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Abstract We simulate in one dimension the magnetic shearing instability for a
vertical magnetic field penetrating a Keplerian accretion disc. An initial equilib-
rium state is perturbed by adding a single eigenmode of the shearing instability
and the subsequent evolution is followed into the nonlinear regime. Assuming
that the perturbation is the most rapidly growing eigenmode, the linear theory
remains applicable until the magnetic pressure perturbation is strong enough to
induce significant deviations from the original density. If the initial perturbation
is not the fastest growing mode, the faster growing modes will appear after some
time.

1 Introduction

Balbus and Hawley (1991) realised that a Keplerian accretion disc penetrated
by a vertical magnetic field is unstable to a shearing instability previously de-
scribed by Velikhov (1959) and Chandrasekhar (1960). Three-dimensional nu-
merical simulations (e.g. Hawley et al. 1995, 1996; Matsumoto & Tajima 1995;
Brandenburg et al. 1995, 1996; Stone et al. 1996) have later demonstrated that
the laminar shear flow becomes turbulent in the nonlinear domain.

Owing to the complexity of a three-dimensional simulation it is not well un-
derstood how the flow evolves from being linearly unstable to being turbulent. A
related problem is to identify the saturation mechanism that sets the amplitude
of the fully developed turbulence. In this paper we will try to investigate these
problems in an alternative way. We will reduce the amount of data by studying
the instability of a vertical magnetic field in only one dimension, and simplify the
dynamics by starting from a perturbation which is already an eigenmode of the
linear stability problem. Clearly we are missing much of the essential physics by
imposing these restrictions, but on the other hand it is possible to understand
the remaining physical effects, and by comparing our results with more com-
plete calculations we may understand which of the missing physical effects are
important.
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Since the initial analysis by Balbus & Hawley (1991) a large number of pa-
pers extending the linear analysis have been published. The original work was
generalised by Balbus & Hawley (1992a) who showed that the maximum growth
rate of the magnetic shearing instability for any poloidal field configuration is
given by Oort’s A-constant. A more detailed analysis determining the axisym-
metric eigenmodes for a stratified disc was later published by Gammie & Balbus
(1994).

The original work concerned only the instability of an axisymmetric poloidal
magnetic field, but Balbus & Hawley (1992b) extended the analysis to toroidal
fields and non-axisymmetric perturbations. Several groups have later continued
the analytical stability analysis of the toroidal field (e.g. Foglizzo & Tagger 1995,
Ogilvie & Pringle 1996, Terquem & Papaloizou 1996, Coleman et al. 1995). An
important difference in the stability properties of vertical and toroidal magnetic
fields is that for the vertical magnetic field the most rapidly growing mode always
has a finite wavelength, if there are any unstable modes at all, whereas for a
toroidal field the most rapidly growing mode has an arbitrarily small vertical
wavelength.

In this paper we will introduce briefly the linear theory for instabilities of a
vertical magnetic field in an unstratified disc in Sect. 2, and present the corre-
sponding nonlinear simulations in Sect. 3. Sect. 4 is devoted to magnetic fields
in a stratified disc. Finally we summarise and discuss our results in Sect. 5.

2 The linear stability of a vertical magnetic field

The equations of ideal magnetohydrodynamics (MHD) can be written as

Op
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where p is the density, u the velocity, p the pressure, py the magnetic perme-
ability, B the magnetic field, and g the gravity. Furthermore we assume an ideal
equation of state and that all perturbations are adiabatic. For the rest of this
paper we will assume dimensionless units such that gy = 1.

As our equilibrium model we choose a Keplerian accretion disc with no strat-
ification. We transform the equations to a system rotating at the Keplerian an-
gular velocity, 2y, at a reference radius Ry, and linearise the shear flow in terms
of the parameter 7> Where z is the radial distance from Rg (cf. Brandenburg et
al. 1995). On this disc we impose a homogeneous vertical magnetic field B. We
then add a perturbation of the form o exp[i(k.z —wt)], that is the perturbations
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are independent of the horizontal coordinates = and y. Linearising Eqs (2) and
(3) we then obtain

—p (iwdu, + 20200uy) = ik, BéB,, (4)
p[—iwduy + 2 (20 — A) du,] =ik, 0By, (5)
—piwdu, = —ik, 61 + ik, BéB,, (6)
—iwdB, = ik, Bduy, (7)
—iwd By = ik, Bdu, — 2A0B,, (8)
and
—iwdB; =0, 9)

where 6II = ép + B - B is the perturbation of the total pressure, and

A= % (9 - d(d];m)ao (10)

is Oort’s constant, which is 22 for Keplerian rotation. Note that Eq. (9) leads
to 61T = ép. The pressure and density perturbations are related via

op = vf&p, (11)

where g is the sound speed, and the density perturbation in its turn is given by

—itwdp = —ipk,du,. (12)
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Fig. 1. The dispersion relation for an unstratified disc. x is a normalised wave
number and o is the growth rate normalised to the Keplerian frequency



4 Torkelsson et al.

The resulting dispersion relation can be split into two parts

w? = v2k? (13)

sz

for longitudinal, ‘acoustic’, waves, and
wh — (2w} + 25) W +w} (Wi —392%) =0, (14)

for transverse, ‘magnetic’ and ‘inertial’, perturbations. We have defined the
Alfvén frequency wa = k.va for the Alfvén velocity, vo = B/,/p. The mag-
netic mode is unstable for 0 < w3 < 3/22. We now introduce the conditions

Oug  Ouy
= —= = = 1
0z 8z * 0, (15)
and 5B
B,=B, = —2 = 1

on the vertical boundaries. These boundary conditions are identical to the ones
used by Brandenburg et al. (1995), and describe a stress-free surface with no
flow going through it and with a vertical magnetic field. The unstable magnetic
mode can be written as

duy = a, (17)
o + K2
duy = 5y % (18)
0B, = ﬁpl/2a, (19)
o
2 2 _
5B, = TLleﬂa, (20)
o 20
and
du, =6B, =dp=6p=0, (21)
where a is an arbitrary constant, and x and ¢ are given by
k.va
— 22
K 90 ) ( )
and . .
=31+ 1652)"* - (5 + n2> : (23)

respectively (Fig 1), and w = io(2y. The instability appears for k? < 3, and the
fastest growing mode has

15
2= — 24
K =15 (24)
so that the dispersion relation reduces to
o? = g (25)
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The maximum growth rate is thus equal to Oort’s A-constant. The corresponding
eigenmode can be written as

duy = duy = a, (26)
and
V15
— — - 1/2
0B, = —0B, = —3 P 2q. (27)
1x10 °F 1x10” °F
5x10 “F 5%x10° " F
—5x10 "k —5x10 "k
—1x10 °F —1x10 °F
1x10 1x10
5x10 " F 5x10 "F
—5x10 —5%x10
—1x10" —1x10"
-2 -1 0 1 2 —2 —1 Q 1 2
z z

Fig. 2. The initial state of Model 1. The imposed vertical magnetic field is
6.16 1074, the density is 1.0 and the angular velocity is 1072. The magnetic
perturbation is shown in the upper row, and the velocity perturbation in the
lower row (z-components to the left and y-components to the right)

3 The evolution of a single mode in an unstratified disc

We use the numerical code of Brandenburg et al. (1995), but restrict it to one di-
mension, the vertical, to study the evolution of the eigenmodes described above.
Our standard background model assumes an initial density p = 1, a radius of
100, so that 20 = 1073, and the internal energy, e = 7.5107". The vertical
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Fig. 3. The vertical averages of B2 and B? (upper row), and u} and u2 (lower
row) as a function of time for Model 1. Time is given in orbital periods. The
dashed lines denote B? (upper row) and ¢ (lower row)

Table 1. Vertical eigenmodes in unstratified discs. For each model we give the number
of grid points used, N, the imposed vertical magnetic field, B, the wavelength of the
excited mode, A, and its growth rate, o in units of the Keplerian angular frequency

Model N, B A=2x/k. o

1 63 6.1610°* 4 0.75
2 127 1541074 1 0.75
3 63 1.54107* 4 0.37

extent of the box is 4. The eigenmodes that we study are given in Tab. 1. A is
the wavelength of the linear eigenmode of the shearing instability. Models 1 and
2 are the fastest growing eigenmodes for their magnetic field strengths.

The initial state of Model 1 is shown in Fig. 2. The instability is growing
at its linear growth rate even in what could be considered to be the nonlinear
regime, as is illustrated in Fig. 3. This is a consequence of the fact that the linear
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Fig. 4. The evolved state of Model 1 at 1.5 orbital periods. Upper row: B, and
By. Middle row: u, and uy. Lower row: u, and p. Note that initially p = 1 and
vs =9.1107*

eigenmode is an exact solution of the incompressible MHD equations (Goodman
& Xu 1994). Tt is clear from Fig. 2 that to second order the magnetic pressure
is modulated on half the wavelength of the eigenmode. The magnetic pressure
gradient generates a vertical velocity, u,, and a density fluctuation. These effects
are of no consequence for the growth of the eigenmode until the density fluc-
tuations are comparable to the background density (Fig. 4). At this late stage
the mass is concentrated towards the nodes of the horizontal magnetic field as
predicted by Goodman & Xu (1994) when the magnetic pressure dominates over
the gas pressure.

Model 2 shows a similar pattern to Model 1, as it is the fastest growing
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Fig.5. The initial state of Model 3. The imposed vertical magnetic field is
1.5410~%. The figure is organised in the same way as Fig. 2

mode for that magnetic field strength. Model 3 has the same imposed vertical
magnetic field as Model 2, but the eigenmode has a longer wavelength, and thus
a lower growth rate. In general |u,| > |uy| and |B,| < |By| for a mode with a
wavelength longer than that of the fastest growing mode (Fig. 5), and the other
way around for a mode with a too short wavelength. The nonlinear terms in the
MHD equations transfer power to modes with smaller wavelengths. In Models
1 and 2 these deviations are visible only in quantities which lack a contribution
from the linear mode, such as u,, but in Model 3 the deviations appear in all
quantities as they belong to modes with larger growth rates (Fig. 6).

4 A single mode in a stratified disc

We assume a vertical gravitational acceleration g, = —(23z and that the disc is
isothermal in the vertical direction, so that hydrostatic equilibrium gives

p=poe = /M (28)

where py is the density at the midplane of the disc, and H is the scale height. For
our standard model we choose both py and H to be unity. In this case the vertical
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Fig. 6. The evolved state of Model 3 at 2.0 orbital periods. The figure is organised
in the same way as Fig. 4

dependence is not described by exp(ik,z). It is possible to re-write Eq. (2) as a set
of second-order ordinary differential equations in the Lagrangian displacement, &
(Gammie &Balbus 1994). Restricting ourselves as before to an imposed vertical
field and modes with no dependence on the horizontal coordinates, we find

d’¢, _
B2 = (2 4 30%) ot + 2w oy, (29)
and
2d%¢, - 2
B*—F = —2iwpt, — w”p&y, (30)

dz2
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B,=1.10%¢t =0

Fig. 7. The initial state of Model 4. The imposed vertical magnetic field is 11073,
the density profile is a Gaussian with a maximum of 1.0, and the angular velocity
is 1072 (as in the unstratified models). The figure is organised in the same way
as Fig. 2

with the boundary conditions

dé _ d§y

=2 =Y —( at z = +2H. 31

dz dz a e (31)
We calculate a set of eigenmodes using a shooting method, and normalise them
such that |&;| = 1 at z = £2H. These eigenmodes are then orthogonal, and we

can calculate du and 6B from them as

ou = —iw§ + 2A, ey, (32)
and d
0B = Ba. (33)

Our models are described briefly in Tab. 2. The wavelength is no longer a
well-defined concept, so we prefer to identify the modes by the number of nodes
in the velocity perturbation, Ny odes-

In Model 4 the magnetic field is so strong that the only unstable mode is
the one with Npodqes = 1 (Fig. 7). Furthermore the growth rate of this mode is
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Fig. 8. The initial state of Model 5. The imposed vertical magnetic field is
1.5410~%. The figure is organised in the same way as Fig. 2

Table 2. Vertical eigenmodes in isothermal, stratified discs. For each model we give the
number of grid points used, IV, the imposed vertical magnetic field, B, the number of
nodes in Uz, Nnodes, and the growth rate, o, in units of the Keplerian angular frequency

Model Nz B Nnodes g
4 127 1107® 1 0.34
5 127154107% 5 0.75
6 127154107% 1 0.38
7 127 2107* 5 0.64

significantly smaller than the maximal growth rate, 0.75(2y, which can only be
achieved by fine-tuning the magnetic field strength to make an appropriate mode
fit precisely in the disc. An imposed magnetic field of 1.54 10~ gives close to
the maximum growth rate for a Nypoqes = 5 mode (Fig. 8). At this field strength
there is a large range of unstable modes. An interesting alternative is therefore
to excite the Nyoges = 1 mode (Fig. 9). The Nyodes = 3 mode is growing more
rapidly than the originally excited mode, and can be distinguished in a snapshot
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Fig.9. The initial state of Model 6. The imposed vertical magnetic field is
1.5410~%. The figure is organised in the same way as Fig. 2

at 2.4 orbital periods (Fig. 10). At around this time the growth rates of, in
particular, B, and u, increases from 0.37 to 0.67 (Fig. 11), which is close to the
growth rate for the Nyodges = 3 mode, which is 0.69. At 3.0 orbital periods the
Nuodes = 3 mode is dominating, and there may be a hint of an Ny pqes = 5 mode
too (Fig. 12). We see also that the density maxima are located at the nodes of
the horizontal magnetic field as predicted by Goodman & Xu (1994).

It can be instructive here to decompose the evolved state in the linear eigen-
modes. We calculate the scalar product of u, with the corresponding velocity of
the eigenmode u; ; as

w = J ugug ipdz
T

where the integrals are taken over the entire vertical extent of our box, and p,
taken at t = 0 works as a weighting function. The time evolution of the ampli-
tudes a; are plotted in Fig 13. Initially all modes are growing exponentially with
their linear growth rates, but as changes sign at 2.7 orbital periods. Note that
the normalisation of the eigenmodes is arbitrary, and therefore the amplitudes
of the different modes should not be compared with each other. It is intriguing
that as changes sign at the same time as u, changes sign on the boundaries.

(34)
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Fig.10. The evolved state of Model 6 at 2.4 orbital periods. The figure is or-
ganised in the same way as Fig. 4

Model 7 is the opposite to Model 6. Here we start out with the Nyoges = 5
mode (Fig. 14) although the fastest growing mode is the Npodes = 3 mode.
Comparing with the evolved mode after 3.4 orbital periods (Fig. 15) one may
suspect that it has obtained some power in the lower odd modes. To investigate
that we do a spectral decomposition including the first three odd modes (Fig
16). From the start all modes are growing exponentially at the expected growth
rates, but at three orbital periods a; increases its growth rate to 22, due to a
nonlinear interaction between the modes.
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Fig. 11. The vertical averages of B2 and B (upper row), and uj and u (lower
row) as a function of time for Model 6. Time is given in orbital periods. The
dashed lines denote B? (upper row) and ¢ (lower row)

5 Discussion and summary

In this paper we have been studying the nonlinear development of one-dimensional
unstable modes of a vertical magnetic field in a Keplerian disc. The intention was
to understand the development of turbulence in accretion discs, and in particular
the saturation mechanism.

Our results show that starting from the fastest growing mode the instability
grows exponentially at the linear growth rate until the magnetic pressure fluctu-
ations are large enough to dominate over the gas pressure. This is not surprising
in view of the result of Goodman & Xu (1994) that a single mode of the shearing
instability is an exact solution of incompressible MHD. The parasitic instability,
that was also found by Goodman & Xu (1994), is not applicable here as it needs
a non-vanishing wave number in the horizontal plane. A mode different from the
fastest growing mode is on the other hand unstable, as other modes with higher
growth rates are generated by the nonlinear terms in the equations. These modes
will eventually dominate.

Hawley & Balbus (1992) investigated the instability of a homogeneous ver-
tical field in the two-dimensional meridional plane. An important difference is
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Fig.12. The evolved state of Model 6 at 3.0 orbital periods. The figure is or-
ganised in the same way as Fig. 4

that as a perturbation they added random pressure fluctuations. As a result a
large number of different modes were excited and grew with their own growth
rates. By making a Fourier decomposition in the spatial coordinates they were
able to determine the growth rates of each mode individually, and found that
the modes initially followed the expected behaviour, but later on the growth
rates decreased, and eventually the flow settled down to a so-called two-channel
solution. The two-channel state appeared to be independent of the strength of
the vertical field, and can thus not be interpreted as the dominating mode of
the shearing instability, whose wavelength would have been a function of the
magnetic field strength. As we do not find the two-channel solution in our simu-
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Fig.13. The amplitudes of the first three odd eigenmodes as a function of
time for Model 6. The lines represent a; (solid line), —a3 (dashed line), a;
(dashed-dotted line) and —as (dotted line)

lations, we must conclude that it is a consequence of the two spatial dimensions.
The two dimensions in themselves provide more freedom for dissipating magnetic
fields, but equally important may be that the parasitic instability of Goodman
& Xu (1994) becomes operative in two dimensions.

Both our one-dimensional results and the two-dimensional results of Hawley
& Balbus (1992) are radically different from what has been found in three-
dimensional simulations (e. g. Hawley et al. 1995, Brandenburg et al. 1995), as
only the latter reach a turbulent state. It is of significant interest to understand
the reason for these differences, as that may give us a clue to how the shearing
instability leads to turbulence. The one- and two-dimensional simulations find
a preferred length scale, in our case the wavelength of the most rapidly grow-
ing mode, and in Hawley & Balbus (1992) the length scale of the two-channel
solution. In the case of the shearing instability of a toroidal magnetic field (e.g.
Ogilvie & Pringle 1996, Terquem & Papaloizou 1996) the growth rate increases
with increasing vertical wave number so that there is not a preferred length
scale. This may explain why only three-dimensional models, which do allow the
toroidal field to become unstable, develop a turbulent state.

Another important question is the nature of the saturation mechanism in
the turbulent models. This work shows that the one-dimensional instability does
not saturate until the magnetic pressure is comparable to the gas pressure. An
attractive possibility for the three-dimensional models is that the field strength is
limited by the magnetic field becoming buoyantly unstable, but the turbulence
seems to saturate at comparable levels independently of whether the disc is
stratified or not (Torkelsson et al. 1996). A more likely alternative is that the
turbulence saturates when the magnetic field has become so tangled that the rate
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Fig.14. The initial state of Model 7. The imposed vertical magnetic field is
2.10%. The figure is organised in the same way as Fig. 2

of dissipation is comparable to the growth rate of the fundamental instabilities.
This cannot happen in a system restricted to one dimension, and thus such a
mechanism cannot work in the simulations described in this paper, but may
work in three dimensions, where the magnetic field saturates at much lower field
strengths.

In conclusion, we have studied the evolution of the shearing instability of a
vertical magnetic field in a Keplerian disc in one dimension, the vertical. With
these restrictions the instability does not saturate until the gas and magnetic
pressures are comparable, and there is no turbulent cascade as the instability
has a preferred mode with the maximum growth rate and a finite wave number.
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