by applying a corre-
sponding analysis to the decay of a nonhelical magnetic
field in neutron star crusts [? ], where the magnetic field
evolution is covered by the Hall effect [? ].

Our goal here is to bridge the gap between the two
extremes, where the initial chirality is either only in the
fermions or only in the magnetic field, and to consider
the intermediate case where fermion chirality and mag-
netic helicity balance to zero, extending the study of the
present authors [? ]. This is another case where the de-
cay of 〈B2〉 and kp are described by a correspondingly
adapted Hosking integral of the total chirality. In the
following, we therefore refer to the Hosking integral with
the chiral chemical potential included as the “adapted”
Hosking integral; see Ref. [? ] for detail.

As mentioned, our findings on the evolution of the sys-
tem with vanishing total chirality has a significant impact
on the present baryon asymmetry of the Universe. An-
other goal of the present paper is then to clarify how the
non-trivial co-evolution of the magnetic field and fermion
chirality affect the model space of axion inflation con-
sistent with the present Universe, which has not been
explored before.

We begin, by presenting the basic equations and the
mathematical setup of our simulations in Sect. II. We
then discuss the parameter dependence of characteristic
time scales, consider also the effect of spin flipping, and
finally cases where the perfectly vanishing chirality bal-
ance is relaxed in Sect. III. Applications to the early Uni-
verse are discussed in Sect. IV. Conclusions are presented
in Sect. V.

II. CHIRAL MAGNETOHYDRODYNAMICS

A. Chiral magnetic effect

Using Lorentz-Heaviside units, the Ampère-Maxwell
equation for the QED-like model in the MHD limit (omit-
ting the displacement current) reads

∇×B =
1

c
J . (1)
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The electric current J is the sum of the Ohmic current
and the chiral magnetic effect (CME) [? ? ? ],

J =
σ

c
(cE + u×B) +

e2

2π2~2c
µ̃5B, (2)

where we consider the case with µ̃5 ≪ (e2/~c)kBT . By
rewriting cE = −∂A/∂t in the Weyl gauge, e2/4π~c ≡ α,
Eq. (2) is rewritten as

∂A

∂t
=

c2

σ
(µ5B −∇×B) + u×B, (3)

where we defined [? ]

µ5 ≡ 2α

π~c
µ̃5. (4)

This expression agrees with Eq. (32) of Ref. [? ], except
for a factor of 2 resulting from our definition µ̃5 = (µ̃R −
µ̃L)/2 in terms of the chemical potentials for right- and
left-handed fermions [? ]. The additional 4π factor in the
numerator of the expression in Ref. [? ] is a consequence
of their use of cgs units.

B. Model description and basic equations

We perform simulations in a cubic domain of size L3

with side lengths L and triply-periodic boundary condi-
tions. The mass in the domain is therefore constant, so
the mean density ρ is always equal to its initial value ρ0
and put to unity in all cases. The lowest wave number
in the domain is k1 = 2π/L. Using N3 mesh points, the
largest wave number in the simulations is the Nyquist
wave number kNy = k1N/2.

In the following, we set c = 1, so J = ∇ ×B. To in-
clude the effects of the cosmic expansion with scale fac-
tor a(t) ∝ t1/2 in the radiation-dominated era, which
we assume to be a spatially flat Friedmann Universe,
we use correspondingly scaled quantities and conformal
time, η(t) =

∫

dt/a(t), in which the evolution equations
of MHD are the same as in the absence of expansion
[? ]. In order to obtain the physical quantities, we can
simply normalize the corresponding comoving quantities
with the appropriate powers of the scale factor a. Fur-
thermore, using λ = 3~(2α/πkBT )

2 and including spin
flipping and spatial diffusion, our chiral anomaly equa-
tion is

∂µ5

∂η
+∇·(µ5u) =

λ

σ
(J − µ5B)·B+D5∇2µ5−Γµ5, (5)

where D5 is an empirical diffusion coefficients for the chi-
ral chemical potential. Here we used the relationship
between the chiral chemical potential and the number
density,

n5 ≡ nR − nL = 2× µ̃5

6~3
(kBT )

2 =
πµ5

6α~2
(kBT )

2, (6)

and used Jµ
5 = (n5, n5u − D5∇n5) for the chiral 4-

current.
Owing to the chiral anomaly [? ? ], the total chirality

is conserved in the absence of spin flipping interaction [?
? ]. It is then convenient to introduce the mean magnetic
chirality equivalent as

〈µM〉 ≡ 1
2λ〈A ·B〉, (7)

so that the conservation law derived from Eqs. (3) and (5)
can be stated in the form

µtot = 〈µ5〉+ 〈µM〉 = const. (8)

We complement Eqs. (3) and (5) by the momentum
and continuity equations [? ? ? ]

Du

Dη
=

2

ρ
∇ · (ρνS)− 1

4
∇ ln ρ+

u

3
(∇ · u+ u ·∇ ln ρ)

− u

ρ

[

u · (J ×B) + ηJ2
]

+
3

4ρ
J ×B, (9)

∂ ln ρ

∂η
= −4

3
[∇+ (∇ ln ρ)] · u+

1

ρ

[

u · (J ×B) + ηJ2
]

,

where D/Dη ≡ ∂/∂η + u ·∇ is the advective derivative,
Sij = (∂iuj + ∂jui)/2 − δij∇ · u/3 are the components
of the rate-of-strain tensor, ν is the viscosity, and p is
the pressure, which is assumed to be proportional to the
density, i.e., p = ρc2s , with cs = 1/

√
3 being the sound

speed for the ultrarelativistic fluid.
For all our simulations, we use the Pencil Code [?

], where the relevant equations are readily implemented.
We use N3 = 10243 mesh points for most of the runs,
and N3 = 20483 mesh points for one particular run. In a
small number of cases, we have included the slope-limited
diffusion (SLD) scheme of Ref. [? ? ]. In those cases,
SLD acts in addition to the ordinary viscous and diffusive
processes stated in the equations above, but prevents the
code from crashing during an early more violent phase
when the mesh resolution is insufficient to dissipate the
energy at high wave numbers. At later times, however,
this additional numerical device has little effect. Below,
we demonstrate in one case that the solutions with and
without SLD yield the same result.

C. Diagnostic quantities

We introduce two characteristic times in our simula-
tions, which are the time scale of the CPI and the mag-
netic diffusion time,

ηCPI = σµ−2
50 and ηdiff = σk−2

0 , (10)

respectively. The ratio (ηdiff/ηCPI)
1/2 = |µ50|/k0 charac-

terizes the degree of scale separation between the scales of
magnetic helicity and fermion chirality. We also define
the turnover time of the energy-carrying eddies, which
would determine the onset of the turbulence,

ηturb = (umax
rms k0)

−1
, (11)
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where umax
rms is the maximum value (in time) of the rms

velocity.
Next, we introduce several parameters with a dimen-

sion of velocity. The nature of the CPI is characterized
by the following parameters [? ]

vλ = |µ50|/(ρλ)1/2 and vµ = |µ50|/σ. (12)

The former represents the ratio of the length scale of the
magnetic field at the saturation of the CPI to the CPI
time scale, while the latter represents the ratio of the
length scale of the initial instability to the CPI time scale.
The ratio vλ/vµ = σ/(ρλ)1/2 characterizes the length
of the k−2 spectrum that develops if the CPI operates
without a strong pre-existing field [? ]. In the unbalanced
case, umax

rms is approximated by vλ. In the present case,
however, it does not seem to play any role. Instead, to
compute umax

rms , we approximate the velocity field by the
initial magnetic field such that B2

rms ≃ ρ̄u2
rms. Using

Eqs. (7) and (8), we estimate

B(0)
rms ≈ (k0|〈A ·B〉|)1/2 ≈

(

2k0|µ50|
λ

)1/2

, (13)

which thus defines a new quantity ṽλ as

ṽλ ≡
(

2k0|µ50|
ρ̄λ

)1/2
(

≈ B
(0)
rms

ρ̄1/2

)

. (14)

A predictive estimate for the turnover time of the energy-
carrying eddies is thus

ηλ = (ṽλk0)
−1 =

(

ρ̄λ

2k30|µ50|

)1/2

, (15)

which is later used to predict the time when the inverse
cascade sets in.
In this work, an important diagnostics is the magnetic

energy spectrum, EM(k). It is normalized such that
∫

EM(k) dk = 〈B2〉/2 ≡ EM where EM is the magnetic
energy density1. The kinetic energy spectrum EK(k)
is defined similarly, i.e.,

∫

EK(k) dk = 〈ρu2〉/2 ≡ EK.
We also define the magnetic helicity spectrum HM(k),
which is normalized such that

∫

HM(k) dk = 〈A ·B〉. In
our simulations, k|HM(k)|/2 approaches EM(k) near the
maximum. In fact, the spectra HM(k) and EM(k) satisfy
the realizability condition [? ],

k|HM(k)|/2 ≤ EM(k). (16)

When this inequality is saturated for specific wave num-
bers, we say that the magnetic field is locally fully helical.

1 In terms of the mode function in the polarization basis,
A(x, t) ≡

∫
d3k/(2π)3/2

∑
λ=±

Aλ(k, t)e
λ(k)eikx, EM is given

as EM(k) =
∑

s=±
(k4/4π2)|As(k)|2. We also have Hs

M(k) =

(k3/2π2)|As(k)|2 and HM(k) = (k3/2π2)
∑

s=±
s|As(k)|2.

After some time, the magnetic helicity spectrum is
characterized by two subranges, one with positive and
one with negative values of HM(k), which are separated
by the wave number k±(η), where the sign changes. In
addition to the evolution of k±(η), we characterize the
spectrum and its evolution by the numbers kI(η) and
kII(η), which are the wave numbers of the first posi-
tive and second negative peak of HM(k). The intermedi-
ate wave number k±(η) is often better determined than
kII(η), especially at early times.
The wave number of the first peak of the spectrum is

close to the initial inverse correlation length,

ξM = E−1
M

∫

k−1EM(k) dk. (17)

In fully helical turbulence, the value of ξM(η) tends to
increase with time in a power law fashion, ξM ∝ ηq,
where q = 4/9 in our cases of balanced chirality [? ]; see
also Sec. II E. Note that in our setup the positive helicity
modes always dominate the energy density of the mag-
netic field, and hence approximately we have ξM ≃ k−1

I .
It is convenient to introduce the mean magnetic chi-

rality for the positive helicity modes for k < k± and the
negative ones for k > k± as

〈µ+
M〉 = λ

2

∫ k±

0

HM(k) dk, (18)

〈µ−

M〉 = −λ

2

∫ ∞

k±

HM(k) dk. (19)

The conservation law takes then the form

〈µ5〉+ 〈µ+
M〉 − 〈µ−

M〉 = µtot, (20)

where µtot = µ50 + µM0 = µ50 + µ+
M0 − µ−

M0 is given by
the initial values.
When we study the effect of spin flipping, we invoke a

nonvanishing flipping rate with

Γ =

{

Γf0 for ηflip ≤ η ≤ ηoff

0 otherwise,
(21)

where ηflip denotes the time when spin flipping is turned
on, and in a few cases we allow for a finite value of ηoff ,
which denotes the time when spin flipping is later turned
off again.

D. Initial conditions

In our numerical experiments, the initial magnetic field
is fully helical with positive magnetic helicity and random
phases. The initial magnetic energy spectrum is a broken
power law

EM(k, η0) ∝
{

k4 for k < k0,

k−5/3 for k > k0,
(22)
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FIG. 1. Visualizations of A ·B λ/2 (upper row) and µ5 (lower row) on the periphery of the computational domain for Run O
at η ≈ 4600 (left) 15,000 (middle), and 46,000 (right).

where the initial peak is identified as k0 = kI(η0). The
IR spectrum is motivated by causality constraints [? ],
while the UV spectrum is taken as a Kolmogorov-type
spectrum. The strength of the magnetic field is adjusted
such that the initial magnetic chirality obeys µM0 = −µ50

such that µtot = 0. The chiral chemical potential is ini-
tially assumed to be uniformly distributed in space. Its
initial value is always negative, i.e., µ50 < 0. However,
even for an initially uniform chiral chemical potential,
there is a specific length scale associated with the value of
µ5 through the wave number of the most unstable mode
of the CPI, k = |µ50|/2. The initial velocity is assumed
vanishing in all cases.

E. Theoretical predictions

As was recently shown in Ref. [? ], the present case
of zero total chirality, where the magnetic helicity is can-
celed by fermion chirality, is remarkably similar to the
case of ordinary MHD without chemical potential and
zero magnetic helicity. In both cases, as already alluded
to in the introduction, one can define a correlation in-
tegral of the total chirality, which is a quantity with di-
mensions cm9 s−4 and is dubbed the (adapted) Hosking
integral. The evolution of the system can be explained by

the conservation of this quantity. With self-similar evolu-
tion of the magnetic spectrum being assumed, this yields
the scalings ξM ∝ η4/9 and 〈B2〉 ∝ η−10/9 for typical
length scales and the magnetic energy density, respec-
tively [? ]. Note that the conservation of the adapted
Hosking integral suggests

ξ5M 〈B2〉2 = const, or k−3
I EM (kI)

2 = const, (23)

if the magnetic energy density is dominated by the pos-
itive helicity mode, which is peaked at k = kI. For the
magnetic field with a IR spectrum ∝ k4, as motivated
from the causality constraints, the evolution of the mag-
netic field exhibits inverse cascading.
The big difference between ordinary MHD without he-

licity on the one hand and chiral MHD with helicity bal-
anced by fermion chirality on the other hand is that in
the latter, both the magnetic helicity and the fermion
chirality are decaying, which we shall call the anomalous
chirality cancellation (ACC). In the former, by contrast,
the Hosking integral based just on the ordinary magnetic
helicity density is conserved. In the latter, contrary to the
naively expected exponential decay of fermion chirality
due to the CPI in chiral MHD, we actually have a much
slower power-law decay proportional to η−2/3, since the
magnetic helicity is roughly estimated by ξM 〈B2〉, and
likewise for |〈µ5〉| [? ]. Here we have used the fact that
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the real space realizability condition of magnetic helic-
ity [? ], |HM| ≤ 2EMξM, is nearly saturated. Once this
power law decay of the chirality starts, the CPI rate,
〈µ5〉2/σ, decays faster than η−1, which suggests that the
CPI does not grow anymore. Hence the magnetic energy
is always dominated by helicity modes with the same sign
as the initial ones, which, in our case, are positive helicity
modes.
The adapted Hosking integral makes sense only when

the communication between the helicity and chirality
through the CME becomes effective at the characteris-
tic scale. Therefore we expect that the scaling evolution
discussed above starts at the time scale of the CME at
the initial peak scale. With the evolution equation for
the magnetic field, equivalent to Eq. (3),

∂B

∂η
=

1

σ

[

∇2
B +∇× (µ5B)

]

+∇× (u×B) (24)

(where second term in the right-hand side represents the
CME), we estimate ηACC as the time when the following
condition is satisfied:

ηACC ≃ σ

µ5(ηACC)kI(ηACC)
. (25)

Note that from Eq. (24) we can also confirm that the
magnetic field has an instability (the CPI) for one of the
two circular polarization modes with k = |µ50|/2 being
the most unstable mode. The instability rate is roughly
given as µ2

50/σ, which determines ηCPI.
The evolution of the system is classified into two cases,

determined by the comparison between ηλ and ηACC es-
timated by the initial conditions of kI and µ5. Since
ρ̄ ≃ (π2g∗/30)T

4, where g∗ is number of the relativistic
degrees of freedom, and σ ≃ 102T [? ? ], we have ηACC <
ηλ for k0 ≪ |µ50| [more precisely, k0 ≪ (ρ̄λ/4σ2)|µ50|,
which is independent of temperature], and vice versa.
For k0 ≪ |µ50|, we have the following estimate for the
evolution of the system,

1. The system is frozen when η < ηCPI.

2. The CPI starts to grow at η ≃ ηCPI.

3. If the CPI does not sufficiently amplify the negative
helicity modes, the chiral chemical potential starts
to decay at η = ηACC(> ηCPI) with

ηACC ≃ σ

|µ50|k0
(26)

in a mild way.

4. When η ≃ ηλ(> ηACC), the system starts to evolve
according to the scaling law found in Ref. [? ],

kI ∝ η−4/9, EM ∝ η−10/9, and (27)

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 ∝ η−2/3. (28)

For k0 ≫ |µ50|, on the other hand, we expect the fol-
lowing evolution of the system.

1. The system is frozen at η < ηλ.

2. The magnetic field evolve according the the inverse
cascade at η ≃ ηλ in a similar way to the usual
inverse cascade for nonchiral helical magnetic field,

kI ∝ η−2/3, EM ∝ η−2/3, and (29)

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 = const, (30)

since the CME is not effective at k ≃ kI so that
the magnetic helicity and chirality are individually
conserved.

3. The CME becomes effective at η ≃ ηACC (> ηλ),
which is now evaluated as

ηACC ≡ σ3

|µ50|3k30
η−2
λ ≃ 2σ3

ρ̄λµ2
50

. (31)

Here we have used Eq. (25) and kI(η) =
k0(η/ηλ)

−2/3, as well as Eq. (14). When η > ηACC

we have the inverse cascade with the conservation
of the adapted Hosking integral,

kI ∝ η−4/9, EM ∝ η−10/9, and (32)

〈µ5〉 = −〈µ+
M〉+ 〈µ−

M〉 ∝ η−2/3. (33)

Note that in this case the CPI would not grow much
due to the earlier onset of the chirality decay.

In Table I, we summarize the characteristic time scales
relevant for the evolution of the system.
The features described above will be confirmed by di-

rect numerical simulations in the next section. They can
have important consequences for baryon production, as
will discussed at the end of the paper.

III. RESULTS

In this section, we show the results of the direct numer-
ical simulation. We first study the case with k0 ≪ |µ50|
until Sec. IIIG. In Sec. IIIH we study the case with
k0 ≪ µ50. Some of our observations will turn out to
be consistent with the theoretical prediction discussed in
Sec. II E. We will also see some other features, which have
not been addressed there.

A. Visualization of magnetic and fermion chiralities

We begin by discussing the simulation of Ref. [? ]
with k0 ≪ |µ50|, which we refer to as Run O. In Fig. 1,
we present visual impressions of magnetic and fermion
chiralities in Run O at different times. We see that the
turbulent structures gradually grow in size and the ex-
treme values away from zero decrease as time goes on.
Furthermore, µ5 and A ·B λ/2 have predominantly op-
posite signs, as expected. Locally, however, there is no
correspondence between the two fields. This is because
the vanishing total chirality is only a statistical property.
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TABLE I. Relevant time scales defined in this paper.

Time scale Expression Equation Explanation

ηCPI σµ−2
50 Eq. (10) time scale of the CPI

ηdiff σk−2
0 Eq. (10) magnetic diffusion time

ηturb (umax
rms k0)

−1 Eq. (11) turnover time of the energy-carrying eddies

ηλ (ṽλk0)
−1 = [ρ̄λ/(2k3

0 |µ50|)]
1/2 Eq. (15) predicted turnover time of the energy-carrying eddies

ηACC σ/[µ5(ηACC)kI(ηACC)] Eq. (25) onset time of the ACC

B. Evolution of characteristic scales

As discussed in Ref. [? ], it is important to allow for
sufficient scale separation between the smallest available
wave number k1 ≡ 2π/L and the initial wave number of
the peak, k0. It is also important that there is enough
separation between k0 and the initial wave number of
the CPI, |µ50|/2, to confirm distinct features of the evo-
lution of the system. Both, k0 and |µ50|/2, in turn, must
be much smaller than the largest available wave num-
ber kNy = k1N/2. Sufficient scale separation between k1
and k0 is particularly important for obtaining the theo-
retically expected increase of ξM ∝ η4/9 along with the
decay of EM ∝ η−10/9, based on the conservation of the
Hosking integral adapted to the total chirality. Indeed,
in Run O, an optimized balance between the two scale
separation requirements has been achieved.
With the start of the simulation, the helical random

magnetic field, which is present initially, drives turbulent
motions through the Lorentz force. Those motions are
in approximate equipartition with the magnetic field at
high wave numbers; see Fig. 2, where we compare ki-
netic and magnetic energy spectra at different times. In
this figure, we also mark the two scale separation ratios.
This observation supports the estimate of umax

rms to ṽλ; see
Eq. (14).

As already discussed in Ref. [? ], even though there
is vanishing net chirality, 〈µM〉 + 〈µ5〉 = 0, there is still
some degree of inverse cascading, just like in nonheli-
cal magnetically dominated turbulence [? ? ]. We see
this clearly in Fig. 3, where the position of the magnetic
peak, kI(η), gradually moves to smaller values. At the
same time, the height of the peak decreases, following an
approximate power law ∝ kβ , with β = 3/2; see Fig. 3.
This can be explained by the conservation of the Hosking
integral [? ? ]; see also Eq. (23). The exponent β = 3/2
is characteristic of the fact that the net chirality vanishes,
even though near the peak itself the field is locally fully
helical, as we see from the proximity of k|HM(k)|/2 and
EM(k); see Eq. (16).
The newly injected magnetic helicity from the CPI

leads to a growth of the magnetic field at large wave
numbers. It manifests itself mostly through the build-up
of negative magnetic helicity at high wave numbers. At
some point, we also see a gradual propagation of the sec-
ondary peak kII toward smaller k, which has not been ad-

FIG. 2. Magnetic energy (red lines) and kinetic energy
(blue lines) spectra for Run O at times η = 460, 4600, and
46,000. The dotted lines denote the earliest outputted time
η = 0.3. In the upper part, the two-sided arrows indicate
the requirements for scale separation at small and large k to
obtain the kp ∝ η−4/9 decay and to resolve |µ50|, respectively.

dressed in Sec. II E. It lies underneath an envelope with
an approximate k8/3 slope; see Fig. 3. At present, the
exponent 8/3 is just empirical and there is no theory
for it. It should be noted, however, that in other cases
with a shorter inertial range, we have found larger expo-
nents. Thus, the exponent could also be smaller when
the inertial range is larger, i.e., when there is more scale
separation and 〈µ5〉ξM is larger.

Another characteristic wave number is k±, where the
sign of the spectral magnetic helicity changes. It is used
in the definitions of 〈µ+

M〉 and 〈µ−

M〉 in Eqs. (18) and (19).

In Fig. 4, we plot the evolution of the characteristic
wave numbers kI, k±, and kII. We clearly see the kI ∝
η−4/9 decay predicted by the conservation of the Hosking
integral adapted to the total chirality [? ]. It emerges
after a time ηI, which is expected to be close to ηλ (and
also ηturb); see Eq. (15). In Run O we find ηI ≈ 100.

The evolution of k± and kII can be seen more clearly
when the Nyquist wave number is larger. We therefore
discuss in Fig. 5 another run, also with N = 10243 mesh
points, but now with k1 = 0.05 (instead of 0.02), so kNy =
25.6, which is now a little over five times larger than
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TABLE II. Summary of the runs discussed in this paper. Except for Run P, where λ = 500, we have in all other cases
λ = 2× 104. Runs A and B below the last horizontal line have nonvanishing net chirality and are discussed at the end of the
paper. The asterisk on the value of k1 = 0.01 Run J” indicates that the resolution is N3 = 20483, so the Nyquist wave number
is here the same as for Run J’ with k1 = 0.02.

Run k0 −µ50 σ−1 SLD ηCPI ηdiff η
µ+

M

qI ηflip η
(i)
± ηI η

(ii)
± η

µ−

M

|〈µ−

M〉|max k±/kI kII/kI vλ umax
rms k1

VI 1 160 5× 10−4 no 0.08 2× 103 3 1/3 — 0.3 45 14 7 43 1.4 2.0 1.13 0.095 0.2

V 1 80 5× 10−4 no 0.3 2× 103 4 1/3 — 0.5 55 40 4 13 1.5 1.8 0.57 0.050 0.2

IV 1 50 5× 10−4 no 0.8 2× 103 6 1/3 — 1.6 50 55 50 5.1 1.5 2.0 0.35 0.050 0.1

III 1 30 5× 10−4 no 2.2 2× 103 14 1/3 — 1.7 80 108 150 1.5 1.8 2.3 0.21 0.018 0.2

II+ 1 20 5× 10−4 no 5 2× 103 18 1/3 — 6 75 160 200 0.46 1.8 3.1 0.141 0.031 0.1

II 1 20 2× 10−4 no 12.5 5× 103 60 1/3 — 9 75 120 200 0.009 4.4 6.7 0.141 0.032 0.1

II− 1 20 1× 10−4 no 25 1× 104 160 1/3 — 14 75 140 200 0.003 6.7 10 0.141 0.031 0.1

I 1 10 2× 10−4 no 50 5× 103 125 1/3 — 30 80 160 250 0.009 6.7 9.6 0.071 0.030 0.05

O 1 10 2× 10−4 no 50 5× 103 125 4/9 — 20 70 120 300 0.008 7.3 9.5 0.071 0.0123 0.02

O’ 1 10 2× 10−4 yes 50 5× 103 125 4/9 — 20 110 120 400 0.015 6.4 8.4 0.071 0.0103 0.02

L 1 10 2× 10−4 yes 50 5× 103 125 4/9 — 180 400 500 1000 0.027 6.7 8.7 0.071 0.0079 0.01

M 1 7 2× 10−4 yes 102 5× 103 165 1/3 — 260 220 800 800 0.006 5.8 7.2 0.049 0.0065 0.01

N 1 5 2× 10−4 yes 200 5× 103 235 1/3 — 350 200 800 1000 0.0015 6.3 7.8 0.035 0.0055 0.01

N’ 1 5 2× 10−4 yes 200 5× 103 200 4/9 — — 800 3000 15000 0.00004 5.5 2.4 0.035 0.0035 0.005

F 1 5 2× 10−4 yes 200 5× 103 — 4/9 100 — 250 9000 — — 30 30 0.035 0.0055 0.01

J 1 5 5× 10−4 no 80 2× 103 71 4/9 — 230 300 500 700 0.0003 6.1 7.6 0.035 0.0068 0.01

J” 1 5 5× 10−4 no 80 2× 103 71 4/9 — 90 300 500 460 0.0006 6.1 7.6 0.035 0.0071 0.01*

J’ 1 5 5× 10−4 no 80 2× 103 76 1/3 — 95 120 500 460 0.0005 5.8 7.7 0.035 0.0070 0.02

P 1 0.1 2× 10−4 no 5× 105 5× 103 104 3/5 — – 160 — — 3× 10−9 — — 0.001 0.0070 0.02

G 0.5 10 2× 10−4 no 50 2× 104 200 1/3 — 30 360 360 300 0.044 4.6 6.6 0.071 0.0188 0.05

H 0.2 10 2× 10−4 no 50 1.2× 105 375 1/3 — 75 2000 2000 3000 0.42 2.0 2.7 0.071 0.0074 0.02

A 1 10 2× 10−4 no 50 5× 103 — 4/9 — 8 110 210 — — 7.3 9.5 0.071 0.0109 0.02

B 1 10 2× 10−4 no 50 5× 103 — 4/9 — 20 90 120 250 — 7.8 8.9 0.071 0.0137 0.02

|µ50|/2 = 5. In Table II, this run is referred to as Run I,
which differs from the previously discussed Run O mainly
in the value of k1. It also has a shallower scaling of the
correlation length, ξM ∝ k−1

I ∝ η1/3, which seems to be
an artifact caused by insufficient scale separation, i.e.,
the value of k1 is not sufficiently small. Empirically, we
find that if k0/k1 ≫ 20, there is an inverse cascade with

ξM ∝ k−1
I ∝ η4/9. The parameters ηI, η

(i)
± , and η

(ii)
± ,

listed in Table II, are discussed below. We also give here
the values of vµ and vλ/vµ, as well as the number of mesh
points and the length of the run, ηmax, which can be
useful in assessing the reliability of the numerical results.
Run O’ is similar to Run O, except that here, SLD has
been added. The two runs are virtually indistinguishable.

The evolution of the peaks of the spectrum can be sum-
marized as follows. (i) After the start of the run, the CPI
induces a growth of the negative helicity modes at the

secondary peak kII, which stays constant until η = η
(i)
± ,

and then starts to decrease with time in a power law fash-
ion, kII ∝ η−qIIa with qIIa ≈ 1 in all cases. (ii) The orig-
inal large-scale spectrum is unchanged until some time
η = ηI and starts to decrease via an inverse cascade with

kI(η) ∝ η−qI , where qI is expected to be equal to the ex-

ponent q = 4/9 found in Ref. [? ]. (iii) At time η = η
(ii)
± ,

the decay of the secondary peak becomes slower with a
smaller index, kII ∝ η−qIIb , with qIIb < qIIa ≈ 1. Those
parameters are summarized in Table II.

The plot of characteristic wave numbers kI, k±, and

kII in Fig. 5 shows three distinct times η
(i)
±

<∼ ηI <∼ η
(ii)
± ,

where k± begins to decrease first rapidly, at η = η
(i)
± , and

later, at η = η
(ii)
± , more slowly, approximately like η−4/9,

i.e., qIIb ≈ q = 4/9. The decay of kII closely follows that
of k±. The decay of kI, on the other hand, does not show
the rapid decay phase that we see in k± and kII, but turns

directly into the approximate η−4/9 decay at η = η
(i)
± .

C. Onset of inverse cascading

It is of interest to vary the separation between |µ50|/2
and k0 to see the dependence of the relevant character-
istic times on these wavenumbers. We have performed
simulations for different values and consider runs where
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FIG. 3. Magnetic energy (solid lines) and normalized helicity
spectra kHM(k)/2 (dotted lines with red and blue symbols for
positive and negative helicity spectra, respectively) for Run O
at times η = 0.3, 460, 1500, 4600, 15,000, and 46,000. The
peaks kI (peaks of the red curves) and kII (peaks of the blue

curves) evolve underneath the envelopes ∝ k3/2 and ∝ k8/3,
respectively.

FIG. 4. Comparison of kI (red), k± (orange), and kII (blue)

for Run O. The dashed-dotted line indicates η−4/9. The green
dashed line shows 〈µ5〉 and the green dotted line shows the
rms value µrms

5 .

we change kI and keep k50 fixed, and others where we
change k50 and keep k0 fixed. It both cases, of course,
since we want to satisfy 〈µ5〉+ 〈µM〉 = const, we need to
adjust the amplitude of the initial magnetic field corre-
spondingly. The results are summarized in Table II and
plotted in Figs. 6 and 7.

One may presume that η
(i)
± is roughly estimated by

ηCPI since the grow of negative helicity modes becomes

effective at that time. We see, however, that, while η
(i)
±

decreases quadratically with increasing |µ50|, the depen-
dence on ηCPI = σµ−2

50 is shallower than linear and fol-

lows approximately an η
2/3
CPI scaling; see Fig. 6. Thus,

kII starts to decline more rapidly when |µ50| is large, al-

FIG. 5. Similarly to Fig. 4, but for Run I. The red dashed-
dotted line indicates here the η−1/3 scaling, which describes
the kI scaling better than the η−4/9 scaling indicated by the
red dotted line. The orange and red dots indicate the cross-

ings of the extrapolated tangents on which the times η
(i)
± , ηI,

and η
(ii)
± are based.

FIG. 6. Dependence of η
(i)
± , ηI, and η

(ii)
± on ηCPI. η

(i)
± shows

an approximate η
2/3
CPI dependence along two branches that are

separated by a factor of about 6. ηI and η
(ii)
± are essentially

independent of ηCPI. The inset shows that η
(i)
± scales inverse

quadratically with |µ50|.

though it is unclear why this exponent is here ≈ 2/3.
On the other hand, we see that the five data points with
k1 = 0.01 (Runs L, M, N, J, and J” with smaller |µ50|)
lie on another η

2/3
CPI line that is shifted upward by a fac-

tor of about 6 relative to the runs with larger k1. The
reason for this is that for large values of ηCPI, it became
necessary to decrease the value of k1. This decreased
the Nyquist wave number since N remained unchanged,
which can cause artifacts in the values of k±. Small val-
ues of k1 also facilitates the η4/9 scaling of ξM and related
length scales; see the comparison between Runs N and N’
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FIG. 7. Dependence of ηI ≈ η
(ii)
± and η

(i)
± on (a) ηturb and

(b) ηλ, as well as (c) the dependence of ηturb on ηλ.

in Table II. This shows that η
(i)
± is currently very sensi-

tive to these restrictions which will be alleviated in future
with larger computational power. Nevertheless, there is

clearly a trend for an uprise in the dependence of η
(i)
± on

ηCPI for large values.

Next, we examine the dependence of ηI and η
(ii)
± on k0

and µ50. Figure 6 shows that the time ηI of the onset of
the decline of kI does not strongly depend on the value of

µ50. Likewise, the time η
(ii)
± when the decay of kII slows

down, does not strongly depend on µ50. Again, however,
there is an upward shift of data points for the four runs,
for which k1 = 0.01. As discussed in Sec. II E, we expect
that ηI is close to ηturb and ηλ. The upper two panels of

Fig. 7 show the dependence of η
(i)
± , ηI, and η

(ii)
± on ηturb

and ηλ, respectively. From these plots, we estimate that

ηI ≈ 1.4 ηturb ≈ 2.2 ηλ. (34)

In the lowest panel of Fig. 7, we also show the relation
between ηturb and ηλ, i.e.,

ηturb ≈ 1.6 ηλ, (35)

which shows the validity of the estimate of umax
rms in terms

of ṽλ. Equation (34) is useful for estimating the prop-
erties of magnetic field strength and coherence length at
later times. Therefore, we conclude that the numerical

FIG. 8. Comparison of 〈µ±

M〉 for Run II (red lines), Run J
(blue lines), and Run G (orange lines). The times ηACC are
marked by the correspondingly colored filled symbol at the
crossing points of the extrapolated η−2/3 decay law with the
initially constant values, indicated by dotted line. The η−4/3

decay law 〈µ−

M〉 is shown as the dashed-dotted line.

results support, at least for a moderate scale separation,
1 < |µ50|/k0 . O(10), the theoretical estimate for the
evolution of the characteristic scales given in Sec. II E
with a more accurate determination of the time of the
onset of the scaling evolution, Eq. (34).

D. Evolution of 〈µ5〉 and 〈µ±

M〉

We now discuss how the chirality of the system evolves.
Using Eqs. (18) and (19), we divide the magnetic helicity
into 〈µ+

M〉 and 〈µ−

M〉. The typical evolution of 〈µ5〉 and

〈µ±

M〉 is as follows. (i) 〈µ5〉 and 〈µ+
M〉 stay constant until

the time η = ηµ+

M

, when the ACC commences exhibiting

a power law decay. (ii) 〈µ−

M〉 grows until the time η = ηµ−

M

and then decays.
As discussed in Sec. II E, the decay of 〈µ5〉 and 〈µ+

M〉
due to the ACC is expected to be like η−2/3. In Fig. 8,
we have overplotted the asymptotic η−2/3 decay laws of
magnetic helicity with results of some of the representa-
tive numerical runs (Runs II, J, and G), which clearly
shows that the numerical results support the theoretical
prediction.
The decay of 〈µ−

M〉 is faster than that of 〈µ5〉 and 〈µ+
M〉

and follows an approximate η−4/3 law, resulting in a de-
cay of the ratio 〈µ−

M〉/〈µ+
M〉 ∝ η−2/3. Therefore, unless

〈µ−

M〉 becomes comparable to 〈µ+
M〉 when the grow stops,

a complete cancellation between 〈µ−

M〉 and 〈µ+
M〉 never

occurs.
The production of 〈µ−

M〉 is expected to be a result of

the CPI. We now address the question of how much 〈µ−

M〉
is being produced and what its maximum value depends
on. Figure 8 shows that 〈µ−

M〉 is generally rather small,
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and at least for µ50/k0 . 20 there is always a strong
imbalance between |〈µ+

M〉| and |〈µ−

M〉|, which never enters
a phase with a near-complete cancellation.
To see whether this is related to the value of the con-

ductivity, we compare simulations with different values
of σ. It turns out that runs with smaller magnetic diffu-
sivity (σ−1 = 10−4) result in an even larger imbalance,
while those with a larger diffusivity (σ−1 = 5×10−4) have
a smaller imbalance; compare Runs II+, II, and II− in
Table II.
Before closing this section, let us comment on another

trend in the numerical runs we conducted regarding the
absence of a near-complete cancellation between 〈µ−

M〉
and 〈µ+

M〉. For Runs III–VI, the ratio |〈µ−

M〉|max/|µ50| be-
comes rather large. This could be due to the very large
scale separation of k0 and |µ50|. This suggests a possibil-
ity that the CPI completes the cancellation between the
magnetic helicity and chirality immediately. However,
the positive and negative helicity modes are distributed
at separate length scales with the negative ones sitting
at higher length scales and the latter receives a stronger
magnetic diffusion. Therefore we expect the cancellation
not to be complete and that the two helicity modes decay
with a power-law decay, not an exponential one, though
the scaling index can be different from −2/3. In order to
investigate the evolution of the system in such extreme
cases, |µ50|/k0 ≫ O(10), we need to have a sufficiently
large box size to realize the corresponding scale separa-
tion. The detailed study is left for future study.

E. Onset of ACC

In Fig. 9, we show the dependence of ηµ+

M

and ηµ−

M

on

ηACC = σ/|µ50k0| (for the case k0 ≪ |µ50|; see Eq. (26)).
It turned out that ηµ+

M

increases with ηACC = σ/|µ50k0|
such that

ηµ+

M

≈ 0.2 ηACC = 0.2σ/|µ50k0| (36)

provides a good description to the data, which supports
the discussion in Sec. II E. Furthermore, ηµ−

M

shows an

approximately linear dependence on ηACC. This is rea-
sonable because the CPI becomes ineffective when the
ACC onsets such that 〈µ−

M〉 is no longer amplified by the
CPI after that.

F. The scale ratios k±/kI and kII/kI

We also mention another observation in the case with
k0 ≪ |µ50|. At late times, the scale ratios k±/kI and
kII/kI reach values that are approximately constant in
time. It is about 10 in the case of Run O, i.e., equal to
the initial scale separation, |µ50|/k0 = 10. One might
have expected the scale ratios to increase with |µ50|/k0.
However, in all other cases, this ratio is smaller. Some of

FIG. 9. Dependence of η
µ+

M

and η
µ−

M

on (a) σ/|µ50k0| as well

as the geometric means of ηCPI and (b) either ηturb or (c) ηλ.

this might also be caused by one of the two scale separa-
tion constraints not being well enough obeyed, although
the counter-intuitive trend remains surprising.
In Fig. 10, we show the ratios k±/kI and kII/kI versus

|µ50|/k0 = (ηdiff/ηCPI)
1/2. The two insets give separately

the dependencies on 1/ηCPI, showing an η−0.4
CPI behavior,

and on ηdiff , with a ∝ η
1/2
diff behavior. We see that k±/kI

and kII/kI decrease both with 1/ηCPI and with ηdiff , giv-
ing a combined dependence on just the ratio |µ50|/k0.
Thus, we see that, somewhat unexpectedly, large |µ50|
and small k0 tend to be detrimental to producing large
scale ratios.

G. Effect of chirality-flipping

The simulations discussed so far had Γ = 0 and they
resulted in a final state where 〈µ5〉 and 〈µM〉 vanish at
late times. As discussed in the introduction, spin flipping
could prematurely lead to a vanishing 〈µ5〉, which would
imply that the decay of 〈µM〉 would slow down and level
off at a value away from zero. To study this quantita-
tively, we show in Fig. 11 the evolution of 〈µ5〉, 〈µM〉,
and 〈µ5〉+〈µM〉 for Run F with ηflip = 100 and Γ = 10−2

either for the rest of the run or only until ηoff = 103
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FIG. 10. Dependence of k±/kI and kII/kI on ηCPI, showing

an η−0.4
CPI behavior. on ηdiff , showing a ∝ η

1/2
diff behavior.

(Run F in Table II).
First, we study a case where spin flipping acts per-

manently (after η = ηflip), which is shown in Fig. 11 as
solid lines. We see that |〈µ5〉| begins to decrease rapidly
to zero after ηflip = 100. This slows down the decay of
〈µM〉, which then declines at a much smaller rate. Quali-
tatively similar behaviors are also seen for smaller values
of Γ. In all cases, we see that 〈µ5〉 + 〈µM〉 evolves away
from zero. This is because the total chirality is then no
longer conserved. The decay of 〈µM〉 is understood by
magnetic diffusion. Thus we expect the decrease to slow
down for a larger scale separation between the magnetic
diffusion scale and kI.
Next, it is also of interest to study a case where spin

flipping acts only for a certain time interval and is then
turned off again at η = ηoff . This case is shown in
Fig. 11 as dashed lines. We see that, when Γ = 0 af-
ter ηoff = 103, the sum 〈µ5〉 + 〈µM〉 is strictly constant
and away from zero. This is in contrast to the case with
permanently nonvanishing Γ, where the sum continues to
decrease slowly. The constancy of the total chirality leads
to the behavior that 〈µM〉 stops to decline rapidly at a
larger value. Furthermore, during that time, some of the
magnetic helicity decays due to the magnetic diffusion
and is temporarily converted back into fermion chiral-
ity through the total chirality conservation; see the small
increase of 〈µ5〉 with a positive maximum at η ≈ 4000
in Fig. 11. Later, however, this excess fermion chirality
gets converted back into magnetic fields, which explains
the slight uprise of 〈µM〉 near the end of the simulation.
Indeed, this process is similar to the one seen in Refs. [?
? ]. This is natural because after the decay of 〈µ5〉 the
setup becomes very similar to the ones in these studies.

In Fig. 12, we show η
(i)
± and ηI in the presence of

spin flipping. The results suggests that the η−4/9 decay
changes into the faster η−2/3 decay. Spin flipping brings
〈µ5〉 close to zero. This process stops or slows down the
decline of magnetic helicity, which therefore remains pos-

FIG. 11. Evolution of 〈µM〉 (red), 〈µ5〉 (blue), and their sum
(black) for Run F with ηflip = 100 and Γ = 10−2 either for
the rest of the run or only until ηoff = 103.

FIG. 12. k
(i)
± and kI for Run F with spin flipping, ηflip = 100

and Γ = 10−2 for the rest of the run. As in Fig. 4, the green
dashed line shows 〈µ5〉 and the green dotted line shows µrms

5 .

itive. At late times, 〈µ5〉, which was originally negative,
now becomes positive and settles at a value of around
〈µ5〉 ≈ k1. This is because at later times the positive chi-
rality induced due to the helicity decay by the magnetic
diffusion through the chiral anomaly is balanced by the
erasure of the chirality through the CME [? ? ], similar
to the baryon asymmetry through the magnetic helicity
decay much before the electroweak phase transition [? ?

? ].

The sign of the final value of 〈µ5〉 is determined by
the magnetic helicity after the decay of 〈µ5〉 due to the
onset of spin flipping. In the cases presented above, the
sign of the magnetic helicity at the time of the onset of
spin flipping was positive and thus the chiral chemical
potential at later times was also positive. If the initial
magnetic field is weaker and the total chirality being neg-
ative (see App. A), the sign of the final value of 〈µ5〉 can
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TABLE III. Empirical values of β for cases with |µ50| < k0.
For a given value of λ, the values of vA0 followed from the
requirement that the total chirality vanishes. The resulting
maximum rms velocity umax

rms is listed for completeness.

Run −µ50 λ vµ ṽλ vA0 umax
rms SLD β ηI

P 0.1 500 2× 10−5 0.014 0.026 0.008 no 0.33 160

Q 0.1 50 2× 10−5 0.045 0.081 0.028 no 0.15 50

R 0.1 5 2× 10−5 0.141 0.257 0.076 yes 0.05 27

S 0.5 500 10−4 0.032 0.057 0.019 no 0.33 70

stay negative.
Our runs show that spin flipping can lead to a signifi-

cant increase of the fraction of the magnetic helicity that
can be preserved in spite of the fact that the system has
vanishing total chirality. This also reduces the total en-
ergy density dissipation of the system. In the absence
of spin flipping, both magnetic helicity and chiral chem-
ical potential would approach zero, so there would be no
magnetic helicity available for successful baryogenesis. In
the real Universe, however, spin flipping due to the elec-
tron Yukawa interaction, which really violates the (total)
chirality conservation, inevitably acts at T . 102 TeV [?
? ], and hence magnetic helicity survives more or less at
the electroweak phase transition.
In Fig. 12, we see an interval between the onset of

spin flipping, η = ηflip = 102, and the onset of the η−2/3

scaling evolution of kI, η ∼ 6 × 103, which marks the
real onset of the evolution with (pure) magnetic helic-
ity conservation. For a rough estimate of the magnetic
field evolution, however, we shall practically use ηflip as
the switching time between the adapted Hosking integral
conservation and the (pure) magnetic helicity conserva-
tion.

H. Cases with initially small |µ50|/k0

In all the cases considered so far, we assumed
|µ50|/k0 > 1. We now consider the opposite case and
discuss runs with µ50 = −0.1, keeping still k0 = 1, so
|µ50|/k0 = 0.1 (Runs P, Q and R), and also a run with
µ50 = −0.5 and k0 = 1 (Run S). To prevent the magnetic
field from being too weak, while still preserving vanishing
total chirality, we now decrease the value of λ and choose
λ = 500, 50, and 5 for Runs P (and S), Q, and R, re-
spectively. All the runs end at η ∼ 104. The parameters
of these runs are summarized in Table III.
Smaller values of λ correspond to to larger magnetic

fields. We see that this also leads to a gradual decrease of
the scaling index of the envelope of the magnetic energy
spectrum, β, toward zero. For a given value of β, we
expect that the scaling indices q, p, and r, which are those
of the evolution of the magnetic coherence length, energy
density, and helicity, respectively (ξM ∝ ηq, EM ∝ η−p,

TABLE IV. Possible combinations of q = 2/(β + 3), p =
2(1− q), and r = p− q in the range 0 ≤ β ≤ 1/3.

β q p r

3/2 = 1.50 4/9 ≈ 0.44 10/9 ≈ 1.11 2/3 ≈ 0.67

1/3 ≈ 0.33 3/5 = 0.60 4/5 = 0.80 1/5 = 0.20

0.15 0.63 0.73 0.10

0.05 0.66 0.69 0.03

0 2/3 = 0.67 2/3 = 0.67 0

FIG. 13. Time dependence of EM (black), ξ−1
M (orange), HM

(red), and −2〈µ5〉/λ (blue), for Runs P (a) and R (b).

and HM ∝ η−r), are given as q = 2/(β+3), p = 2(1− q),
and r = p − q. In Fig. 13(a), we see that for Run P the
exponents in agree reasonably well with those expected
for β = 1/3. In Fig. 13(b), we also show the results
for Run R, where λ is a hundred times smaller and the
magnetic field ten times stronger. Now the value of β
is very small (about 0.05), corresponding to q = 0.66,
p = 0.69, and r = 0.03.
In Table IV, we list several combinations of the ex-

pected scaling indices q, p, and r for 0 ≤ β ≤ 3/2. Inter-
estingly, in the range 0 ≤ β ≤ 1/3, the values of q and p
do not vary much in this range, especially compared to
the case for the evolution with the (adapted) Hosking in-
tegral conservation, β = 3/2, so if they do not agree with
those from the simulations, the discrepancy cannot easily
be resolved by changing the value of β within reasonable
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FIG. 14. pq diagram for Runs P (red symbols), Q (orange
symbols), and R (blue symbols) at times t = 700, 1000, 1500,
2200, 3200, 4600, 6800, 104, 1.5 × 104, 1.5 × 104, 2.2 × 104,
and 3.2 × 104, corresponding to symbols of increasing size.
The solid line denotes the scale-invariance line p = 2(1 − q),
the dashed line the empirical β = 1/3 line, and the dashed-
dotted line is the resulting r = 1/5 line for the magnetic
helicity decay. We also show cases with stronger magnetic
field strength for Runs Q and R, where the solutions evolve
along β ≈ 0.15 and β ≈ 0.05, respectively. Toward the end of
the runs, the finite size effects of the domain begin to affect the
solution. The dotted line denotes the β = 0 line for magnetic
helicity conservation and is shown for comparison.

FIG. 15. Comparison of kI (red), k± (orange), and kII (blue)
for Run S with µ50 = −0.5. The dashed-dotted line indicates
η−4/9. The green dashed line shows 〈µ5〉 and the green dotted
line shows the rms value µrms

5 .

limits. Note that β = 0 is expected if the evolution is
governed by (pure) magnetic helicity conservation.

In the corresponding pq diagram Fig. 14, we see that
Run P approaches the scale-invariance line p = 2(1 − q)
along the line r = 1/5. At the intersection, we have
q = 3/5 and p = 4/5. However, for Runs Q and R
with stronger magnetic field strengths, here measured in
terms of the initial Alfvén speed vA0 = ṽλ = B0/

√
ρ0,

the solution approaches the β = 0 line, which suggests

FIG. 16. (a) Magnetic energy and (b) total helicity variance
spectra at t = 31 (dashed), 100 (solid), 316 (dotted), 103

(blue), 3.16× 103 (green), 104 (orange), and 3.16× 104 (red)
for Run P. In (a), note that the EM(k, t) evolve underneath

the envelope k1/3, and the upward arrow indicates the sense
of time. In (b), the slopes k4 and k−4 have been indicated and
the inset compares Sp(2µ5/λ) (solid) with Sp(htot) (dotted)
at the last time.

better conservation of magnetic helicity. Note that near
the end of those runs, the data points may not be reli-
able because of the finite size of the domain. In addition,
because of the stronger magnetic field, the Alfvén time is
shorter and therefore kI reaches k1 more quickly. In any
case, it is likely that for small |µ50|/k0 we see an inter-
mediate stage of the evolution of the system where the
magnetic helicity and chirality are temporarily conserved
individually as discussed in Sec. II E. This is supported
by the fact that the theoretically predicted time of the
onset of ACC comes much later than the end of the run;
see Eq. (31).
For all the simulations where initially |µ50| < k0, we

find that µ5 decays more slowly than kI; see Fig. 15 for
Run S, as an example, where we see the crossing of µ5

and kI. The same is also seen for |µ50| = 0.1, but then the
crossing of |µ5| and kI is less prominent. Again, these ob-
servations suggest that the magnetic helicity-conserving
phase is an intermediate one before the solution resumes
the decay governed by the adapted Hosking integral, as
discussed in Sec. II E.

The time evolution of the magnetic energy and helicity
spectra for Run P are given in Fig. 16(a). We can see
that a negative magnetic helicity part of the spectrum
still emerges, again only at large wave numbers, although
now much later. This means that |〈µ−

M〉| is induced by the
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FIG. 17. (a) IH(R, t) versus R for different times t∗ (indi-
cated by the same colors/line styles, and (b) IH(R, t) versus
t (normalized) for R = ξM(t∗) marked by the four colors for
Run P. In (a), the four colored symbols indicate the positions
of k0ξM(t∗), and in (b), the time dependencies are plotted for
those R = ξM(t∗).

CPI, but it stays extremely small. Furthermore, |〈µ+
M〉|

does not decay much during the time of the run; see also
Fig. 13(b). This can easily be understood by the fact
that ηCPI becomes very large in this run because of the
small value of |µ50|, which enters the CPI time inverse
quadratically; see Eq. (10). Many other features of the
magnetic field evolution remain superficially similar to
the limit of large |µ50|/k0. One still sees inverse cascading
of positive magnetic helicity.

In Fig. 16(b), we show the total helicity variance spec-
trum Sp(htot). We clearly see that the spectral slope
changes from k2 to k4 as time goes on. Again, this sug-
gests that the adapted Hosking integral, as defined in
Ref. [? ], is not conserved.

Looking at the scaling of the magnetic helicity correla-
tion function in Fig. 17, we see that there is a plateau only
for very small values of R, which are generally smaller
than ξM (marked by colored symbols). This shows that
the conservation of the Hosking integral is now super-
seded by the conservation of the magnetic helicity. This
can be understood by the fact that the CME is ineffi-
cient at kI during the time of the run [see Eq. (31)], and
hence the magnetic helicity and fermion chirality would
be individually relatively well conserved quantities.

Regarding the conserved quantity for runs in the limit
of small |µ50|/k0, we can say that, in spite of vanishing

total chirality, the Hosking integral is here not conserved,
because the magnetic energy now peaks at scales where
the CME is not effective during the time of the run and
the magnetic helicity is conserved. As a result, the net
chirality is no longer random, but systematically of pos-
itive sign. The subinertial range of the magnetic helic-
ity variance begins to be dominated by a k4 spectrum,
which suggests that the Hosking integral in the expansion
Sp(htot) = IHk

2/2π2 +O(k4) is now subdominant.
To summarize, these runs are consistent with the the-

oretical prediction in Sec. II E, although a moderate vi-
olation of helicity conservation has been seen for Run P.
Note that Run P has a larger value of λ, which makes
the theoretically predicted ηACC smaller [see Eq. (31)], so
that an earlier transition to the evolution with adapted
Hosking integral conservation is expected. For an ana-
lytic estimate of the evolution of the system in the next
section, we shall use the theoretical prediction discussed
in Sec. II E. Namely, the system is frozen until η = ηλ and
then evolves with the usual inverse cascade for the helical
magnetic field as an intermediate stage until η = ηACC.
Then, it starts to evolve with a decay law determined by
the conservation of the adapted Hosking integral.

IV. APPLICATION TO THE EARLY UNIVERSE

A. From QED to the Standard Model

Now we investigate the impact of our findings in the
previous sections on the cosmology of the early Universe,
especially, baryogenesis. Up to here, we focused on a
QED-like theory. Thus, we first would like to clarify
its relation to the dynamics in the early Universe. The
Standard Model (SM) of particle physics involves the
right-handed leptons eRf , the left-handed lepton dou-
blets ℓLf , the right-handed up- and down-type quarks,
uRf and dRf , and the left-handed quark doublets qLf

with the flavor index running through f = 1, 2, 3, along-
side the scalar Higgs doublet Φ, which are in total 16
species. On top of this, we have gauge interactions of
U(1)Y × SU(2)L × SU(3)C . It is not obvious why we can
reduce this complicated system to chiral MHD based on
a QED-like theory like the one introduced in Sec. II.
What we are interested in here is the slow dynamics at

long wave lengths compared to interactions among par-
ticles. The key idea for the reduction is to assume the
equilibration of fast interactions and to keep only the
slow variables. The hypermagnetic field of U(1)Y with a
correlation length much larger than the mean free path
of the particles stands out as a slow variable because the
magnetic flux cannot be cut thanks to the absence of
monopoles. This feature does not hold for non-Abelian
gauge fields because they are charged under their own
gauge group. We also need the chiral chemical potential,
since it is related to the magnetic field via the anomaly
equation. Apart from these two fundamental building
blocks, we can coarse-grain the microscopic properties of
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all particle in the form of transport coefficients such as
the diffusion constant and the electric conductivity, be-
sides macroscopic quantities such as the pressure, energy
density, and velocity field. In this way, one may see that
the system can be reduced to chiral MHD as far as the
slow and long-wave dynamics is concerned.

Still, one might wonder why we can just focus on one
particular chiral chemical potential, as in Eq. (3), since
we have 15 chiral fermion species in the SM. To illus-
trate this, let us focus on the temperature right above
105 GeV, where the electron Yukawa interaction is not
efficient compared to the cosmic expansion, but other in-
teractions are fast enough. In this case, the chiral chem-
ical potential for the right-handed electron, µ̃e, should
be counted as a slow variable, as it is directly related to
the hypermagnetic field via the anomaly equation. On
the other hand, other chiral chemical potentials are sub-
ject to fast SM interactions, which provides 11 nontriv-
ial constraints among them. Recalling that the SM has
four conserved charges, hypercharge Y and the flavored
baryon-minus-lepton numbers B/3−Lf with f = 1, 2, 3,
one may immediately see that the remaining 15 chemical
potentials can be expressed as a function of µ̃e by solv-
ing 11 + 4 constraints. The chiral chemical potential µ̃5

originates from the generalized Ohm’s law,

JY = σY EY +
2αY

π
µ̃5 BY , (37)

where αY is now the U(1)Y fine-structure constant and
σY the hyperelectric conductivity of the plasma. In the
following, we will work with the αY value around the
electroweak scale, αY ≃ 0.01, and neglect its renormal-
ization group running when considering the dynamics of
the hypermagnetic field at high energies. Also, note that,
in this section, we set ~ = c = kB = 1, and all quanti-
ties are physical rather than comoving, unless explicitly
stated otherwise. For the SM U(1)Y , at T ∼ 105···6GeV,
one may express this µ̃5 as a summation of chiral chem-
ical potentials for the SM fermions as [? ? ]

µ̃5 =

15
∑

i=1

ǫi gi y
2
i

µ̃i

2
=

711

481

µ̃e

2
, (38)

where i runs over all SM fermions, ǫi = ± for right- and
left-handed fermions, respectively, gi counts internal de-
grees of freedom, and yi is the hypercharge of fermion
species i. In the second equality, we inserted the solu-
tion of the 15 constraint equations mentioned above. We
now see that, up to the O(1) coefficient of 711/481, one
chiral chemical potential suffices to describe the system.
In higher temperature regimes, we will have additionally
more slow variables that enter the expression of µ̃5, but
it is still written as a linear combination of their chemical
potentials with O(1) coefficients. It still holds that the
evolution of the system is described by chiral MHD as
discussed in Sec. II with µ̃5 being evaluated accordingly.

B. Baryogenesis

After these general remarks, let us now turn to the
implications of our analysis for the generation of the
baryon asymmetry of the Universe. We are primarily
interested in the scenario of baryogenesis from decaying
hypermagnetic helicity [? ? ? ? ? ], which assumes the
presence of a strongly helical hypermagnetic field dur-
ing the radiation-dominated era in the early Universe.
This scenario is based on the observation that the helic-
ity stored in the hypermagnetic field decays at the time
of the electroweak phase transition, not because of some
exotic helicity-violating interactions, but simply because
hypermagnetic helicity is converted to magnetic helic-
ity. This decay of hypermagnetic helicity then sources a
baryon asymmetry via the chiral anomaly of the baryon-
number current.
One possibility to generate the helical hypermagnetic

field required for baryogenesis consists of axion inflation
featuring a Chern–Simons coupling to U(1)Y . Such a
model leads to the nonperturbative production of hyper-
magnetic gauge fields in combination with charge asym-
metries for the 15 chiral SM fermion species [? ? ],

ni − n̄i =
1

6
gi µ̃i T

2 = −ǫi gi y
2
i

αY

2π
hY + · · · , (39)

where the ellipsis represents all other SM contributions,
which, however, can safely be neglected during inflation.2

Furthermore, hY in Eq. (39) is the physical helicity den-
sity, which we define in terms of the comoving vector
potential AY,com, comoving hypermagnetic field BY,com,
and scale factor a,

hY =
1

a3
〈AY,com ·BY,com〉 , (40)

where the angle brackets now stand for a double average
including the spatial average and the quantum mechani-
cal expectation value during inflation. From Eq. (39), we
can read off the fermion chemical potentials at the end
of inflation in terms of the helicity density at the end of
inflation. Inserting this result into Eq. (38), we obtain
the chiral chemical potential at the end of inflation,

µ̃5

T
= −c5

2
6χ , c5 =

95

18
, (41)

where the dimensionless yield parameter χ quantifies the
amount of CP violation during axion inflation [? ],

χ =
αY

2π

hY

T 3
. (42)

Here, we assume instantaneous reheating. The same co-
efficient c5 was found in Ref. [? ]; in total, the expression

2 The top-quark Yukawa interaction would be a possible exception;
see the discussion in footnote 5 of Ref. [? ] for more details.
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for µ̃5 in Eq. (41) is, however, smaller than the one in
Ref. [? ] by a factor of 1/2 because, in the present paper,
we include a factor of 1/2 in Eq. (38).
The fermion asymmetries generated during axion in-

flation are consistent with the chiral anomalies of the
respective fermion currents. In fact, it is straightforward
to generalize the conversion law in Eq. (8) to the early
Universe. To see this, let us rewrite Eq. (41) as follows,

µ5 +
3 c5
2

(

2αY

π

)2
1

2a3T 2
〈AY,com ·BY,com〉 = 0 , (43)

where we used µ5 = (2αY /π) µ̃5. Then, introducing

λY = 3

(

2αY

πaT

)2

, (44)

we obtain the relation

µ5 +
c5
2
µY
M = 0 , (45)

where

µY
M =

1

2a
λY 〈AY,com ·BY,com〉 . (46)

As the temperature in the early Universe decreases,
more and more SM interactions reach chemical equilib-
rium. This includes the SM Yukawa interactions, which
violate parity and hence render the coefficient c5 in
Eq. (41) a time-dependent quantity [? ]. During axion in-
flation, c5 assumes its maximal value, c5 = 95/18 ≃ 5.3,
before it then decreases down to c5 = 711/481 ≃ 1.5 at
temperatures of a few 100 TeV [see Eq. (38)]. This change
in c5 is reflected in a changing value of the chiral chemi-
cal potential µ5, which is always given by µ5 = −c5/2µ

Y
M

according to Eq. (45), with µY
M remaining constant until

the onset of ACC or electroweak phase transition. At
T . 105 GeV, c5 and hence µ5 vanish because all SM
interactions have reached chemical equilibrium.
The CP asymmetry parameter χ in Eq. (42) controls

the outcome of baryogenesis from helicity decay. That is,
if no CPI or ACC takes place before the onset of spin flip-
ping, the decay of hypermagnetic helicity around the elec-
troweak phase transition results in a present-day baryon
asymmetry (quantified in terms of the baryon-to-photon
ratio) that is fully controlled by χ [? ],

η0B ≡ n0
B

n0
γ

≃ 0.15 cdecB χ , (47)

where nγ = 2 ζ(3)T 3/π2 and the superscript 0 indicates
that a quantity is evaluated at the present time. Here, the
coefficient cdecB has a theoretical uncertainty of possibly
two orders of magnitude [? ]. In the following, we will
work with the representative value cdecB = 0.05 [? ? ],
which implies that χ values of the order of χ ∼ 10−7 are
necessary to reproduce the observed baryon asymmetry,
ηobsB ≃ 6.1 × 10−10 [? ? ]. Meanwhile, the parameter

χ also allows us to evaluate the ratio of k0 and µ5 at
the end of axion inflation. Specifically, if we estimate the
comoving peak wave number k0 in terms of the comoving
wave number that enters the Hubble horizon at the end
of reheating, krh = arhHrh [? ], we find

|µ5|
krh/arh

=
6αY c5 χ

π

Trh

Hrh
=

6αY c5 χ

π

M∗

Trh

∼ 10−4

(

χ

10−7

)(

1014GeV

Trh

)

, (48)

where M∗ =
(

90/π2/g∗
)1/2

MPl ≃ 7.1 × 1017 GeV is the

reduced Planck mass, MPl ≃ 2.4× 1018 GeV, rescaled by
the effective number of relativistic degrees of freedom in
the Standard Model plasma, g∗ = 427/4. Axion inflation
typically results in small values of the χ parameter (e.g.,
χ ∼ 10−7; see above) and large values of the reheating
temperature (e.g., Trh ∼ 1014 GeV; see Ref. [? ]), which
puts us in the parametric regime where |µ5| ≪ krh/arh
at the end of axion inflation. Moreover, smaller values of
Trh typically result in smaller values of χ, following the
scaling relation χ ∝ (Trh/M∗)

3 [? ], which means that
the opposite hierarchy, |µ5| ≫ krh/arh, cannot simply be
obtained by considering a smaller reheating temperature.
For |µ5| ≪ krh/arh, we can estimate the time when the

ACC sets in after axion inflation based on Eq. (31),

ηACC ∼
[

1

a3
2σ3

Y

ρ̄ λY µ2
5

]

rh

, (49)

where the factor of a−3 follows from the mass dimension
of the factor σ3

Y /(ρ̄µ
2
5). Next, we write the hyperelectric

conductivity σY as σY = cσY
T , with cσY

∼ 100 [? ? ],
the average radiation energy density ρ̄ as ρ̄ = cρ̄ T

4, with
cρ̄ = π2g∗/30, and the parameter λY as λY = cλY

/(aT )2

with cλY
= 12α2

Y /π
2. With these definitions, we find

ηACC ∼ cACC

χ2

Trh

M∗

1

krh
(50)

with the coefficient cACC being given as follows,

cACC =
2 c3σY

cρ̄ cλY

(

π

6αY c5

)2

∼ 1011 . (51)

The time ηACC marks the onset of the anomalous chi-
rality cancellation and needs to be compared to the time
ηsf = 1/ksf when spin flipping for left- and right-handed
electrons becomes efficient, where ksf = asfHsf is the co-
moving horizon scale at η = ηsf . Using Eq. (50), together
with cACC = 1011 and Tsf = 105 GeV for the electron
Yukawa interaction in the SM [? ? ], we obtain

ηACC

ηsf
∼ cACC

χ2

Tsf

M∗

∼ 0.01

χ2
. (52)

Therefore, in order to have ACC before the onset of spin
flipping, we require very large values of the CP asymme-
try parameter, χ & 0.1. However, for such large χ values,
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the naive estimate of the baryon asymmetry according
to Eq. (47) is hopelessly too large. Furthermore, the re-
duction of the magnetic helicity because of ACC in the
time window between ηACC and ηsf will not be enough
to counteract this overproduction of baryon number. To
see this explicitly, one may use the ratio in Eq. (52) to
introduce a dilution factor, ∆ = (ηACC/ηsf)

2/3, that mul-
tiplies the naive baryon asymmetry in Eq. (47) whenever
ACC should occur before the onset of spin flipping,

η0B ≃ min {1,∆} × 0.15 cdecB χ . (53)

This formula suggests that at extremely large χ values,
χ ≫ 1, it appears to be possible to reach η0B ≃ ηobsB .
In realistic models of axion inflation, it should, however,
be extremely difficult, if not impossible, to realize such
large χ values. Moreover, no such solution would be self-
consistent, as we would always violate our initial assump-
tion that |µ5| ≪ krh/arh; see the relation in Eq. (48).
Finally, for completeness, we mention that any sce-

nario that does allow for the hierarchy |µ5| ≫ krh/arh
in one way or another would be interesting as it might
display similar dynamics as our Runs III–VI, which we
commented on at the end of Sec. IIID. The decay law
for the magnetic helicity may then be different from the
η−2/3 behavior that we typically find for ACC, which may
be relevant for the outcome of baryogenesis. As already
stated in Section IIID, we leave a more detailed study of
this more exceptional case for future work.

V. CONCLUSIONS

We have performed numerical simulations of chiral
MHD with zero initial total chirality for a range of pa-
rameters to determine the dependence of characteristic
time and scale ratios, which are well explained by the
analytical estimate in Sec. II E. Namely, they are consis-
tent with the scaling evolution, ξM ∝ η4/9, EM ∝ η−10/9,
and 〈µ5〉 ∝ η−2/3, derived from the conservation of the
adapted Hosking integral [? ], and also the time scale of
the onset of this scaling evolution, ηACC; see Eqs. (26)
and (31). Our numerical simulations also assess the pos-
sibility of artifacts resulting from insufficient scale sep-
aration. A particularly important constraint is a suffi-
ciently large size of the computational domain (small k1),
which is needed to obtain the expected η4/9 scaling of the
correlation length. When this constraint is not obeyed,
the scaling is closer to η1/3. The second constraint of a
sufficiently large Nyquist wave number is important to
obtain the correct values of the scale ratio of the positive
and negative magnetic helicity peaks, i.e., kII/kI. Some-
what surprisingly, this ratio scales inversely with the ini-
tial scale separation between the scale of the magnetic
field and the CPI scale. Increased values of 〈µ−

M〉, which
characterize the strength of the CPI, are obtained when
σ is small or |µ50| is large and therefore the coupling to
the CPI is more efficient.

In the absence of spin flipping, even the slightest initial
imbalance will amplify as the magnetic energy decays; see
Appendix A. On long time scales, this eventually leads
to a fully helical state, although simulations of this are
at present unable to demonstrate this conclusively ow-
ing to the finite size of the computational domain. Spin
flipping is another mechanism that can produce an imbal-
ance between magnetic helicity and fermion chirality. In
any case, however, the finally available magnetic energy
and helicity densities are always limited by the finiteness
of the initial total chirality imbalance. For η < ηACC,
when the chiral magnetic effect is not effective at the
peak scale, magnetic helicity conservation governs the
decay of magnetic energy and the Hosking integral does
not play a role.
We also discussed the implications of our findings for

the generation of the baryon asymmetry of the Universe,
in particular, the scenario of baryogenesis from helic-
ity decay. The final baryon asymmetry in this scenario
is controlled by a dimensionless yield parameter χ that
quantifies the helicity density produced in the very early
Universe, for instance, during a stage of axion inflation.
In previous work, it was shown how the observed baryon
asymmetry can be generated from helicity decay at the
time of the electroweak phase transition for a specific χ
value, χ0 ∼ 10−7; see Eq. (47) and Ref. [? ]. The situ-
ation at larger χ values, however, remained unclear. At
χ ≫ 1, one may have anticipated either (A) the overpro-
duction of baryon number or (B) catastrophic helicity
erasure by the chiral plasma instability and consequently
no baryon asymmetry at all.
Thanks to the analysis in this paper, we now under-

stand that, instead of helicity erasure owing to the CPI,
we should rather be concerned about the possible effect
of ACC on the primordial hypermagnetic helicity. How-
ever, for realistic χ values, 10−7 . χ ≪ 0.1, even ACC
will not become efficient before the onset of spin flipping
triggered by the electron Yukawa interaction. We there-
fore conclude that, at large χ values, neither the CPI
nor ACC occurs. Instead, we encounter the problem of
baryon-number overproduction that also naively follows
from Eq. (47) in the large-χ limit. This leaves us with
one viable solution for baryogenesis from the decay of hy-
permagnetic helicity, χ0 ∼ 10−7, which had already been
identified in Ref. [? ]. Our analysis in the present paper
confirms the validity of this solution and demonstrates
that it is indeed unique.

Data availability—The source code used for the sim-
ulations of this study, the Pencil Code, is freely avail-
able from Ref. [? ]. The simulation setups and the cor-
responding data are freely available from Ref. [? ].
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Appendix A: Behavior in imbalanced chirality decay

In Sect. V, we emphasized that even the slightest ini-
tial imbalance between magnetic helicity and fermion chi-
rality will amplify as the magnetic energy decays. It is
therefore important to remember that the dynamics dis-
cussed in this paper is specific to the case of balanced
chirality, which is arguably also the most generic case.
We know that the decay of magnetic energy and the in-
crease of the correlation length follow a different behavior
in the completely imbalanced case compared to the un-
balanced one. We now discuss the behavior for the mildly
imbalanced case. Here, we show that there is a tendency
for the system to approach the behavior of a completely
imbalanced one.
We discuss two runs, Run A where the initial 〈µM〉

is enhanced by 20% compared with |〈µ5〉|, and Run B
where it is decreased by 20%. Apart from that, the runs
are the same as Run O, i.e., the run discussed in Ref. [?
].
In Run A, where the magnetic helicity is weaker than in

FIG. 19. Same as Fig. 3, but for Run B at times η = 32,
100, 320, 1000, 3200, 10,000, and 32,000.

FIG. 20. Time dependence of EM (black), ξ−1
M (orange),

HM (red), and −2〈µ5〉/λ (blue), for (a) Run A with smaller
and (b) Run B with larger magnetic helicity than in the bal-
anced case. Dashed lines indicate negative values; at late
times −2〈µ5〉/λ changes sign in (a), and HM changes sign

in (b). In (a) the dotted line denotes the η−1/2 log(η/ηlog)
scaling of Ref. [? ] with ηlog = 3.

Run O, the CPI becomes dominant and overcompensates
the magnetic helicity. The net chirality is then negative.
Eventually, the sign of the magnetic helicity changes and
all the remaining fermion chirality is converted to mag-
netic fields with negative helicity; see Fig. 18, where we
show the magnetic energy EM(k, t) and the normalized
magnetic helicity spectra kHM(k)/2 for Run A at times
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η = 32, 320, 1000, 3200, 10,000, and 32,000. We see
that k|HM(k)|/2 approaches EM(k) near the maximum.
In view of the spectral realizability condition, Eq. (16),
this means that the magnetic field is fully helical. Away
from the maxima, the inequality is no longer saturated,
but this is a typical effect in all turbulent flows where the
current helicity spectrum shows a Kolmogorov-type spec-
trum, making the magnetic helicity spectrum therefore
steeper than what could still be allowed by the spectral
realizability condition [? ].

On the other hand, when the fermion chirality is weak
(Run B), the usual inverse magnetic cascade quickly gets
established; see Fig. 19. In either case, the fermion chi-
rality gets ultimately converted into magnetic helicity. It
just takes a little longer than when the magnetic helicity

is initially weak. At the end, however, the usual inverse
cascade for a fully helical magnetic field commences. The
sign of magnetic helicity can be positive or negative, de-
pending on the sign of the initial total chirality.
To illustrate how the decay laws change when mag-

netic helicity and fermion chirality no longer balance, we
plot in Fig. 20 the time dependencies of EM, ξM, HM,
and −2〈µ5〉/λ, for (a) Run A with 20% smaller and (b)
Run B with 20% larger magnetic helicity than in the
balanced case. In both cases, we see a tendency of the
decays of EM and ξ−1

M to slow down while those of HM

and −2〈µ5〉/λ follow separate evolutions. Especially in
the case of Run B, where the magnetic helicity domi-
nates of the fermion chirality, we see a tendency toward
a EM ∝ ξ−1 ∝ t−2/3 as well as HM = const evolution, as
expected from magnetic helicity conservation.

[] D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601
(2009), arXiv:0906.5044 [hep-th].

[] Y. Neiman and Y. Oz, J. High. Energy Phys. 03, 023
(2011), arXiv:1011.5107 [hep-th].
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yarsky, J. Fröhlich, O. Ruchayskiy, and N. Kleeorin,
Astrophys. J. 858, 124 (2018).

[] L. Del Zanna and N. Bucciantini, Mon. Not. R. Astron.
Soc. 479, 657 (2018), arXiv:1806.07114 [astro-ph.HE].

[] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[] J. S. Bell and R. Jackiw, Nuovo Cim. A 60, 47 (1969).
[] M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79,

1193 (1997).
[] Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111,

052002 (2013), arXiv:1302.2125 [nucl-th].
[] Y. Hirono, D. E. Kharzeev, and Y. Yin, Phys. Rev. D

92, 125031 (2015), arXiv:1509.07790 [hep-th].
[] J. Schober, T. Fujita, and R. Durrer, Phys. Rev. D 101,

103028 (2020), arXiv:2002.09501 [physics.plasm-ph].
[] C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 92,

074018 (2015), arXiv:1501.07608 [hep-ph].
[] V. Domcke, Y. Ema, K. Mukaida, and R. Sato, J. High

Energy Phys. 2019, 111 (2019), arXiv:1812.08021 [hep-
-ph].

[] V. Domcke, Y. Ema, and K. Mukaida, J. High. Energy
Phys. 2020, 55 (2020), arXiv:1910.01205 [hep-ph].

[] M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D
57, 2186 (1998), arXiv:hep-ph/9710234.

[] M. Giovannini and M. E. Shaposhnikov, Phys. Rev. Lett.
80, 22 (1998), arXiv:hep-ph/9708303.

[] M. Dvornikov and V. B. Semikoz, J. Cosmol. Astropart.
Phys. 02, 040 (2012), [Erratum: J. Cosmol. Astropart.
Phys.,08, E01 (2012)], arXiv:1111.6876 [hep-ph].

[] H. Tashiro, T. Vachaspati, and A. Vilenkin, Phys. Rev.
D 86, 105033 (2012), arXiv:1206.5549 [astro-ph.CO].

[] A. J. Long, E. Sabancilar, and T. Vachaspati, J. Cos-
mol. Astropart. Phys. 02, 036 (2014), arXiv:1309.2315
[astro-ph.CO].

[] T. Fujita and K. Kamada, Phys. Rev. D 93, 083520
(2016), arXiv:1602.02109 [hep-ph].

[] K. Kamada and A. J. Long, Phys. Rev. D 94, 063501
(2016), arXiv:1606.08891 [astro-ph.CO].

[] K. Kamada and A. J. Long, Phys. Rev. D 94, 123509
(2016), arXiv:1610.03074 [hep-ph].
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