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Abstract. There are now several simulations showing the generation
of large scale magnetic fields whose energy exceeds the kinetic energy of
the turbulence. Those simulations have in common that the large scale
field generation is related to some kind of a magnetic instability (magne-
torotational instability, magnetic buoyancy instability and in some cases
even the kink instability). The large scale field generation sets in after
some level of small scale dynamo activity has been established, suggest-
ing that the large scale field generation is essentially nonkinematic. This
mechanism is also essentially anisotropic, because the various instabilities
mentioned above do not exist under isotropic conditions (shear, rotation
and gravity are needed). Some aspects of the field generation are repro-
duced by a-effect dynamos, which can be compared with observations.

1. Dynamos from overshooting convection with shear

The overshoot layer beneath the solar convection zone proper is often thought to
be the place where the dynamo operates. This is the main reason why it is useful
to include overshoot in convective dynamo simulations. Results of Nordlund et
al. (1992) and Brandenburg et al. (1996} suggest that dynamo action occurs
actually throughout the entire convection zone proper, but that the field is
then transported downwards into the overshoot layer by turbulent pumping of
magnetic fields via rapidly spinning downdrafts. Recently, those simulations
have been extended to include the effects of shear (Brandenburg et al. 1999).
Shear takes the role of the omega-effect, although here the concept of alpha-
omega dynamos is not explicitly invoked. The main result is the generation of
large scale fields on the scale of the box. Those fields are of significant strength
and can exceed the equipartion field strength by an order of magnitude.

For orientation we give the basic parameters of the simulation. The simu-
lation is carried out at 30° northern latitude and the resulting inverse Rossby
number, 2QL /unys, is around 5. Here, urys is the turbulent rms velocity, L
is the depth of the unstable layer, and 2 is the angular velocity. Uniform
latitudinal shear is imposed by a body force throughout the convection zone
proper, but it vanishes towards the radiative interior, resulting in vertical shear
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around the lower overshoot layer. ‘Sliding-periodic’ boundary conditions (Haw-
ley et al. 1995) are used in the cross-stream direction and ordinary periodic
boundary conditions in the streamwise direction. The ratio between shear gra-
dient and angular velocity is 0.5 and the velocity difference across the box is
AU = %0.4urms. The resolution is 63 x 63 x 64 meshpoints, the ordinary and
magnetic Prandtl numbers are Pr = v/x = 0.2 and Pr); = v/n = 0.5, i.e. the
kinematic viscosity v is smaller than the magnetic and thermal diffusivities (7
and x). In the sun the two Prandtl numbers are much smaller than unity, but
this is impossible to simulate in a simulation of only modest resolution. The
Reynolds number is Re = uymsL/v = 240, the Rayleigh and Taylor numbers are
Ra = gL*s}/(cpxv) = 5 x 10° and Ta = (2QL?/v) = 10°. Here, g is gravity and
sq is the entropy gradient of the associated unstable hydrostatic solution.

The orientation of the cartesian box is as follows: z points north, y points
east in the toroidal direction, and z points downwards. The top and bottom
boundaries are stress free and the horizontal field vanishes, so there is no vertical
Poynting flux through the boundaries. Initially there is no net flux through the
box.

In figure 1 we show the evolution of the total magnetic energy and the mean
magnetic field in such a simulation. The magnetic energy increases by 6 orders of
magnitude and then saturates. There is also an exponential growth of the mean
field (averaged over the entire box), which increases by 3 orders of magnitude
until saturation is reached. (This is at around ¢ = 3200, approximately the same
time when the magnetic energy saturates; the time unit is v/L/g.) Note that the
energy in the mean magnetic field can be as large as 20% of the total magnetic
energy.

The main effect of the shear is the generation of strong ordered toroidal
fields, (By). There is also a much weaker poloidal field component. The com-
ponent in the latitudinal direction, (B;), is about 10 times weaker and oriented
mostly in the opposite direction, i.e. (Bg)(By) < 0 for most of the time. This
is simply a consequence of the shear, 0U,/0z < 0, which turns a positive (B;)
into a negative (B,).

2. Shear-driven accretion disc dynamos

A somewhat different situation is encountered in accretion discs, where there is
no direct source of turbulence, because discs are hydrodynamically stable. Only
in the presence of a magnetic field there is a linear instability (Velikhov 1959,
Chandrasekhar 1960, 1961). This instability is now often called the magnetoro-
tational or Balbus-Hawley (1991) instability. However, the flows generated by
this instability would tend to destroy the magnetic field via turbulent diffusion.
Nevertheless, at the same time the turbulence can also amplify the magnetic field
via dynamo action. Simulations unanimously point towards the possibility of
a cycle where the field generates turbulence and the turbulence generates more
magnetic fields (Brandenburg et al. 1995, Hawley et al. 1996, Stone et al. 1996).
In particular, in simulations of Brandenburg et al. (1995) there is a large scale
magnetic field, which is oscillatory and varies on a time scale of about 30 orbits,
Trot = 27 /€, where g is the angular velocity. Many quantities vary cyclically
with the mean field, of which the toroidal component (By) is the strongest.
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Figure 1.  Evolution of magnetic and kinetic energies, mean magnetic
field, and (B)?/(B?) (which may be interpreted as a ‘filling’ factor) in
a convection simulation with imposed shear.
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In the case of the accretion disc simulations it is possible to estimate the
magnitude and sign of the effective dynamo a parameter by correlating at dif-
ferent time steps the mean electromotive force with the resulting mean magnetic
field and to establish a fit of the form (u’ x B’), = a(By) (Brandenburg et al.
1995, Brandenburg & Donner 1997). Here primes denote fluctuations. The «
measured in that way is found to be negative in the upper disc plane. Therefore,
the sign of « is in disagreement with that expected form kinetic and current
helicities. The perhaps most convincing explanation for this negative sign is
that the shear twists buoyant magnetic structures in the opposite sense as the
Coriolis force (Brandenburg 1997, 1998).

The following calculation may shed some light on this question. It does
reproduce the sign of a4y, that is seen in the simulations. It also yields a natural
relationship between the two rather different quantities, the dynamo alpha ogyy
and and the viscosity alpha parameter ags used in accretion disc theory.

We assume that the vertical motions are governed by magnetic buoyancy,

SO
ou, _ o _ (BY _ (ByBy

a pg 8mp 4mp

~~
~

g, (1)

where primes refer to deviations from some mean value, p is density, p is gas
pressure, and g is gravity. We adopt a local cartesian coordinate system, where y
corresponds to the azimuthal direction and z to the radial direction in cylindrical
polar coordinates. The resulting electromotive force is then

(B By)

£, = (B, —u,B)) ~ (W, BL) = +(By)

gr, (2)

where 7 is some relevant time scale. Now, because of shear (Ju,/0z < 0) we
have (B; B;) < 0. The dynamo alpha quantifies the magnitude of the component
of the electromotive force in the direction of the mean field. Therefore,

&y = agyn(By) + ..., (3)
and so we have (ignoring higher order terms)

(BzBy)

. 4
rr— (4)

Qdyn = +

In accretion disk theory the negative ratio of the horizontal Maxwell stress and
the gas pressure is about twice the Shakura-Sunyaev viscosity parameter ass.
Also, since g = 02z, we can write

Qgyn ~ —2assQ%zT (5)
or, in terms of the inverse Rossby number Ro™! = 207,

m ~ — -1 _.Z_.
O ass Ro I (6)

The effects of rotation and shear are now hidden in the fact that the stress
(B B,) is negative, which is due to the negative shear. This estimate also
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Figure 2.  The inverse cascade seen in power spectra of the magnetic
field taken at different times (upper panel). The four dotted curves are
for t = 2, 4, 10, 20, the solid and dashed curves are for ¢ = 40 and
60, respectively, and the dash-dotted curves are ¢ = 80, 100, 200, and
400. The lower panel shows the evolution of the spectral power in the
k=1, 2, and 4 modes in a double-logarithmic plot.

assumes that the thermal expansion of buoyant tubes is small compared with
the magnetic contraction due to the B-VB term. Otherwise the sign may be the
conventional one. In fact, the values of agy, obtained from the above estimate
are far too optimistic compared with the values obtained in the simulations.
This suggests that a4y, is governed by some more delicate balance with other
effects that tend to cancel each other. Thus, a proper analysis is called for.
However, at present there is no other calculation that explains even the sign of
0gyn that is seen in the simulations.

3. The inverse cascade effect in isotropically forced systems

Following the early work on inverse cascades (Pouquet et al. 1976) we now study
a model where we adopt a high wavenumber forcing in the induction equation.
Because the forcing is at high wavenumbers only (k = 10) the magnetic field evo-
lution at the large scales (k = 1) is not immediately affected, except of course for
the inverse cascade effect which governs the evolution on wavenumbers smaller
than the forcing wavenumber. We also point out that the general behavior is
similar, regardless of whether the forcing is applied in the induction equation or
in the momentum equation.

Looking at power spectra of the magnetic field at subsequent times (figure 2)
we see that the energy at the largest possible scale in the system (k = 1) grows
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until some saturation level is reached at around ¢ = 40; see the lower panel of
figure 2. Curiously enough, at the time when the & = 1 mode reaches saturation
the power in the & = 2 mode begins to be suppressed (see the dotted line).
Looking more carefully at this plot reveals that at the time when the k = 2
mode began to saturate (at around ¢ = 20 — 30) the power in the next higher
modes, k = 3 and k = 4, was suppressed. This has also been observed in similar
calculations of low Reynolds number flows (Gilbert & Sulem 1990, Galanti et al.
1991, Galanti & Sulem 1991). In our case the Reynolds numbers (ordinary and
magnetic), based on the box size and the rms velocity, are around 140. However,
the Reynolds number based on the wavenumber 10 is only 14. In that sense our
simulation too is rather diffusive.

The orientation of the magnetic field is not determined a priori and depends
on chance and on initial conditions. Sometimes we found a field that varied
mostly in the z-direction, while for other simulations the field varied mostly in
the y or z-directions. If the mean field varies only in the z-direction, for example,
then 9,(B) = 0,(B) = 0 and only 0,(B) is nontrivial. Then, however, because

0=V (B) = 8,(By), (7)

we have (B;) = const = 0, so (B) = (0,(By),(B;)). In other words, the
field vector lies in a plane whose normal is parallel to the direction in which
it varies, but it has no component in that direction. Once the large scale field
has selected a preferred direction, it will stick to it for all times. We note,
however, that we never encountered a case where the field is oblique to any of
the coordinate planes. An oblique mean field would diffuse faster, because the
turbulent diffusion operator, n;(k2 + k2) = 2m:k2,, is always larger than just
nk2 = n;k2,.. This is probably the reason why diagonal fields are not being
generated.

In figure 3 we show the resulting mean magnetic field from a simulation
in which the preferred direction of the mean field is the z-direction. Note that
there is a 90° phase difference between the z and y-components of the mean
magnetic field.

The approach just described allows us to study the evolution and satura-
tion of the large scale magnetic field. An obvious question is then whether the
field produced by the inverse cascade resembles qualitatively and perhaps even
quantitatively the field generated by an o? dynamo, and if so, what are then the
corresponding values of o and turbulent diffusivity, 7.

4. Connection with an alpha-squared dynamo

The mean magnetic field found in the previous section resembles in many ways an
o? dynamo. In such a dynamo the large scale field is governed by the equations

2

3<£m> = —a——agy) +(n+m)2 8(?) , (8)
2

—a<£y> = +O‘a(aB;> + (0 +nt) aa(gy), (9)
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Figure 3. The mean magnetic field components, (Bg) and (By), as
functions of z in a simulation where the mean field varies only in the
z-direction.

where we have assumed that the mean field varies only in the z-direction, which
is the situation in the particular solution displayed in figure 3 (section 3.). The
averages are taken over the z and y directions. In the saturated case the field
is dominated by the smallest waver number & = 1; see the inset of figure 2.
Therefore we now take the solution to be of the form

(Bz) = By(t)sin(z — 20), (By) = By(t) cos(z — z), (10)
where zj is a constant (phase factor). With this, Egs. (8) and (9) take the form

OB,

5t = aBy —(n+ m)Bx, (11)
6B . .
—aTy = aB; — (n+ ;) By. (12)

In the steady state we have a = n + ;. In order to estimate the value of a we
modify the actual field in the simulation by setting momentarily the mean field
in either the x or the y-direction to zero, i.e. we replace at some instance in time
By — By — (B;) or By = By — (By). Looking at eq. (11) we see that setting
(Bz) = B, = 0 means that immediately after this manipulation the B, field
should recover at a rate aBy. This rate is approximately 0.02 (see figure 4), and

since By =~ 1 we have a = 0.02. This value is already affected by the nonlinear
feedback in the system (alpha-quenching, for example). Assuming that the value
of a is the same before and after removing one of the two mean field components
we have therefore n + 7: = o =~ 0.02. Since in this simulation 7 = 0.01 we have
n: =~ n. Those values of @ and 7; are rather small, suggesting again that the
effective magnetic Reynolds number is small.

- This method can in principle be applied to systems with different field
strengths, different magnetic Reynolds numbers, and different amounts of helic-

1ty.

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1999ASPC..178...13B&amp;db_key=AST

DASPCS D178, T TI3B

rt

20 Brandenburg

B,, put to zero

0 50 100 150 200 250 300
t

B, put to zero

0 50 100 150 200 250 300

Figure 4. Response of the large scale field after removing the mean
field from the B, and By fields, respectively. After ¢ = 220 the field

component that was set to zero (B; in the upper panel, By in the lower)
began to grow at a rate =~ 0.02.

5. Conclusions

In this paper we have highlighted some important issues that have arisen recently
in connection with understanding dynamos in stars and other astrophysical bod-
ies. In all cases studied so far a large scale magnetic field can be generated whose
strength approaches the equipartion field strength. The main limitation so far
remains the fact that the magnetic Reynolds numbers do not exceed a few hun-
dred. Nevertheless, the flows are fairly turbulent and provide already now an
excellent opportunity to study details of the dynamo process that were previ-
ously possible only in connection with rather simple mean-field type models.
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