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ABSTRACT7

The question of whether a dynamo can be triggered by gravitational collapse is of great interest, es-8

pecially for the early Universe. Here, we employ supercomoving coordinates to study the magnetic field9

amplification from decaying turbulence during gravitational collapse. We perform three-dimensional10

simulations and show that for large magnetic Reynolds numbers there can be exponential growth of11

the comoving magnetic field with conformal time before the decay of turbulence impedes further am-12

plification. The collapse dynamics only affects the nonlinear feedback from the Lorentz force, which13

diminishes more rapidly for shorter collapse times, allowing nearly kinematic continued growth. We14

confirm that helical turbulence is more efficient in driving dynamo action than nonhelical turbulence,15

but this difference decreases for larger collapse times. We also show that for nearly irrotational flows,16

dynamo amplification is still possible, but it is always associated with a growth of vorticity—even if17

it still remains very small. In nonmagnetic runs, the growth of vorticity is associated with viscosity18

and grows with the Mach number. In the presence of magnetic fields, vorticity emerges from the curl19

of the Lorentz force. During a limited time interval, an exponential growth of the comoving magnetic20

field with conformal time is interpreted as clear evidence of dynamo action.21

Keywords: Magnetic fields (994); Hydrodynamics (1963)22

1. INTRODUCTION23

The hypothesis that dynamo action is ubiquitous in24

astrophysical plasmas was introduced in the 1950s, but25

it faced skepticism due to various anti-dynamo theorems26

(Cowling 1933; Hide & Palmer 1982). While initially27

the community focused on large-scale dynamos in the28

Sun (Parker 1955; Steenbeck et al. 1966) and galax-29

ies (Parker 1971; Vainshtein & Ruzmaikin 1971), the30

advance of powerful computers brought significant at-31

tention to small-scale dynamos at the scale of turbu-32

lence; see Meneguzzi et al. (1981) for the first simula-33

tions and Kazantsev (1968) for the underlying theory, as34

well as Kulsrud & Anderson (1992) for an independent35

and more detailed derivation. By now, it is clear that36

three-dimensional turbulence always leads to dynamo37

action when the plasma is sufficiently well conducting;38

see Brandenburg & Ntormousi (2023) for a recent re-39

view. This behavior implies that part of the kinetic en-40

ergy in the turbulence is almost always converted into41

magnetic energy.42

Collapse flows are particularly compelling for dynamo43

action. Since gravitational collapse provides a strong44

source of kinetic energy, it can enhance the magnetiza-45

tion of collapsing structures by sustaining or introducing46

turbulence in the flow. This mechanism is very rele-47

vant for galactic magnetism. Recently, there have been48

claims of strong (∼ µG or stronger) large-scale coherent49

galactic magnetic fields at redshifts up to 5.6 (Geach50

et al. 2023; Chen et al. 2024). Assuming only tiny pri-51

mordial seeds magnetic fields, there might not be enough52

time for a high redshift galaxy to build strong enough53

magnetic fields through mean-field dynamo action. An54

early amplification of a tiny initial seed through a small-55

scale dynamo (Beck et al. 1994), especially during the56

gravitational collapse of the initial halo, could alleviate57

this problem.58

Another relevant situation is star formation in the59

early Universe. Primordial molecular clouds with ini-60

tially negligible magnetic fields can become increasingly61

magnetized as they collapse, an effect that is known to62
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play a crucial role in the star formation process (Pattle63

et al. 2023).64

Despite its relevance to various astrophysical environ-65

ments, gravitational collapse dynamos have not yet been66

convincingly demonstrated. The main reason is that67

characterizing dynamos in unsteady flows is inherently68

challenging. For steady flows, we can always formu-69

late an eigenvalue problem, provided the magnetic field70

is still weak and unaffected by the feedback from the71

Lorentz force, which affects the flow amplitude. It is72

even possible to prove that there is no eigenfunction with73

a non-vanishing eigenvalue when the magnetic diffusiv-74

ity is strictly zero (Moffatt & Proctor 1985). Unsteady75

flows present a significant complication because, in that76

situation, the kinematic growth or decay of the magnetic77

field is no longer exponential. The problem becomes ap-78

proachable if the flow is statistically steady, i.e., the level79

of turbulence remains constant over time. In such cases,80

the energy spectrum grows at all wavenumbers at the81

same rate (Subramanian & Brandenburg 2014). This82

behavior is suggestive of the existence of an eigenfunc-83

tion of the type discussed by Kazantsev (1968). How-84

ever, many astrophysical flows, such as gravitational col-85

lapse, are not even statistically steady. Dynamo research86

in these cases is still in its infancy.87

In a series of numerical simulations of isolated turbu-88

lent collapsing molecular clouds, Sur et al. (2010, 2012)89

and Federrath et al. (2011b) reported a significant am-90

plification of the magnetic field. However, in the ab-91

sence of a proper criterion for dynamo action due to92

the inherent difficulties described above, these works de-93

fined dynamo action as any excess growth above the field94

B ∝ ρ2/3 expected by gravitational collapse as the den-95

sity ρ increases. Other works studying magnetic field96

growth in collapse flows (e.g., Schober et al. 2012; Xu &97

Lazarian 2020) explicitly integrated the evolution of the98

magnetic field through a turbulent dynamo.99

A common problem faced in collapse simulations is to100

identify dynamo action when other amplification mech-101

anisms, such as tangling or compression, are also active.102

In this context, we proposed a criterion for dynamo ac-103

tion in unsteady flows based on the work done against104

the Lorenz force (Brandenburg & Ntormousi 2022). Fur-105

thermore, by calculating the work against various forces,106

we emphasized that the Jeans instability drives predom-107

inantly irrotational motions, which are unlikely to ac-108

count for any dynamo action observed in our simulation,109

except for an early period before the collapse becomes110

more significant.111

Kinetic helicity—a measure of the alignment between112

velocity and vorticity—is not necessary for dynamo ac-113

tion. However, if present, it lowers the critical conduc-114

tivity needed to overcome the effects of Joule dissipation115

(Gilbert et al. 1988). Otherwise, resistive losses prema-116

turely convert magnetic energy into heat before the field117

can reach sufficient strength.118

A collapsing flow can produce vorticity through vis-119

cosity (especially in shocks), the baroclinic term, and120

magnetic fields. However, which of these processes is121

active during collapse is currently unknown. To isolate122

the effects related to the collapse dynamics, Irshad P123

et al. (2025) employed the supercomoving coordinates124

of Shandarin (1980), where the conformal time t is re-125

lated to the physical time tph through dt = dtph/a
2, and126

a(t) is the scale factor; see also Martel & Shapiro (1998)127

for a detailed presentation of the supercomoving coordi-128

nates in magnetohydrodynamics. Irshad P et al. (2025)129

employed a supercomoving coordinate system that fol-130

lows the self-gravitating collapse. These coordinates en-131

abled them to maintain sufficient numerical resolution132

throughout the entire collapse, which is another common133

problem faced in collapse simulations, including ours of134

2022.135

Irshad P et al. (2025) found super-exponential growth136

of the magnetic field as a result of the increasing137

turnover rate and saturation field strengths over the ex-138

pectations from flux freezing. They applied a solenoidal139

forcing function with and without kinetic helicity. The140

present work aims to study decaying turbulence during141

gravitational collapse by employing supercomoving co-142

ordinates and allowing not only for cases without initial143

kinetic helicity but also cases with or without initial vor-144

ticity, i.e., acoustic turbulence.145

2. OUR MODEL146

2.1. Supercomoving coordinates147

We employ supercomoving coordinates using the same148

definition of the scale factor as Irshad P et al. (2025),149

i.e.,150

a(t) = (1 + s2t2/4)−1, (1)151

where t is the conformal time, s is a free-fall parameter,152

which is related to the free-fall time tff = π/2s. The153

physical time tph is then given by154

tph(t) =

∫ t

0

a2(t′) dt′, (2)155

which is defined in the range 0 ≤ tph ≤ tff .156

The supercomoving coordinates stretch the finite time157

singularity at tff to infinity while also limiting the co-158

moving magnetic field strength according to159

B = a2Bph, (3)160

where Bph is the physical magnetic field.161
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2.2. Governing equations162

We solve the MHD equations with an isothermal equa-163

tion of state, where the pressure p and density ρ are164

related to each other through p = ρc2s with cs = const165

being the isothermal sound speed. We apply an initial166

velocity field u, which leads to a turbulent evolution. We167

also apply an initial seed magnetic field B. To ensure168

that B remains solenoidal, we solve for the magnetic169

vector potential A so that B = ∇ ×A. The evolution170

equations for A, u, and ρ are given by171

∂A

∂t
= u×B + η∇2A, (4)172

173

Du

Dt
= −c2s∇ ln ρ+ ρ−1 [a(t)J ×B +∇ · (2νρS)] , (5)174

175

D ln ρ

Dt
= −∇ · u, (6)176

where J = ∇ × B/µ0 is the current density with µ0177

being the vacuum permeability, J × B is the Lorentz178

force, S the rate-of-strain tensor with the components179

Sij =
1
2 (∂iuj + ∂jui)− 1

3δij∇ ·u and ν is the kinematic180

viscosity.181

2.3. Initial conditions and parameters182

We consider a cubic domain of size L3 with periodic183

boundary conditions. The lowest wavenumber in the184

domain is then k1 ≡ 2π/L. Owing to the use of pe-185

riodic boundary conditions, the mass in the domain is186

conserved, so the mean density is a constant, which de-187

fines our reference density ρ0 ≡ ρ. In the numerical188

simulations, we set cs = k1 = ρ0 = 1.189

We construct our initial velocity in Fourier space (in-190

dicated by a tilde) as ũ(k) = M(k)S(k). Here,191

Sj(k) = r(k, j)
k
−3/2
0 (k/k0)

1 + (k/k0)17/6
, (7)192

where r(k, j) is a Gaussian-distributed random number193

with zero mean and a variance of unity for each value194

of k and each direction j, k0 is the peak wavenumber of195

the initial condition, and M is a matrix that consists of196

a superposition of a vortical and an irrotational contri-197

bution (Brandenburg & Scannapieco 2025):198

Mij(k) = (1− ζ)(δij − k̂ik̂j + σik̂kϵijk) + ζk̂ik̂j , (8)199

where 0 ≤ ζ ≤ 1 quantifies the irrotational fraction and200

0 ≤ σ ≤ 1 the helicity fraction. The extreme cases201

ζ = 0 and ζ = 1 correspond to vortical and irrota-202

tional flows, respectively, while σ = 0 and σ = 1 corre-203

spond to nonhelical and helical fields, respectively. The204

shell-integrated kinetic energy spectrum, EK(k), which205

is normalized such that
∫
EK(k) dk = ρ0⟨u2/2⟩, is ini-206

tially ∝ k4 for k < k0 and ∝ k−5/3 for k > k0. The207

magnetic energy spectrum EM(k) is normalized such208

that
∫
EM(k) dk = ⟨B2/2µ0⟩ and initially of the same209

shape as EK(k). We also compute the vortical en-210

ergy spectrum EV(k), which is normalized such that211 ∫
k2EV(k) dk = ρ0⟨ω2/2⟩, where ω = ∇ × u is the212

vorticity.213

It is often convenient to express our results not in code214

units, where cs = k1 = ρ0 = 1, but in units of u0 and215

k0. Here, u0 ≡ ⟨u2⟩1/2 is the initial rms velocity. We216

also define a nondimensional magnetic field as217

Bi ≡ Bi/(µ0ρ0u
2
0)

1/2, (9)218

where i = x, y, z refers to the three components, and219

i = rms or i = ini refer to the rms values of the magnetic220

field at the actual or the initial time, respectively. We221

also define the Mach and magnetic Reynolds numbers222

based on the initial velocity, Ma0 = u0/cs and ReM =223

u0/ηk0, respectively. The Mach number at the actual224

time is denoted by Ma. As a nondimensional measure225

of s, we define S = s/u0k0. When S < 1 (S > 1), the226

collapse is slower (faster) than the turnover rate of the227

turbulence.228

In the following, we vary the input parameters s, ζ,229

k0/k1, Ma0, ReM, and Bini. In all cases presented below,230

the magnetic Prandtl number is unity, i.e., ν/η = 1.231

In the following, we display the conformal time in232

units of the initial turnover time, (u0k0)
−1, where u0233

is the initial rms velocity. As in Brandenburg & Ntor-234

mousi (2022), we monitor the vortical and irrotational235

contributions to the turbulence, ωrms = ⟨ω2⟩1/2 and236

(∇ · u)rms =
〈
(∇ · u)2

〉1/2
, in terms of quantities that237

have the dimension of a wavenumber,238

k∇·u = (∇ · u)rms/urms, (10)239

240

kω = ωrms/urms. (11)241

These two values are expected to scale with k0, which is242

why we usually present the ratios k∇·u/k0 and kω/k0.243

We use for all simulations the Pencil Code (Pencil244

Code Collaboration et al. 2021). Except for Run 39,245

where the resolution is 20483 mesh points, it is either246

5123 or 10243, as indicated in Table 1, where we sum-247

marize all runs discussed in this paper. As discussed248

later in Section 3.3, kω/k0 starts off with a small, but249

finite value, decreases rapidly at first, and may later dis-250

play a continuous growth until a maximum (kω/k0)max251

is reached. When a maximum is reached, we denote the252

total growth in e-folds from minimum to maximum by253

∆ ln(kω/k0), which is analogous to the growth in e-folds254

of the magnetic field, which we denote by ∆ lnB.255
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Table 1. Summary of the runs discussed in this paper. Here we list the nondimensional parameter S; the physical values in
code units are s/csk1 = 0.2, 1, 5, 20, and 100 both for the helical and nonhelical runs, 1–7 and 8–14, respectively. Column 7
gives ReM (Re) for magnetic (nonmagnetic) runs. Dashes in columns 8–10 indicate the 8 nonmagnetic runs. For magnetic runs,
dashes in columns 9 and 10 indicate decay. Run 39 corresponds to Run B of Brandenburg & Ntormousi (2022) and is discussed
in Section 4.

Run S σ ζ k0/k1 Ma0 ReM (Re) Bini ∆lnB λ/u0k0 ∆ln(kω/k0) (kω/k0)max resol.

1 0.1 1 0 10 0.18 1840 2.3× 10−8 8.33 0.52 0.39 7.09 5123

2 0.1 1 0 10 0.18 1840 2.3× 10−5 6.62 0.52 0.39 7.09 5123

3 0.1 1 0 10 0.18 1840 2.3× 10−2 1.88 1.00 0.31 6.46 5123

4 0.6 1 0 10 0.18 1840 2.3× 10−2 2.21 1.03 0.22 5.93 5123

5 2.8 1 0 10 0.18 1840 2.3× 10−2 3.56 1.03 0.30 6.43 5123

6 11 1 0 10 0.18 1840 2.3× 10−2 4.77 1.03 0.36 6.82 5123

7 56 1 0 10 0.18 1840 2.3× 10−2 5.96 1.03 0.39 7.04 5123

8 0.2 0 0 10 0.13 1300 3.3× 10−8 4.27 0.37 0.33 6.97 5123

9 0.2 0 0 10 0.13 1300 3.3× 10−5 4.22 0.37 0.33 6.97 5123

10 0.2 0 0 10 0.13 1300 3.3× 10−2 1.49 0.97 0.14 5.70 5123

11 0.8 0 0 10 0.13 1300 3.3× 10−2 1.92 0.97 0.17 5.91 5123

12 3.8 0 0 10 0.13 1300 3.3× 10−2 3.03 0.98 0.29 6.66 5123

13 15 0 0 10 0.13 1300 3.3× 10−2 3.75 0.98 0.33 6.92 5123

14 77 0 0 10 0.13 1300 3.3× 10−2 4.12 0.98 0.33 6.97 5123

15 0.2 0 0.10 10 0.12 1170 3.6× 10−2 1.41 0.34 0.11 5.50 5123

16 0.2 0 0.50 10 0.08 800 5.4× 10−2 1.04 0.25 0.00 4.00 5123

17 0.2 0 0.90 10 0.08 840 5.1× 10−2 0.31 0.04 0.25 0.94 5123

18 0.2 0 0.95 10 0.09 880 4.9× 10−2 0.05 0.003 0.28 0.47 5123

19 0.2 0 0.96 10 0.09 880 4.8× 10−2 0.02 0.001 0.26 0.38 5123

20 0.2 0 0.97 10 0.09 890 4.8× 10−2 — — 0.21 0.29 5123

21 0.2 0 0.98 10 0.09 900 4.7× 10−2 — — 0.13 0.20 5123

22 0.2 0 0.99 10 0.09 910 4.7× 10−2 — — 0.20 0.16 5123

23 0.2 0 1 10 0.09 920 4.6× 10−2 — — 0.30 0.14 5123

24 0.1 0 1 20 0.09 920 — — — 0.01 0.07 10243

25 0.2 0 1 10 0.09 930 — — — 0.03 0.05 10243

26 0.4 0 1 5 0.09 940 — — — 0.38 0.04 10243

27 1.0 0 1 2 0.10 950 — — — 1.27 0.03 10243

28 0.5 0 0.95 10 0.04 220 — — — 0.09 0.23 5123

29 0.1 0 0.95 10 0.18 890 — — — 0.31 0.71 10243

30 0.1 0 0.95 10 0.27 1330 — — — 0.43 1.00 10243

31 0.1 0 0.95 10 0.36 1780 — — — 0.51 1.31 10243

32 0.2 0 0.96 10 0.09 900 4.9× 10−2 0.02 0.001 0.17 0.38 10243

33 0.2 0 0.96 10 0.09 1800 4.9× 10−2 0.12 0.004 0.28 0.53 10243

34 0.2 0 0.96 10 0.09 4500 4.9× 10−2 0.51 0.008 0.53 0.79 10243

35 0.2 0 1 10 0.09 1870 9.4× 10−3 — — 0.03 0.07 10243

36 0.2 0 1 10 0.09 1870 2.4× 10−2 — — 0.17 0.09 10243

37 0.2 0 1 10 0.09 1870 4.7× 10−2 — — 0.34 0.21 10243

38 0.2 0 1 10 0.09 1870 9.4× 10−2 — — 0.25 0.48 10243

39 0.4 1 0 10 0.19 190 2.3× 10−17 8.32 0.42 0.01 4.29 20483
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Figure 1. Evolution of the rms magnetic field in comov-
ing coordinates for s/csk1 = 0.2 (black lines), 1 (blue lines),
5 (green lines), 20 (orange lines), and 100 (red lines). Solid
(dashed) lines refer to cases with (without) initial kinetic he-
licity and have values of u0 that are slightly larger (smaller),
so S is in the range 0.1–56 (0.2–77); see Table 1. Runs 3–7
and Runs 10–14.

While higher resolution leads to more accurate results,256

the lower resolution computations produce qualitatively257

similar ones; compare, for example, Runs 19 and 32,258

which have the same parameters. Both runs have almost259

the same vorticity and magnetic field evolution, but the260

lower resolution run has a slightly deeper minimum of261

kω/k0, which results in a larger value of ∆ ln(kω/k0).262

3. RESULTS263

3.1. Growth vs physical and conformal time264

We have performed runs with different values of S us-265

ing either helical (σ = 1) or nonhelical (σ = 0) tur-266

bulence, sometimes without irrotational contributions267

(ζ = 0). Figure 1 shows that the larger the value of S,268

the larger the final magnetic field strength. This is be-269

cause the effective Lorentz force in Equation (5), aJ×B,270

diminishes more rapidly with time when S is larger, al-271

lowing the magnetic field to continue growing further.272

In supercomoving coordinates, the initial growth rate of273

the magnetic field is not affected by the value of S. How-274

ever, the growth rate is larger with than without kinetic275

helicity. On the other hand, at later times, when the276

magnetic field decays, the values are similar regardless277

of the presence of kinetic helicity.278

In physical time, the magnetic field shows a steep in-279

crease just toward the end of the collapse; see Figure 2.280

Interestingly, the runs with large values of S, which pro-281

duce the strongest comoving magnetic fields, now yield282

the weakest physical fields when comparing the runs at283

the same fractional collapse time. This is because for the284

runs with large values of S, the free-fall time is short, so285

Figure 2. Same as Figure 1, but in physical units. Time
is here normalized by the free-fall time. The black and blue
dots on the black and blue curves denote the time until which
the growth in Figure 1 was still approximately exponential.
The inset shows the same, but now time is normalized by
the initial turnover time. Runs 3–7 and Runs 10–14.

the fractional times are larger, which effectively inter-286

changes the order of the curves. This is demonstrated287

in the inset of Figure 2, where we show the same data,288

but now with time in units of the initial turnover time.289

In Figure 2, we have also indicated the times where290

the initial exponential growth of the comoving magnetic291

field with conformal time terminates. For S = 0.1 and292

0.6, Brms/a
2 has hardly increased by an order of magni-293

tude. In particular, the growth of Brms/a
2 versus phys-294

ical time is not super-exponential, as found by Irshad P295

et al. (2025). The reason for our subexponential growth296

for S ≪ 1 is that the rms velocity decreases significantly297

due to turbulent diffusion leading to a smaller growth298

rate which then counters the effect of collapse. Only299

for larger values of S is the growth super-exponential in300

physical coordinates, and exponential in comoving co-301

ordinates. For S ≥ 2.8, the times when exponential302

growth in comoving coordinates terminates are outside303

the plot range of Figure 2.304

Given that the only effect of the collapse is on the305

Lorentz force, it is clear that the kinematic phase is com-306

pletely independent of the collapse. In the runs with a307

smaller initial field, the kinematic growth phases can308

last longer before the turbulence has decayed too much,309

while for a stronger initial field, nonlinear effects ter-310

minate the exponential growth phase earlier. This is311

shown quantitatively in Figure 3, where we see the mag-312

netic field growth for different initial field strengths. For313

weak initial fields, the comoving magnetic field grows314

by more than three orders of magnitude. It could grow315

more strongly if the magnetic Reynolds number were316

larger. The growth is only limited by the competition317
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Figure 3. Same as Figure 1, but for 3 different initial field
strengths. Runs 1–3 and Runs 8–10.

between magnetic field amplification by the flow and318

the simultaneous decay of the flow. Similar results were319

already reported in Brandenburg et al. (2019), but with-320

out collapse dynamics (a = 1).321

3.2. Effect of the Lorentz force322

As we have seen from Figure 3, when the initial mag-323

netic field strength is large, the early exponential growth324

diminishes more rapidly. This is the result of the effec-325

tive Lorentz force in Equation (5) becoming comparable326

with the inertial term, which implies (Irshad P et al.327

2025)328

a1/2Brms <∼ urms
√
µ0ρ0. (12)329

This is demonstrated in Figure 4(a), where we compare330

the evolution of a1/2Brms with that of urms/u0 for the331

same runs as those of Figures 1 and 2.332

We see that Equation (12) is well obeyed for all runs.333

The largest values of a1/2Brms are obtained for the runs334

with small values of S. The effect of kinetic helicity is335

here surprisingly weak and the values of a1/2Brms are336

only slightly smaller for the nonhelical runs than for337

the helical ones. For larger values of S, on the other338

hand, the differences between helical and nonhelical runs339

are much larger and we see that the decay of a1/2 is340

well overcompensated by the growth of Brms so that the341

product a1/2Brms still shows a strong increase later in342

the evolution; see Figure 4(b), where we plot separately343

the evolutions of a1/2 and Brms.344

We also see that for large values of S (short free-fall345

times), a1/2Brms decays at early times and only shows346

growth after that. This is opposite to the case of small347

values of S and simply because at early times, a1/2 de-348

cays faster than the exponential growth of Brms. Only349

somewhat later, for 2 <∼ tu0k0 <∼ 10, exponential growth350

prevails.351

Figure 4. (a) Similar to Figure 1, but now a1/2Brms

(thicker lines) and the instantaneous rms velocity (thinner
lines) are plotted. The order of the colors is the same
as before, with black being for s/csk1 = 0.2 and red for
s/csk1 = 100 and solid (dashed) lines refer to helical (non-
helical) initial flows, for which S varies in the range 0.1–56
(0.2–77). (b) Evolution separately for a1/2 (dashed-dotted
lines) and Brms (solid lines), again with the same colors as
before. Runs 3–7 and Runs 10–14.

3.3. Critical vorticity352

Numerical simulations have demonstrated in the past353

that vorticity is an important ingredient of dynamos354

(Haugen et al. 2004; Federrath et al. 2011a). Achikanath355

Chirakkara et al. (2021) did report dynamo action for356

purely irrotational driving, but this could perhaps still357

be explained by some residual vorticity in their simula-358

tions.359

The apparent necessity of vorticity may be a limita-360

tion of current simulations, whose maximum magnetic361

Reynolds number may still not be large enough, be-362

cause theoretically, small-scale dynamo action should363

also be possible for irrotational turbulence (Kazantsev364

et al. 1985; Martins Afonso et al. 2019). Clarifying this365

question for collapse simulations with the effective gain366

in resolution due to the use of supercomoving coordi-367

nates is crucial. We can study this here in more detail368

by varying the value of ζ. In Figure 5 we plot the evo-369

lution of k∇·u/k0 and Brms for runs with ReM = 900370

and several values of ζ. It is only when ζ is very close371
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Figure 5. Evolution of k∇·u/k0 (upper panel) and Brms

(lower panel) for ζ = 0.1 (red), 0.5 (orange), 0.9 (green), 0.95
(blue), and 1 (black). Runs 15–18 and Run 23.

to unity that dynamo action ceases. This suggests that372

very small amounts of vorticity can suffice for success-373

ful dynamo action. The intervals displaying a steady374

increase of k∇·u/k0, which were also seen in the work375

of Brandenburg & Ntormousi (2022), are just a conse-376

quence of the more rapid decay of urms compared to377

(∇ · u)rms. At early times, urms is approximately con-378

stant while (∇ ·u)rms shows an approximate power law379

decrease. This explains the initial decrease of k∇·u/k0.380

381

In Figure 6 we focus on several more values of ζ close382

to unity and find that for ReM = 880, the critical value is383

around 0.96. For larger values of ζ, there is no growth;384

see Runs 20–23 and Runs 35–38. However, the criti-385

cal value of 1 − ζ decreases with increasing magnetic386

Reynolds number. For larger values of ReM, smaller387

amounts of vorticity suffice for dynamo action. This is388

shown in Figure 7, where we compare runs for ζ = 0.96389

with different values of ReM = 900, 1800, and 4500,390

using 10243 mesh points. This value of ζ led to a vor-391

ticity that was the marginal value for obtaining growing392

magnetic fields for ReM = 900. We see that, as we in-393

crease ReM, the episode of growth becomes longer and394

the maximum magnetic field larger.395

To assess the level of vorticity, it is of interest to define396

a Reynolds number based on the vorticity as (Haugen397

et al. 2004; Elias-López et al. 2023, 2024)398

Reω = ωrms/νk
2
0, (13)399

Figure 6. kω/k0 (upper panel) and Brms (lower panel) for
1 (dotted black), 0.99 (solid black), 0.98 (blue), 0.97 (green),
0.96 (orange), and ζ = 0.95 (red). Runs 18–23.

Figure 7. kω/k0 (upper panel) and Brms (lower panel)
for ReM = 900 (black), 1800 (blue), and 4400 (green). The
frequency of the oscillations is ω ≈ 15. The resolution is in
all cases 10243 mesh points. Runs 32–34.

and compute the critical value above which dynamo400

action occurs. Looking at Table 1, we see that the401

threshold of ζ between 0.96 and 0.97 corresponds to402

kω/k0 = 0.38 and 0.29, respectively. With ReM ≈ 900,403

the critical value is PrM Reω = (kω/k0)ReM ≈ 300.404

This value is rather large, but it is unclear whether the405
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Figure 8. kω/k0 for hydrodynamic runs with ζ = 1, ReM =
900, and different values of k0. For k0/k1 = 10, we also
compare with the magnetic run with ReM = 900. Runs 24–
27.

dynamo onset is indeed determined predominantly by406

Reω. If dynamos do indeed work for purely acoustic407

turbulence (ζ = 1), as found by Achikanath Chirakkara408

et al. (2021), the dynamo onset could not depend on409

Reω alone. Thus, future work should establish to what410

extent our critical value of PrM Reω of 300 is universal.411

3.4. Effect of scale separation412

We have seen from Figure 6 that for very small val-413

ues of 1− ζ, the expected approach of kω to zero slows414

down in the sense that the values are almost the same415

for ζ = 1 and ζ = 0.99, and that for ζ = 0.98 is further416

away. It is conceivable that the finite value of kω for417

ζ = 1 is caused by nonrepresentative averages resulting418

from a small number of turbulent eddies, i.e., from small419

scale separation, which is the ratio between k0 and the420

lowest wavenumber of the domain. To check whether421

this is the case, we present in Figure 8 runs with different422

values of k0. As expected, we see that kω scales with k0,423

so the ratio kω/k0 varies only little and lies in the range424

0.01 ≤ kω/k0 ≤ 0.02 after about 10–30 turnover times.425

This suggests that this value of kω/k0 is not affected426

by the finite scale separation. When we decrease the427

scale separation ratio to k0/k1 = 2, the run shows vigor-428

ous fluctuations. They may indicate that the numerical429

resolution becomes insufficient in the collapsing regions.430

The above simulations have demonstrated once again431

that without the gain of effective resolution due to the432

use of supercomoving coordinates, earlier collapse simu-433

lations may have been severely underresolved.434

3.5. Growth of vorticity435

In Figure 6, we have seen that for ζ = 0.95, there436

can be growth of kω by a certain amount. It is possible437

that this is caused either by magnetic driving (Kahni-438

ashvili et al. 2012) or by what is known as magnetically439

assisted vorticity production (Brandenburg & Scanna-440

Figure 9. Evolution of kω/k0 for different Mach numbers.
Runs 28–31.

pieco 2025). To clarify this, it is useful to compare with441

the purely hydrodynamic case; see Table 1.442

For an isothermal gas, there is no baroclinic term,443

which would be the main agent for producing vorticity444

in nonisothermal flows. There is also no rotation nor445

shear, both of which could lead to vorticity generation446

(Del Sordo & Brandenburg 2011; Elias-López et al. 2023,447

2024). There remain only three possibilities for driving448

or amplifying vorticity: (i) through viscosity via gra-449

dients of the velocity divergence being inclined against450

density gradients, (ii) through magnetic driving or mag-451

netically assisted vorticity production (Brandenburg &452

Scannapieco 2025), and (iii) through nonlinearity.453

The growth of vorticity through nonlinearity may be454

motivated by the formal analogy with the induction455

equation when the magnetic field is replaced by the vor-456

ticity ω, i.e.,457

∂ω

∂t
= ∇× (u× ω) + ω̇visc + ω̇mag, (14)458

where ω̇visc = ν(∇2ω + ∇ × G) is the curl of the vis-459

cous acceleration with Gi = 2Sij∇j ln ρ being a vector460

characterizing the driving of vorticity even if it was van-461

ishing initially (Mee & Brandenburg 2006; Brandenburg462

& Scannapieco 2025), and ω̇mag = a(t)∇× (J×B/ρ) is463

the vorticity driving from the curl of the Lorentz force,464

where we have included the a(t) term resulting from the465

use of supercomoving coordinates.466

The analogy between induction and vorticity equa-467

tions is obviously imperfect, because the velocity is di-468

rectly related to the vorticity. This analogy has been469

invoked by Batchelor (1950) to explain dynamo ac-470

tion, but here we rather use it to motivate the question471

whether vorticity can be amplified.472

To distinguish between the various possibilities, we473

must vary the viscosity, the Mach number, and the474

initial magnetic field strength. One important clue is475

given by the fact that the occurrence of vorticity de-476

pends on the Mach number of the turbulence. This is477
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Figure 10. Scaling of (kω/k0)max with the actual and
initial Mach numbers, Ma and Ma0, respectively. The slopes
are 1.6 and 0.84, respectively. Runs 28–31.

Figure 11. kω/k0 for hydromagnetic runs with ζ =
1, ReM = 1900, and different magnetic field strengths.
Runs 35–38.

demonstrated in Figure 9, where we plot the evolution478

of kω/k0 for different Mach numbers. Figure 10 shows479

that (kω/k0)max scales with the actual Mach number480

Ma at the time when (kω/k0)max is reached and the481

initial Mach number Ma0, respectively. The slopes for482

both scalings are different, and somewhat shallower than483

the nearly quadratic scaling found by Federrath et al.484

(2011a) for the forced case.485

In all our runs, kω/k0 reaches a maximum at some486

point. For runs 15–18, we see that (kω/k0)max increases487

with increasing values of Bini; see Figure 11. Figure 12488

shows that this increase is linear and not quadratic,489

which means that the vorticity is magnetically driven490

rather than due to magnetically assisted growth; see491

Brandenburg & Scannapieco (2025) for details on this492

distinction. As seen from Table 1, the magnetic field de-493

cays for these runs, so there is no dynamo action. Due494

to the presence of the a(t) factor in ω̇mag, we expect the495

magnetic effect to diminish in collapse simulations with496

a small value of S.497

3.6. Spectral evolution498

Figure 12. Dependence of the maximum of kω/k0 on Bini

for hydromagnetic runs with ζ = 1, ReM = 900, and different
magnetic field strengths. The straight line indicates a linear
relationship. Runs 35–38.

Figure 13. Evolution of EK(k, t), EV(k, t), and EM(k, t)
for Run 34. The arrows indicate the sense of time. The first
time is shown as dotted lines to distinguish it better from
the next one, for which EM(k) is still very similar.

In Figure 13, we show the evolution of EK(k, t),499

EV(k, t), and EM(k, t) for Run 34. This is our run with500



10

Figure 14. Evolution of the pseudo growth rate γ (black
lines), with contributions from γ2D (blue lines) and the resid-
ual γ − γ2D (red lines), for Runs 23 (a), 32 (b), and 34 (c).

the largest magnetic Reynolds number (ReM = 4500)501

and has only 4% vorticity (ζ = 0.96), but shows clear502

dynamo action. The evolution of kω/k0 and Brms was503

shown in Figure 7.504

We see that both EK(k, t) and EV(k, t) decay, while505

EM(k, t) increases both at large and small wavenumbers.506

Overall, EV(k) is almost a hundred times smaller than507

EK(k, t), but, similarly to EM(k, t), EV(k) also shows a508

small temporal increase at small values of k. This is sug-509

gestive of magnetic vorticity production via an inverse510

cascade. Also, although EV(k, t) decays in the inertial511

range, it bulges at k/k0 ≈ 4, which appears to be a512

direct consequence of magnetic driving.513

As already demonstrated in Brandenburg & Ntor-514

mousi (2022), the collapse dynamics does not affect the515

magnetic energy spectra significantly. At length scales516

above the Jeans length, the collapse does lead to a517

growth of the compressive part of the kinetic energy518

spectra and even a growth of magnetic energy, but this is519

associated with the compression itself and is not a con-520

sequence of a dynamo; see Figure 9(b) of Brandenburg521

& Ntormousi (2022).522

3.7. Instantaneous growth rate523

For the magnetic energy to grow, the induction term524

u ×B in Equation (4) has to overcome the dissipation525

term. This is also true in the unsteady case and can526

therefore be used to characterize dynamo action in a527

collapse simulation. In the evolution equation for the528

mean magnetic energy density, EM(t) ≡ ⟨B2/2µ0⟩, the529

term530

⟨J · (u×B)⟩ ≡ −WL (15)531

has to exceed the Joule dissipation, QM = ⟨µ0ηJ
2⟩. The532

instantaneous growth rate of magnetic energy can then533

be written as γ = (−WL − QM)/EM. The first term,534

which can also be written as WL = ⟨u · (J × B)⟩, is535

the work done by the Lorentz force. When it is nega-536

tive, kinetic energy is used to drive magnetic energy; see537

Equation (15).538

Brandenburg & Ntormousi (2022) made use of the fact539

that in two dimensions (2D), when no action is possible,540

Equation (4) can be written as an advection–diffusion541

equation, i.e., DA/Dt = η∇2A, where A is the compo-542

nent of A that is normal to the 2D plane. This moti-543

vated them to decompose WL by expanding B = ∇×A544

to get545

−⟨J ·(u×B)⟩ = ⟨Jiuj(Ai,j−Aj,i⟩ ≡ W 2D
L +W 3D

L . (16)546

Here, the first term is related to the advection term. The547

second term, W 3D
L = −⟨JiujAj,i⟩, vanishes in 2D. Thus,548

they identified W 3D
L with a contribution that character-549

izes the 3D nature of the system and used it as a proxy550

for dynamo action when it is large enough. They thus551

defined552

γ2D = −(W 2D
L +QM)/EM, γ3D = −W 3D

L /EM, (17)553

so that γ2D + γ3D = γ.554

In Figure 14, we plot the time dependences of γ, γ2D,555

and γ3D = γ − γ2D for Runs 23 (no dynamo, because556

kω is too small), 32 (weak dynamo), and 34 (strong dy-557

namo, ReM is the largest). We see that γ2D is always558

negative, except during an early phase for Run 34, which559

can be associated with strong 2D tangling of the initial560

magnetic field. When γ3D is added to γ2D, the resulting561

instantaneous growth rate is positive during the early562

part of the evolution of Run 32 and during the entire563

evolution of Run 34.564

Our considerations above have shown that the use of565

γ2D and γ3D does indeed provide a meaningful tool to566
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Figure 15. Visualizations of Bz, ωz/u0k0, and ∇ ·u/u0k0 for Run 37 at early and late times. Note that the domain is cubic,
but the images have been stretched in the horizontal direction to take advantage of the full page size.

assess dynamo action in unsteady environments in gen-567

eral, and in collapse simulations in particular. Neverthe-568

less, we regard the direct demonstration of exponential569

growth in supercomoving coordinates in Section 3.1 as570

even more convincing evidence for dynamo action.571

3.8. Visualizations572

In Figure 15, we present visualizations of Bz, ωz/u0k0,573

and∇·u/u0k0 for Run 37 at early and late times. There574

is no significance in us having chosen the z component575
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Figure 16. Physical magnetic field Bph (dashed red lines) and its comoving counterpart a2Bph (black lines) versus physical
time (a) and conformal time (b) for Run B from Brandenburg & Ntormousi (2022) and Run 39 of the present paper.

of B and ω; all three components are statistically equiv-576

alent.577

The magnetic field appears to preserve its initial578

length scale corresponding to k = k0, and only the field579

strength becomes weaker with time. By contrast, the580

vorticity quickly develops small-scale patches that then581

grow to larger-scale patches at later times. Note also582

that the magnitude of ωz/u0k0 (about 0.01) is compa-583

rable to that of Bz. This is reminiscent of the findings of584

Kahniashvili et al. (2012), who reported a quantitative585

agreement between the spectra of vorticity and magnetic586

field.587

For the velocity divergence, there is a much larger588

decrease from the time tu0k0 = 3 to tu0k0 = 30. As589

stated above, the compressive part of the velocity field,590

which is reflected in the values and the appearance of∇·591

u, decreases more strongly with time than the vortical592

part, as reflected through the vorticity. We also see that,593

although the initial scales are rather small, they still594

seem to be sufficiently well resolved.595

4. COMPARISON WITH PREVIOUS WORK596

In our earlier paper (Brandenburg & Ntormousi 2022),597

we simulated gravitational collapse using numerical sim-598

ulations of decaying turbulence in a Jeans-unstable do-599

main at a resolution of 20482 mesh points. We only600

found a weak increase of the magnetic field with time.601

Given the knowledge of the collapse time from the simu-602

lations, i.e., the time when the singularity was reached,603

we can replace the pressure-less free-fall time by the ac-604

tual collapse time and express the evolution of the rms605

magnetic field in comoving coordinates. This allows us606

to see whether the growth in the old simulations is close607

to exponential in comoving coordinates during any time608

interval.609

The result is shown in Figure 16, where we computed610

the conformal time and scale factor numerically based611

on Equation (1). Here we used the empirical value of612

tff ≈ 2.016/csk1, which yields s ≈ 0.78 csk0, and thus,613

since u0/cs = 0.19 and k0/k1 = 10, we have S ≈ 0.4;614

see Table 1, where it is called Run 39. The physical val-615

ues of the magnetic field computed by Brandenburg &616

Ntormousi (2022) are denoted by Bph. We also plot the617

comoving values a2Bph both versus physical and confor-618

mal time. Here, the a(t) and the conformal time have619

been computed from Equations (1) and (2). Although620

there is a steady increase of Brms, Figure 16(b) shows621

that the comoving magnetic field does not follow an ex-622

ponential growth in conformal time, except for a very623

early time interval 0 < tu0k0 <∼ 0.4.624

To understand why the exponential phase is so short625

in this run, we compare its parameters with those of the626

other runs presented in this paper; see Table 1. The627

closest match is with Run 1. We see immediately that628

the main problem with Run 39 is the small value of the629

magnetic Reynolds number, which is 10 times smaller630

than that of Run 1. In spite of the high resolution of631

Run 39, the value of ReM could not have been chosen632

larger because of the strong compression and large gradi-633

ents suffered by the collapsing regions toward the end of634

the run. This highlights the main advantage of choosing635

supercomoving coordinates for collapse simulations.636

5. CONCLUSIONS637

In this work we approached the problem of dynamo638

action during gravitational collapse by employing su-639

percomoving coordinates. This is a significant change640

of paradigm with respect to previous simulation work641

(e.g., Sur et al. 2010, 2012; Federrath et al. 2011b; Bran-642

denburg & Ntormousi 2022) which was limited by the643

shrinking dynamical range during the collapse; see Sec-644

tion 4. In supercomoving coordinates we can look for ex-645

ponential growth of the magnetic field, which is a clear646

signature of a dynamo. This allows us to surpass the647

other obstacle faced by previous work, which is charac-648

terizing dynamos in unsteady flows.649
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When describing gravitational collapse in superco-650

moving coordinates, the governing equations of magne-651

tohydrodynamics are similar to the original ones, except652

that now the scale factor appears in front of the Lorentz653

force. This reduces the effective Lorentz force, because654

a(t) becomes progressively smaller with time. Therefore,655

in the limit of very short collapse times or large values656

of s, the evolution approaches essentially the kinematic657

evolution. This, however, does not mean unlimited con-658

tinual growth, because the rms value of the turbulent659

intensity is declining.660

As shown previously (Brandenburg et al. 2019), de-661

caying turbulence leads to an episode of exponential662

growth if the magnetic Reynolds number is large enough.663

The larger it is, the longer is the episode of exponential664

growth. This is essentially the result of a competition665

against the decay of turbulence, which lowers the instan-666

taneous value of the magnetic Reynolds number as time667

goes on. The gravitational collapse changes this picture668

only little if we view the decay in supercomoving coor-669

dinates, because the collapse only affects the nonlinear670

dynamics, and this nonlinearity gets weaker with time.671

Irshad P et al. (2025) considered forced turbulence,672

as opposed to our study of decaying turbulence. There-673

fore, in their models, the magnetic field could always674

be sustained, but the source of the driving remains un-675

clear. The superexponential growth that they reported,676

however, it still recovered in our decay simulations, un-677

less the free-fall time is longer than the turnover time678

of the turbulence. In that case, the growth is actually679

subexponential, but this is primarily a consequence of680

the decay of the turbulence.681

Our present work has also shown that even very small682

amounts of vorticity can be sufficient to facilitate dy-683

namo action. In particular, we find that the vorticity684

can grow in concert with the magnetic field. However,685

the magnetic vorticity production will decline in simu-686

lations with small values of S.687

Earlier work on turbulent collapse and dynamo ac-688

tion has suggested that the collapse drives turbulence689

and enhanced it (Sur et al. 2012; Xu & Lazarian 2020;690

Hennebelle 2021). Our work casts doubt on this inter-691

pretation, because of two aspects. First, the collapse692

dynamics reduces the effective nonlinearity, resulting in693

stronger apparent field amplification by the turbulence,694

and second, there can be generation of vorticity both695

from viscosity and from the magnetic field itself, but696

this is not directly related to the collapse. It should697

therefore be checked, whether these two factors could698

have contributed to the earlier findings of collapse-driven699

turbulence. In this context, the fact that we do not700

solve the Poisson equation for self-gravity but treat the701

collapse as a homogeneous flow through the change of702

coordinates could be a difference worth investigating.703

As explained in Section 4, the transformation to su-704

percomoving coordinates may also help analyzing exist-705

ing simulations in physical coordinates. We argue that706

for homogeneous collapse simulations that do not utilize707

supercomoving coordinates, it is still useful to express708

such results in terms of comoving quantities and confor-709

mal time, because they might display exponential mag-710

netic field growth that would be the perhaps strongest711

indication of dynamo action so far.712

Our work has applications not just to interstellar713

clouds and primordial star formation (e.g., Schleicher714

et al. 2009; Hirano & Machida 2022; Sharda et al. 2020),715

but also to larger cosmological scales. Our results show716

that small amounts of vorticity might suffice to produce717

dynamo action even in decaying turbulence which, we718

argue, is also relevant to gravitational collapse. This719

consideration is important for understanding magnetism720

in protohalos before the first stars form and their feed-721

back drives sufficient turbulence for dynamo action (e.g.,722

Schleicher et al. 2010).723

Finally, our findings indicate that earlier simulations,724

including our own high-resolution simulations at 20483725

mesh points, may still have had insufficient resolution to726

follow the collapse and should be revisited using more727

idealized settings that allow the usage of a comoving728

frame.729
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