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Handout 2: relic gravitational waves

In the early universe, primordial magnetic fields are likely of sufficient energy that the associated stress,
BiBj , must have driven relic gravitational waves. They would not have (much) decayed since their
generation, so their detection would reveal an independent picture of what happened early on.

1 GW equation with conformal time

In physical units, the prefactor on the stress in the linearized GW equation is 16πG/c2. Here, however,
we focus on the scale factor and postpone this aspect, so we put the prefactor to unity. Likewise, the
traceless-transverse projection will be discussed separately. The GW equation then reads

∂2hphys

∂t2phys
+ 3H

∂hphys

∂tphys
−∇2

physhphys = Tphys (1)

where hphys = h/a and
∂

∂tphys
=

1

a

∂

∂t
, ∇2

phys =
1

a2
∇2 (2)

Compute
∂hphys

∂tphys
=

1

a

∂

∂t
(a−1h) = − ȧ
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Since Tphys = T/a4, the GW equation becomes
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ä

a
+∇2

)

h =
T

a
. (11)

In Fourier space, we have
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so we see that the effective wavenumber becomes imaginary when ä/a > k2. This effect destabilizes long
wavelengths and is important during inflation.

We recall here that dots denote derivatives with respect to conformal time. During the radiation era,
a grows linearly, so ä = 0, i.e.,
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and the only effect of expansion lies in the 1/a dilution factor in the source.

2 The prefactor

With the prefactor included, we have
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As noted above, the critical density is given by ρcrit = 3H2/8πG. Therefore, we have
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In the early universe, the radiation energy is approximately equal to the critical density. Therefore, it is
convenient to solve the hydrodynamic equations in units where ρcrit = c2 = 1 and to normalize time by
the initial value of 1/H. The final set of equations is therefore
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and to omit the overbars from now on.

2.1 TT projection and linear polarization basis

The six components of the spatial part of the symmetric tensor hij(x, t), characterizing the linearized evo-
lution of the scaled strains, contain four degrees of gauge freedom. In the TT gauge, these are eliminated
by requiring h̃TT

ij (k, t) to be a transverse and traceless tensor, i.e., h̃TT
ii (k, t) = 0, and kj h̃

TT
ij (k, t) = 0,

respectively, where Einstein summation convention is being used, leaving only two independent com-
ponents which, in the linear polarization basis, are the + and × polarization modes. To compute the
physically observable characteristic amplitude, GW energy density, and the degree of circular polariza-
tion, we compute h̃TT

ij (k, t) and h̃
′TT
ij (k, t), and express them in terms of the linear polarization modes.

To compute h̃TT
ij (k, t) from hij(x, t), we take the Fourier transform of the six components of hij(x, t)

using the convention

h̃ij(k, t) =

∫
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−ik·x d3x , (18)
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for 1 ≤ i ≤ j ≤ 3 and compute the components in the TT gauge as
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Next, we compute the linear polarization basis,
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where e1 and e2 are unit vectors perpendicular to k and perpendicular to each other. This polarization
basis has the following orthogonality property
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Thus, the strains are decomposed into the two independent + and × modes, such that h̃TT
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We then return into physical space and compute
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Analogous calculations are performed to compute h̃′

+,×(k, t) and T̃+,×(k, t). The normalized GW Equa-
tion (??) can be expressed for the two independent +,× modes, in Fourier space, as
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A possible choice of unit vectors in Fourier space is described in the footnote.1

3 GWs for a Beltrami field

It is useful to have an analytic solution to compare the numerical solutions against. A simple example that
has not previously been discussed in this context is the case of GWs generated by a magnetic Beltrami

1The linear polarization basis is formed by e
1, e2, and e

3 = k̂, for all wavevectors except k = 0, that corresponds to a
monochromatic uniform field, and is neglected in GW spectra because uniform fields do not generate GWs. To construct
e
1 and e

2 from k, we distinguish three cases: for |k1| < min(|k2|, |k3|):

e
1 = sgn (k) (0,−k̂3, k̂2) , e

2 = (k̂22 + k̂23,−k̂1k̂2,−k̂1k̂3) , (25)

for |k2| < min(|k3|, |k1|):

e
1 = sgn (k) (k̂3, 0,−k̂1) , e

2 = (−k̂2k̂1, k̂
2
3 + k̂21 ,−k̂2k̂3) , (26)

for |k3| ≤ min(|k1|, |k2|):

e
1 = sgn (k) (−k̂2, k̂1, 0) , e

2 = (−k̂3k̂1,−k̂3k̂2, k̂
2
1 + k̂22) , (27)

where we define the sign of a general wavevector k = (k1, k2, k3) in the following way

sgn (k) =

{

sgn (k3) if k3 6= 0 ,

sgn (k2) if k3 = 0 and k2 6= 0 ,

sgn (k1) if k2 = k3 = 0 ,

(28)

such that half of the wavevectors are considered positive and the other corresponding half of the wavevectors are considered
negative. The way to choose which half of the wavevectors are positive is arbitrary and could be changed leading to the
same final result.

Note that neither e
1 nor e

2 flip sign under the parity transformation k → −k. The reason for the sgn (k) term is the
following. The linear polarization tensorial basis e

+

ij
(k) and e

×

ij
(k) must be represented by even operators with respect to

k to reproduce the required modes, as will be shown in next section with a simple example, a one-dimensional Beltrami
field. Alternatively, without loss of generality, we could have defined e

1 and e
2 such that both flip sign under k → −k

transformations, such that both e
+

ij
(k) and e

×

ij
(k) tensors are even operators.
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Figure 1: Magnetic energy EM, gravitational wave energy EGW, and rms strain hrms versus time for the
Beltrami magnetic field as initial condition.

field in a non-expanding flat universe, in the absence of fluid motions. In this case, the scale factor, a(t),
does not affect the GW equation. Hence, the initial time can be chosen to be zero. The one-dimensional
Beltrami magnetic field is expressed as

B(x, t) = B0Θ(t)





0
sin k0x
cos k0x



 , (29)

where k0 and B0 are the characteristic wavenumber and amplitude of the Beltrami field, respectively, and
Θ(t) is the Heaviside step function, such that the sourcing magnetic field is assumed to appear abruptly at
the starting time of generation t∗ = 0. In the present work, we assume this time to be at the electroweak
phase transition. The normalized magnetic energy density, ΩM = B2

0 /(2E∗

rad) is constant in time.

The Beltrami field can equally well be applied to the velocity field, i.e., u(x, t) = u0Θ(t) (0, sin k0x, cos k0x)
T
.

The normalized kinetic energy density is ΩK = ρu2
0 /(2E∗

rad) . In this case, there would be no initial mag-
netic field, although it could be generated by a dynamo at later times, when η 6= 0. Hence, this case
would require solving the time-dependent MHD equations simultaneously with the GW equation, if η = 0
cannot be assumed.

The fractional helicity of the Beltrami field is ±1 and has the same sign as the characteristic wavenum-
ber k0. The Beltrami field (when applied to B) is force-free (J × B = 0), so no velocity will be gen-
erated. In the absence of magnetic diffusion (η = 0), we can therefore treat this magnetic field as
given and do not need to evolve it. In the TT projection, we can write the normalized stress tensor as
TTT
ij (x, t) = (−BiBj +

1
2δijB

2)/E∗

rad for i, j = 2, 3 and TTT
ij = 0 for i = 1 and/or j = 1. We have

TTT
ij (x, t) = −ΩMΘ(t)





0 0 0
0 − cos 2k0x sin 2k0x
0 sin 2k0x cos 2k0x



 . (30)

Note that TTT
ij (x, t) has only two independent terms, so we can directly compute the + and ×

components. For the Beltrami magnetic field, we have

T+(x, t) = ΩMΘ(t) cos 2k0x, T×(x, t) = −ΩMΘ(t) sin 2k0x . (31)

These modes are directly obtained using the decomposition into the +,× polarization basis with the
change of sign described in the footnote above. If the change of sign is not taken into account, the ×
mode obtained is T̃×(x, t) ∝ i cos 2k0x, which is not independent of the + mode. Since the + and × modes
have to be orthogonal functions, the change of sign is required to appropriately describe the modes.

Assuming h+ = h× = ḣ+ = ḣ× = 0 at the initial time t = 0, when the Beltrami field starts to act
as a source of GWs, the time-dependent part of the solutions to the GW equation is proportional to
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1− cos 2ω0t = 2 sin2ω0t, where ω0 = ck0, so we have

h+(x, t) =
3H2

∗

c2k20
ΩMΘ(t) cos 2k0x sin2ω0t , h×(x, t) = − 3H2

∗

c2k20
ΩMΘ(t) sin 2k0x sin2ω0t . (32)

The spectral function Sh is given by

Sh(k, t) =

(

3H2
∗

c2k20

)2

Ω2
MΘ(t)δ(k − 2 k0) sin

4 ω0t , (33)

where δ(k − 2 k0) is the Dirac delta function, and the shell-integration is performed in 1D, such that we
get a factor Ω1 = 2 in the computation. The characteristic wavenumber k0 has been considered to be
positive because the shell-integration rules out the dependence on direction of the wavevector k, leading
to a function that only depends on the positive modulus k. For negative k0 the δ term should then be
δ(k + 2k0) instead. In general, we write δ(k − 2|k0|). The hrms(k, t) spectral function is

hrms(k, t) =
3
√
2H2

∗

c2k20

√

k0ΩMΘ(t)δ(k − 2 |k0|) sin2 ω0t , (34)

which leads to a characteristic amplitude

hrms(t) =

(∫

∞

0

Sh(k, t) dk

)1/2

=
3H2

∗

c2k20
ΩMΘ(t) sin2 ω0t . (35)

The spectral function Sḣ(k, t) is given by

Sḣ(k, t) =

(

3H2
∗

ck0

)2

Ω2
MΘ(t)δ(k − 2 |k0|) sin2 2ω0t , (36)

where we have used the time derivatives of the strains

ḣ+(x, t) =
3H2

∗

ck0
ΩMΘ(t) cos 2k0x sin 2ω0t, ḣ×(x, t) =

3H2
∗

ck0
ΩMΘ(t) sin 2k0x sin 2ω0t . (37)

4 Exponential evolution of the source in time

It is convenient to restrict our attention to the case of a purely monochromatic exponential growth of
B at the rate γ0. The magnetic energy increases then at the rate 2γ0. In the following, the notation
simplifies when letting the argument t start at t = 0, so that the actual time is simply t+ 1. Let us now
assume that T̃ (k, t) is given by

T̃ (k, t+ 1) = θ(t) T̃0(k) e
2γt, (38)

where θ(t) = 1 for t > 0 and 0 otherwise is the Heaviside step function, and T̃0(k) is the Fourier transform
of one of the two polarization modes of the stress, which is assumed to depend just on k = |k|.

During the early growth phase, the expansion of the universe can be neglected and we can solve the
GW equation in closed form as

h̃(k, t+ 1) =
6T̃0(k)

k

∫ t

0

sin k(t− t′) e2γt
′

dt′, (39)

where h̃ stands for both h̃+ and h̃×. Using sinφ = (eiφ − e−iφ)/2i for any variable φ, we have

h =
3T0

ik

∫ t

0

[

e(2γ−ik)t′+ikt − e(2γ+ik)t′−ikt
]

dt′. (40)
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Integrating between the two boundaries yields

h(k, t+ 1) =
3T0(k)

ik

[

e2γt − eikt

2γ − ik
− e2γt − e−ikt

2γ + ik

]

. (41)

Equation (41) can be written as

h̃(k, t+ 1) =
6T̃0(k)

4γ2 + k2

(

e2γt − cos kt− 2γ

k
sin kt

)

, (42)

or, replacing 2γ → k0,

h̃(k, t+ 1) =
6T̃0(k)

k20 + k2

(

ek0t − cos kt− k0
k

sin kt

)

(43)

and its time derivative

k−1 ˙̃h(k, t+ 1) =
6T̃0(k)

k20 + k2

(

k0
k
ek0t + sin kt− k0

k
cos kt

)

. (44)

In practice, we are always interested in the case where the exponential term dominates over the cosine
and sine terms. When k < 2γ, Sp(h) and Sp(ḣ) are proportional to Sp(T0). When the source has a white
noise spectrum, we have Sp(h) ∝ k2[T̃0(k)]

2 ∝ k2. However, when k > 2γ, we find Sp(h) ∝ Sp(ḣ) ∝
k2[T̃0(k)/k

2]2 ∝ k−2, with the breakpoint being at ck = 2γ0, where we have restored the speed of light
for dimensional clarity.

4.1 Solution for subsequent evolution

Let us assume that the souce is turned off abruptly at t = t0. The GW field then continunues in a purely
oscillatory fashion with

(

h̃
˙̃
h/k

)

(k, t+ 1) =

(

cos ktm sin ktm
− sin ktm cos ktm

)(

A
B

)

, (45)

where the coefficients A and B have to be determined by matching h̃ and
˙̃
h of this solution to Equa-

tions (43) and (44) at t = te, which we write as

(

h̃m
˙̃
hm/k

)

≡ 6T̃0(k)

k20 + k2

(

ek0tm − cos ktm − k0

k sin ktm
k0

k ek0tm + sin ktm − k0

k cos ktm

)

. (46)

Thus, we require
(

h̃m
˙̃
hm/k

)

=

(

cos ktm sin ktm
− sin ktm cos ktm

)(

A
B

)

, (47)

with the solution
(

A
B

)

=

(

cos ktm sin ktm
− sin ktm cos ktm

)(

h̃m
˙̃
hm/k

)

(48)

Thus,
(

h̃
˙̃
h/k

)

(k, t+ 1) =

(

cos ktm sin ktm
− sin ktm cos ktm

)(

cos ktm sin ktm
− sin ktm cos ktm

)(

h̃m
˙̃
hm/k

)

(49)

or, using the addition theorems of trigonometric functions,

(

h̃
˙̃
h/k

)

(k, t+ 1) =

(

cos k(t− tm) sin k(t− tm)
− sin k(t− tm) cos k(t− tm)

)(

h̃m
˙̃
hm/k

)

(50)
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Table 1: Dependence of the numerical decay rate λ on kGW/kNy and δt c/δx.

δt c/δx kGW/kNy = 1/4 1/2 1
0.2 6.7× 10−4 1.0× 10−2 6.0× 10−2

0.1 8.2× 10−5 1.3× 10−3 8.0× 10−3

0.05 1.2× 10−5 3.2× 10−4 1.0× 10−3

We thus have

h̃(k, t+1) =
6T̃0(k)

k20 + k2

[

cos k(t− tm)

(

ek0tm − cos ktm − k0
k

sin ktm

)

+ sin k(t− tm)

(

k0
k
ek0tm + sin ktm − k0

k
cos ktm

)]

(51)
or

h̃(k, t+1) =
6T̃0(k)

k20 + k2

[(

cos k(t− tm) +
k0
k

sin k(t− tm)

)

(

ek0tm − cos ktm
)

−
(

k0
k

cos k(t− tm) + sin k(t− tm)

)

sin ktm

]

(52)

5 Numerical solutions for finite spatio-temporal resolution

At small enough grid spacings and small enough timesteps, our numerical solutions reproduce the con-
sidered one-dimensional Beltrami field. At coarser resolution, however, we find that hrms(t) and ΩGW(t)
are characterized by an additional decay of the form

hrms(t) =
(

3H2
∗

/

c2k20

)

ΩM e−λt sin2 ω0t , (53)

ΩGW(t) =
(

3H2
∗

/

2c2k20

)

Ω2
M e−λt sin2 2ω0t , (54)

where λ is the numerical decay rate. We emphasize that λ 6= 0 is entirely artificial and has to do
with imperfect numerics in the case of approach I. Results for λ are given in Table 1 as functions of δt
(quantified by the Courant number δt c/δx) and the GW wavenumber kGW (normalized by the Nyquist
wavenumber kNy = π/δx to give kGW/kNy = kGWδx/π).

The magnetic field wavenumber is kM = k0, so kGW = 2k0 = 2kM is the wavenumber of the GWs
generated by the one-dimensional Beltrami field. We see from Table 1 that the decay rate is largest for
kGW = kNy and varies there between 6 × 10−2 (for δt c/δx = 0.2) and 10−3 (for δt c/δx = 0.05). In
Figure 2 we plot contours of λ (color-coded) versus kGW and δt. Again, the largest values of λ occur
when kGW = kNy and δt is large. We also see that the lines of constant decay rate scale like δt ∝ k−1

GW.
In Figure 3 we show, in separate panels, the changes in λ versus kGW and δt. We see that the data points
are compatible with the scalings λ ∝ k3GW and λ ∝ δt3. The cubic scaling of λ is related to the third
order accuracy of the time stepping scheme. The slight departures from this behavior can be attributed
to the low number of runs computed to construct Table 1.

6 Exact solution between time steps for constant T

Consider the GW equation, ḧ+ k2h = S, in the form

ḣ = g
ḧ ≡ ġ = −k2h+ S. (55)
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Figure 2: Dependence of the decay rate of the Beltrami field solution due to numerical error, λ, on
kGW/kNy and δt c/δx. Blue (yellow) shades indicate low (high) numerical errors. The error is high when
kGW is close to the Nyquist wavenumber and δt is large. The scaling δt c/δx ∝ (kGW/kNy)

−1 is indicated
by a white solid line.

Figure 3: Scaling of the decay rate of the Beltrami field solution due to numerical error, λ, with kGW/kNy

(left panel) for δt c/δx = 0.05 (straight line), 0.1 (dotted line), and 0.2 (dashed line), and with δt c/δx
(right panel) for kGW/kNy = 0.25 (straight line), 0.5 (dotted line), and 1.0 (dashed line). Cubic scalings
are indicated by the straight lines.

Suppose we know h, g, and S at time t = 0, what is the solution at time t = δt under the assumption
that S = const during the time interval δt. The general solution can be written in the form

h = +A cos kt+B sin kt+ k−2S
g = −Ak sin kt+Bk cos kt, (56)

where A and B are unknowns that are determined from the solution (h, g) at t = 0, which leads to

A = h− k−2S
B = k−1g (57)
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Inserting this yields for the solution at t = δt

h(δt) = +(h− k−2S) cos kδt+ k−1g sin kδt+ k−2S,
g(δt) = −(h− k−2S)k sin kδt+ k−1gk cos kδt, (58)

or

h(δt)− k−2S = +(h− k−2S) cos kδt+ k−1g sin kδt,
g(δt) = −(h− k−2S)k sin kδt+ k−1gk cos kδt, (59)

It is convenient to cancel a k factor in the last equation and to multiply the first equation by k, so

(kh− k−1S)(δt) = +(kh− k−1S) cos kδt+ g sin kδt,
g(δt) = −(kh− k−1S) sin kδt+ g cos kδt. (60)

Writing this in matrix form yields
(

kh− k−1S
g

)

new

=

(

cos kδt sin kδt
− sin kδt cos kδt

)(

kh− k−1S
g

)

current

(61)

for the solution at the next time. This technique was first exploited by Roper Pol et al. (2020).

7 Linearly varying S between time steps

When S varies linearly in time, the general solution can be written in the form

h = +A cos kt+B sin kt+ k−2(S0 +Ṡ0δt)
g = −Ak sin kt+Bk cos kt+ k−2 Ṡ0 (62)

We can then express
(

kh− k−1(S0 +δS)
g−k−2δS/δt

)

new

=

(

cos kδt sin kδt
− sin kδt cos kδt

)(

kh− k−1S
g−k−2δS/δt

)

current

(63)

Comparing with the previous solution for constant source, we have
(

h
g

)

2nd order

= ...+
δS

k2

(

[1− (sin kδt)/kδt]
(1− cos kδt)/δt

)

. (64)

8 Timestep constraint for approach I in a turbulent case

We now present an example where the timestep constraint becomes particularly apparent when directly
integrating the GW equation. As alluded to in the introduction, this is the case when GWs are being
sourced by turbulent stresses, and we use the approach I. We consider here the case of decaying helical
magnetic turbulence. This case was originally considered in the cosmological context using just an
irregular magnetic field and no flow as the initial condition (???). In this context, one can argue that the
magnetic field at scales larger than the injection scale must be causally related. This, together with the
solenoidality of the magnetic field, leads to a k4 subinertial range spectrum (?). The EM(k, t) ∝ k4 scaling
corresponds to ΩM(k, t) ∝ k5. The magnetic field is strong and the fluid motions are just the result of the
Lorentz force. The k4 subinertial range spectrum is then followed by a k−2 weak turbulence spectrum at
high wavenumbers (Brandenburg et al., 2015). The normalized wavenumber where the change of behavior
occurs, is the peak wavenumber, k∗. For an initial k4 spectrum, the magnetic field undergoes inverse
cascading such that the magnetic energy spectrum is self-similar and obeys

ΩM(k, t)/k = φ (kξM(t)) , (65)
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Figure 4: GW (lower curves) and magnetic (upper curves) energy spectra at three different normalized
conformal times, t = 2 (top panel), 5 (middle panel), and 40 (bottom panel), which are normalized with
the time when the turbulence source turns on, i.e., t∗. Each panel shows three different Courant numbers:
δt c/δx = 0.23 (red dotted lines), 0.12 (blue dashed lines), and 0.05 (black solid lines). The wavenumbers
are normalized with the normalized peak wavenumber k∗, at the starting time of generation. In this
simulation, k∗ = 10, and the total initial magnetic field energy density is ΩM (t = 1) ≈ 0.123.

where φ is a generic function (??) and ξM(t) is the magnetic integral scale given by (??).
In Figure 4 we show, for three different times, the normalized magnetic and GW energy spectra,

obtained following approach I, for an expanding universe, so we have G(t) = 6/t on the right-hand side of
(??), and t = 1 is the initial normalized time, which refers to the starting time of generation. Independent
of the value of δt, the peak of ΩM(k, t)/k is seen to propagate gradually towards smaller k. This is the
inverse cascade owing to the presence of magnetic helicity (???). Note that the peak of the spectrum
always has the same height. This is compatible with (65). The ratio of ΩM(t)/ΩGW(t) changes from
about 100 at early times to about 20 at the last time as the magnetic field decays, while ΩGW(t) stays
approximately constant.

Let us now focus on the comparison of solutions for different Courant numbers, δt c/δx = 0.23, 0.12,
and 0.05 in Figure 4. While the magnetic energy spectra are virtually identical for different δt, even
for high wavenumbers, the GW spectra are not. There is a dramatic loss of power at large k, when
δt c/δx = 0.23. A value of δt c/δx = 0.8 was always found to be safe as far as the hydrodynamics is
concerned, but this is obviously not small enough for the GW solution. This is a surprising result that
may not have been noted previously.

In Figure 5, we show that the solution with δt c/δx <∼ 0.05 agrees perfectly with that of approach II at
δt c/δx <∼ 0.8. The additional cost in performing Fourier transforms at every timestep, used in approach II,
is easily outweighed by the more than 10 times longer timestep, when comparing to approach I. We also
show the comparison between the actual GW energy spectrum, ΩGW(k, t); see (??), and the spectrum
obtained from conformal time derivatives, Ωh′

GW(k, t); see (??). These two spectra become more similar

10



Figure 5: Same as Figure 4, but now comparing the case with δt c/δx = 0.05 (black solid lines), using
approach I, with the analytic solution assuming constant G(t)Tij(x, t), in time, between consecutive
timesteps (red solid line), which corresponds to approach II, here referred to as “exact”, using δt c/δx =
0.8. The red dashed lines indicate the spectrum computed from the conformal time derivatives of the
strains, Ωh′

GW(k, t)/k.

Table 2: Dependence of the decay rate of the numerical error λ on kGW/kNy and δt c/δx for hydromag-
netically driven GWs. Dashes indicate that the decay rate was too small compared with the fluctuations
and could not be determined.

δt c/δx kGW/kNy = 1/4 1/2 1
0.23 0.012 0.16 1.1
0.12 – 0.015 0.12
0.05 – – 0.006

for large wavenumbers and for longer times.
To see whether the observed degradation using approach I; see Figure 4, is compatible with what has

been seen for the monochromatic Beltrami field, we determine again the decay rates for three wavenumbers
of the spectral GW amplitude. The result is given in Table 2.

In addition to the numerical error discussed above, when computing the solution using approach I,
we found a numerical instability that is distinct from the usual one invoked in connection with the CFL
condition. This new instability emerges when the accuracy of the solution is already strongly affected
by the length of the timestep, namely for δt c/δx >∼ 0.46, which is still well within the range of what
would normally (in hydrodynamics) be numerically stable. The problem appears at late times, after the
GW spectrum has long been established. This new numerical error manifests itself as an exponential

11



Figure 6: Late time numerical instability for δt c/δx = 0.46 seen in the temporal evolution of ΩGW(k, t)/k
after t = 6 for k/k∗ = 7.2 (solid), 3.6 (dotted), 1.8 (dashed), and 0.4 (dash-dotted). The spectra shown
are normalized with the total GW energy density shortly after the start of the simulation, at t >∼ 1,
ΩGW(k, t)/kΩGW(t >∼ 1). The normalized peak wavenumber is k∗ = 10, and the total initial magnetic
energy density is ΩM (t = 1) ≈ 0.123.

growth that is seen first at large wavenumbers and then at progressively smaller ones; see Figure 6. Our
earlier studies have shown that this problem cannot be controlled by adding explicit diffusion to the
GW equation. Given that the solution is already no longer accurate for this length of the timestep,
this numerical instability was not worth further investigation, but it highlights once again the surprising
differences in the numerical behavior of wave and fluid equations.

Looking again at the GW energy spectra at early times, Figures 4 and 5, we see wiggles in the
spectrum at t = 2 (top panel). One might be concerned that these are caused by numerical artifacts,
but the spatial distributions of physical h+(x, t = 2) and h×(x, t = 2) look smooth; see Figure 7. Thus,
the wiggles in ΩGW(k, t)/k are not artificial, but presumably related to the finite domain size and the
way the initial condition for the magnetic field, ΩM (k, t = 1)/k is posed using combined k4 and k−2

power laws, for small and large wavenumbers respectively. They might appear as a transient effect in the
evolution from the initially vanishing GW energy density to the shape observed for later times. Indeed,
at late times the wiggles disappear.

9 Can the timestep cause artifacts in hydrodynamic and MHD

turbulence?

The length of the timestep can affect the convergence properties of solutions of incompressible hydro-
dynamic simulations. In the present compressible MHD simulations, however, no obvious side effects of
increasing the length of the timestep within the standard CFL condition have been seen. However, there
could be subtle effects. Here we investigate two possibilities. The first is the bottleneck effect in hydro-
dynamic turbulence, which refers to the kinetic energy spectrum, ΩK(k, t)/k, slightly shallower than the
Kolmogorov k−5/3 spectrum. This phenomenon is explained by the inability of triad interactions with
modes in the dissipative subrange to dispose of turbulent energy from the end of the inertial range (?).
This also has subtle effects on the growth rate of turbulent small-scale dynamos (see Brandenburg et al.,
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Figure 7: xy cross-sections through z = 0 of h+(x, t), h×(x, t), and the normalized conformal time
derivatives, h′

+(x, t) = ∂th+(x, t), and h′

×
(x, t) = ∂th+(x, t), at t = 2 (upper row) and t = 40 (lower

row). The simulation parameters are the same as in Figures 4 and 5.

2018, hereafter referred to as BHLS). The second possible subtlety is a modification of the magnetic en-
ergy spectrum, ΩM(k, t)/k, during the kinematic growth phase. This problem of a kinematic small-scale
dynamo is closest to our GW experiment in that both problems are linear and there is no turbulent
cascade in either of the two problems. We begin with the first possibility.

The description in this section refers only to MHD turbulence and, for convenience, the usual non-
normalized and physical variables are used for comparison with other works (e.g., k refers to dimensional
physical wavenumbers), instead of the normalized variables that are useful in the context of GWs. As
in previous sections, however, we continue to show magnetic and kinetic energy spectra in terms of
ΩM,K(k, t)/k.

In the simulations of BHLS, turbulence was being forced at low wavenumbers using an explicit forcing
function f(x, t) on the momentum equation. It drives modes in a narrow band of wavenumbers. We
consider here run D of BHLS, where driving was applied at wavenumbers between 1.4 and 1.8 times the
lowest wavenumber of the domain, kmin = 2π/L of a cubic domain of size L3. The magnetic Reynolds
number based on the average wavenumber was about 540.

The important point of BHLS was to show that the bottleneck effect is independent of the forcing
wavenumber, provided that the effective forcing wavenumber is used in the definition of the magnetic
Reynolds number. Here we demonstrate that the bottleneck is not affected by the length of the timestep.
Technically, the simulations presented in this section are done with magnetic fields included, but the field
is at all scales still extremely weak, so for all practical purposes we can consider those as hydrodynamic
simulations. The result is shown in Figure 8, where we compare run D of BHLS, which uses a timestep
of δt cs/δx = 0.6, with a new one called run Ds, where ‘s’ indicates that the timestep is shorter, such
that now δt cs/δx = 0.15, where cs refers to the sound speed. Both spectra fall off in the same way as k
approaches the viscous cutoff wavenumber kν = (ǫK/ν

3)1/4, where ǫK is the mean kinetic energy injection
rate per unit mass, and ν is the kinematic viscosity.

It turns out that there is no difference in the energy spectrum relative to run D, where the timestep
obeys δt cs/δx = 0.60. Thus, the artifacts reported in the present paper, namely the excessive damping
of power at high wavenumbers, seem to be confined to the GW spectrum and do not affect in any obvious
way the properties of the energy spectrum of MHD turbulence.
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Figure 8: Comparison of the kinetic spectrum compensated with the usual Kolmogorov inertial scaling

k−5/3ǫ
2/3
K , for run D (black line) of BHLS with those of a continuation of this run with a four times

shorter timestep (run Ds, red line). The inset shows the compensated spectra on a linear scale. The
dotted line shows the expected inertial range correction proportional to k−0.03. The physical wavenumbers
are normalized with the dissipation wavenumber kν . Both spectra are time-averaged after compensating
against the exponential growth.

The lack of any noticeable high wavenumber artifacts in MHD turbulence can simply be explained
by the absence of relatively rapid oscillations in MHD flows, compared to GW oscillations, which are
proportional to c. To demonstrate this, we compare in Figure 9 the GW frequency ω = ck with the
turbulent turnover rate uk(k)k, the turbulent Alfvén rate vAk(k)k, and the viscous damping rate νk2

at wavenumber k for a simulation of GWs at 11523 mesh points, a Reynolds number, Re = urms/νk
of about 1000, and a magnetic Reynolds number Rm = Re, so that ν = η. Here, we use the relations
uk(k) =

√

2EK(k), and vAk(k) =
√

2EM(k) for the k-dependent turbulent velocity and the k-dependent
Alfvén speed. Note that max(vAk(k) k), at ck/H∗ ≈ 3 · 10−4, is about 30 times smaller than ω = ck,
and the difference is bigger for larger values of k. This shows that from an accuracy point of view, the
timestep could well be 30 times longer before the accuracy of MHD begins to be affected.

10 Present day values of GW energy and characteristic strain

We recall that the dots in the GW equation denote physical time derivatives. In terms of the normalized
conformal time t and scaled strains hij(x, t), the physical time derivative of the physical strains hphys

ij (x, t)
is

ḣphys
ij (x, t) =

H∗

t

∂

∂t

(

hij(x, t)

t

)

=
H∗

t2

(

h′

ij(x, t)−
hij(x, t)

t

)

. (66)

Therefore, the normalized GW energy density Ω0
GW(t) can be expressed in terms of the normalized

conformal time as

Ω0
GW(t) =

(H∗ /H0 )
2

12t4

[

〈h′

ijh
′

ij〉+
1

t2
〈hijhij〉 −

2

t
〈h′

ijhij〉
]

, (67)
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Figure 9: Comparison of the GW frequency ω = ck with the turnover rate uk(k) k of the turbulence,
the turbulent Alfvén rate vAk(k) k, and the viscous damping rate νk2 at normalized wavenumber ck/H∗.
Note that all frequencies in the plot are normalized with H∗.

15



Figure 10: Evolution of magnetic energy (a) and growth of GW energy density (b) for simulations where the
driving is turned off at t = 1.1 (black dotted line), or the strength of the driving is reduced linearly in time over
the duration τ = 0.2 (green), 0.5 (blue), 1 (red), or 2 (black). Time is in units of the Hubble time at the moment
of source activation. The magnetic and GW energy densities are in units of the radiation energy density. In (a),
the fat line segments denote a decay proportional to exp(λt) with λ given in Table 3.

where the explicit dependence on x and t has been omitted to simplify the notation. The energy density

Ω0
GW(t) has three different contributions such that Ω0

GW(t) = Ωh′,0
GW(t)+ t−2Ωh,0

GW(t)−2t−1Ωmix,0
GW (t). Note

that ΩGW(t) is obtained from (67) without the prefactor H∗ /H0 , as well as Ω
i
GW(t), for i = h′, h, mix.

As an example, we show the temporal evolution of the GWs. The GW spectrum becomes stationary
shortly after the driving of the source ends (i.e., when the free decay stage of the source starts), while
the energy density of the source is still present. To demonstrate this, Kahniashvili et al. (2021) drive

magnetic fields with an electromotive force, Fi = (δij + σǫijlk̂l)F (0)
j , consisting of plane waves that are

delta-correlated in time. Here, −1 ≤ σ ≤ 1 quantifies the fractional helicity, and F (0)
j is a nonhelical plane-

wave forcing term. Plasma motions are selfconsistently driven by the Lorentz force. Purely hydrodynamic
motions are driven by a ponderomotive force analogous to Fi.

In Fig. 10, we show the temporal evolution of the source and the growth of the GW energy density
for the driven (1 < t < 1.1) and decaying stages (t > 1.1), where the driving decreases linearly for a
duration τ = 0.1–2, although τ > 0.5 may be unrealistic. As in Roper Pol et al. (2020), they use 11523

meshpoints for the runs in Fig. 10 and put σ = 0; see Table 3 for a summary relevant quantities. During
the statistically stationary stage, the GW energy density growth rate is proportional to the duration of
turbulence. In reality, the driving stage is short compared to the Hubble time-scale, and consists of the
few largest eddy turnover times.

Table 3: Characteristic parameters of the runs of Fig. 10.

τ λ Emax
M Emax

K Esat
GW hsat

rms

0.1 −13.5 0.0367 0.0134 6.3× 10−8 2.5× 10−6

0.2 −9.37 0.0368 0.0135 7.6× 10−8 2.8× 10−6

0.5 −3.32 0.0372 0.0137 1.1× 10−7 3.4× 10−6

1 −1.43 0.0378 0.0140 1.6× 10−7 4.1× 10−6

2 −0.63 0.0381 0.0141 2.4× 10−7 5.1× 10−6

In Table 3, we have quoted the values of Esat
GW and hsat

rms obtained at the end of the simulation at
t = tend. We emphasize that EGW is the comoving GW energy density normalized by the critical energy
density, which is the same as the radiation energy density during the simulation, and hrms corresponds
to the scaled strain. To compute the relic observable h2

0ΩGW at the present time, we have to multiply
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Figure 11: Degree of circular polarization for (a) kinetically and (b) magnetically forced cases with σ = 0 (black)
0.1 (blue), 0.3 (green), 0.5 (orange), and 1 (red). Approximate error bars based on the temporal fluctuations and
statistical spread for different random seeds of the forcing are shown as solid black lines for σ = 0 and as dotted
lines otherwise. The wave number is in units of the comoving Hubble frequency.

Esat
GW by a factor (H∗/H0)

2a−4
0 . although there we used the symbol ΩGW also for the latter. For the

aforementioned fiducial parameters of g∗ = 100 and T∗ = 100GeV, this factor is 1.64×10−5. The largest
value of Esat

GW quoted in Table 3 is 2.4×10−7 and corresponds therefore to h2
0ΩGW = 4×10−12. Likewise,

the values of hsat
rms in Table 3 have to be multiplied by a−1

0 = 8.0× 10−16 to obtain the observable hc at
the present time. Again, the largest value of hsat

rms = 5.1 × 10−6 corresponds therefore to the observable
hc = 4× 10−21.

11 Helical turbulence

Figure 11 shows polarization degree spectra in for continuous pumping of kinetic or magnetic energy
and helicity at intermediate scales. These results demonstrate that the polarization degree is scale-
dependent: ∝ k−0.5 at large wavenumbers, which is shallower than the k−1 expected for Kolmogorov-like
helical turbulence with different spectral indices for the magnetic spectral energy density (nS = −5/3)
and the spectral helicity density (nH = −11/3). In these simulations, the actual indices are a bit smaller,
which also explains the shallower slope in the polarization degree.

12 GW from the QCD epoch

In Figure 12, we plot the resulting present-day GW energy and strain spectra for runs with kf = 2, 6, 20,
and 60 with helicity in the driving function F see Brandenburg et al. (2021). The first two cases with
kf = 2 and 6 lie well within the frequency and amplitude range accessible to NANOGrav. In all cases, the
spectra show a sharp drop slightly above the peak frequency. This is a consequence of the rapid temporal
growth of the spectra, which leads to a correspondingly large growth at the peak frequency, while at
higher frequencies, the spectrum settled at values that were determined by somewhat earlier times when
the energy was still weaker. Better agreement was obtained in the work by Roper Pol et al. (2022).

References

Brandenburg, A., Kahniashvili, T., & Tevzadze, A. G., “Nonhelical inverse transfer of a decaying turbu-
lent magnetic field,” Phys. Rev. Lett. 114, 075001 (2015).

17



Figure 12: (a) h2
0ΩGW(f) and (b) hc(f) at the present time for helical runs. The 2σ confidence contour

for the 30-frequency power law of the NANOGrav 12.5-year data set is shown in gray. Adapted from
Brandenburg et al. (2021)

Brandenburg, A., Clarke, E., He, Y., & Kahniashvili, T., “Can we observe the QCD phase transition-
generated gravitational waves through pulsar timing arrays?” Phys. Rev. D 104, 043513 (2021).

Brandenburg, A., He, Y., Kahniashvili, T., Rheinhardt, M., & Schober, J., “Gravitational waves from
the chiral magnetic effect,” Astrophys. J. 911, 110 (2021).

Brandenburg, A., Haugen, N. E. L., Li, X.-Y., & Subramanian, K., “Varying the forcing scale in low
Prandtl number dynamos,” Month. Not. Roy. Astron. Soc. 479, 2827–2833 (2018).

Kahniashvili, T., Brandenburg, A., Gogoberidze, G., Mandal, S., & Roper Pol, A., “Circular polarization
of gravitational waves from early-universe helical turbulence,” Phys. Rev. Res. 3, 013193 (2021).

Roper Pol, A., Mandal, S., Brandenburg, A., Kahniashvili, T., & Kosowsky, A., “Numerical simulations
of gravitational waves from early-universe turbulence,” Phys. Rev. D 102, 083512 (2020).

Roper Pol, A., Brandenburg, A., Kahniashvili, T., Kosowsky, A., & Mandal, S., “The timestep constraint
in solving the gravitational wave equations sourced by hydromagnetic turbulence,” Geophys. Astrophys.

Fluid Dynam. 114, 130–161 (2020).

Roper Pol, A., Caprini, C., Neronov, A., & Semikoz, D., “
,” Phys. Rev. D 105, 123502–Gravitational wave signal from primordial magnetic fields in the Pulsar
Timing Array frequency band (2022).

Subramanian, K., “The origin, evolution and signatures of primordial magnetic fields,” Rep. Progr. Phys.

79, 076901 (2016).

$Header: /var/cvs/brandenb/tex/teach/COSMOMAG26/2_relic_gravitational_waves/notes.tex,v 1.6 2026/01/13 13:14:39 brandenb Exp $

18


	GW equation with conformal time
	The prefactor
	TT projection and linear polarization basis

	GWs for a Beltrami field
	Exponential evolution of the source in time
	Solution for subsequent evolution

	Numerical solutions for finite spatio-temporal resolution
	Exact solution between time steps for constant T
	Linearly varying S between time steps
	Timestep constraint for approach I in a turbulent case
	Can the timestep cause artifacts in hydrodynamic and MHD turbulence?
	Present day values of GW energy and characteristic strain
	Helical turbulence
	GW from the QCD epoch

