The PENCIL CODE Newsletter

Issue 2025/1

June 9, 2025, 2024, Revision: 1.35

Contents

1 A new steering committee 1

I2 Five years newsletterI 1

I3 A proposed default changeI 2

4 Branches 2
roblem(s) 2

ranch-oriented development

S —— 13
I Z—Fsedback and crltlclsm 3
V=S FOpOSt——————— 4
———

5 Comparison with other codes 4

L 1

6 Additional suggestlons 5

for committers g

63 —Conbributorguidelinos—————. . . :
U.J D LdIC LGEEIII;

7 _Any commit or merger should... 6

I8 It would be good if Pencil were... 6

9 Views from the PCSC 7

L 1

10 New auto-test infrastructure 8

e ————

11 Random tips 9

Chi+ Gserspedific settings 9
H2Safersmapstots—— 9
'i-l—il—l'rrd'rcarturﬁ'}e-fo‘r snapshot wr1t1n9; ... 9
hll 4 ubUlIldblL \) V D upuaucb 9
| = T 9

12 Next PC User Meeting 9

13 Papers since October 2024 9

L 1

1 A new steering committee

Since Friday 23 May 2025, the PENCIL CODE has a new
steering committee (PCSC). As on previous occasions,
Matthias Rheinhardt set up the adoodle to perform
the anonymous election. Clara Dehman from the Uni-
versity of Alicante acted as an independent observer.
Here her abbreviated statement from 23 May:

I hereby confirm, in my role as observer, that the
election for the PCSC has been successfully concluded.
Below is a detailed summary of the participation and
the results. A total of 33 individuals were eligible to
vote. Of these, 17 submitted their ballots, resulting in a
participation rate of 51.5%. One additional participant
accessed the voting page but did not cast a vote, and
is therefore considered an attentive non-voter (3.03%).

3 The remaining 15 individuals (45.5%) neither accessed
the voting page nor submitted a vote and are thus clas-
sified as inattentive voters.

The top five candidates in terms of support were:

- Azel Brandenburg: 15 votes

- Philippe Bourdin: 12 votes

- Matthias Rheinhardt: 11 votes

- Jennifer Schober: 9 votes

- Piyali Chatterjee: 8 votes
With these results, we now have the newly elected mem-

bers of the PCSC. Yours sincerely,

Clara Dehman

We wish the new committee good luck with their
work. A presentation of most of the candidates was
published in issue 2023/3 of our newsletter. The terms
of reference of the PCSC are https://www.nordit
a.org/~brandenb/pencil-code/PCSC/ToR.pdf. We
thank Nils E. Haugen, who has now been replaced by
Jennifer Schober, for his work on the previous commit-
tee.

2 Five years newsletter

The first PENCIL CODE Newsletter was published on
17 July 2020, nearly 5 years ago. We are now in the
sixth year and it is time to reflect on its usefulness.
The stated goal back then was to update and remind
the user community of important results and develop-
ments. In Newsletter 2020/2, we said

The PENCIL CODE comes with a lot of default settings.
Many of the input parameters are set to what was of
interest when a particular module was developed. Like-
wise, many logicals (switches) are set to whatever a

https://www.nordita.org/~brandenb/pencil-code/PCSC/ToR.pdf
https://www.nordita.org/~brandenb/pencil-code/PCSC/ToR.pdf

particular person considered useful at that time and
what is imposed by the constraint of backward compati-
bility. Changing this all of a sudden could make others
quite upset. To raise awareness of changes that are
considered justified, we use the opportunity to highlight
changes of defaults in the Newsletter.

In the present Newsletter, one new default change
will be presented. Another development concerns the
GPU readiness of the code, which was discussed in is-
sue 2024/2 of the newsletter. A related point was the
merge from the development branch gputestvé to the
main (master) branch in March.

In the wake of this major change, but unrelated to
it, some potential weaknesses of the handling of the
code have been exposed. This led to various discus-
sions about the “Pencil Code philosophy”. To have
a more detailed account of the different view points,
we solicited contributions to this newsletter; see the
email to https://groups.google.com/g/pencil-cod
e-discuss/on May 12. In this newsletter, we begin by
reporting on the aforementioned default change which
was sent to us by Frederick Gent. We then present
contributions that we have received about the PEN-
ciL CODE philosophy. We also present some views of
present and past PCSC members and end with a de-
scription of other code changes and enhancements.

3 A proposed default change

by Frederick Gent, Aalto University, Finland
received 24 April 2025

In some cases where there are challenging gradi-
ents in the density, particularly associated with highly
compressible flows, it can be helpful or indeed essen-
tial to include some diffusivity to the continuity equa-
tion, although there is no such physical process. In
the PENCIL CODE we have three forms of such dif-
fusivities: a bulk diffusion coefficient diffrho, which
acts proportional to the Laplacian of density, a shock
diffusion coefficient diffrho_shock which acts propor-
tional to the product of the flow convergence and the
Laplacian of density, and the hyper-diffusion coefficient
diffrho_hyper3, which acts proportional to the cubic
Laplacian of density (9°/025 + 9°/0y°® + 9°/925).

These apply an effective mass sink in the system,
so to conserve momentum and/or energy, appropriate
corrections can be applied to the momentum and/or
energy equations, which is enabled by setting the flag
lmassdiff fix to .true. By default this has been
set to .false. in the PENcIL CODE. However, ex-

periments with the shock tube tests (Sod 1978) re-
ported in Gent et al. (2020), http://doi.org/10.1
080/03091929.2019.1634705, indicate that solutions
without the flag set .true. yield less accurate solu-
tions. It would therefore be more appropriate to make
the default .true. This evidently creates some nu-
merical crashes when used with some simulations with
high Mach particle flows, so a 2022 change to the de-
fault without consultation was recently reverted by re-
quest. Now that we have time to consider the matter
collectively, I propose that we change the default to
.true. and explicitly set it in those reference sam-
ples to .false. which require it so. A warning about
the choice should be printed to alert the user about its
significance whenever they select mass diffusion. The
effect of the switch was not reported in the cited ar-
ticle, but given its subsequent impact on users of the
code I propose in the near future to prepare a more
comprehensive study of these effects, based on the Sod
(1978) solutions.

Because the application of the mass diffusion fix has
been found to cause numerical crashes when applied to
mass hyper-diffusion, the fix is only effective for Lapla-
cian and shock diffusion. I would also observe that I
have found mass hyper-diffusion to be prone to den-
sity holes including negative density when solving for
linear (non-logarithmic) density. Note, that the PEN-
ciL CODE is not a conservative code (in its default
configuration) and when solving for highly compress-
ible flows, using the linear rather than the logarithmic
form of the continuity equation has also been found to
be more conservative.

4 Branches

by Wolfgang Dobler, Berlin, Germany
received 20 May 2025

4.1 The problem(s)

The currently dominant development model of the
PeENncIL CODE is

o unstructured: Commits cannot be grouped pre-
dictably, because while you try pushing them, oth-
ers could push some commits of their own;

e opaque: if commits are not grouped, it is hard to
see what is going on;

1Sod, G. A. (1978). “A Survey of Several Finite Differ-
ence Methods for Systems of Nonlinear Hyperbolic Conservation
Laws”. J. Comput. Phys. 27, 1--31 (https://doi.org/10.101
6/0021-9991(78)90023-2).

https://groups.google.com/g/pencil-code-discuss
https://groups.google.com/g/pencil-code-discuss
http://doi.org/10.1080/03091929.2019.1634705
http://doi.org/10.1080/03091929.2019.1634705
https://doi.org/10.1016/0021-9991(78)90023-2
https://doi.org/10.1016/0021-9991(78)90023-2

e hard to test:

— Continuous-integration tests (= CI tests,
which we sometimes call Pencil tests or au-
totests) have hard time constraints and thus
cannot be thorough;

e fragile: as a consequence of being hard to test;

e obscuring responsibility: If I made two commits,
and A has pushed 3 commits in between (see un-
structured above), would I be testing my changes
or theirs?

4.2 Advantages of branch-oriented de-
velopment

e Much deeper testing

— You can take your time to run all tests before
merging your branch back into main (= mas-
ter). This allows us to have really thorough
tests.

— Independence from CI. CI is nice, but it is
dangerous to rely on it (and it limits the
amount of testing)

e Clearer identification of responsibility

e Isolates unrelated changes from each other until
they really need to get dealt with

e Friendly competition (survival of the most popular
branch)

e You can get new features running and ask inter-
ested others to test before you finalize them (in-
stead of: everybody immediately has to live with
your new feature, although it is not thoroughly
tested yet — you had to push it onto main before
asking the interested others).

e Reduces stress level, because you can properly
work on a feature without interfering with others
and later do all the tests and push.

4.3 Note

e We have used branches before (e.g. the GPU

branch)

4.4 Feedback and criticism

Here is the gist of some responses I got to an earlier
version of the proposal below.

e “Risk of fragmentation”

— But where is the problem if all branches are
pushed to the server?

x If you need functionality from another
branch on your own feature branch, you
can (a) merge that branch, or (b) cherry-
pick the relevant changes from there.

— The important thing is to have all branches
pushed to the server.

x Currently: If you are not willing (yet) to
push, your changes are only local, which
is much worse.

e “For short-lived branches which are not shared
with anyone else, I would recommend rebasing, as
it keeps the history cleaner (this helps later on if
one is bisecting to find when a bug was introduced
to the master branch).”

— I am open to that, though I personally
find history with (even medium-sized) topic
branches cleaner; and git bisect works
across branches just as well.

o “I fear that if we start using more branching this
will result in some branches never being merged
back into main. This will eventually lead to several
versions of the PENCIL CODE.”

— There will always be some branches not (yet)
merged. If they are relevant, they will even-
tually get back into main, be it that they
get merged or cherry-picked. (And if they
are not, who cares?) Should there really ap-
pear two branches of the code that continue
to be popular among users over a long time,
we should strive to merge them.

e “ ..other codes in which multiple groups main-
tained branches of code which were entirely in-
compatible with the main branch or each other.”

— Rule 6. below strongly encourages to not let
branches diverge too far from main. Being
able to decide for yourself when exactly you
reconcile your changes with main is an enor-
mous benefit.

4.5 Proposal

Here is a set of rules that I would like to see imple-
mented:

1. The main person responsible for a commit is its
author.

2. The maintainers are important, as often only they
know how a sample really works. However, it is
not their responsibility to react to commits break-
ing an auto-test sample.

3. Ideally, any commit that ends up on main (the
main branch of the code) should not break any of
the essential auto-test samples.

If it turns out that a commit violates this rule, the
broken tests need to be fixed swiftly. Either by
the commit author committing a fix, or by others
reverting the commit in question.

Any commit that breaks an auto-test may be re-
verted by anybody without prior notice in order to
fix that test.

4. Keep individual commits focused on one logical
unit (i.e. keep them small and do not conflate
loosely related topics). This is crucial for identi-
fying and reverting problematic commits.

5. For a sequence of commits that belong logically
together, it is not very feasible, and also not nec-
essary, to run the test suite for each of them.

Instead, develop the feature on a branch. When
you think the feature is ready, merge main into
your feature branch and run the tests. If they
all run successfully, merge your branch back into
main.

Never merge a branch into main without having
verified that the auto-tests work.

6. Try to keep the lifetime of branches short, even
though this will not always be possible. If your
branch has to live longer, you should periodically
merge main into it.

7. Never quietly adjust reference results in an auto-
test sample directory to fit your latest data.
If reference data need to be touched up, this must
be agreed upon with the maintainer(s) of that test.

8. When making changes that will affect auto tests:

(a) Discuss this with everybody before you com-
mit the change.

(b) Isolate auto-tests against the change. E.g.
if you are to change the default value of
Ilmassdiff_fix from .false. to .true.,
make sure to explicitly set lmassdiff fix =
.false. in all auto-test samples that would
otherwise be affected by the change.

9. Never rely on the automatic tests run after a com-
mit on the GitHub server, or the bisection that is
done. It is the committer’s responsibility to run
all officially accepted auto-tests.

10. Never rely on automatic emails to reach a main-
tainer of an auto-test (or in fact anybody else). If
you need to discuss an auto-test, contact the main-
tainer directly and only assume that you reached
them once they reply.

5 Comparison with other codes

by Evangelia Ntormousi, Scuola Normale Superiore,
Pisa, Italy
received 23 May 2025

The PENcCIL CODE’s coding standard is to inte-
grate everyone’s contribution into the publicly avail-
able version and to test it periodically for incompati-
bilities and/or errors. This approach has many advan-
tages, the most important one being reproducibility
and tractability of the results. Furthermore, younger
researchers or new users don’t need to reinvent the
wheel, since they can immediately see how a certain
problem was set up and build from there, if necessary.
Very importantly, there are no diverging branches, so
all outputs can be processed with the same, universally
updated tools. Everyone gets the cutting edge of the
development, and has all the elements at their disposal
to give credit to other developers for code they reused.
Overall, this approach promotes a sense of community
and open collaboration, with all the benefits that these
qualities entail.

Of course, there is always the danger that a modifi-
cation from one user or group introduces a bug in all
versions. Even in that case though, every user has the
chance to spot it and correct it, which is not the case
when a code is proprietary. A more probable issue is
that, if a code becomes very popular, it could become
‘heavy’ with many features unless some coding stan-
dards are maintained by a steering team of developers.

In my opinion, the PENCIL CODE method of col-
laboration is the most transparent out there, which is
great for promoting transparent, reproducible results

and avoiding confusion. My experience with other ap-
proaches has led to issues with reproducibility and col-
laborations. The specific examples I have in mind are
RAMSES and AREPO, where the public version is stripped
from ‘advanced’ features, which need to be developed
by the user (in this regime AREPO is extreme in that
the user basically only gets the hydro+gravity solver).
This does give a lot of room for innovation and gets dif-
ferent teams to come up with different ideas on an im-
plementation, but without a framework for sharing and
exchanging code it eventually leads to many branches
of proprietary code that are diverging from each other
and the main. This problem inevitably translates into
skepticism on a competing team’s results, and worse,
promotes a culture of withholding code.

6 Additional suggestions

by G. Kishore, Inter-University Centre for Astronomy
& Astrophysics, Pune, India
received 23 May 2025

6.1 Contact information for commit-
ters

One aspect which I did not see explicitly brought up
so far is the issue of contributors not being easily con-
tactable. While granting someone commit access, we
should emphasize that the email address used for com-
mits should be one that the contributor checks reg-
ularly (in the past, I have found after attempting to
contact a contributor through their listed email ad-
dress that it was an old address that they no longer
check regularly).

6.2 Contributor guidelines

More generally, there should be a single set of contribu-
tor guidelines listing what is expected from committers,
such as:

the coding style
the expectation to remain contactable
the code of conduct

the recommended development style (if there is
one)

This information is currently scattered across various
parts of the repository, the webpage, and the Github
wiki; having a single document/webpage (which may
simply be a set of links to the existing places where
each of these aspects is dealt with in detail) would be

useful while inducting new contributors.
compile such a document if needed.

I can help

6.3 Stable tagging

I also think we should bring back the practice of tag-
ging stable versions. Given the observed tendency to
'silence’ auto-tests, I don’t think this tagging should
be done automatically (which I think was the previ-
ous practice). My suggestion would be to synchronize
the release of stable versions with the PC User Meet-
ings, at which a stable release can be approved after
going through a checklist (which would be publicly doc-
umented somewhere). Some examples of items which
would be in such a checklist:

e create a list of currently working samples (which
may just be the set included in pc_auto-test
levels 0--3) and check that there have been no
changes to the reference data of these samples that
were not approved by the maintainers (we should
have a policy that every commit changing the ref-
erence data should explicitly mention which of the
maintainers of that sample approved it);

e for all the postprocessing modules (e.g. Python)
that have their own test suites, check that the tests
still pass (these are currently not included in the
periodic autotests);

e discuss proposed changes to default values of input
parameters, and include a list of such changed de-
faults in the release announcement (we may need
to come up with a mechanism to propose changes
prior to the meeting, which may be Github issues
or simply a text file somewhere in the repository);

e if samples which were working in the last stable
version are broken and cannot be fixed, this should
also be mentioned in the release announcement;

e for all maintainer email addresses listed in the
README files of the working samples, check that
they are able to receive mails from the auto-test
Servers.

While going through such a checklist is a non-trivial
amount of work, my point of view is that these issues
should be dealt with regularly to keep the code healthy;
stable version tagging is a compromise that acknowl-
edges that it is not feasible to do this for every single
commit.

There are, in a sense, two kinds of branches.

One kind is shared between multiple developers, lives
in the central repository, and may be long-lived (e.g.
the gputestv6 branch).

The other kind, which is what I think Wolfgang was
suggesting (and which is considered a good practice in
the software development community), is that for any
change (excluding very minor things like updating com-
ments), you create a branch locally on your machine.
This would not be pushed to the central repository,
and need not be shared with any other developer. Each
branch contains a set of logically related changes. For
example, you could have one branch where you make
changes to an initial condition, and another branch
where you are trying to optimize the calculation of
power spectra (I have 44 branches right now in my
local clone of Pencil). When the changes in a partic-
ular branch are 'ready’, you then rebase/merge those
changes into the master branch. The main advantage
of doing things this way is there is no hurry to push
(half-baked) changes to the central repository since

A. you do not have to continuously deal with con-
flicting changes from others (rather, you just have
to deal with it once before finally merging the
changes; if the branch is short-lived, this should
still not be too much of a hassle);

B. you can independently work on multiple things at
a time (e.g., if you make a commit partially imple-
menting a new initial condition and you later make
another commit fixing a boundary condition, you
can choose to push only the latter if both are in
separate branches, rather than also being forced to
push the half-baked initial condition to the repos-
itory).

After adopting this ’micro-branching’ development
style, it becomes feasible to locally run more exten-
sive tests for each set of changes that you intend to
push to the main repository. For example, you can use
bin/pc_isolated-test or git worktree to run tests
on a particular branch while you simultaneously work
on something else in another local branch.

7 Any commit or merger should
be rejected back to the
committer if it does not pass
the auto-tests

by Chao-Chin Yang,
Tuscaloosa, USA

The University of Alabama,

received 4 June 2025

The previous suggestion that “any commit that
breaks the autotest can be reverted by anyone.” still
puts pressure on the maintainer. This is the reason a
pull request (PR) is better than the current approach:
the merger has time to run the auto-tests before merg-
ing.

It was pointed out that we already have that in the
travis test. The travis could be set up to automat-
ically start auto-tests for each commit coming in, so
one could also set up a hook to reject for failed com-
mit.

Further:

(1) If no branching is still favorable, any commit that
break any auto-test should be immediately re-
jected; if branching is the adopted way to go, any
merger need to pass all auto-tests before merging
into main.

No sample can be modified except by the main-
tainer. Any people interested in changing a sam-
ple must collaborate with the maintainer before
any commit can be made. If the maintainer of a
sample has clearly left the code or is not account-
able for maintaining the sample, we need to find
a replacement maintainer. If no replacement can
be found, we may want to remove the sample or
move it to an obsolete folder.

8 It would be good if Pencil were
to adopt PRs and branches

by Daniel Carrera, lowa State University, Ames, USA
received 4 June 2025

(1) Someone wants to propose a feature for Pencil.
They clone the git repository, add the feature, and
when it’s all tested they go to GitHub and create
a pull request. Then someone in charge at Pencil
can approve or reject the PR.

Branches give people freedom to make changes
that temporarily break the code, as all their work
is done in an isolated branch. But when they fin-
ish coding the feature, they have to make sure that
all tests pass before they can merge.

Point #1 is code review, that’s how codes like Athena
operate. In the software industry code review is done

every day. However, I understand it would put too
much pressure on the developer team, in essence it
means that a set of eyes would be necessary to ap-
prove any commit. The automated autotest to reject
commits that fail could be a compromise.

I would add that another argument for branches and
pull requests is to use the capabilities of git and github,
which have become the standard in software develop-
ment. As it is, students that use and develop Pencil are
not being trained in the new version control paradigm,
but in the old one of svn and cvs. That’s the funda-
mental problem of education: we teach today, with the
tools of yesterday, the people of tomorrow. Wearing
our educator hat, we should strive to teach a transfer-
able skill, as many of our students will go on to become
data scientists or software engineers; while it is not our
job to be a training ground for industry, it is a short-
coming if we don’t equip them for that possibility. And
for what? Just so we don’t leave our comfort zone and
learn something new ourselves?

9 Views from the PCSC

by Nils E. L. Haugen, SINTEF, Trondheim

The Pencil Code is a versatile and flexible code that
is continuously developed by a number of developers
working on highly different physics. It is therefore im-
portant to facilitate:

a) workflows that allow for efficient and flexible im-
plementation of new code features, while

b) avoiding the code from branching out into multiple
incompatible versions

At the same time, this should be achieved while avoid-
ing:

1) new errors being introduced to the code, and

2) that changes to the code make existing runs (not
only the official samples) produce different re-
sults than previously. (This could for example be
caused by the change of default values.)

In order to facilitate a) and b) while avoiding 1)
and 2), I proposed the following four improvements
to the Pencil Code check-in culture (should be strictly
enforced by the entire community):

i. The author of a commit should always run full
auto-test (with full debug options, signalling
NaNs, etc) before any commit to the main branch
(this includes even small commits)

ii. The author should always get approval from the
maintainer of a sample before changing a samples
reference data file. If the maintainer of the sample
does not respond within a reasonable time, the
problem should be brought to the PCSC.

iii. If a commit breaks a sample, anybody can simply
just revert that commit (while notifying the au-
thor). It is of course beneficial if the faulty code
could be corrected to make the sample pass the
test instead, but this is not a requirement.

iv. Nobody should ever change the value of defaults
(even when default values are later found to be
unphysical). This is important in order to avoid
that older runs suddenly start producing different
results.

The above check-in culture is independent of which
version control tool that is used (svn or git), and
the choice between svn and git is therefore up to the
individual user. The important thing is not which tool
that is used, but that errors are not introduced to the
code, and that a given check-in does not otherwise
cause any problems for other users.

by Axel Brandenburg, Nordita, Stockholm

A guiding principle of the PENCIL CODE was always
to provide as much freedom to individuals as possi-
ble. The highly modular structure of the code helps in
letting different working styles coexist, as long as the
different approaches do not interfere with each other.
This is particularly true for allowing different check-in
practices to coexist. We have never discouraged the
use of branches, and the latest GPU test branch is an
example.

A difficulty with branches is that they were never
short lived, even though there was always the clear
intention to merge them with the main branch as soon
as possible. When the gputestv6 branch was merged
into the main branch on 19 March 2025 at 10:02 in the
morning, a total of 365 files were changed, 259 of those
in src alone, and 156 of those were f90 files. I have not
checked in detail what happened, but for those files
that I did check, I could not say that the changes were
straightforward. If there was something that broke for
somebody it would be difficult to say exactly what the
mistake was. On the other hand, of course, we know
that everything was carefully tested.

The experience with the gputestv6 branch was an
example with a clear beginning and a clear end, but in
general, the idea that some code development is ready

and can then be merged into the main branch seems
rather alien to me. Usually, I try out an idea and
then continue to iterate on it. Eventually, some runs
may already have production quality and enter an early
draft of a new paper, but the iteration process may well
continue beyond this point. Even when the paper is fi-
nally submitted, comments from the referees or other
colleagues may inspire changes to the code and make
additional runs with the modified code necessary, while
some of the old runs would still be ok. This develop-
ment can finally be called “ready” when the paper is
published, but that is also possibly the time when one
is no longer working with it, so any mistakes that may
occur when making this final product ready (and per-
haps still more beautiful) will no longer be scrutinized
as much as it would when one was still working with it.
(This may not apply to everybody, but to me it does.)

Equally plausible is that I stop and won’t finish the
job, because more exciting things came up. I have also
seen others leaving certain developments untouched
without there being any paper. Such a development
can come in handy for someone needing it for their
own work. If such development was hidden or left on
a branch, one would never have known about it. One
would not have easily known about its existence. Also,
why would have anybody have kept it up to a date
while many other changes occurred to the rest of the
code if it wasn’t on the main branch? This is why
the common practice of making changes on the main
branch has advantages.

Yet another example is the development of a special
relativity extension of the hydro module, which was
started in 2022, but is still not ready. Nevertheless, the
partially ready version has already been used by others
for production runs. Keeping things on the branch does
not easily facilitate accidental cross-fertilization.

At any point in time, of course, I checked that my
changes did not break the autotests and I do my best
not to break anybody else’s developments whose in-
tegrity may not yet be captured by any autotest.

These is no recipe in designing a good autotest.
Whenever there is an opportunity, one should verify
that there is an autotest that is sensitive to particular
aspects of the code, and, for that matter, not sensitive
to the numerical representation of zero or to algorithm-
dependent representations of sums. One should also
not forget that we have in place some tests of spectra,
slice files, etc. I can therefore only appeal to everybody
to help making autotests as good as possible. This
would entail changing existing ones, but one should
leave some days between that and any related changes
to the code.

It is generally good that everybody runs the autotest
also on their own computer. It does take some time,
and by the time you remember about your test, you
may no longer have the output on your screen. It is
therefore good wo write the output to disk using, e.g.,

pc_auto-test --log-dir=AXEL_LOG

If then still something goes wrong, it would be useful
to be sure that this was not because of something you
should have been able to see yourself and that it is
really because of different settings compared with the
autotests on our webpage. Again, such discrepancies
should be used as an encouragement to improve the
tests.

10 New auto-test infrastructure

With the inauguration of a new server to replace the old
norlx51 server at Nordita, a new scheme of auto-test is
introduced. First, the previous hourly and daily tests
are now performed only if needed: Without new check-
ins, the auto-tests will not be started, which saves pre-
cious computing time on the new server. Second, the
distribution of tests is now different. Instead of run-
ning all tests up to a certain level for ever test run,
we now have three tests, where each of them employs
disjunct sets of samples, so no repetitions of the same
samples. Third, we now have three tests instead of the
two old tests: one basic, one normal, and one extended
test. Fourth, disjunct auto-test sets are now allowed
to run in parallel, which was not possible on the old
server.

The new “basic” test is exactly equivalent to the
Travis check (test levels 0 and 1), which means it would
run every minute, if there are new check-ins. Unlike
the original Travis check, this basic test will always
run until the end of the test. If there are additional
new check-ins while a test is running, the test will first
complete and then start again to test the remaining
untested check-ins at the next minute.

The new “normal” test contains the remaining set
that is equivalent to the old hourly test (level 2). This
additional test will always start at 15 minutes after the
full hour.

In addition we have the “extended” test to imple-
ment the remaining tests necessary to complete the
full set of samples that was previously performed only
around midnight. This extended set will start now
hourly at 55 minutes after the full hour.

With this new and partly parallel test strategy, we
are now performing checks similar to the Travis test

every minute — also as a backup infrastructure to the
Travis-CI. Additionally, those auto-tests that were pre-
viously performed only once per day, are now running
each hour.

11 Random tips

11.1 User-specific settings

Sometimes one likes to make certain settings for all
runs of one installation of the Pencil Code. For that
purpose, a mechanism was introduced at the Pencil
Code User Meeting in Graz (2023). A user may cre-
ate a file utils/USER/global run.in’ inside the main
PENCIL_HOME directory. This file will always be read
before the run.in file, so that all parameters defined
in the global file, are the new default values. After
that, the definitions in the local run.in file are read
and, if present, will supersede the global default run
parameters.

To use this functionality, one only needs to set the
environment variable PENCIL_USER to contain exactly
the USER name, in which directory to look for the
global_run.in file, see above. If this environment
variable is not present (or the path is wrong), only
the local parameters of the run.in file will be read.

In case a user wants to give different global run pa-
rameter definitions, one can provide multiple file names
in the scheme utils/USER/HOST_global_run.in. To
select one of them to be used, one needs to set another
environment variable PENCIL_HOST that contains the
HOST part.

11.2 Safer snapshots

Through setting 1backup_snap=T in run_pars the code
is caused to hold the penultimate instance of var.dat
as var.dat.bck. By this, a failing write of var.dat
due to, e.g., job canceling or disk failure, would result
merely in a loss if isave integration timesteps. By
default, this feature is off at present, but we may decide
to change this in the future.

11.3 Indicator file for snapshot writing

During writing of var.dat, VAR*, dvar.dat, or
crash.dat, the (empty) file WRITING is now present
in the working directory.

11.4 Automatic CVS updates

Setting lupdate_cvs=T in run_pars makes the code
executing cvs ci after each update of the time se-
ries. Default is “F”. Of course, this is only effective if
pc-cvsci (or something equivalent) has been executed
in this directory before.

11.5 Check-in notifications

Check-in notifications are currently not being sent out
because the Google group mailing list does not forward
emails from notifications@github.com, even though
GitHub support checked that emails are delivered there
and are reaching Google groups.

12 Next PC User Meeting

The next PC User Meeting will be held in
Geneva/Switzerland. Alberto Roper Pol organizes the
meeting and has now opened the registration on http
s://indico.cern.ch/e/PCUM2025.

13 Papers since October 2024

As usual, we look here at new papers that make use
of the PENCIL CODE. Since the last newsletter of
October, 17 new papers have appeared on the arXiv,
plus 27 others, some of which had been just preprints
and have now been published in a journal. We list
both here, altogether 44. A browsable ADS list of all
PENcCIL CODE papers can be found on: https://ui
.adsabs.harvard.edu/public-libraries/iGR7N57
0Sy6AIhDMQRTe_A. If something is missing in those
entries, you can also include it yourself in: https://
github.com/pencil-code/pencil-code/blob/mast
er/doc/citations/ref .bibl or otherwise just email
brandenb@nordita.org. A compiled version of this file
is available as https://github.com/pencil-code/w
ebsite/blob/master/doc/citations.pdf, where we
also list a total of now 136 code comparison papers
in the last section “Code comparison & reference”.
Those are not included in our list below, nor among
the now total number of 722 research papers that use
the PENCIL CODE.

References
Brandenburg, A., Iarygina, O., Sfakianakis, E.I. and

Sharma, R., Magnetogenesis from axion-SU(2) infla-
tion. J.. Cosmol. Astropart. Phys., 2024, 2024, 057.

https://indico.cern.ch/e/PCUM2025
https://indico.cern.ch/e/PCUM2025
https://ui.adsabs.harvard.edu/public-libraries/iGR7N570Sy6AlhDMQRTe_A
https://ui.adsabs.harvard.edu/public-libraries/iGR7N570Sy6AlhDMQRTe_A
https://ui.adsabs.harvard.edu/public-libraries/iGR7N570Sy6AlhDMQRTe_A
https://github.com/pencil-code/pencil-code/blob/master/doc/citations/ref.bib
https://github.com/pencil-code/pencil-code/blob/master/doc/citations/ref.bib
https://github.com/pencil-code/pencil-code/blob/master/doc/citations/ref.bib
https://github.com/pencil-code/website/blob/master/doc/citations.pdf
https://github.com/pencil-code/website/blob/master/doc/citations.pdf

Brandenburg, A., Kéipyld, P.J., Rogachevskii, I. and
Yokoi, N., Helicity Effect on Turbulent Passive and
Active Scalar Diffusivities. Astrophys. J., 2025a,
984, 88.

Brandenburg, A., Larsson, G., Del Sordo, F. and
Kapyla, P.J., Magnetorotational instability in a
solar mean-field dynamo. arXiv e-prints, 2025b,
arXiv:2504.16849.

Brandenburg, A. and Ntormousi, E., Magnetic field
amplification during a turbulent collapse. arXiv e-
prints, 2025, arXiv:2505.02885.

Brandenburg, A. and Scannapieco, E., Magnetically
Assisted Vorticity Production in Decaying Acoustic
Turbulence. Astrophys. J., 2025, 983, 105.

Brandenburg, A. and Vishniac, E.T., Magnetic helic-
ity fluxes in dynamos from rotating inhomogeneous
turbulence. arXiv e-prints, 2024, arXiv:2412.17402.

Brandenburg, A. and Vishniac, E.T., Magnetic Helicity
Fluxes in Dynamos from Rotating Inhomogeneous
Turbulence. Astrophys. J., 2025, 984, 78.

Brandenburg, A., Yi, L. and Wu, X., Inverse cascade
from helical and nonhelical decaying columnar mag-
netic fields. arXiv e-prints, 2025¢, arXiv:2501.12200.

Dehman, C. and Brandenburg, A., Reality of inverse
cascading in neutron star crusts. Astron. Astrophys.,
2025, 694, A39.

Dwivedi, S., Anandavijayan, C. and Bhat, P., Quasi-
two-dimensionality of three-dimensional, magneti-
cally dominated, decaying turbulence. Open J. As-
trophys., 2024, 7, 75.

Elias-Loépez, A., Del Sordo, F. and Vigano, D., Vor-
ticity and magnetic dynamo from subsonic expan-
sion waves: II. Dependence on the magnetic Prandtl

number, forcing scale, and cooling time. Astron. As-
trophys., 2024, 690, AT7.

Eriksson, L.E.J., Yang, C.C. and Armitage, P.J., Parti-
cle fragmentation inside planet-induced spiral waves.
Month. Not. Roy. Astron. Soc., 2025, 537, L26-L32.

Hidalgo, J.P., Kapyla, P.J., Schleicher, D.R.G., Ortiz-
Rodriguez, C.A. and Navarrete, F.H., Magnetohy-
drodynamic simulations of A-type stars: Long-term

evolution of core dynamo cycles. Astron. Astrophys.,
2024, 691, A326.

10

Hidalgo, J.P., Kapyla, P.J., Schleicher, D.R.G., Ortiz-
Rodriguez, C.A. and Navarrete, F.H., Shaping core
dynamos in A-type stars: The role of dipolar fossil
fields. arXiv e-prints, 2025, arXiv:2506.01017.

Hosking, D.N., Wasserman, D. and Cowley, S.C.,
Metastability of stratified magnetohydrostatic equi-
libria and their relaxation. J. Plasma Phys., 2025,
91, E35.

Kapyla, P.J., Simulations of entropy rain-driven con-
vection. arXiv e-prints, 2025, arXiv:2504.00738.

Kesri, K., Dey, S., Chatterjee, P. and Erdelyi, R.,
Dependence of Spicule Properties on the Magnetic
Field—Results from Magnetohydrodynamics Simu-
lations. Astrophys. J., 2024, 973, 49.

Kishore, G. and Singh, N.K., Rotational -effects
on the small-scale dynamo. arXiv e-prints, 2025a,
arXiv:2502.17178.

Kishore, G. and Singh, N.K., The spectra of solar
magnetic energy and helicity. arXiv e-prints, 2025b,
arXiv:2503.03332.

Lipatnikov, A.N., A priori assessment of a simple ap-
proach to evaluating burning rate in large eddy simu-
lations of premixed turbulent combustion. Phys. Flu-
ids, 2024, 36, 115152.

Maity, S.S., Chatterjee, P., Sarkar, R. and Mytheen,
I., On the Evolution of Reconnection Flux in Erupt-
ing Magnetic Flux Ropes: Insights from Observa-
tions and MHD Simulation; in AGU Fall Meeting
Abstracts, Vol. 2024 of AGU Fall Meeting Abstracts,
Dec., 2024, pp. SH13B—2928.

Meftah, J., Hydrodynamic simulations of multiple low-
mass migrating black holes in AGN disks; in Amer-
ican Astronomical Society Meeting Abstracts, Vol.
245 of American Astronomical Society Meeting Ab-
stracts, Jan., 2025, p. 402.06.

Mondal, T., Bhat, P., Ebrahimi, F. and Blackman,
E.G., Understanding large-scale dynamos in un-
stratified rotating shear flows. arXiv e-prints, 2025,
arXiv:2505.03660.

Mtchedlidze, S., Dominguez-Fernandez, P., Du, X.,
Carretti, E., Vazza, F., O’Sullivan, S.P., Branden-
burg, A. and Kahniashvili, T., Intergalactic Medium
Rotation Measure of Primordial Magnetic Fields.
Astrophys. J., 2024, 977, 128.

Park, K., Effect of turbulent kinetic helicity on diffusive
B effect for large scale dynamo. Phys. Rev. D, 2025,
111, 023021.

Qazi, Y., Shukurov, A., Tharakkal, D., Gent, F.A. and
Bendre, A.B., Non-linear magnetic buoyancy insta-
bility and galactic dynamos. Month. Not. Roy. As-
tron. Soc., 2025, 540, 532-544.

Qazi, Y., Shukurov, A., Gent, F.A. Tharakkal, D. and
Bendre, A.B., Non-linear magnetic buoyancy insta-
bility and galactic dynamos. arXiv e-prints, 2024,
arXiv:2412.05086.

Rice, K., Baehr, H., Young, A.K., Booth, R., Rowther,
S., Meru, F., Hall, C. and Koval, A., Dust density
enhancements and the direct formation of planetary
cores in gravitationally unstable discs. Month. Not.
Roy. Astron. Soc., 2025, 539, 3421-3435.

Rogachevskii, 1., Kleeorin, N. and Brandenburg, A.,
Theory of the Kinetic Helicity Effect on Turbulent
Diffusion of Magnetic and Scalar Fields. Astrophys.
J., 2025, 985, 18.

Roper Pol, A. and Salvino Midiri, A., Relativistic mag-
netohydrodynamics in the early Universe. arXiv e-
prints, 2025, arXiv:2501.05732.

Schéfer, U., Johansen, A., Haugbglle, T. and Nord-
lund, A., Thousands of planetesimals: Simulating
the streaming instability in very large computational
domains. Astron. Astrophys., 2024, 691, A258.

Sharma, P., Vaidya, B., Wadadekar, Y., Bagla, J.,
Chatterjee, P., Hanasoge, S., Kumar, P., Mukher-
jee, D.; Sajeeth Philip, N. and Singh, N., Computa-
tional Astrophysics, Data Science & AI/ML in As-
tronomy: A Perspective from Indian Community.
arXiv e-prints, 2025a, arXiv:2501.03876.

Sharma, R., Brandenburg, A., Subramanian, K. and
Vikman, A., Lattice simulations of axion-U(1) infla-
tion: gravitational waves, magnetic fields, and black
holes. arXiv e-prints, 2024, arXiv:2411.04854.

Sharma, R., Brandenburg, A., Subramanian, K. and
Vikman, A., Lattice simulations of axion-U(1) in-
flation: gravitational waves, magnetic fields, and
scalar statistics. J.. Cosmol. Astropart. Phys., 2025b,
2025, 079.

Shchutskyi, N., Schaller, M., Karapiperis, O.A., Sta-
syszyn, F.A. and Brandenburg, A., Kinematic dy-
namos and resolution limits for Smoothed Parti-
cle Magnetohydrodynamics. arXiv e-prints, 2025,
arXiv:2505.13305.

11

Shi, J., Bartelmann, M., Klahr, H. and Dullemond,
C.P., Kinetic field theory applied to planetesimal
formation I: freely streaming dust particles. Month.
Not. Roy. Astron. Soc., 2025, 536, 1625-1644.

Singh, N.K., Ajay, A. and Rajesh, S.R., Reversals of
toroidal magnetic field in local shearing box simu-
lations of accretion disc with a hot corona. arXiv
e-prints, 2024, arXiv:2410.14497.

Singh, N.K., Ajay, A. and Rajesh, S.R., Reversals of
Toroidal Magnetic Field in Local Shearing Box Sim-
ulations of Accretion Disk with a Hot Corona. As-
trophys. J., 2025, 984, 113.

Tschernitz, J. and Bourdin, P.A., Granulation and
Convectional Driving on Stellar Surfaces. Astrophys.
J. Lett., 2025, 979, 1L39.

Vachaspati, T. and Brandenburg, A., Spectra of mag-
netic fields from electroweak symmetry breaking.
arXw e-prints, 2024, arXiv:2412.00641.

Vemareddy, P., Simulating the Formation and Erup-
tion of Flux Rope by Magneto-friction Model Driven
by Time-dependent Electric Fields. Astrophys. J.,
2024, 975, 251.

Warnecke, J., Korpi-Lagg, M.J., Rheinhardt, M., Vi-
viani, M. and Prabhu, A., Small-scale and large-scale
dynamos in global convection simulations of solar-
like stars. Astron. Astrophys., 2025, 696, A93.

Yuvraj, Im, H.G. and Chaudhuri, S., How “mixing”
affects propagation and structure of intensely turbu-
lent, lean, hydrogen-air premixed flames. Combust.
Flame, 2025, 273, 113903.

Zhou, H. and Lai, D., Understanding the UV /Optical
Variability of AGNs through Quasi-Periodic Large-
scale Magnetic Dynamos. arXiv e-prints, 2024,
arXiv:2411.12953.

This PENcCIL CODE
Axel Brandenburg
Nordita, KTH Royal
and Stockholm University,
holm, Sweden; and Matthias Rheinhardt
<matthias.rheinhardt@aalto.fi>, Department
of Computer Science, Aalto University, PO Box 15400,
FI-00076 Aalto, Finland. See http://www.nordita.
org/~brandenb/pencil-code/newsletter| or https
://github.com/pencil-code/website/tree/master
/NewsLetters| for the online version as well as back
issues.

Newsletter was edited by
<brandenb@nordita.org>,
Institute of Technology

SE-10691 Stock-

http://www.nordita.org/~brandenb/pencil-code/newsletter
http://www.nordita.org/~brandenb/pencil-code/newsletter
https://github.com/pencil-code/website/tree/master/NewsLetters
https://github.com/pencil-code/website/tree/master/NewsLetters
https://github.com/pencil-code/website/tree/master/NewsLetters

	A new steering committee
	Five years newsletter
	A proposed default change
	Branches
	The problem(s)
	Advantages of branch-oriented development
	Note
	Feedback and criticism
	Proposal

	Comparison with other codes
	Additional suggestions
	Contact information for committers
	Contributor guidelines
	Stable tagging

	Any commit or merger should...
	It would be good if Pencil were...
	Views from the PCSC
	New auto-test infrastructure
	Random tips
	User-specific settings
	Safer snapshots
	Indicator file for snapshot writing
	Automatic CVS updates
	Check-in notifications

	Next PC User Meeting
	Papers since October 2024

