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ABSTRACT

Over the past few years there has been growing in-
terest in helical magnetic field structures seen at the
solar surface, in coronal mass ejections, as well as in
the solar wind. Although there is a great deal of ran-
domness in the data, on average the extended struc-
tures are mostly left-handed on the northern hemi-
sphere and right-handed on the southern. Surface
field structures are also classified as dextral (= right
bearing) and sinistral (= left bearing) occurring pref-
erentially in the northern and southern hemispheres
respectively. Of particular interest here is a quantita-
tive measurement of the associated emergence rates
of helical structures, which translate to magnetic he-
licity fluxes. In this review, we give a brief survey
of what has been found so far and what is expected
hased on models. Particular emphasis is put on the
scale dependence of the associated fields and an at-
tempt is made to estimate the helicity flux of the
mean field vs. fluctuating field.

Key words: magnetic fields, magnetic helicity, tur-
bulent dynamos.

1. INTRODUCTION

There is now good evidence for the helical nature
of the solar magnetic field. Early work by Seehafer
(1990) suggested that fitting the line of sight magne-
tograms of solar active regions to a linear (constant
alpha) force-free magnetic field yields systematically
negative values of alpha in the northern hemisphere
and positive in the southern. Although the evidence
for the hemispheric dependence was perhaps not
completely convincing back then, subsequent work
by different groups (Pevtsov, Canfield, & Metcalf
1995; Rust & Kumar 1996; Bao et al. 1999; Pevtsov
& Latushko 2000) have confirmed the initial results.

The quantity being measured in these studies is usu-
ally the current helicity, [J - BdV, or the current
helicity density, J - B, where B is the magnetic field
strength, J = V x B/ is the current density, and pq

is the magnetic permeability. Of particular interest
is actually the magnetic helicity [ A-BdV, where A
is the magnetic vector potential with B = V x A.!

The magnetic helicity is of great theoretical inter-
est because it satisfies a conservation law: except for
small resistive terms, its rate of change depends only
on the gains and losses of magnetic helicity through
the boundaries. However, the magnetic helicity is a
volume integral which is probably hopeless to mea-
sure in practice, because the field cannot be observed
in the solar interior. What is possible, however, is to
measure surface-integrated magnetic helicity fluxes
of the form [(Ex A)-dV, where E=J/oc —uxB is
the electric field and o is the electric conductivity.?
Regardless of numerous complications, recent work
has confirmed the basic hemispheric dependence of
the sign of both current helicity densities and surface-
integrated magnetic helicity fluxes (Berger & Ruz-
maikin 2000, DeVore 2000, Chae 2000): negative in
the north and positive in the south.

The connection between current helicity and dynamo
theory was immediately recognized. Réadler & See-
hafer (1990) proposed that the observed signs of the
current helicity are characteristic of the small scale
field rather than the large scale field. From a dynamo
point of view this is not only plausible, but also de-
sirable, as we shall explain later. From an observa-
tional point of view this is far less obvious, because
the field on the scale of active regions and that as-
sociated with coronal mass ejections (CMEs) is not
generally understood as part of the small scale field.
Eclipse images of the sun map out quite clearly the
overall field line structure (e.g. Fig. 1 in Low 2001).
From these one sees that the field lines in helmet
streamers above and around CMEs merges naturally
with the large scale of the sun. This is also seen in

'In general, the boundary of the volume is not a magnetic
surface, i.e. B-7A # 0, and so [ A - BdV will not be gauge-
invariant, i.e. the result will be different if one redefines A —
A+V ¢, where ¢ is an arbitrarily chosen gauge potential. This
is why one has instead to use the relative magnetic helicity of
Berger & Field (1984).

2Again, this quantity is gauge-dependent and has to be
substituted by an expression that is compatible with the def-
inition of the relative magnetic helicity of Berger & Field
(1984).
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soft X-ray images from Yohkoh (e.g. Fig. 7 in Low
2001).

The purpose of this paper is to point out that, on
theoretical grounds, one might expect a certain de-
gree of simultaneous emergence of small and large
scale fields of opposite helicities within each hemi-
sphere. (This concept was also discussed in Black-
wan & Field 2000.) In the following, we explain
the reasoning behind such an expectation in light of
recent work, and suggest possible observational sig-
natures of the process.

2. SIMULTANEOUS PRODUCTION OF
POSITIVE & NEGATIVE MAGNETIC
HELICITY

Magnetic helicity is being produced by differential
rotation and cyclonic convection (the a-effect). Both
sources of magnetic helicity have been discussed in
the past (e.g. Berger & Ruzmaikin 2000). Here we fo-
cus on the effect of cyclonic convection (a-effect). It
is well known that the a-effect does not produce any
net magnetic helicity (so it obeys magnetic helicity
conservation in the limit of large magnetic Reynolds
numbers). Instead, it produces simultaneously pos-
itive and negative magnetic helicity associated with
a spectral segregation (Seehafer 1996, Ji 1999). The
question then arises where do each of these oppo-
sitely helical contributions of the magnetic field go?
There are three possibilities: reconnection across the
equator, resistive cancellation, and losses at the so-
lar surface. The latter is by far the most plausible
one. What is not so clear is how exactly one is sup-
posed to picture the simultaneous loss of oppositely
helical magnetic fields. More importantly, why has
there been no observational evidence of this, neither
quantitatively nor qualitatively? Recently, however,
Démoulin et al. (2002) reported that sufficiently far
away from the photospheric inversion line writhe he-
licity (resulting from the relative rotation of opposite
polarities) and twist helicity (resulting from the in-
trinsic rotation of either polarity) can have different
signs. This may well be an indication of the antici-
pated simultaneous loss of magnetic helicity of both
signs.

From a turbulence point of view, one expects that
any kind of helical stirring leads to the development
of an inverse cascade (Pouquet, Frisch, & Léorat
1976). As is now well established from simulations,
this can be seen in power spectra of the magnetic
energy: helical forcing at or around some wavenum-
ber k¢ leads to a spectral bump at k& < k¢ (larger
wavelength) where the spectral magnetic helicity is
opposite to that at the forcing wavenumber. As time
goes on, this bump travels toward smaller &, until it
reaches the wavenumber corresponding to the scale
of the system.

The inverse cascade mechanism and the a-effect are
similar (but see Brandenburg 2002 for pointing out
differences), and they are widely considered to be the

most plausible mechanism for explaining the solar
magnetic field. In addition to the helicity effect (in-
verse cascade or «-effect), there is also shear (or dif-
ferential rotation) which amplifies the toroidal mag-
netic field, regardless of magnetic helicity. A rough
measure of the relative importance of shear and he-
lical turbulence can be obtained by considering the
ratio of toroidal to poloidal magnetic field. For the
sun this ratio is between 10 and 100. For poloidal
magnetic field generation, shear does not contribute.

Shear tends to produce large scale magnetic fields
that oscillate on a timme scale long compared with
the turnover time of the turbulence. This result
goes back to Parker (1955), and is well understood in
the framework of mean-field dynamo theory (Moffatt
1978, Parker 1979, Krause & Riadler 1980, Zeldovich,
Ruzmaikin, & Sokoloff 1983), and also confirmed us-
ing direct simulations of helical turbulence with si-
nusoidal shear (Brandenburg, Bigazzi, & Subrama-
nian 2001). In the framework of this model, the long
term cycles are to be identified with the 22-year mag-
netic cycle of the sun. The magnetic field takes the
form of traveling waves that migrate in the direction
perpendicular to the shear. This migration may be
identified with the migration of sunspot belts toward
the equator, though under certain circumstances the
direction of the field migration can be overturned by
meridional circulation (Choudhuri, Schiissler, & Dik-
pati 1995, Durney 1995, Kiiker, Riidiger, & Schultz
2001).

The outer boundaries of the sun do allow magnetic
field to escape, but it is not clear just how much
magnetic flux really does escape. In simulations of
forced hydromagnetic turbulence with open bound-
aries (pseudo-vacuum boundary conditions) mag-
netic field is found to escape both on small and large
scales, and these two contributions do indeed have
opposite signs of magnetic helicity, but the contri-
bution from small scales is found to be weak com-
pared with that from larger scales. It is not entirely
clear yet whether the boundary condition is realistic
enough and whether the comparatively weak losses
of small scale field are representative of the real solar
magnetic field.

Before we discuss why small scale losses of helical
magnetic fields are important (and even advanta-
geous) for a-effect dynamos, we illustrate first how to
picture such simultaneous losses of oppositely helical
magnetic fields, and what the observable signatures
of this process would be.

3. SIMULTANEOUS LOSSES OF OPPOSITELY
HELICAL MAGNETIC FIELDS

Given that magnetic helicity is conserved in the ab-
sence of boundary losses and resistivity, any swirl-
like motion must introduce simultaneously oppo-
sitely helical magnetic fields when starting with
an initially non-helical magnetic field (Longcope &
Klapper 1997). The prime example is of course the
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Figure 1. Tilting of the rising tube due to the Coriolis
force. Note that the tilting of the rising loop causes
also internal twist.

formation of an {2-shaped flux loop due to magnetic
or thermal buoyancy, and the simultaneous tilting
due to the Coriolis force. This is sketched in Fig. 1.

The tilting of the tube does clearly introduce current
helicity, J - B, where J is the current density associ-
ated with the magnetic loop. The relation between
this and the magnetic helicity is not very direct. The
resistive driving of the current helicity is proportional
to the current helicity,

L .
(—;; / A-BdV = —2np0 / J-BdV — surface terms,
‘ (1)

but apart from this, the only direct relation is be-
tween the spectra of magnetic and current helicities,
H(k) and C(k), respectively.®> The spectra are nor-
malized such that

[ee]
(a-B)= [ HKa, )
0
where angular brackets denote volume averages, and

(7-B) = /0 ” ok)ak; 3)

and the two are related to each other simply by
poC(k) = K*H(k). @

Since H (k) and C(k) can be of either sign, [ H(k)dk
can be of either sign for the same sign of [ C(k)dk
for example. A useful tool is however the two-scale
analysis, i.e. we define Hy, and Hy (and likewise Cpy,
and Ct) as the contributions from mean and fluctu-
ating field, corresponding to the wavenumbers of the
mean and fluctuating fields. Thus, H = H, + H;
and C = Cy, + Cr with

10Cm = k2 H,  poCr = ki H. (5)

This immediately raises the question of whether the
current helicity generated by the rising flux tube is
dominated by km or by ks. In a sense the loop is
of small scale by comparison with the uniform field.
On the other hand, when applied to the regenera-
tion of poloidal field from toroidal field, the newly

3Spectra are straightforward to define when the boundaries
are periodic,.so we restrict ourselves only to this case here.
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Figure 2.  Magnetic helicity spectra (scaled by
wavenumber k to give magnetic helicity per logarith-
mic interval) taken over the entire computational do-
main. The spectrum is dominated by a positive com-
ponent at large scales (k = 1 — 5) and a negative
component at small scales (k >5). °

replenished poloidal magnetic field may well directly
contribute to the large scale magnetic field.

We consider now the result of a simulation of a buoy-
ant magnetic flux tube. Similar calculations have
been carried out many times in the past (e.g. Ab-
bett, Fisher, & Fan 2000), but here we are interested
in the magnetic helicity spectrum which does not
seem to have attracted much attention so far. We
start with a horizontal flux tube in the azimuthal
(y-) direction with vanishing net flux (so there is
a weak oppositely oriented field outside the tube)
and a y-dependent sinusoidal modulation of the en-
tropy along the tube. This destabilizes the tube such
that it rises in one portion of the tube.* Although
the box is not periodic in the vertical direction, the
boundary conditions are still sufficiently far way so
that we use Fourier transformation to obtain power
spectra of the magnetic helicity; see Fig. 2. Note
that after some time (¢ = 6 free-fall times) the spec-
trum begins to show mostly positive magnetic helic-
ity (as expected), together with a gradually increas-
ing higher wavenumber component with the spectral
helicity density is negative. The latter is the antic-
ipated contribution from small scales resulting from
the twist of the tube.

Instead of visualizing the magnetic field strength,
which can be strongly affected by local stretching, we
visualize the rising flux tube using a passive scalar
field that was initially concentrated along the flux
tube. This is shown in Fig. 3.

In future simulations we plan to follow the emergence
of the flux tube into the outer low plasma-beta exte-
rior. We expect that the losses of magnetic helicity
have a scale dependence that follows roughly that in
the exterior. In the following subsection we discuss
the consequences of surface losses of helical magnetic

fields at small and large scales.

“The results have been obtained using the Pen-
cil  Code, a high-order MPI code for astrophysi-
cal MHD simulations, that is freely available under
http://www.nordita.dk/data/brandenb/pencil-code/
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Figure 3. Three-dimensional visualization of a rising
flux tube in the presence of rotation. The stratifica-
tion is adiabatic such that temperature, pressure, and
density all vanish at a height that is about 30% above
the wvertical extent shown. (The actual computational
dornain was actually larger in the x and z directions.)

4. PHENOMENOLOGY OF SMALL AND
LARGE SCALE FIELD LOSSES

A relatively useful concept is based on the evolution
equations for small and large scale fields under the
assumption that the fields are maximally helical and
have opposite signs of magnetic helicity at small and
large scales. The details can be found in Branden-
burg, Dobler, & Subramanian (2002, Sect. 4.2). The
strength of this approach is that it is quite indepen-
dent of mean-field theory.

Losses of large-scale field have been modeled us-
ing diffusion terms. The phenomenological evolu-
tion equation are written in terms of the magnetic
energies and large and small scales, M, and My, re-
spectively, where we assume My, = £poCyp/knm and
My = FuoCs/ke for fully helical fields (upper/lower
signs apply to northern/southern hemispheres). The
phenomenological evolution equation take then the
form

dM,,

dt

= _2nmkm]\/fm + 277fkf1\/[f7 (6)

where 7, and 7 are effective magnetic diffusivities
that are expected to be anywhere between the molec-
ular magnetic diffusivity, n, and the turbulent mag-
netic diffusivity, 7. The opposite signs with which
M,, and M; enter reflect the fact that large and
small scales contribute with opposite signs. The case
1w = 1¢ = 1 was already discussed by Brandenburg
(2001) who assumed that after a certain time fg,,
the small scale magnetic field will have saturated, so
My ~ const after ¢ > tg,;. After that time, Eq. (6)

can be solved and yields the solution

2

m(f—lrs,.z)] ,  for t > tgas.
(7)

ek I
My, = 2 [1 = 72k
77mkm

This equation shows three things:

e The time scale on which the large scale magnetic
energy evolves depends only on 7y, not on 7.

e The saturation amplitude diminishes as 7y, is
increased, which compensates the accelerated
growth just past ts: (Brandenburg & Dobler
2001).

e The reduction of the saturation amplitude due
to 7m can be offset by having ny, ~ 7, i.e. by
having losses of small and large scale fields that
are about equally important. ‘

The overall conclusion that emerges from this is, (i)
Nm > 7 in order that the large scale field can evolve
on a time scale other than the resistive one, and (ii)
Nm = 7¢ in order that the saturation amplitude is not
catastrophically diminished. These requirements are
perfectly reasonable, but so far they have not been
borne out by simulations. Brandenburg & Dobler
(2001) found that most of the losses of magnetic he-
licity occur on large scale. This is at first glance very
surprising, but on the other hand the magnetic he-
licity is a quantity that is strongly dominated by the
large scales. However, certain phenomena such as
CMEs and other perhaps less violent surface events
are not presently included in the simulations. As a
proof of concept, however, it has been possible to
show that the artificial removal of small scale mag-
netic fields (via Fourier filtering after a certain num-
ber of time steps) can indeed lead to significant in-
crease of the saturation amplitude.

The role of boundaries becomes particularly evident
when considering the fact that for closed or periodic
boundaries the net flux through a surface bounded
by such boundaries cannot change. Indeed, the large
scale fields considered in Brandenburg (2001) also
satisfy this property, so the mean field is not sim-
ply the field averaged over the entire box, but just
horizontal averages.

The standard picture of a generic dynamo is the
stretch-twist-fold (STF) dynamo, which is depicted
in Fig. 4. The flux through one half of the loop has
doubled after one STF iteration which, after gluing
the two overlying loops together, has lead to a config-
uration that is topologically equivalent to the initial
one. There is one slight subtlety however: (a) af-
ter having twisted and folded the two parts of the
loop together we have simultaneously introduced in-
ternal twist into the tube, very much like the inter-
nal twist seen in Fig. 1. Again, this happened only
because magnetic helicity is such a well conserved
quantity, while still small and large scale magnetic
helicity have been introduced simultaneously.
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Figure 4. Stretch-twist-fold (STF) dynamo with sub-
sequent flur loss through the upper boundary, lead-
ing to the production of net fluz through the box.
(Adapted from Brandenburg 1998)

As this twisted configuration goes through the
houndary, magnetic flux is lost partially, leaving a
finite net magnetic flux through the cross-section of
the entire interior domain (see the second part of
Fig. 4). At the same time, though, no net mag-
netic helicity is lost because the loop simultaneously
contains two canceling contributions. That such a
loop has zero net helicity may be difficult to observe
in practice because the twist along the tube, which
corresponds to the small scale contribution, may be
unresolvable if the overall structure is too small. An-
other perhaps more plausible proposition is that the
magnetic helicity observed so far does already come
from the small scales, and that it is the large scale
contribution that is not yet observed.

5. CONCLUSIONS

In this paper we have emphasized the importance of
trying to detect simultaneously large and small scale
contributions to the losses of helical magnetic fields
at the solar surface. The motivation comes mostly
from isotropic turbulence simulations (similar high
resolution simulations of more realistic settings do
not seem to be available yet), but the basic reason-
ing is sufficiently general to warrant tentative appli-
cation to the sun. If our picture is correct, it would
predict the existence of an as yet unidentified heli-
cal component of the magnetic field (with positive
magnetic helicity in the northern hemisphere). We
expect that this unidentified component should be
associated with the large scale field rather than the
small scale field. The reason such a component is
difficult to detect is related to the fact that the large
scale field is not seen directly. It only manifests itself
through the systematic orientation of bipolar regions.
However, such indirect indications have also been
used in the past to estimate the temporal-latitudinal
behavior of the large scale magnetic field from syn-
optic charts (Yoshimura 1976, Stix 1976). This ap-
proach should be repeated with more complete re-
cent data to assess at least the sign of the large scale
magnetic helicity.
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