Contribution from Wolfgang Dobler

to Issue 2025/1

May 21, 2025, 2024, Revision: 1.2

Contents

[1 The problem(s)|

1

2 Advantages of branch-oriented develop-

| __ment|
3 Note
[Foodbad [

1 The problem(s)

N =

The currently dominant development model of the Pen-

cil Code is

e unstructured: Commits cannot be grouped pre-
dictably, because while you try pushing them, oth-

ers could push some commits of their own;

e opaque: if commits are not grouped, it is hard to

see what is going on;
e hard to test:

— Continuous-integration tests (=

CI tests,

which we sometimes call Pencil tests or au-
totests) have hard time constraints and thus

cannot be thorough;

e fragile: as a consequence of being hard to test;

e obscuring responsibility: If I made two commits,
and A has pushed 3 commits in between (see un-
structured above), would I be testing my changes

or theirs?

2 Advantages of
oriented development

e Much deeper testing

branch-

— You can take your time to run all tests before
merging your branch back into main (= mas-
ter). This allows us to have really thorough
tests.

— Independence from CI. CI is nice, but it is
dangerous to rely on it (and it limits the
amount of testing)

Clearer identification of responsibility

Isolates unrelated changes from each other until
they really need to get dealt with

Friendly competition (survival of the most popular
branch)

You can get new features running and ask inter-
ested others to test before you finalize them (in-
stead of: everybody immediately has to live with
your new feature, although it is not thoroughly
tested yet — you had to push it onto main before
asking the interested others).

Reduces stress level, because you can properly
work on a feature without interfering with others
and later do all the tests and push.

Note

We have used branches before (e.g. the GPU

branch)

4 Feedback and criticism

Here is the gist of some responses I got to an earlier
version of the proposal below.

e “Risk of fragmentation”

— But where is the problem if all branches are
pushed to the server?

x If you need functionality from another
branch on your own feature branch, you
can (a) merge that branch, or (b) cherry-
pick the relevant changes from there.

— The important thing is to have all branches
pushed to the server.

x Currently: If you are not willing (yet) to
push, your changes are only local, which
is much worse.

e “For short-lived branches which are not shared
with anyone else, I would recommend rebasing, as
it keeps the history cleaner (this helps later on if
one is bisecting to find when a bug was introduced
to the master branch).”

— I am open to that, though I personally
find history with (even medium-sized) topic
branches cleaner; and git bisect works
across branches just as well.

e “I fear that if we start using more branching this
will result in some branches never being merged
back into main. This will eventually lead to several
versions of the Pencil Code.”

— There will always be some branches not (yet)
merged. If they are relevant, they will even-
tually get back into main, be it that they
get merged or cherry-picked. (And if they
are not, who cares?) Should there really ap-
pear two branches of the code that continue
to be popular among users over a long time,
we should strive to merge them.

e “...other codes in which multiple groups main-
tained branches of code which were entirely in-
compatible with the main branch or each other.”

— Rule 6. below strongly encourages to not let
branches diverge too far from main. Being
able to decide for yourself when exactly you
reconcile your changes with main is an enor-
mous benefit.

5 Proposal

Here is a set of rules that I would like to see imple-
mented:

1. The main person responsible for a commit is its
author.

2. The maintainers are important, as often only they
know how a sample really works. However, it is
not their responsibility to react to commits break-
ing an auto-test sample.

3. Ideally, any commit that ends up on main (the
main branch of the code) should not break any of
the essential auto-test samples.

If it turns out that a commit violates this rule, the
broken tests need to be fixed swiftly. Either by
the commit author committing a fix, or by others
reverting the commit in question.

Any commit that breaks an auto-test may be re-
verted by anybody without prior notice in order to
fix that test.

4. Keep individual commits focused on one logical
unit (i.e. keep them small and do not conflate
loosely related topics). This is crucial for identi-
fying and reverting problematic commits.

5. For a sequence of commits that belong logically
together, it is not very feasible, and also not nec-
essary, to run the test suite for each of them.

Instead, develop the feature on a branch. When
you think the feature is ready, merge main into
your feature branch and run the tests. If they
all run successfully, merge your branch back into
main.

Never merge a branch into main without having
verified that the auto-tests work.

6. Try to keep the lifetime of branches short, even
though this will not always be possible. If your
branch has to live longer, you should periodically
merge main into it.

7. Never quietly adjust reference results in an auto-
test sample directory to fit your latest data.

If reference data need to be touched up, this must
be agreed upon with the maintainer(s) of that test.

8. When making changes that will affect auto tests:

(a) Discuss this with everybody before you com-
mit the change.

(b) Isolate auto-tests against the change. E.g.
if you are to change the default value of
lmassdiff fix from .false. to .true.,
make sure to explicitly set 1lmassdiff fix =
.false. in all auto-test samples that would
otherwise be affected by the change.

9.

10.

Never rely on the automatic tests run after a com-
mit on the GitHub server, or the bisection that is
done. It is the committer’s responsibility to run
all officially accepted auto-tests.

Never rely on automatic emails to reach a main-
tainer of an auto-test (or in fact anybody else). If
you need to discuss an auto-test, contact the main-
tainer directly and only assume that you reached
them once they reply.

	The problem(s)
	Advantages of branch-oriented development
	Note
	Feedback and criticism
	Proposal

