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Abstract. A spherical hydrodynamical expansion flow can be described as the gradient of
a potential. In that case no vorticity should be produced, but several additional mechanisms
can drive its production. Here we analyze the effects of baroclinicity, rotation and shear in
the case of a viscous fluid. Those flows resemble what happens in the interstellar medium.
In fact in this astrophysical environment supernovae explosion are the dominant flows and,
in a first approximation, they can be seen as spherical. One of the main difference is that in
our numerical study we examine only weakly supersonic flows, while supernovae explosions are
strongly supersonic.
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Turbulence in the interstellar medium (ISM) is mainly driven by supernovae explo-
sions, which are among the most dramatic events in terms of release of energy. Those
explosions are also very important because they can affect scales up to ~ 100 pc. More-
over they are able to inject in the ISM enough energy to sustain turbulent flows with
velocities of ~ 10 km/s. It is well known that turbulence is one of the key ingredients
to be taken in account when discussing many astrophysical process — especially in the
production of magnetic fields. This is indeed one of our ultimate goals, even though here
we do not take any magnetic field into account. As a first approximation, a supernova
explosion can be regarded as a purely spherical expansion wave. Thus, we choose a setup
consisting of purely potential forcing: we simulate spherical expansions, as already done
by Mee & Brandenburg (2006). For our numerical experiments we use the PENCIL CODE,
http://pencil-code.googlecode.com/. We have recently extended this work to include ro-
tation, shear, and baroclinicity; see Del Sordo & Brandenburg (2010). Here we report on
some highlights of their work.

We analyze flows that are only weakly supersonic and use a constant and uniform
viscosity in an unstratified medium. In our model we solve the Navier-Stokes equations
in the viscous case. We consider uniform viscosity in an unstratified medium. We force
our system to be only weakly supersonic and we use a potential forcing V¢ where ¢ is
given by randomly placed Gaussian of radius R around the position x¢(t). We use two
different forms for the time dependence of the forcing position x;. In the first case we
consider a J-correlated forcing, that is, every timestep has a x¢ completely independent
from the previous. Then we also study the situation in which the forcing remains constant
during a time interval Jtgopce-

Next, we add to the system one of three effects that we want to analyze, taking into
account each of them separately. We start by considering the action of rotation under
isothermal condition. Under the influence of rotation the system is subject to the action
of the Coriolis force. That is, we add the term 22 X w in the evolution equation of
velocity. In our simulations we investigate flows with Reynolds numbers (based on the
wavenumber of the energy-carrying eddies) of up to 150. The aim of this investigation is
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Figure 1. Vertical component of vorticity on the periphery of the periodic domain for two values
of the Coriolis number. Note that significant amounts of vorticity are only being produced when
Co is of the order of unity.
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Figure 2. Left: spectra of kinetic energy and enthalpy for two values of the Coriolis number
for Re = 25 and Stforce = 0.4. The two straight lines give the slopes —2 and —3, respectively.
Right: Enstrophy spectra, E, (k), compared with k> Ex (k), for Re = 25, Stforce = 0.4, and three
values of the Coriolis number.

to quantify the production of vorticity. We find that vorticity is indeed produced with
both kinds of forcing we have used for driving the spherical expansion. Nevertheless the
case of d-correlated forcing seems to be more prone to spurious production of vorticity
that we believe is due to numerical artifact.

We find that significant vorticity is only being produced when the Coriolis number,
Co = 2Q/upmsks is about unity; see Fig. 1 for Co = 0.15 and 1.35. For both cases
we show in the left-hand panel the spectra of kinetic energy and enthalpy, Fx (k) and
E; (k), respectively. There is no clear inertial range, but in all cases the energy spectra
show a clear viscous dissipation range. There can easily be spurious vorticity generation,
possibly still due to marginally sufficient resolution. The possibility of a spurious vorticity
is indeed verified by the right-hand panel of Fig. 2, where we compare enstrophy spectra
at different Coriolis numbers. Note that for large values of Co, the enstrophy spectrum
decays like k2. However, for smaller values of Co the level of enstrophy at the mesh
scale remains approximately unchanged and is thus responsible for the spurious vorticity
found above for small values of Co and not too small values of Re. For larger values of
Co, the production of vorticity is an obvious effect of rotation in an otherwise potential
velocity field, and it is most pronounced at large length scales, as can also be seen in the
right-hand panel of Fig. 2.

In the presence of shear, we find, in analogy with the case of rotation, production of
vorticity proportional to the magnitude of the shear. However our results indicate that
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Figure 3. Dependence of Ma and Re, as well as of the normalized vorticity, k. /kt, on ¢o for
v/iesR=1.

under the typical physical conditions in the interstellar medium in our Galaxy, neither
rotation nor shear would be strong enough to produce significant amounts of vorticity
(Del Sordo & Brandenburg (2010)).

Finally, we relax the isothermal condition to let the system evolve under the action
of the baroclinic term. In this situation we have non-parallel gradients of pressure and
density. The baroclinic term is proportional to the cross product of the two gradients,
resulting from the curl of the term p~! Vp. In Fig. 3 we show the dependence of various
quantities on the forcing amplitude ¢y normalized by the reference sound speed cy. The
Mach number saturates at about Ma = 3, and the rms value of the entropy gradient
increases up until this point. The amount of vorticity production in terms of k, /k; is
about 0.3 for ¢y /c?, = 20. For smaller values, on the other hand, there is an approximately
linear increase with k, /ki ~ 0.014¢q/c2,.

Given that in our Galaxy the Mach number of the turbulence is about unity (Beck et al.
(1996)) it is clear that the baroclinic term is much more efficient in driving the production
of vorticity. The fact that the highest amount of vorticity is observed when shock fronts
encounter each other suggests that supersonic conditions need to be investigated more
deeply.

Regarding dynamo action, as pointed out by Brandenburg & Del Sordo (2009), the
presence of vorticity does not seem to affect the diffusion of magnetic fields differently
than a complete irrotational turbulence. Nevertheless, vorticity plays an important role in
dynamo processes, so it is important to address the problem of the generation of vorticity
and the possible role of other effects. In future work we will address the connection
between vorticity generation and the dynamo effect for magnetic fields.
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