Magnetic field amplification during a turbulent collapse

AXEL BRANDENBURG $\mathbb{D}^{1, 2, 3, 4}$ and Evangelia Ntormousi \mathbb{D}^5	
² ¹ Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-10691 Stockho	lm, Sweden
³ ² The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm,	Sweden
⁴ ³ McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 152	13, USA
⁵ ⁴ School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Ge	orgia
⁶ Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy	

ABSTRACT

The question of whether a dynamo can be triggered by gravitational collapse is of great interest, es-8 pecially for the early Universe. Here, we employ supercomoving coordinates to study the magnetic field 9 amplification from decaying turbulence during gravitational collapse. We perform three-dimensional 10 simulations and show that for large magnetic Reynolds numbers there can be exponential growth of 11 the comoving magnetic field with conformal time before the decay of turbulence impedes further am-12 plification. The collapse dynamics only affects the nonlinear feedback from the Lorentz force, which 13 diminishes more rapidly for shorter collapse times, allowing nearly kinematic continued growth. We 14 confirm that helical turbulence is more efficient in driving dynamo action than nonhelical turbulence, 15 but this difference decreases for larger collapse times. We also show that for nearly irrotational flows, 16 dynamo amplification is still possible, but it is always associated with a growth of vorticity—even if 17 it still remains very small. In nonmagnetic runs, the growth of vorticity is associated with viscosity 18 and grows with the Mach number. In the presence of magnetic fields, vorticity emerges from the curl 19 of the Lorentz force. During a limited time interval, an exponential growth of the comoving magnetic 20 field with conformal time is interpreted as clear evidence of dynamo action. 21

22 Keywords: Magnetic fields (994); Hydrodynamics (1963)

1. INTRODUCTION

23

The hypothesis that dynamo action is ubiquitous in 24 ²⁵ astrophysical plasmas was introduced in the 1950s, but 26 it faced skepticism due to various anti-dynamo theorems (Cowling 1933; Hide & Palmer 1982). While initially 27 28 the community focused on large-scale dynamos in the ²⁹ Sun (Parker 1955; Steenbeck et al. 1966) and galax-³⁰ ies (Parker 1971; Vainshtein & Ruzmaikin 1971), the ³¹ advance of powerful computers brought significant at-32 tention to small-scale dynamos at the scale of turbu-³³ lence; see Meneguzzi et al. (1981) for the first simula-³⁴ tions and Kazantsev (1968) for the underlying theory, as ³⁵ well as Kulsrud & Anderson (1992) for an independent 36 and more detailed derivation. By now, it is clear that 37 three-dimensional turbulence always leads to dynamo ³⁸ action when the plasma is sufficiently well conducting; ³⁹ see Brandenburg & Ntormousi (2023) for a recent re-40 view. This behavior implies that part of the kinetic en-⁴¹ ergy in the turbulence is almost always converted into ⁴² magnetic energy.

Collapse flows are particularly compelling for dynamo 43 ⁴⁴ action. Since gravitational collapse provides a strong ⁴⁵ source of kinetic energy, it can enhance the magnetiza-⁴⁶ tion of collapsing structures by sustaining or introducing 47 turbulence in the flow. This mechanism is very rele-⁴⁸ vant for galactic magnetism. Recently, there have been 49 claims of strong (~ μ G or stronger) large-scale coherent ⁵⁰ galactic magnetic fields at redshifts up to 5.6 (Geach 51 et al. 2023; Chen et al. 2024). Assuming only tiny pri-52 mordial seeds magnetic fields, there might not be enough ⁵³ time for a high redshift galaxy to build strong enough ⁵⁴ magnetic fields through mean-field dynamo action. An ⁵⁵ early amplification of a tiny initial seed through a small-⁵⁶ scale dynamo (Beck et al. 1994), especially during the 57 gravitational collapse of the initial halo, could alleviate 58 this problem.

⁵⁹ Another relevant situation is star formation in the ⁶⁰ early Universe. Primordial molecular clouds with ini-⁶¹ tially negligible magnetic fields can become increasingly ⁶² magnetized as they collapse, an effect that is known to ⁶³ play a crucial role in the star formation process (Pattle ⁶⁴ et al. 2023).

Despite its relevance to various astrophysical environ-65 66 ments, gravitational collapse dynamos have not yet been 67 convincingly demonstrated. The main reason is that 68 characterizing dynamos in unsteady flows is inherently For steady flows, we can always formu-69 challenging. 70 late an eigenvalue problem, provided the magnetic field 71 is still weak and unaffected by the feedback from the 72 Lorentz force, which affects the flow amplitude. It is ⁷³ even possible to prove that there is no eigenfunction with 74 a non-vanishing eigenvalue when the magnetic diffusiv-⁷⁵ ity is strictly zero (Moffatt & Proctor 1985). Unsteady ⁷⁶ flows present a significant complication because, in that 77 situation, the kinematic growth or decay of the magnetic ⁷⁸ field is no longer exponential. The problem becomes ap-⁷⁹ proachable if the flow is statistically steady, i.e., the level ⁸⁰ of turbulence remains constant over time. In such cases, ⁸¹ the energy spectrum grows at all wavenumbers at the ⁸² same rate (Subramanian & Brandenburg 2014). This ⁸³ behavior is suggestive of the existence of an eigenfunc-⁸⁴ tion of the type discussed by Kazantsev (1968). How-⁸⁵ ever, many astrophysical flows, such as gravitational col-⁸⁶ lapse, are not even statistically steady. Dynamo research ⁸⁷ in these cases is still in its infancy.

In a series of numerical simulations of isolated turbulent collapsing molecular clouds, Sur et al. (2010, 2012) and Federrath et al. (2011b) reported a significant amplification of the magnetic field. However, in the absence of a proper criterion for dynamo action due to the inherent difficulties described above, these works defined dynamo action as any excess growth above the field $B \propto \rho^{2/3}$ expected by gravitational collapse as the density ρ increases. Other works studying magnetic field r growth in collapse flows (e.g., Schober et al. 2012; Xu & Lazarian 2020) explicitly integrated the evolution of the magnetic field through a turbulent dynamo.

A common problem faced in collapse simulations is to 100 ¹⁰¹ identify dynamo action when other amplification mech-¹⁰² anisms, such as tangling or compression, are also active. ¹⁰³ In this context, we proposed a criterion for dynamo ac-104 tion in unsteady flows based on the work done against ¹⁰⁵ the Lorenz force (Brandenburg & Ntormousi 2022). Fur-¹⁰⁶ thermore, by calculating the work against various forces, we emphasized that the Jeans instability drives predom-107 108 inantly irrotational motions, which are unlikely to account for any dynamo action observed in our simulation, 109 ¹¹⁰ except for an early period before the collapse becomes more significant. 111

¹¹² Kinetic helicity—a measure of the alignment between ¹¹³ velocity and vorticity—is not necessary for dynamo ac-¹¹⁴ tion. However, if present, it lowers the critical conduc¹¹⁵ tivity needed to overcome the effects of Joule dissipation
¹¹⁶ (Gilbert et al. 1988). Otherwise, resistive losses prema¹¹⁷ turely convert magnetic energy into heat before the field
¹¹⁸ can reach sufficient strength.

A collapsing flow can produce vorticity through vis-119 120 cosity (especially in shocks), the baroclinic term, and 121 magnetic fields. However, which of these processes is 122 active during collapse is currently unknown. To isolate ¹²³ the effects related to the collapse dynamics, Irshad P 124 et al. (2025) employed the supercomoving coordinates $_{125}$ of Shandarin (1980), where the conformal time t is re-126 lated to the physical time $t_{\rm ph}$ through $dt = dt_{\rm ph}/a^2$, and $_{127} a(t)$ is the scale factor; see also Martel & Shapiro (1998) 128 for a detailed presentation of the supercomoving coordi-¹²⁹ nates in magnetohydrodynamics. Irshad P et al. (2025) ¹³⁰ employed a supercomoving coordinate system that fol-¹³¹ lows the self-gravitating collapse. These coordinates en-132 abled them to maintain sufficient numerical resolution 133 throughout the entire collapse, which is another common 134 problem faced in collapse simulations, including ours of 135 2022.

Irshad P et al. (2025) found super-exponential growth magnetic field as a result of the increasing turnover rate and saturation field strengths over the expectations from flux freezing. They applied a solenoidal forcing function with and without kinetic helicity. The present work aims to study decaying turbulence during aray gravitational collapse by employing supercomoving corad ordinates and allowing not only for cases without initial kinetic helicity but also cases with or without initial vorticity, i.e., acoustic turbulence.

2. OUR MODEL

146

147

151

155

160

2.1. Supercomoving coordinates

¹⁴⁸ We employ supercomoving coordinates using the same ¹⁴⁹ definition of the scale factor as Irshad P et al. (2025), ¹⁵⁰ i.e.,

$$a(t) = (1 + s^2 t^2 / 4)^{-1}, \tag{1}$$

¹⁵² where t is the conformal time, s is a free-fall parameter, ¹⁵³ which is related to the free-fall time $t_{\rm ff} = \pi/2s$. The ¹⁵⁴ physical time $t_{\rm ph}$ is then given by

$$t_{\rm ph}(t) = \int_0^t a^2(t') \,\mathrm{d}t', \tag{2}$$

¹⁵⁶ which is defined in the range $0 \le t_{\rm ph} \le t_{\rm ff}$.

The supercomoving coordinates stretch the finite time singularity at $t_{\rm ff}$ to infinity while also limiting the comoving magnetic field strength according to

$$B = a^2 B_{\rm ph},\tag{3}$$

 $_{\rm ^{161}}$ where $B_{\rm ph}$ is the physical magnetic field.

2.2. Governing equations

We solve the MHD equations with an isothermal equation of state, where the pressure p and density ρ are related to each other through $p = \rho c_s^2$ with $c_s = \text{const}$ being the isothermal sound speed. We apply an initial velocity field \boldsymbol{u} , which leads to a turbulent evolution. We also apply an initial seed magnetic field \boldsymbol{B} . To ensure that \boldsymbol{B} remains solenoidal, we solve for the magnetic vector potential \boldsymbol{A} so that $\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$. The evolution requations for $\boldsymbol{A}, \boldsymbol{u}$, and ρ are given by

162

$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{u} \times \boldsymbol{B} + \eta \nabla^2 \boldsymbol{A},\tag{4}$$

218

239 240 241

$${}_{^{174}} \quad \frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} = -c_{\mathrm{s}}^{2}\boldsymbol{\nabla}\ln\rho + \rho^{-1}\left[a(t)\boldsymbol{J}\times\boldsymbol{B} + \boldsymbol{\nabla}\cdot(2\nu\rho\boldsymbol{\mathsf{S}})\right], \quad (5)$$

$$\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} = -\boldsymbol{\nabla}\cdot\boldsymbol{u},\tag{6}$$

¹⁷⁷ where $\boldsymbol{J} = \boldsymbol{\nabla} \times \boldsymbol{B}/\mu_0$ is the current density with μ_0 ¹⁷⁸ being the vacuum permeability, $\boldsymbol{J} \times \boldsymbol{B}$ is the Lorentz ¹⁷⁹ force, **S** the rate-of-strain tensor with the components ¹⁸⁰ $\mathsf{S}_{ij} = \frac{1}{2}(\partial_i u_j + \partial_j u_i) - \frac{1}{3}\delta_{ij}\boldsymbol{\nabla} \cdot \boldsymbol{u}$ and ν is the kinematic ¹⁸¹ viscosity.

182 2.3. Initial conditions and parameters

¹⁸³ We consider a cubic domain of size L^3 with periodic ¹⁸⁴ boundary conditions. The lowest wavenumber in the ¹⁸⁵ domain is then $k_1 \equiv 2\pi/L$. Owing to the use of pe-¹⁸⁶ riodic boundary conditions, the mass in the domain is ¹⁸⁷ conserved, so the mean density is a constant, which de-¹⁸⁸ fines our reference density $\rho_0 \equiv \overline{\rho}$. In the numerical ¹⁸⁹ simulations, we set $c_{\rm s} = k_1 = \rho_0 = 1$.

We construct our initial velocity in Fourier space (in-¹⁹¹ dicated by a tilde) as $\tilde{u}(k) = \mathsf{M}(k)S(k)$. Here,

¹⁹²
$$S_j(\mathbf{k}) = r(\mathbf{k}, j) \frac{k_0^{-3/2}(k/k_0)}{1 + (k/k_0)^{17/6}},$$
 (7)

¹⁹³ where $r(\mathbf{k}, j)$ is a Gaussian-distributed random number ¹⁹⁴ with zero mean and a variance of unity for each value ¹⁹⁵ of \mathbf{k} and each direction j, k_0 is the peak wavenumber of ¹⁹⁶ the initial condition, and \mathbf{M} is a matrix that consists of ¹⁹⁷ a superposition of a vortical and an irrotational contri-¹⁹⁸ bution (Brandenburg & Scannapieco 2025):

¹⁹⁹
$$\mathsf{M}_{ij}(\mathbf{k}) = (1-\zeta)(\delta_{ij} - \hat{k}_i \hat{k}_j + \sigma \mathrm{i} \hat{k}_k \epsilon_{ijk}) + \zeta \hat{k}_i \hat{k}_j, \quad (8)$$

²⁰⁰ where $0 \leq \zeta \leq 1$ quantifies the irrotational fraction and ²⁰¹ $0 \leq \sigma \leq 1$ the helicity fraction. The extreme cases ²⁰² $\zeta = 0$ and $\zeta = 1$ correspond to vortical and irrota-²⁰³ tional flows, respectively, while $\sigma = 0$ and $\sigma = 1$ corre-²⁰⁴ spond to nonhelical and helical fields, respectively. The ²⁰⁵ shell-integrated kinetic energy spectrum, $E_{\rm K}(k)$, which ²⁰⁵ magnetic energy spectrum $E_{\rm M}(k)$ is normalized such ²⁰⁹ that $\int E_{\rm M}(k) dk = \langle B^2/2\mu_0 \rangle$ and initially of the same ²¹⁰ shape as $E_{\rm K}(k)$. We also compute the vortical en-²¹¹ ergy spectrum $E_{\rm V}(k)$, which is normalized such that ²¹² $\int k^2 E_{\rm V}(k) dk = \rho_0 \langle \omega^2/2 \rangle$, where $\omega = \nabla \times u$ is the ²¹³ vorticity.

It is often convenient to express our results not in code units, where $c_{\rm s} = k_1 = \rho_0 = 1$, but in units of u_0 and k_0 . Here, $u_0 \equiv \langle \boldsymbol{u}^2 \rangle^{1/2}$ is the initial rms velocity. We are also define a nondimensional magnetic field as

$$\mathcal{B}_i \equiv B_i / (\mu_0 \rho_0 u_0^2)^{1/2}, \tag{9}$$

²¹⁹ where i = x, y, z refers to the three components, and ²²⁰ i = rms or i = ini refer to the rms values of the magnetic²²¹ field at the actual or the initial time, respectively. We ²²² also define the Mach and magnetic Reynolds numbers ²²³ based on the initial velocity, Ma₀ = u_0/c_s and Re_M = ²²⁴ $u_0/\eta k_0$, respectively. The Mach number at the actual ²²⁵ time is denoted by Ma. As a nondimensional measure ²²⁶ of s, we define $S = s/u_0k_0$. When S < 1 (S > 1), the ²²⁷ collapse is slower (faster) than the turnover rate of the ²²⁸ turbulence.

In the following, we vary the input parameters s, ζ , k_0/k_1 , Ma₀, Re_M, and \mathcal{B}_{ini} . In all cases presented below, the magnetic Prandtl number is unity, i.e., $\nu/\eta = 1$.

In the following, we display the conformal time in units of the initial turnover time, $(u_0k_0)^{-1}$, where u_0 is the initial rms velocity. As in Brandenburg & Ntormousi (2022), we monitor the vortical and irrotational contributions to the turbulence, $\omega_{\rm rms} = \langle \boldsymbol{\omega}^2 \rangle^{1/2}$ and $(\boldsymbol{\nabla} \cdot \boldsymbol{u})_{\rm rms} = \langle (\boldsymbol{\nabla} \cdot \boldsymbol{u})^2 \rangle^{1/2}$, in terms of quantities that have the dimension of a wavenumber,

$$k_{\boldsymbol{\nabla}\cdot\boldsymbol{u}} = (\boldsymbol{\nabla}\cdot\boldsymbol{u})_{\rm rms}/u_{\rm rms},\tag{10}$$

$$k_{\omega} = \omega_{\rm rms} / u_{\rm rms}. \tag{11}$$

²⁴² These two values are expected to scale with k_0 , which is why we usually present the ratios $k_{\nabla \cdot u}/k_0$ and k_{ω}/k_0 . 243 We use for all simulations the PENCIL CODE (Pencil 244 245 Code Collaboration et al. 2021). Except for Run 39, where the resolution is 2048^3 mesh points, it is either $_{247}$ 512³ or 1024³, as indicated in Table 1, where we sum-248 marize all runs discussed in this paper. As discussed 249 later in Section 3.3, k_{ω}/k_0 starts off with a small, but ²⁵⁰ finite value, decreases rapidly at first, and may later dis-²⁵¹ play a continuous growth until a maximum $(k_{\omega}/k_0)_{\rm max}$ ²⁵² is reached. When a maximum is reached, we denote the ²⁵³ total growth in *e*-folds from minimum to maximum by $_{254} \Delta \ln(k_{\omega}/k_0)$, which is analogous to the growth in *e*-folds ²⁵⁵ of the magnetic field, which we denote by $\Delta \ln \mathcal{B}$.

4

Table 1. Summary of the runs discussed in this paper. Here we list the nondimensional parameter S; the physical values in code units are $s/c_sk_1 = 0.2$, 1, 5, 20, and 100 both for the helical and nonhelical runs, 1–7 and 8–14, respectively. Column 7 gives Re_M (Re) for magnetic (nonmagnetic) runs. Dashes in columns 8–10 indicate the 8 nonmagnetic runs. For magnetic runs, dashes in columns 9 and 10 indicate decay. Run 39 corresponds to Run B of Brandenburg & Ntormousi (2022) and is discussed in Section 4.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Run	S	σ	ζ	k_0/k_1	Ma_0	${\rm Re}_{\rm M}$ (Re)	$\mathcal{B}_{\mathrm{ini}}$	$\Delta \ln \mathcal{B}$	λ/u_0k_0	$\Delta \ln(k_\omega/k_0)$	$(k_\omega/k_0)_{ m max}$	resol.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.1	1	0	10	0.18	1840	2.3×10^{-8}	8.33	0.52	0.39	7.09	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.1	1	0	10	0.18	1840	2.3×10^{-5}	6.62	0.52	0.39	7.09	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.1	1	0	10	0.18	1840	2.3×10^{-2}	1.88	1.00	0.31	6.46	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.6	1	0	10	0.18	1840	2.3×10^{-2}	2.21	1.03	0.22	5.93	512^{3}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	2.8	1	0	10	0.18	1840	2.3×10^{-2}	3.56	1.03	0.30	6.43	512^{3}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	11	1	0	10	0.18	1840	2.3×10^{-2}	4.77	1.03	0.36	6.82	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	56	1	0	10	0.18	1840	2.3×10^{-2}	5.96	1.03	0.39	7.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	0.2	0	0	10	0.13	1300	3.3×10^{-8}	4.27	0.37	0.33	6.97	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0.2	0	0	10	0.13	1300	3.3×10^{-5}	4.22	0.37	0.33	6.97	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	0.2	0	0	10	0.13	1300	3.3×10^{-2}	1.49	0.97	0.14	5.70	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	0.8	0	0	10	0.13	1300	3.3×10^{-2}	1.92	0.97	0.17	5.91	512^{3}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	3.8	0	0	10	0.13	1300	3.3×10^{-2}	3.03	0.98	0.29	6.66	512^{3}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	15	0	0	10	0.13	1300	3.3×10^{-2}	3.75	0.98	0.33	6.92	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	77	0	0	10	0.13	1300	3.3×10^{-2}	4.12	0.98	0.33	6.97	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	0.2	0	0.10	10	0.12	1170	3.6×10^{-2}	1.41	0.34	0.11	5.50	512^{3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	0.2	0	0.50	10	0.08	800	5.4×10^{-2}	1.04	0.25	0.00	4.00	512^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	0.2	0	0.90	10	0.08	840	5.1×10^{-2}	0.31	0.04	0.25	0.94	512^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	0.2	0	0.95	10	0.09	880	4.9×10^{-2}	0.05	0.003	0.28	0.47	512^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	0.2	0	0.96	10	0.09	880	4.8×10^{-2}	0.02	0.001	0.26	0.38	512^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.2	0	0.97	10	0.09	890	4.8×10^{-2}			0.21	0.29	512^{3}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	0.2	0	0.98	10	0.09	900	4.7×10^{-2}			0.13	0.20	512^{3}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	0.2	0	0.99	10	0.09	910	4.7×10^{-2}			0.20	0.16	512^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	0.2	0	1	10	0.09	920	4.6×10^{-2}			0.30	0.14	512^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	0.1	0	1	20	0.09	920				0.01	0.07	1024^{3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	0.2	0	1	10	0.09	930				0.03	0.05	1024^{3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	0.4	0	1	5	0.09	940				0.38	0.04	1024^{3}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1.0	0	1	2	0.10	950				1.27	0.03	1024^{3}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	0.5	0	0.95	10	0.04	220				0.09	0.23	512^{3}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	0.1	0	0.95	10	0.18	890				0.31	0.71	1024^{3}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	0.1	0	0.95	10	0.27	1330				0.43	1.00	1024^{3}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	0.1	0	0.95	10	0.36	1780				0.51	1.31	1024^{3}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	0.2	0	0.96	10	0.09	900	4.9×10^{-2}	0.02	0.001	0.17	0.38	1024^{3}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	33		0	0.96	10								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.2	0		10			4.9×10^{-2}	0.51				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
										_			
										_			
$39 0.4 1 0 10 0.19 190 2.3 \times 10^{-17} 8.32 0.42 0.01 4.29 2048^{\circ}$	39	0.4	1	0	10	0.19	190	2.3×10^{-17}	8.32	0.42	0.01	4.29	2048^{3}

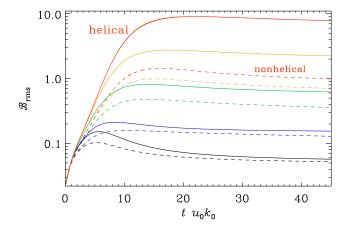


Figure 1. Evolution of the rms magnetic field in comoving coordinates for $s/c_sk_1 = 0.2$ (black lines), 1 (blue lines), 5 (green lines), 20 (orange lines), and 100 (red lines). Solid (dashed) lines refer to cases with (without) initial kinetic helicity and have values of u_0 that are slightly larger (smaller), so S is in the range 0.1–56 (0.2–77); see Table 1. Runs 3–7 and Runs 10–14.

While higher resolution leads to more accurate results, the lower resolution computations produce qualitatively similar ones; compare, for example, Runs 19 and 32, which have the same parameters. Both runs have almost the same vorticity and magnetic field evolution, but the lower resolution run has a slightly deeper minimum of k_{ω}/k_0 , which results in a larger value of $\Delta \ln(k_{\omega}/k_0)$.

3. RESULTS

²⁶⁴ 3.1. Growth vs physical and conformal time

263

We have performed runs with different values of S us-265 266 ing either helical ($\sigma = 1$) or nonhelical ($\sigma = 0$) turbulence, sometimes without irrotational contributions 267 = 0). Figure 1 shows that the larger the value of \mathcal{S} , (C268 the larger the final magnetic field strength. This is be-269 cause the effective Lorentz force in Equation (5), $a \mathbf{J} \times \mathbf{B}$, 270 diminishes more rapidly with time when S is larger, al-271 272 lowing the magnetic field to continue growing further. ²⁷³ In supercomoving coordinates, the initial growth rate of the magnetic field is not affected by the value of \mathcal{S} . How-274 275 ever, the growth rate is larger with than without kinetic 276 helicity. On the other hand, at later times, when the 277 magnetic field decays, the values are similar regardless of the presence of kinetic helicity. 278

In physical time, the magnetic field shows a steep increase just toward the end of the collapse; see Figure 2. Interestingly, the runs with large values of S, which produce the strongest comoving magnetic fields, now yield the weakest physical fields when comparing the runs at the same fractional collapse time. This is because for the runs with large values of S, the free-fall time is short, so

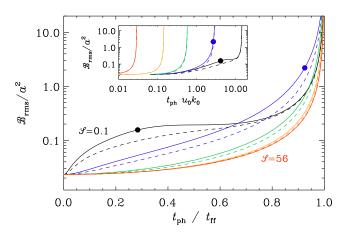


Figure 2. Same as Figure 1, but in physical units. Time is here normalized by the free-fall time. The black and blue dots on the black and blue curves denote the time until which the growth in Figure 1 was still approximately exponential. The inset shows the same, but now time is normalized by the initial turnover time. Runs 3–7 and Runs 10–14.

²⁸⁶ the fractional times are larger, which effectively inter-²⁸⁷ changes the order of the curves. This is demonstrated ²⁸⁸ in the inset of Figure 2, where we show the same data, 289 but now with time in units of the initial turnover time. In Figure 2, we have also indicated the times where 290 ²⁹¹ the initial exponential growth of the comoving magnetic ²⁹² field with conformal time terminates. For S = 0.1 and ²⁹³ 0.6, $\mathcal{B}_{\rm rms}/a^2$ has hardly increased by an order of magni-²⁹⁴ tude. In particular, the growth of $\mathcal{B}_{\rm rms}/a^2$ versus phys-²⁹⁵ ical time is not super-exponential, as found by Irshad P ²⁹⁶ et al. (2025). The reason for our subexponential growth 297 for $\mathcal{S} \ll 1$ is that the rms velocity decreases significantly ²⁹⁸ due to turbulent diffusion leading to a smaller growth ²⁹⁹ rate which then counters the effect of collapse. Only 300 for larger values of S is the growth super-exponential in ³⁰¹ physical coordinates, and exponential in comoving co- $_{302}$ ordinates. For S > 2.8, the times when exponential 303 growth in comoving coordinates terminates are outside ³⁰⁴ the plot range of Figure 2.

Given that the only effect of the collapse is on the Lorentz force, it is clear that the kinematic phase is completely independent of the collapse. In the runs with a smaller initial field, the kinematic growth phases can last longer before the turbulence has decayed too much, while for a stronger initial field, nonlinear effects terminate the exponential growth phase earlier. This is shown quantitatively in Figure 3, where we see the magnetic field growth for different initial field strengths. For weak initial fields, the comoving magnetic field grows by more than three orders of magnitude. It could grow more strongly if the magnetic Reynolds number were are larger. The growth is only limited by the competition

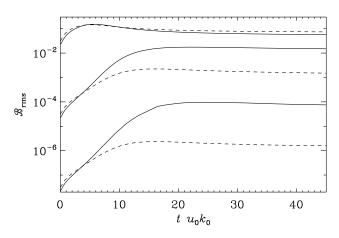


Figure 3. Same as Figure 1, but for 3 different initial field strengths. Runs 1–3 and Runs 8–10.

³¹⁸ between magnetic field amplification by the flow and ³¹⁹ the simultaneous decay of the flow. Similar results were ³²⁰ already reported in Brandenburg et al. (2019), but with-³²¹ out collapse dynamics (a = 1).

322 3.2. Effect of the Lorentz force

As we have seen from Figure 3, when the initial magnetic field strength is large, the early exponential growth diminishes more rapidly. This is the result of the effective Lorentz force in Equation (5) becoming comparable with the inertial term, which implies (Irshad P et al. 2025)

$$a^{1/2}B_{\rm rms} \lesssim u_{\rm rms}\sqrt{\mu_0\rho_0}.$$
 (12)

³³⁰ This is demonstrated in Figure 4(a), where we compare ³³¹ the evolution of $a^{1/2}\mathcal{B}_{\rm rms}$ with that of $u_{\rm rms}/u_0$ for the ³³² same runs as those of Figures 1 and 2.

³³³ We see that Equation (12) is well obeyed for all runs. ³³⁴ The largest values of $a^{1/2}\mathcal{B}_{rms}$ are obtained for the runs ³³⁵ with small values of \mathcal{S} . The effect of kinetic helicity is ³³⁶ here surprisingly weak and the values of $a^{1/2}\mathcal{B}_{rms}$ are ³³⁷ only slightly smaller for the nonhelical runs than for ³³⁸ the helical ones. For larger values of \mathcal{S} , on the other ³³⁹ hand, the differences between helical and nonhelical runs ³⁴⁰ are much larger and we see that the decay of $a^{1/2}$ is ³⁴¹ well overcompensated by the growth of \mathcal{B}_{rms} so that the ³⁴² product $a^{1/2}\mathcal{B}_{rms}$ still shows a strong increase later in ³⁴³ the evolution; see Figure 4(b), where we plot separately ³⁴⁴ the evolutions of $a^{1/2}$ and \mathcal{B}_{rms} .

We also see that for large values of S (short free-fall ³⁴⁶ times), $a^{1/2}\mathcal{B}_{\rm rms}$ decays at early times and only shows ³⁴⁷ growth after that. This is opposite to the case of small ³⁴⁸ values of S and simply because at early times, $a^{1/2}$ de-³⁴⁹ cays faster than the exponential growth of $\mathcal{B}_{\rm rms}$. Only ³⁵⁰ somewhat later, for $2 \leq tu_0 k_0 \leq 10$, exponential growth ³⁵¹ prevails.

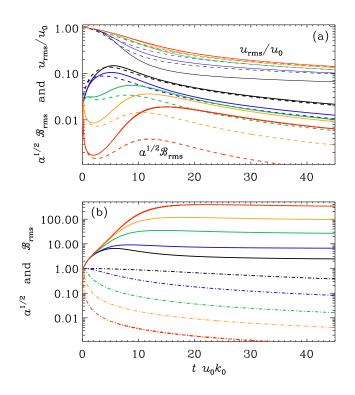


Figure 4. (a) Similar to Figure 1, but now $a^{1/2}\mathcal{B}_{\rm rms}$ (thicker lines) and the instantaneous rms velocity (thinner lines) are plotted. The order of the colors is the same as before, with black being for $s/c_sk_1 = 0.2$ and red for $s/c_sk_1 = 100$ and solid (dashed) lines refer to helical (nonhelical) initial flows, for which S varies in the range 0.1–56 (0.2–77). (b) Evolution separately for $a^{1/2}$ (dashed-dotted lines) and $\mathcal{B}_{\rm rms}$ (solid lines), again with the same colors as before. Runs 3–7 and Runs 10–14.

3.3. Critical vorticity

352

Numerical simulations have demonstrated in the past that vorticity is an important ingredient of dynamos (Haugen et al. 2004; Federrath et al. 2011a). Achikanath Chirakkara et al. (2021) did report dynamo action for purely irrotational driving, but this could perhaps still be explained by some residual vorticity in their simulations.

The apparent necessity of vorticity may be a limita-³⁶⁰ The apparent necessity of vorticity may be a limita-³⁶¹ tion of current simulations, whose maximum magnetic ³⁶² Reynolds number may still not be large enough, be-³⁶³ cause theoretically, small-scale dynamo action should ³⁶⁴ also be possible for irrotational turbulence (Kazantsev ³⁶⁵ et al. 1985; Martins Afonso et al. 2019). Clarifying this ³⁶⁶ question for collapse simulations with the effective gain ³⁶⁷ in resolution due to the use of supercomoving coordi-³⁶⁸ nates is crucial. We can study this here in more detail ³⁶⁹ by varying the value of ζ . In Figure 5 we plot the evo-³⁷⁰ lution of $k_{\nabla \cdot u}/k_0$ and \mathcal{B}_{rms} for runs with $\text{Re}_{M} = 900$ ³⁷¹ and several values of ζ . It is only when ζ is very close

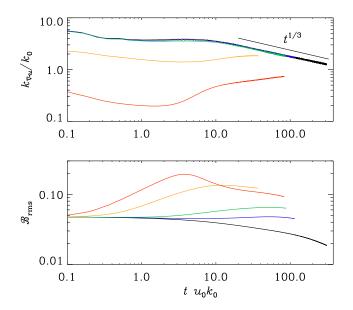


Figure 5. Evolution of $k_{\nabla \cdot \boldsymbol{u}}/k_0$ (upper panel) and \mathcal{B}_{rms} (lower panel) for $\zeta = 0.1$ (red), 0.5 (orange), 0.9 (green), 0.95 (blue), and 1 (black). Runs 15–18 and Run 23.

³⁷² to unity that dynamo action ceases. This suggests that ³⁷³ very small amounts of vorticity can suffice for success-³⁷⁴ ful dynamo action. The intervals displaying a steady ³⁷⁵ increase of $k_{\nabla \cdot u}/k_0$, which were also seen in the work ³⁷⁶ of Brandenburg & Ntormousi (2022), are just a conse-³⁷⁷ quence of the more rapid decay of $u_{\rm rms}$ compared to ³⁷⁸ $(\nabla \cdot u)_{\rm rms}$. At early times, $u_{\rm rms}$ is approximately con-³⁷⁹ stant while $(\nabla \cdot u)_{\rm rms}$ shows an approximate power law ³⁸⁰ decrease. This explains the initial decrease of $k_{\nabla \cdot u}/k_0$.

In Figure 6 we focus on several more values of ζ close 382 to unity and find that for $\text{Re}_{\text{M}} = 880$, the critical value is 383 around 0.96. For larger values of ζ , there is no growth; 385 see Runs 20–23 and Runs 35–38. However, the criti- $_{\rm 386}$ cal value of $1-\zeta$ decreases with increasing magnetic ³⁸⁷ Reynolds number. For larger values of Re_M, smaller amounts of vorticity suffice for dynamo action. This is 388 shown in Figure 7, where we compare runs for $\zeta = 0.96$ $_{390}$ with different values of $\text{Re}_{\text{M}} = 900$, 1800, and 4500, using 1024^3 mesh points. This value of ζ led to a vor-391 ticity that was the marginal value for obtaining growing 392 $_{393}$ magnetic fields for $Re_M = 900$. We see that, as we increase Re_{M} , the episode of growth becomes longer and 394 the maximum magnetic field larger. 395

To assess the level of vorticity, it is of interest to define a Reynolds number based on the vorticity as (Haugen set al. 2004; Elias-López et al. 2023, 2024)

399

$$\operatorname{Re}_{\omega} = \omega_{\mathrm{rms}} / \nu k_0^2, \qquad (13)$$

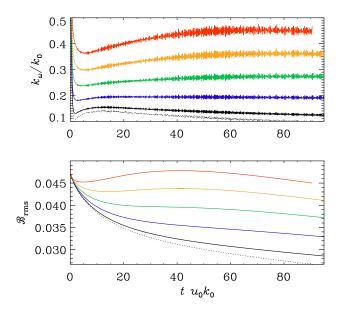


Figure 6. k_{ω}/k_0 (upper panel) and $\mathcal{B}_{\rm rms}$ (lower panel) for 1 (dotted black), 0.99 (solid black), 0.98 (blue), 0.97 (green), 0.96 (orange), and $\zeta = 0.95$ (red). Runs 18–23.

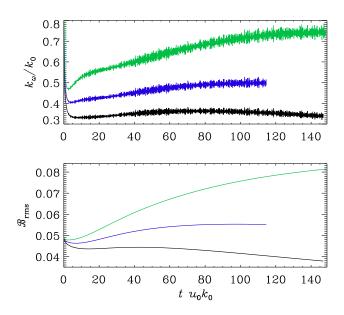


Figure 7. k_{ω}/k_0 (upper panel) and $\mathcal{B}_{\rm rms}$ (lower panel) for Re_M = 900 (black), 1800 (blue), and 4400 (green). The frequency of the oscillations is $\omega \approx 15$. The resolution is in all cases 1024^3 mesh points. Runs 32–34.

⁴⁰⁰ and compute the critical value above which dynamo ⁴⁰¹ action occurs. Looking at Table 1, we see that the ⁴⁰² threshold of ζ between 0.96 and 0.97 corresponds to ⁴⁰³ $k_{\omega}/k_0 = 0.38$ and 0.29, respectively. With Re_M \approx 900, ⁴⁰⁴ the critical value is Pr_M Re_{ω} = (k_{ω}/k_0) Re_M \approx 300. ⁴⁰⁵ This value is rather large, but it is unclear whether the

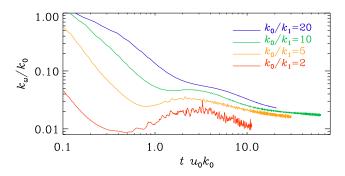


Figure 8. k_{ω}/k_0 for hydrodynamic runs with $\zeta = 1$, Re_M = 900, and different values of k_0 . For $k_0/k_1 = 10$, we also compare with the magnetic run with Re_M = 900. Runs 24–27.

⁴⁰⁶ dynamo onset is indeed determined predominantly by ⁴⁰⁷ Re_{ω}. If dynamos do indeed work for purely acoustic ⁴⁰⁸ turbulence ($\zeta = 1$), as found by Achikanath Chirakkara ⁴⁰⁹ et al. (2021), the dynamo onset could not depend on ⁴¹⁰ Re_{ω} alone. Thus, future work should establish to what ⁴¹¹ extent our critical value of Pr_M Re_{ω} of 300 is universal.

412 3.4. Effect of scale separation

We have seen from Figure 6 that for very small val-413 ⁴¹⁴ ues of $1-\zeta$, the expected approach of k_{ω} to zero slows 415 down in the sense that the values are almost the same 416 for $\zeta = 1$ and $\zeta = 0.99$, and that for $\zeta = 0.98$ is further 417 away. It is conceivable that the finite value of k_{μ} for 418 🕻 = 1 is caused by nonrepresentative averages resulting 419 from a small number of turbulent eddies, i.e., from small 420 scale separation, which is the ratio between k_0 and the 421 lowest wavenumber of the domain. To check whether ⁴²² this is the case, we present in Figure 8 runs with different ⁴²³ values of k_0 . As expected, we see that k_{ω} scales with k_0 , $_{424}$ so the ratio k_{ω}/k_0 varies only little and lies in the range $_{425}$ 0.01 $\leq k_{\omega}/k_0 \leq 0.02$ after about 10–30 turnover times. ⁴²⁶ This suggests that this value of k_{ω}/k_0 is not affected ⁴²⁷ by the finite scale separation. When we decrease the 428 scale separation ratio to $k_0/k_1 = 2$, the run shows vigorous fluctuations. They may indicate that the numerical 429 ⁴³⁰ resolution becomes insufficient in the collapsing regions. The above simulations have demonstrated once again 431 that without the gain of effective resolution due to the 432 433 use of supercomoving coordinates, earlier collapse simu-⁴³⁴ lations may have been severely underresolved.

435 3.5. Growth of vorticity

In Figure 6, we have seen that for $\zeta = 0.95$, there are can be growth of k_{ω} by a certain amount. It is possible that this is caused either by magnetic driving (Kahniare ashvili et al. 2012) or by what is known as magnetically assisted vorticity production (Brandenburg & Scanna-

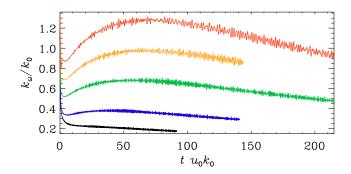


Figure 9. Evolution of k_{ω}/k_0 for different Mach numbers. Runs 28–31.

⁴⁴¹ pieco 2025). To clarify this, it is useful to compare with ⁴⁴² the purely hydrodynamic case; see Table 1.

For an isothermal gas, there is no baroclinic term, which would be the main agent for producing vorticity in nonisothermal flows. There is also no rotation nor shear, both of which could lead to vorticity generation (Del Sordo & Brandenburg 2011; Elias-López et al. 2023, 2024). There remain only three possibilities for driving or amplifying vorticity: (i) through viscosity via gradients of the velocity divergence being inclined against density gradients, (ii) through magnetic driving or magnetically assisted vorticity production (Brandenburg & Scannapieco 2025), and (iii) through nonlinearity.

The growth of vorticity through nonlinearity may be motivated by the formal analogy with the induction equation when the magnetic field is replaced by the vortricity ω , i.e.,

$$\frac{\partial \boldsymbol{\omega}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{\omega}) + \dot{\boldsymbol{\omega}}_{\text{visc}} + \dot{\boldsymbol{\omega}}_{\text{mag}}, \qquad (14)$$

458

⁴⁵⁹ where $\dot{\omega}_{\text{visc}} = \nu (\nabla^2 \omega + \nabla \times G)$ is the curl of the vis-⁴⁶⁰ cous acceleration with $G_i = 2\mathbf{S}_{ij}\nabla_j \ln \rho$ being a vector ⁴⁶¹ characterizing the driving of vorticity even if it was van-⁴⁶² ishing initially (Mee & Brandenburg 2006; Brandenburg ⁴⁶³ & Scannapieco 2025), and $\dot{\omega}_{\text{mag}} = a(t)\nabla \times (\mathbf{J} \times \mathbf{B}/\rho)$ is ⁴⁶⁴ the vorticity driving from the curl of the Lorentz force, ⁴⁶⁵ where we have included the a(t) term resulting from the ⁴⁶⁶ use of supercomoving coordinates.

⁴⁶⁷ The analogy between induction and vorticity equa-⁴⁶⁸ tions is obviously imperfect, because the velocity is di-⁴⁶⁹ rectly related to the vorticity. This analogy has been ⁴⁷⁰ invoked by Batchelor (1950) to explain dynamo ac-⁴⁷¹ tion, but here we rather use it to motivate the question ⁴⁷² whether vorticity can be amplified.

⁴⁷³ To distinguish between the various possibilities, we ⁴⁷⁴ must vary the viscosity, the Mach number, and the ⁴⁷⁵ initial magnetic field strength. One important clue is ⁴⁷⁶ given by the fact that the occurrence of vorticity de-⁴⁷⁷ pends on the Mach number of the turbulence. This is

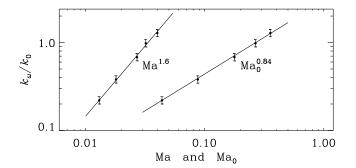


Figure 10. Scaling of $(k_{\omega}/k_0)_{\text{max}}$ with the actual and initial Mach numbers, Ma and Ma₀, respectively. The slopes are 1.6 and 0.84, respectively. Runs 28–31.

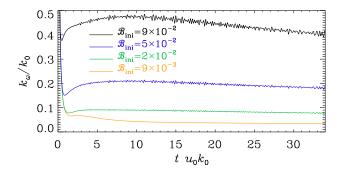


Figure 11. k_{ω}/k_0 for hydromagnetic runs with $\zeta = 1$, Re_M = 1900, and different magnetic field strengths. Runs 35–38.

⁴⁷⁸ demonstrated in Figure 9, where we plot the evolution ⁴⁷⁹ of k_{ω}/k_0 for different Mach numbers. Figure 10 shows ⁴⁸⁰ that $(k_{\omega}/k_0)_{\text{max}}$ scales with the actual Mach number ⁴⁸¹ Ma at the time when $(k_{\omega}/k_0)_{\text{max}}$ is reached and the ⁴⁸² initial Mach number Ma₀, respectively. The slopes for ⁴⁸³ both scalings are different, and somewhat shallower than ⁴⁸⁴ the nearly quadratic scaling found by Federrath et al. ⁴⁸⁵ (2011a) for the forced case.

In all our runs, k_{ω}/k_0 reaches a maximum at some 487 point. For runs 15–18, we see that $(k_{\omega}/k_0)_{\text{max}}$ increases 488 with increasing values of \mathcal{B}_{ini} ; see Figure 11. Figure 12 489 shows that this increase is linear and not quadratic, 490 which means that the vorticity is magnetically driven 491 rather than due to magnetically assisted growth; see 492 Brandenburg & Scannapieco (2025) for details on this 493 distinction. As seen from Table 1, the magnetic field de-494 cays for these runs, so there is no dynamo action. Due 495 to the presence of the a(t) factor in $\dot{\omega}_{\text{mag}}$, we expect the 496 magnetic effect to diminish in collapse simulations with 497 a small value of S.

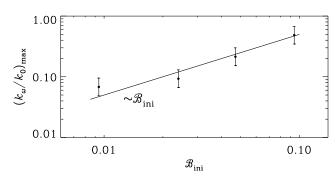


Figure 12. Dependence of the maximum of k_{ω}/k_0 on \mathcal{B}_{ini} for hydromagnetic runs with $\zeta = 1$, Re_M = 900, and different magnetic field strengths. The straight line indicates a linear relationship. Runs 35–38.

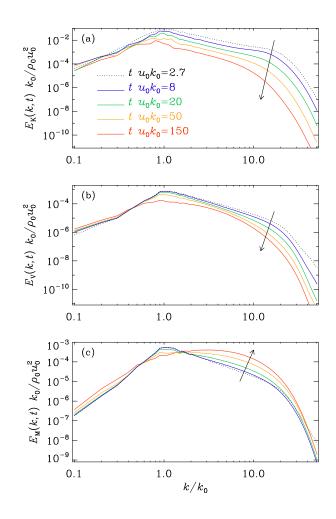


Figure 13. Evolution of $E_{\rm K}(k,t)$, $E_{\rm V}(k,t)$, and $E_{\rm M}(k,t)$ for Run 34. The arrows indicate the sense of time. The first time is shown as dotted lines to distinguish it better from the next one, for which $E_{\rm M}(k)$ is still very similar.

In Figure 13, we show the evolution of $E_{\rm K}(k,t)$, 500 $E_{\rm V}(k,t)$, and $E_{\rm M}(k,t)$ for Run 34. This is our run with

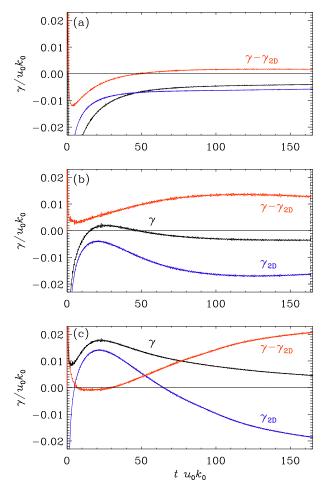


Figure 14. Evolution of the pseudo growth rate γ (black lines), with contributions from γ_{2D} (blue lines) and the residual $\gamma - \gamma_{2D}$ (red lines), for Runs 23 (a), 32 (b), and 34 (c).

⁵⁰¹ the largest magnetic Reynolds number (Re_M = 4500) ⁵⁰² and has only 4% vorticity ($\zeta = 0.96$), but shows clear ⁵⁰³ dynamo action. The evolution of k_{ω}/k_0 and $\mathcal{B}_{\rm rms}$ was ⁵⁰⁴ shown in Figure 7.

We see that both $E_{\rm K}(k,t)$ and $E_{\rm V}(k,t)$ decay, while $E_{\rm M}(k,t)$ increases both at large and small wavenumbers. For Overall, $E_{\rm V}(k)$ is almost a hundred times smaller than $E_{\rm K}(k,t)$, but, similarly to $E_{\rm M}(k,t)$, $E_{\rm V}(k)$ also shows a small temporal increase at small values of k. This is sugsugestive of magnetic vorticity production via an inverse $E_{\rm M}(k,t)$ decays in the inertial range, it bulges at $k/k_0 \approx 4$, which appears to be a $E_{\rm M}(k,t)$ direct consequence of magnetic driving.

As already demonstrated in Brandenburg & Ntor-⁵¹⁵ mousi (2022), the collapse dynamics does not affect the ⁵¹⁶ magnetic energy spectra significantly. At length scales ⁵¹⁷ above the Jeans length, the collapse does lead to a ⁵¹⁸ growth of the compressive part of the kinetic energy ⁵¹⁹ spectra and even a growth of magnetic energy, but this is ⁵²⁰ associated with the compression itself and is not a con-⁵²¹ sequence of a dynamo; see Figure 9(b) of Brandenburg ⁵²² & Ntormousi (2022).

3.7. Instantaneous growth rate

523

531

For the magnetic energy to grow, the induction term ⁵²⁵ $\boldsymbol{u} \times \boldsymbol{B}$ in Equation (4) has to overcome the dissipation ⁵²⁶ term. This is also true in the unsteady case and can ⁵²⁷ therefore be used to characterize dynamo action in a ⁵²⁸ collapse simulation. In the evolution equation for the ⁵²⁹ mean magnetic energy density, $\mathcal{E}_{\rm M}(t) \equiv \langle \boldsymbol{B}^2/2\mu_0 \rangle$, the ⁵³⁰ term

$$\langle \boldsymbol{J} \cdot (\boldsymbol{u} \times \boldsymbol{B}) \rangle \equiv -W_{\mathrm{L}}$$
 (15)

⁵³² has to exceed the Joule dissipation, $Q_{\rm M} = \langle \mu_0 \eta J^2 \rangle$. The ⁵³³ instantaneous growth rate of magnetic energy can then ⁵³⁴ be written as $\gamma = (-W_{\rm L} - Q_{\rm M})/\mathcal{E}_{\rm M}$. The first term, ⁵³⁵ which can also be written as $W_{\rm L} = \langle \boldsymbol{u} \cdot (\boldsymbol{J} \times \boldsymbol{B}) \rangle$, is ⁵³⁶ the work done by the Lorentz force. When it is nega-⁵³⁷ tive, kinetic energy is used to drive magnetic energy; see ⁵³⁸ Equation (15).

Brandenburg & Ntormousi (2022) made use of the fact that in two dimensions (2D), when no action is possible, Equation (4) can be written as an advection–diffusion equation, i.e., $DA/Dt = \eta \nabla^2 A$, where A is the component of A that is normal to the 2D plane. This motivated them to decompose $W_{\rm L}$ by expanding $B = \nabla \times A$ to get

_{i46}
$$-\langle \boldsymbol{J} \cdot (\boldsymbol{u} \times \boldsymbol{B}) \rangle = \langle J_i u_j (A_{i,j} - A_{j,i}) \equiv W_{\mathrm{L}}^{\mathrm{2D}} + W_{\mathrm{L}}^{\mathrm{3D}}.$$
 (16)

⁵⁴⁷ Here, the first term is related to the advection term. The ⁵⁴⁸ second term, $W_{\rm L}^{\rm 3D} = -\langle J_i u_j A_{j,i} \rangle$, vanishes in 2D. Thus, ⁵⁴⁹ they identified $W_{\rm L}^{\rm 3D}$ with a contribution that character-⁵⁵⁰ izes the 3D nature of the system and used it as a proxy ⁵⁵¹ for dynamo action when it is large enough. They thus ⁵⁵² defined

553
$$\gamma_{2D} = -(W_{L}^{2D} + Q_{M})/\mathcal{E}_{M}, \quad \gamma_{3D} = -W_{L}^{3D}/\mathcal{E}_{M}, \quad (17)$$

⁵⁵⁴ so that $\gamma_{2D} + \gamma_{3D} = \gamma$.

In Figure 14, we plot the time dependences of γ , γ_{2D} , and $\gamma_{3D} = \gamma - \gamma_{2D}$ for Runs 23 (no dynamo, because k_{ω} is too small), 32 (weak dynamo), and 34 (strong dynamo, Re_M is the largest). We see that γ_{2D} is always negative, except during an early phase for Run 34, which can be associated with strong 2D tangling of the initial magnetic field. When γ_{3D} is added to γ_{2D} , the resulting instantaneous growth rate is positive during the early part of the evolution of Run 32 and during the entire evolution of Run 34.

⁵⁶⁵ Our considerations above have shown that the use of ⁵⁶⁶ γ_{2D} and γ_{3D} does indeed provide a meaningful tool to

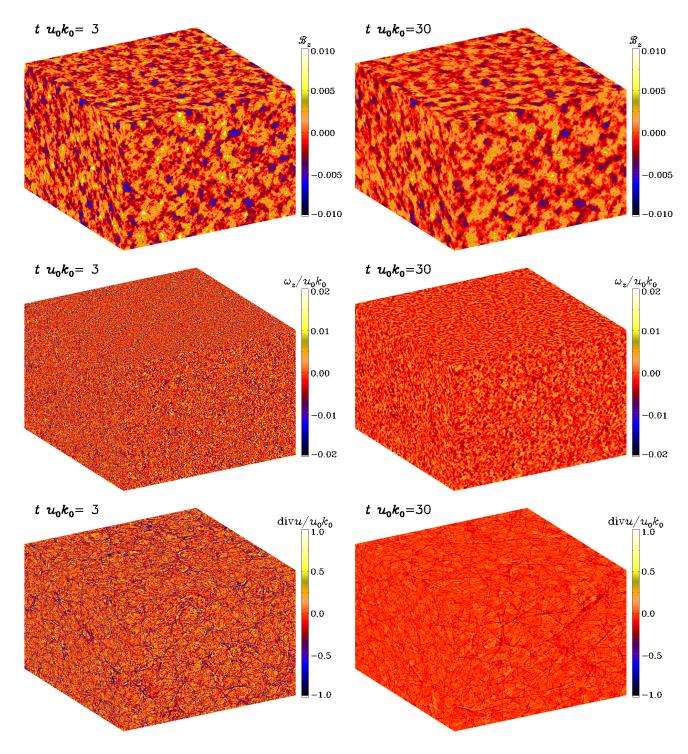


Figure 15. Visualizations of \mathcal{B}_z , ω_z/u_0k_0 , and $\nabla \cdot u/u_0k_0$ for Run 37 at early and late times. Note that the domain is cubic, but the images have been stretched in the horizontal direction to take advantage of the full page size.

572

⁵⁶⁷ assess dynamo action in unsteady environments in gen⁵⁶⁸ eral, and in collapse simulations in particular. Neverthe⁵⁶⁹ less, we regard the direct demonstration of exponential
⁵⁷⁰ growth in supercomoving coordinates in Section 3.1 as
⁵⁷¹ even more convincing evidence for dynamo action.

3.8. Visualizations

In Figure 15, we present visualizations of \mathcal{B}_z , ω_z/u_0k_0 , and $\nabla \cdot \boldsymbol{u}/u_0k_0$ for Run 37 at early and late times. There is no significance in us having chosen the *z* component

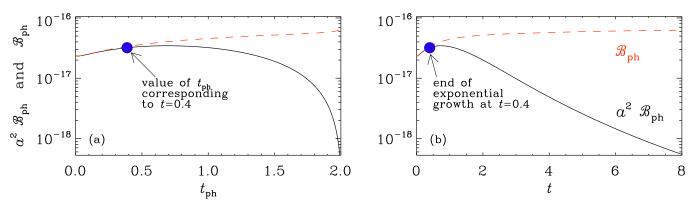


Figure 16. Physical magnetic field \mathcal{B}_{ph} (dashed red lines) and its comoving counterpart $a^2 \mathcal{B}_{ph}$ (black lines) versus physical time (a) and conformal time (b) for Run B from Brandenburg & Ntormousi (2022) and Run 39 of the present paper.

637

 $_{^{576}}$ of B and ω ; all three components are statistically equiv- $_{^{577}}$ alent.

The magnetic field appears to preserve its initial ⁵⁷⁹ length scale corresponding to $k = k_0$, and only the field ⁵⁸⁰ strength becomes weaker with time. By contrast, the ⁵⁸¹ vorticity quickly develops small-scale patches that then ⁵⁸² grow to larger-scale patches at later times. Note also ⁵⁸³ that the magnitude of ω_z/u_0k_0 (about 0.01) is compa-⁵⁸⁴ rable to that of \mathcal{B}_z . This is reminiscent of the findings of ⁵⁸⁵ Kahniashvili et al. (2012), who reported a quantitative ⁵⁸⁶ agreement between the spectra of vorticity and magnetic ⁵⁸⁷ field.

For the velocity divergence, there is a much larger decrease from the time $tu_0k_0 = 3$ to $tu_0k_0 = 30$. As so stated above, the compressive part of the velocity field, which is reflected in the values and the appearance of ∇ . $\mathbf{v}_{\mathbf{v}}$ u, decreases more strongly with time than the vortical part, as reflected through the vorticity. We also see that, although the initial scales are rather small, they still seem to be sufficiently well resolved.

596 4. COMPARISON WITH PREVIOUS WORK

In our earlier paper (Brandenburg & Ntormousi 2022), 597 we simulated gravitational collapse using numerical sim-598 ⁵⁹⁹ ulations of decaying turbulence in a Jeans-unstable domain at a resolution of 2048^2 mesh points. We only 600 bund a weak increase of the magnetic field with time. 601 Given the knowledge of the collapse time from the simu-602 lations, i.e., the time when the singularity was reached, 603 we can replace the pressure-less free-fall time by the ac-604 ⁶⁰⁵ tual collapse time and express the evolution of the rms 606 magnetic field in comoving coordinates. This allows us ⁶⁰⁷ to see whether the growth in the old simulations is close to exponential in comoving coordinates during any time 608 609 interval.

The result is shown in Figure 16, where we computed the conformal time and scale factor numerically based on Equation (1). Here we used the empirical value of ⁶¹³ $t_{\rm ff} \approx 2.016/c_{\rm s}k_1$, which yields $s \approx 0.78 c_{\rm s}k_0$, and thus, ⁶¹⁴ since $u_0/c_{\rm s} = 0.19$ and $k_0/k_1 = 10$, we have $\mathcal{S} \approx 0.4$; ⁶¹⁵ see Table 1, where it is called Run 39. The physical val-⁶¹⁶ ues of the magnetic field computed by Brandenburg & ⁶¹⁷ Ntormousi (2022) are denoted by $\mathcal{B}_{\rm ph}$. We also plot the ⁶¹⁸ comoving values $a^2 \mathcal{B}_{\rm ph}$ both versus physical and confor-⁶¹⁹ mal time. Here, the a(t) and the conformal time have ⁶²⁰ been computed from Equations (1) and (2). Although ⁶²¹ there is a steady increase of $\mathcal{B}_{\rm rms}$, Figure 16(b) shows ⁶²² that the comoving magnetic field does not follow an ex-⁶²³ ponential growth in conformal time, except for a very ⁶²⁴ early time interval $0 < tu_0 k_0 \leq 0.4$.

To understand why the exponential phase is so short ⁶²⁵ To understand why the exponential phase is so short ⁶²⁶ in this run, we compare its parameters with those of the ⁶²⁷ other runs presented in this paper; see Table 1. The ⁶²⁸ closest match is with Run 1. We see immediately that ⁶²⁹ the main problem with Run 39 is the small value of the ⁶³⁰ magnetic Reynolds number, which is 10 times smaller ⁶³¹ than that of Run 1. In spite of the high resolution of ⁶³² Run 39, the value of Re_M could not have been chosen ⁶³³ larger because of the strong compression and large gradi-⁶³⁴ ents suffered by the collapsing regions toward the end of ⁶³⁵ the run. This highlights the main advantage of choosing ⁶³⁶ supercomoving coordinates for collapse simulations.

5. CONCLUSIONS

In this work we approached the problem of dynamo action during gravitational collapse by employing supercomoving coordinates. This is a significant change of paradigm with respect to previous simulation work (e.g., Sur et al. 2010, 2012; Federrath et al. 2011b; Brandan denburg & Ntormousi 2022) which was limited by the shrinking dynamical range during the collapse; see Section 4. In supercomoving coordinates we can look for exponential growth of the magnetic field, which is a clear signature of a dynamo. This allows us to surpass the other obstacle faced by previous work, which is characterizing dynamos in unsteady flows. When describing gravitational collapse in supercomoving coordinates, the governing equations of magnetohydrodynamics are similar to the original ones, except that now the scale factor appears in front of the Lorentz force. This reduces the effective Lorentz force, because a(t) becomes progressively smaller with time. Therefore, the limit of very short collapse times or large values a(t) of s, the evolution approaches essentially the kinematic ess evolution. This, however, does not mean unlimited continual growth, because the rms value of the turbulent intensity is declining.

As shown previously (Brandenburg et al. 2019), de-661 caying turbulence leads to an episode of exponential 662 ⁶⁶³ growth if the magnetic Reynolds number is large enough. The larger it is, the longer is the episode of exponential 664 growth. This is essentially the result of a competition 665 against the decay of turbulence, which lowers the instan-666 ⁶⁶⁷ taneous value of the magnetic Reynolds number as time goes on. The gravitational collapse changes this picture 668 ⁶⁶⁹ only little if we view the decay in supercomoving coor-670 dinates, because the collapse only affects the nonlinear 671 dynamics, and this nonlinearity gets weaker with time. Irshad P et al. (2025) considered forced turbulence, 672 as opposed to our study of decaying turbulence. There-673 674 fore, in their models, the magnetic field could always ⁶⁷⁵ be sustained, but the source of the driving remains unclear. The superexponential growth that they reported, 676 677 however, it still recovered in our decay simulations, un-678 less the free-fall time is longer than the turnover time ⁶⁷⁹ of the turbulence. In that case, the growth is actually ⁶⁰⁰ subexponential, but this is primarily a consequence of the decay of the turbulence. 681

Our present work has also shown that even very small amounts of vorticity can be sufficient to facilitate dynamo action. In particular, we find that the vorticity can grow in concert with the magnetic field. However, the magnetic vorticity production will decline in simutations with small values of S.

Earlier work on turbulent collapse and dynamo ac-688 689 tion has suggested that the collapse drives turbulence 600 and enhanced it (Sur et al. 2012; Xu & Lazarian 2020; ⁶⁹¹ Hennebelle 2021). Our work casts doubt on this inter-⁶⁹² pretation, because of two aspects. First, the collapse ⁶⁹³ dynamics reduces the effective nonlinearity, resulting in ⁶⁹⁴ stronger apparent field amplification by the turbulence, 695 and second, there can be generation of vorticity both 696 from viscosity and from the magnetic field itself, but ⁶⁹⁷ this is not directly related to the collapse. It should ⁶⁹⁸ therefore be checked, whether these two factors could ⁶⁹⁹ have contributed to the earlier findings of collapse-driven ⁷⁰⁰ turbulence. In this context, the fact that we do not ⁷⁰¹ solve the Poisson equation for self-gravity but treat the ⁷⁰² collapse as a homogeneous flow through the change of⁷⁰³ coordinates could be a difference worth investigating.

As explained in Section 4, the transformation to suros percomoving coordinates may also help analyzing existros ing simulations in physical coordinates. We argue that for homogeneous collapse simulations that do not utilize supercomoving coordinates, it is still useful to express such results in terms of comoving quantities and conforrun mal time, because they might display exponential magrun netic field growth that would be the perhaps strongest rue indication of dynamo action so far.

713 Our work has applications not just to interstellar 714 clouds and primordial star formation (e.g., Schleicher 715 et al. 2009; Hirano & Machida 2022; Sharda et al. 2020), 716 but also to larger cosmological scales. Our results show 717 that small amounts of vorticity might suffice to produce 718 dynamo action even in decaying turbulence which, we 719 argue, is also relevant to gravitational collapse. This 720 consideration is important for understanding magnetism 721 in protohalos before the first stars form and their feed-722 back drives sufficient turbulence for dynamo action (e.g., 723 Schleicher et al. 2010).

Finally, our findings indicate that earlier simulations, response including our own high-resolution simulations at 2048³ response points, may still have had insufficient resolution to response and should be revisited using more response idealized settings that allow the usage of a comoving response frame.

730 We thank Fabio Del Sordo for helpful discussions on vor-⁷³¹ ticity generation, Pallavi Bhat for suggesting an expla-⁷³² nation for the subexponential growth for $S \ll 1$, and the 733 referee for a detailed assessment of our work. We also 734 acknowledge inspiring discussions with the participants 735 of the program on "Turbulence in Astrophysical Envi-736 ronments" at the Kavli Institute for Theoretical Physics 737 in Santa Barbara. This research was supported in part ⁷³⁸ by the Swedish Research Council (Vetenskapsrådet) un-739 der Grant No. 2019-04234, the National Science Foun-740 dation under Grants No. NSF PHY-2309135, AST-741 2307698, and NASA Awards 80NSSC22K0825 and 742 80NSSC22K1265. E.N. acknowledges funding from the 743 Italian Ministry for Universities and Research (MUR) 744 through the "Young Researchers" funding call (Project ⁷⁴⁵ MSCA 000074). We acknowledge the allocation of com-746 puting resources provided by the Swedish National Allo-747 cations Committee at the Center for Parallel Computers 748 at the Royal Institute of Technology in Stockholm.

⁷⁴⁹ Software and Data Availability. The source code
⁷⁵⁰ used for the simulations of this study, the PEN⁷⁵¹ CIL CODE (Pencil Code Collaboration et al. 2021),
⁷⁵² is freely available on https://github.com/pencil-code.
⁷⁵³ The simulation setups and corresponding input
⁷⁵⁴ and reduced output data are freely available on
⁷⁵⁵ http://doi.org/10.5281/zenodo.15693287.

REFERENCES

- 756 Achikanath Chirakkara, R., Federrath, C., Trivedi, P., &
- ⁷⁵⁷ Banerjee, R. 2021, PhRvL, 126, 091103,
- ⁷⁵⁸ doi: 10.1103/PhysRevLett.126.091103
- 759 Batchelor, G. K. 1950, RSPSA, 201, 405,
- 760 doi: 10.1098/rspa.1950.0069
- ⁷⁶¹ Beck, R., Poezd, A. D., Shukurov, A., & Sokoloff, D. D.
 ⁷⁶² 1994, A&A, 289, 94
- 763 Brandenburg, A., Kahniashvili, T., Mandal, S., et al. 2019,
- 764 PhRvF, 4, 024608, doi: 10.1103/PhysRevFluids.4.024608
- 765 Brandenburg, A., & Ntormousi, E. 2022, MNRAS, 513,
- ⁷⁶⁶ 2136, doi: 10.1093/mnras/stac982
- ⁷⁶⁷ —. 2023, ARA&A, 61, 561,
- 768 doi: 10.1146/annurev-astro-071221-052807
- ⁷⁶⁹ Brandenburg, A., & Scannapieco, E. 2025, ApJ, 983, 105,
 ⁷⁷⁰ doi: 10.3847/1538-4357/adbe38
- 771 Chen, J., Lopez-Rodriguez, E., Ivison, R. J., et al. 2024,
- 772 A&A, 692, A34, doi: 10.1051/0004-6361/202450969
- 773 Cowling, T. G. 1933, MNRAS, 94, 39,
- doi: 10.1093/mnras/94.1.39

- 775 Del Sordo, F., & Brandenburg, A. 2011, A&A, 528, A145,
 776 doi: 10.1051/0004-6361/201015661
- 777 Elias-López, A., Del Sordo, F., & Viganò, D. 2023, A&A,
- 778 677, A46, doi: 10.1051/0004-6361/202346696
- 779 —. 2024, A&A, 690, A77,
- 780 doi: 10.1051/0004-6361/202450398
- 781 Federrath, C., Chabrier, G., Schober, J., et al. 2011a,
- 782 PhRvL, 107, 114504,
- 783 doi: 10.1103/PhysRevLett.107.114504
- 784 Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R., &
- ⁷⁸⁵ Klessen, R. S. 2011b, ApJ, 731, 62,
- 786 doi: 10.1088/0004-637X/731/1/62
- 787 Geach, J. E., Lopez-Rodriguez, E., Doherty, M. J., et al.
- 788 2023, NATUR, 621, 483, doi: 10.1038/s41586-023-06346-4
- ⁷⁸⁹ Gilbert, A. D., Frisch, U., & Pouquet, A. 1988, GApFD, 42,
 ⁷⁹⁰ 151, doi: 10.1080/03091928808208861
- ⁷⁹¹ Haugen, N. E. L., Brandenburg, A., & Mee, A. J. 2004,
- ⁷⁹² MNRAS, 353, 947, doi: 10.1111/j.1365-2966.2004.08127.x
- ⁷⁹³ Hennebelle, P. 2021, A&A, 655, A3,
- 794 doi: 10.1051/0004-6361/202141650

- ⁷⁹⁵ Hide, R., & Palmer, T. N. 1982, GApFD, 19, 301,
- doi: 10.1080/03091928208208961 796
- 797 Hirano, S., & Machida, M. N. 2022, ApJL, 935, L16,
- doi: 10.3847/2041-8213/ac85e0 798
- 799 Irshad P, M., Bhat, P., Subramanian, K., & Shukurov, A.
- 2025, arXiv e-prints, arXiv:2503.19131, 800
- doi: 10.48550/arXiv.2503.19131 801
- 802 Kahniashvili, T., Brandenburg, A., Campanelli, L., Ratra,
- B., & Tevzadze, A. G. 2012, PhRvD, 86, 103005, 803
- doi: 10.1103/PhysRevD.86.103005 804
- 805 Kazantsev, A. P. 1968, JETP, 26, 1031
- 806 Kazantsev, A. P., Ruzmaikin, A. A., & Sokolov, D. D. 1985,
- ZhETF, 61, 285 807
- 808 Kulsrud, R. M., & Anderson, S. W. 1992, ApJ, 396, 606,
- doi: 10.1086/171743 809
- 810 Martel, H., & Shapiro, P. R. 1998, MNRAS, 297, 467,
- doi: 10.1046/j.1365-8711.1998.01497.x 811
- 812 Martins Afonso, M., Mitra, D., & Vincenzi, D. 2019, RSPSA, 475, 20180591, doi: 10.1098/rspa.2018.0591 813
- 814 Mee, A. J., & Brandenburg, A. 2006, MNRAS, 370, 415,
- doi: 10.1111/j.1365-2966.2006.10476.x 815
- 816 Meneguzzi, M., Frisch, U., & Pouquet, A. 1981, PhRvL, 47,
- 1060, doi: 10.1103/PhysRevLett.47.1060 817
- 818 Moffatt, H. K., & Proctor, M. R. E. 1985, JFM, 154, 493,
- doi: 10.1017/S002211208500163X 819
- 820 Parker, E. N. 1955, ApJ, 122, 293, doi: 10.1086/146087
- ⁸²¹ —. 1971, ApJ, 163, 255, doi: 10.1086/150765

- Pattle, K., Fissel, L., Tahani, M., Liu, T., & Ntormousi, E. 822
- 2023, in Astronomical Society of the Pacific Conference 823
- Series, Vol. 534, Protostars and Planets VII, ed. 824
- S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & 825
- M. Tamura, 193, doi: 10.48550/arXiv.2203.11179 826
- Pencil Code Collaboration, Brandenburg, A., Johansen, A., 827
- et al. 2021, JOSS, 6, 2807, doi: 10.21105/joss.02807 828
- 829 Schleicher, D. R. G., Banerjee, R., Sur, S., et al. 2010,
- A&A, 522, A115, doi: 10.1051/0004-6361/201015184 830
- Schleicher, D. R. G., Galli, D., Glover, S. C. O., et al. 2009, 831
- ApJ, 703, 1096, doi: 10.1088/0004-637X/703/1/1096 832
- 833 Schober, J., Schleicher, D., Federrath, C., et al. 2012, ApJ, 754, 99, doi: 10.1088/0004-637X/754/2/99
- Shandarin, S. F. 1980, Astrophysics, 16, 439, 835 doi: 10.1007/BF01005530 836
- Sharda, P., Federrath, C., & Krumholz, M. R. 2020, 837
- MNRAS, 497, 336, doi: 10.1093/mnras/staa1926 838
- Steenbeck, M., Krause, F., & Rädler, K. H. 1966, 839
- Zeitschrift Naturforschung Teil A, 21, 369, 840
- doi: 10.1515/zna-1966-0401 841

834

- 842 Subramanian, K., & Brandenburg, A. 2014, MNRAS, 445, 2930, doi: 10.1093/mnras/stu1954 843
- Sur, S., Federrath, C., Schleicher, D. R. G., Banerjee, R., & 844
- Klessen, R. S. 2012, MNRAS, 423, 3148, 845
- doi: 10.1111/j.1365-2966.2012.21100.x 846
- Sur, S., Schleicher, D. R. G., Banerjee, R., Federrath, C., & 847
- Klessen, R. S. 2010, ApJL, 721, L134, 848
- doi: 10.1088/2041-8205/721/2/L134 849
- Vainshtein, S. I., & Ruzmaikin, A. A. 1971, AZh, 48, 902 850
- Xu, S., & Lazarian, A. 2020, ApJ, 899, 115, 851
- doi: 10.3847/1538-4357/aba7ba 852