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We present the first lattice simulations of non-linear evolution after axion inflation by self-
consistently incorporating currents arising from Schwinger pair-production. The tachyonically am-
plified gauge fields trigger the growth of Schwinger currents, leading to a universal value for the
conductivity and magnetic field at the onset of strong backreaction and subsequent quenching of
gauge field production. We show that the Schwinger effect suppresses gauge field production, thereby
excluding axion inflation magnetogenesis as a viable solution for blazar observations [OI: as a viable
explanation for the absence of secondary GeV gamma rays in blazar spectra?], unless the Higgs field
has a large displacement during inflation.

Introduction.
The inflationary paradigm provides a compelling frame-
work for understanding the origin of large-scale structure
and the observed homogeneity and isotropy of the uni-
verse [1–3]. Despite the abundance of inflationary mod-
els, axion (or natural) inflation [4, 5] has been receiving
attention due to its theoretical robustness and its natu-
ral embedding within string theory and other ultraviolet
(UV) complete frameworks. In such models, the inflaton
is identified with a pseudo-scalar axion-like field, which
naturally enjoys a shift symmetry—crucial for maintain-
ing a flat potential across super-Planckian field excur-
sions.

The shift symmetry of the axion forces it to couple only
derivatively to gauge fields or fermions. Chern-Simons
couplings ϕFF̃ lead to the exponential amplification of
gauge field modes during and after inflation [6–8]. This
amplification can generate distinctive non-Gaussian sig-
natures, chiral gravitational waves and lead to almost in-
stantaneous preheating. Furthermore, the induced elec-
tric fields from these amplified gauge modes can become
large enough to trigger non-perturbative pair production
of charged particles via the Schwinger effect [9, 10]. Due
to its non-perturbative and non-linear nature and its im-
portance for axion inflation, capturing the dynamics of
the Schwinger effect has attracted significant attention
and several methods have been proposed [OI: will add
citations here].

This Letter contains results from the first lattice sim-
ulation of preheating after axion inflation, where the
Schwinger effect is self-consistently taken into account.

We demonstrate a suppression of the produced electric
and magnetic fields, [OI: effectively ruling out primor-
dial magnetogenesis from axion inflation]. We discover
a universal value for both the electromagnetic fields as
well as the conductivity of the Schwinger plasma at the
onset of backreaction and present a surprisingly intuitive
[OI: can we be more formal instead of use surprisingly
intuitive?] derivation of these values. Furthermore, we
explore the effect of the mass of the lightest Standard
Model fermions and show that a large Higgs vacuum ex-
pectation value (VEV) during inflation can restore the
viability of axion inflation magnetogenesis.

The rest of the Letter is organized as follows. We start
by presenting the basics of the model and the different
descriptions of the Schwinger-induced current [OI: using
electric and magnetic conductivities]. Following that,
we present the results of our numerical simulations and
analytic estimates. We conclude with the limitations of
our method and outlook for future work.

Axion inflation and the Schwinger effect.
We consider a pseudoscalar inflaton (axion) ϕ coupled to
the hypercharge sector of the Standard Model through a
Chern-Simons interaction term in the presence of charged
particles
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where Fµν = ∂µA
ph
ν − ∂νA

ph
µ , α is the axion-gauge cou-

pling, f is the axion decay constant, V (ϕ) is an axion po-
tential and Lch = Lch(Aph

µ , χ) describes all charged fields,
χ, and their interaction with Aµ. With the superscript
“ph” we denote physical fields. The physical electric
four-current is then Jµ = −∂Lch/∂Aµ =

(
ρch,J

ph/a
)
,

where a(t) is the scale factor and we assume charged
particles initially absent (or exponentially diluted dur-
ing inflation) and thus set the initial charge density to
zero, ρch = 0. It is convenient to work with comoving
fields that relate to physical as E = a2Eph, B = a2Bph,
J = a3Jph. Comoving electric and magnetic fields are
defined as E = −∂τA+∇A0, B = ∇×A, where we use
derivatives with respect to conformal time dτ = dt/a(t).
The dynamical equations that govern the evolution of the
(comoving) gauge and axion fields are

∂2
τϕ + 2H∂τϕ−∇2ϕ + a2

dV

dϕ
=

α

a2f
E ·B, (2)

∂τE − rotB +
α

f
(∂τϕB + ∇ϕ×E) + J = 0, (3)

∇ ·E = −α

f
∇ϕ ·B, ∇ ·B = 0, (4)

∂τB + rotE = 0, (5)

H2 =
8π

3m2
pl

a2 (ρϕ + ρE + ρB + ρχ) , (6)

where H = ∂τa/a is the conformal Hubble pa-
rameter. The energy densities are defined as
ρϕ =

〈
(∂τϕ)2/2a2 + (∇ϕ)2/2a2 + V

〉
for the axion,

ρE =
〈
E2

〉
/2a4 for the electric field, ρB =

〈
B2

〉
/2a4

for the magnetic field, and ρχ for the the plasma. In the
simulation ⟨...⟩ denotes volume averaging over the whole
simulation domain (box).

Strong backreaction from Schwinger currents.
The induced Schwinger current generated by the created
particles for the case of constant and spatially uniform
(anti-)collinear electric and magnetic fields in de Sitter
space takes the form [11–13]

J =
(e|Q|)3

6π2H
E|B| coth

(
π|B|
E

)
e−

πm2a2

e|Q|E , (7)

where E = |E| is the magnitude of the electric field and
J , B are the electric current and magnetic field, projected
onto the direction of the electric field, e is the gauge cou-
pling constant, Q is the particle’s charge and m is the
particle’s mass. We focus our attention on the strong-
field limit, defined as [14] |eQE| ≫ H2, meaning that we
choose couplings that would generate an E-field that sat-
isfies the above inequality in the absence of a Schwinger
plasma. We also neglect the fermion masses by assuming

mπa2 ≪ e|Q|E, unless otherwise stated. When electric
and magnetic fields are (anti-)collinear, the induced cur-
rent is proportional to both E and B. [es - Is this the
case without a Plasma? If so we should write it.] This
results in an ambiguity in writing a vector form for the
Ohm’s law for the Schwinger current and allows for differ-
ent formulations, dubbed the “electric”, “magnetic” and
“mixed” picture

J = σEE, σE =
(e|Q|)3

6π2H
|B| coth

(
π|B|
E

)
, (8)

J = σBB, σB =
(e|Q|)3

6π2H
sign(B)E coth

(
π|B|
E

)
, (9)

J = σEE + σBB, (10)

where for the mixed picture the conductivities σE , σB are
chosen to satisfy equation (7). We refer to this description
as collinear, to emphasize the underlying assumption of
(anti-)collinearity of the fields.

However, in axion inflation, electric and magnetic fields
may not remain collinear or anti-collinear at all times.
Relaxing the assumption of collinearity was addressed by
performing a Lorentz boost from the comoving coordi-
nate frame to a frame in which the electric and magnetic
fields are collinear, and then transforming back. This was
first explored perturbatively by considering small devia-
tions around constant, anti-collinear background fields in
Ref. [15], and later extended to a non-perturbative treat-
ment in Ref. [14]. Since no assumption is made about the
collinearity of the fields, and they can take arbitrary con-
figurations, we refer to this case as non-collinear. This
procedure leads to the induced current in the mixed pic-
ture (10), where it is described through both an electric
and magnetic conductivities as [14]

σE =
|J ′|E′

γ

1√
(E2 −B2)2 + 4(E ·B)2

, (11)

σB =
|J ′|
E′γ

(E ·B)√
(E2 −B2)2 + 4(E ·B)2

, (12)

where prime quantities are fields in the collinear frame
defined through an arbitrary configuration of comoving
E and B fields as

J ′ =
(e|Q|)3

6π2H
E′|B′| coth

(
π|B′|
E′

)
, (13)

E′ =
1√
2

[
E2 −B2 + I2

]1/2
, (14)

B′ =
sign(E ·B)√

2

[
B2 −E2 + I2

]1/2
, (15)

γ =
1√
2

[
1 +

E2 + B2

I2

]1/2
, (16)
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where I2 ≡
√

(E2 −B2)2 + 4(E ·B)2. To obtain a
closed system of equations, one needs to account for the
evolution of the fermion energy density, ρχ. Incorporating
energy conservation in an expanding universe, the equa-
tion for ρχ can be written phenomenologically as [14, 16]

∂τρχ + 4Hρχ =
1

a3
(
⟨σE⟩ ⟨E2⟩ + ⟨σB⟩⟨E ·B⟩

)
, (17)

where it is assumed that the plasma is comprised of
relativistic particles possessing a statistically isotropic
momentum distribution, pχ = ρχ/3. It is worth noting
that in Eq. (17) one could use ⟨σEE

2⟩, ⟨σBE · B⟩.
Choosing a different prescription does not significantly
alter our results [OI: this we did not check, we checked
average/non-average for conductivities. I would omit
”Choosing a different prescription”.. and only say ”we
defer”]; we defer a detailed comparison of different
prescriptions for a subsequent publication.

Numerical simulations.
To determine the evolution of the system, we solve equa-
tions (2)–(6) together with equation (17). This is done
numerically on a lattice using the Pencil Code [17].
The simulation includes a grid of 5123 points and starts
around 2 e-folds before the end of inflation. For sim-
plicity we choose a quadratic potential for the axion
V (ϕ) = 1

2m
2ϕ2 with m = 1.04 × 10−6 mpl. Even though

this is observationally ruled out during inflation, it is a
valid approximation during preheating and as such has
been widely used in the preheating literature [8]. We do
not expect qualitative differences for more complicated
potentials, like axion monodromy [8].

As outlined above, there are several possible descrip-
tions of the Schwinger current. This is due to the non-
perturbative nature of the effect and the fact that the
solution is only known in the constant field limit. Thus
extrapolating from this to more realistic scenarios leads
to different prescriptions. We begin our analysis with
the simplest parametrization: the collinear current de-
scription in the electric picture, given by Eq. (8). We
follow the definitions of Ref. [14] for the charge and the
gauge coupling constant. In the expression for the con-
ductivities we set Q3 = 41/12, which equals half the sum
of the cubes of the hypercharges of all Standard Model
Weyl fermions (while (7) is written for a single Dirac
fermion). [es - repetitive, why do we need “the sum is
taken...”?] [OI: I changed]. The gauge coupling con-
stant is e = g′ =

√
4π/137 ≃ 0.303, however, a realistic

description of the Schwinger effect requires taking into
account its running. Hence in our simulations we use the
gauge coupling constant e = g′(µ̃) defined as

g′(µ̃) =

(
[g′(mZ)]−2 +

41

48π2
ln

mZ

µ̃

)−1/2

, (18)

where g′(mZ) ≃ 0.35, mZ ≃ 91.2 GeV, with the charac-
teristic energy scale µ̃

µ̃ = (ρE + ρB)1/4 =
1

a

(
1

2
⟨E2⟩ +

1

2
⟨B2⟩

)1/4

. (19)

The conductivity in Eq. (8) depends itself on the elec-
tric and magnetic fields. In our numerical simulations,
we consider fields in (8) locally, at each point in the grid,
fully taking their time and space dependence. It is worth
noting that averaging the fields in the definition of con-
ductivity over a domain yields a very similar result (see
[18]).

We perform a full non-linear computation of the system
for the collinear case (Eq. (8)) and the non-collinear case
(Eq. (10), (11), (12)), treating the fields locally. [es - local
treatment is repeated in the paragraph above][OI: that
was for conductivity, I want to highlight again we use
local treatment in all equations. ] The result is shown in
Figure [OI: to add Figure (the evolution of conductivities

and Brms, Erms)]. Where Brms =
√∫

d log k · PB(k).

We also show the result in the linear regime, where
⟨E ·B⟩ = 0 and the inflaton is homogeneous (i.e., ∇ϕ =
0), dominating the dynamics of the universe such that
H2 = 8π

3m2
pl
a2ρϕ. The evolution in the strong backreaction

regime without fermions has been analyzed in detail in
[19, 20].

We see that all cases which operate in the large-
coupling regime exhibit very similar suppression,
regardless of the current description or whether the
regime is treated as linear or non-linear.

Universality of the Schwinger backreaction.
It is known that the largest amplification of gauge fields
during axion inflation occurs close to the end of inflation
[8]. This can be simply understood, as the tachyonic am-
plification depends on the axion velocity, which is max-
imal close to the end of inflation. The growth of E and
B fields can be described by a simple exponential growth
rate (see [8] for a WKB analysis). Furthermore, the E and
B fields are almost equal during this growth. By examin-
ing the equation of motion for the electric field (equiva-
lently for the gauge field modes A±), we see two compet-
ing terms: (α/f)(∂τϕ)B supports the tachyonic amplifi-
cation, whereas the current J = σEE opposes it. Initially
the tachyonic amplification term dominates and thus the
fields undergo the usual exponential enhancement (one of
the two polarizations). Since |E| ≈ |B|, we can compare
the two terms by comparing the (α/f)∂τϕ to the conduc-
tivity σE . For simplicity we take a = 1, as the ampli-
fication takes place mostly within one e-fold around the
end of inflation, thereby derivatives with respect to con-
formal time coincide with their cosmic time counterparts.
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Using ∂τϕ = mPlH
√
ϵ/4π we get (α/f)∂τϕ ∼ O(100)H,

where we took ϵ ∼ 1 close to the end of inflation and
αMPl/f ∼ 60 − 100. For H ∼ 10−5mPl we see that the
back-reaction from Schwinger pair-production occurs at
σE ∼ 10−3mPl. We can now also estimate the typical
value of the electric and magnetic field. First we observe
that coth(πE/B) ≃ 1 for E/B = O(1). Furthermore
eQ ≃ 1, leading to B ∼ 6π2(αmPl/f)H2 ∼ 10−6m2

Pl.

Intriguingly, the above estimates for the conductivity
and the value of the electromagnetic fields at the onset of
Schwinger backreaction are consistently supported by a
wide range of simulations. In the large coupling regime,
where the universe preheats almost instantaneously to
gauge fields in the absence of the Schwinger effect, this
universal plasma conductivity is reached during the early
gauge field growth at the end of inflation. That is true
for example for αmPl/f = 60, 90. For αMPl/f = 35, the
same point is reached, albeit slightly less violently (see
also Refs. [19, 20] [OI: correct ref (fig. 14)][es - I think we
need 45 here, not 35. The IC’s can play a role here]. Our
analysis points to the existence of a universal behavior
for axion inflation magnetogenesis, where the Schwinger
effect is significant when gauge fields reach a value of
E,B ∼ O(10−6)mPl close to the end of inflation. The
Schwinger suppression will be less pronounced (largely
irrelevant) for couplings that lead to smaller field values.

Consequences for magnetogenesis.
The non-detection of secondary GeV photons from
blazars provides indirect evidence for the presence of ex-
tragalactic magnetic fields in the intergalactic medium.[es
- possibly helical [21]] This observation motivates inves-
tigations into their origin in the early universe. The
prospect of magnetogenesis in axion inflation has been
explored for couplings up to αmpl/f ≤ 60 in Ref. [20]
and, more recently, for αmpl/f = 75, 90 in Ref. [19].
These studies conclude that, for αmpl/f ≥ 60, the ax-
ion–U(1) inflation model is already marginally compati-
ble with generating magnetic fields strong enough to ac-
count for the non-observation of GeV photons in blazar
spectra. Moreover, as we have seen, the Schwinger ef-
fect significantly reduces the final amplitude. To quantify
the suppression, let us consider the present-day magnetic
field strength and its coherence length (after accounting
for the nonlinear evolution of the fields after conductiv-
ity becomes much larger than the Hubble parameter) are

given by [es - mention inverse cascade here?] [19]

Bph
rms|0 = 9.2 × 10−15 G

√∫
d log k · PB

ρtot

(
10−6mpl

H

)
r
1/3
A ,

(20)

Lc|0 = 0.8 pc (HLc)

(
10−6mpl

H

)
r
−2/3
A , (21)

where H is the Hubble parameter in comic time, ρtot
is the total energy density at the end of simulation,

Lc =
∫
d log k ·k−1·PB∫

d log k ·PB
is the coherence length, and the

parameter rA is defined as rA = max(1,HLc/VA),
where VA =

√
B2/(2(ρtot + p)) is the Alfvén veloc-

ity. The lower bound on the present-day magnetic
field strength depends on the coherent length as

Bbd = 1.8 × 10−17 G (Lc|0/0.2Mpc)
1/2

[22]. The re-
sults of [19] show that even without the Schwinger
suppression for αmpl/f ≥ 60 and a coherence length
Lc|0 ≃ 10−1 − 10−2 pc the primordial magnetic field
has an amplitude Bph

rms|0 ≃ 10−14 − 10−15G, which is
already barely consistent with the observational lower
bound of Bbd ≃ 10−14 G for this coherence length.
When the Schwinger effect is taken into account, it
suppresses Brms by at least two orders of magnitude for
large couplings, and reduces the electromagnetic energy
density by approximately four orders of magnitude.
As a result, the ratio

√
B2

rms/ρtot in (20) remains
well below unity (see [OI: Fig for energy densities]),
effectively ruling out magnetogenesis from axion inflation.

Heavy fermion effects.
So far, we have neglected the effects arising from finite
fermion masses. From (7) it follows that a significant

suppression of the Schwinger effect requires πm2a2

e|Q|E > 1

or m2/E ≳ O(1), where we took a ≈ 1, as we are focus-
ing to the era close to the end of inflation. [OI: in our
simulation a = 1 is at the start of inflation.] At the end
of inflation E2 ≃ B2 ∼ 3H2m2

Pl/8π, or E ∼ 0.1HmPl.
The masses of Standard Model (SM) fermions are given
by m = yh, where y is the Yukawa coupling and h is the
Higgs VEV, which is expected to be nonzero during infla-
tion, if the Higgs is a light field subject to de-Sitter fluc-
tuations. Among the electrically charged fermions, the
electron has the smallest Yukawa coupling, ye ≃ 3×10−6,
making it the lightest. Thus, if electrons are too heavy to
be efficiently produced via the Schwinger effect, all other
charged fermions will be even more suppressed. To sup-
press the Schwinger effect, the fermion mass must satisfy

m2 ≳ 0.1HmPl . (22)

Figure [OI: Fig and its description goes here] shows
how the presence of a large electron mass suppresses
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the Schwinger current and can restore magnetogenesis.
However, the constraint (22) implies a lower bound on
the Higgs VEV h ≳ (0.3/ye)

√
HmPl ≃ 105mPl

√
H/MPl.

To avoid super-Planckian values for the Higgs field, one
requires a low inflationary scale: H ≲ 10−10mPl ∼
109 GeV. This provides a key result: a suppression of the
Schwinger effect through fermion masses requires both
low-scale inflation and large (possibly Planckian) field ex-
cursions. If one relies solely on de Sitter fluctuations
to generate a Higgs VEV, one expects h ∼ Hλ−1/4,
which leads to H/mPl ≳ 1012

√
λ. This requirement is

difficult to satisfy given observational upper bounds on
H, unless we consider an almost vanishing Higgs self-
coupling. However, alternative mechanisms such as a di-
rect coupling between the Higgs and the inflaton, or a
non-minimal coupling to gravity can dynamically induce
a large Higgs VEV during inflation.

These considerations point to an intriguing model-
building challenge: any realistic suppression of the
Schwinger effect involving SM fermions may lead to
observable consequences at collider experiments through
a modification of the Higgs sector. We must note before
concluding that all simulations presented here refer to
high-scale inflation, H ∼ 10−6mPl, and thus need to be
re-done for different Hubble scales. However, given our
qualitative understanding for the efficient preheating
and the universal onset of the Schwinger plasma back-
reaction, simple estimates for different Hubble scales are
easy to make.

Summary and outlook.
We presented the first lattice simulation of non-linear evo-
lution after axion inflation that self-consistently incor-
porate Schwinger pair production. Our results demon-
strate that the induced Schwinger current provides a ro-
bust backreaction that quenches gauge field amplification
once a universal conductivity threshold σE ∼ 10−3mPl

and magnetic field strength Brms ∼ 10−6m2
Pl are reached.

This threshold is independent of the specific formulation
of the current and marks the onset of plasma domination.

The resulting suppression of EM field production sig-
nificantly reduces the amplitude of primordial magnetic
fields, effectively ruling out axion inflation as a source
of intergalactic magnetogenesis. We further showed that
avoiding this suppression requires fermion masses large
enough to inhibit Schwinger production—necessitating a
large Higgs VEV during inflation and favoring low-scale
inflation scenarios. These findings motivate future stud-
ies on low-scale inflationary models and on connections
between the axion and Higgs sectors, with potential
implications for collider signatures. [es - should we
hint on our long paper here and mention the Schwinger
time-integration issue? ]
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Appendix: Full integration of the current - spuri-
ous interpretation for time evolving current.
[OI: I wrote here the current from [12] in our convention
and a reference in case you would like to go for this sec-
tion. Here it is still not in a vector form, I kept ”c” for
comoving. BTW K. Mukaida is coming for a conference,
we might want to talk to him :)] [es - Yes, it’s always use-
ful AND fun to talk to people like Kyohei] The differential
equation for the current is [12] (equation (4.13)-(4.14))

∂τ (Jcom) =
(e|Q|)3

2π2
EcBc coth

(
πBc

Ec

)
(23)

After integration it gives (assumption is the constant H
here, and static physical (!) fields)

Jcom =
(e|Q|)3

6π2H
|Bc|Ec coth

(
π|Bc|
Ec

)
(24)
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1. Full integration of the current

It is worth pointing out that the formulation for the Schwinger current derived through [es - mention here the QFT
calculation] is given in terms of the its derivative [12]

∂τ (Jcom) =
(e|Q|)3

2π2
EcBc coth

(
πBc

Ec

)
(S1)

where the assumption for static electric and magnetic field is made and the fermion mass is again dropped for simplicity.
One can integrate the above, by adding the assumption of a constant Hubble scale to the already static EM fields, and
arrive at

Jcom =
(e|Q|)3

6π2H
|Bc|Ec coth

(
π|Bc|
Ec

)
(S2)

which is the form of the current that we used in our simulations and has been widely used in the literature [es - some
citations].

Since we are putting the full system on the lattice though, there is no difficulty in numerically integrating Eq. (S1)
instead of using Eq. (S2). Figure [es - insert figure] shows the results of a simulation run, where the axion and electro-
magnetic fields are computed at each point on the lattice, while the current is computed by integrating Eq. (S2), simi-
larly at each point on the lattice. We first of all observe that until the universal threshold of (σE , B) ∼ (10−3, 10−6m2

Pl).
However, after the threshold value has been reached, the evolution is qualitatively different.
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