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ABSTRACT

The nonlocal, non-diffusive transport of passive scalars
in turbulent MHD convection is investigated using tran-
silient matrices, which describe the ”probability” that a
tracer particle beginning at one position in a flow will
be advected to another position after some time. We
present a new method for calculating these matrices from
simulation data which involves following the trajectories
of passive tracer particles and calculating their trans-
port statistics. The method is applied to study trans-
port in several simulations of turbulent, rotating, three
dimensional, compressible, penetrative MHD convection.
Transport coefficients and other useful diagnostics such
as moments of the transilient matrix are used to quantify
the transport, which is found to resemble advection more
closely than diffusion. Some of the results also have di-
rect relevance for other physical problems, such as light
element depletion in solar-type stars. In particular the
large kurtosis found for downward moving particles at
the base of the convection zone implies a relatively large
number of extreme events - particles traveling deep into
the radiative interior where light elements would be effi-
ciently burned.

1. INTRODUCTION

When describing the transport of chemical species (pas-
sive tracers) in turbulent flows, it is often assumed that
the process is ¢ if usive in nature, with an enhanced ”eddv
oiffusivity” which is much larger than that due solel:
to molecular difusion. However, such a prescription is
based on the ¢ :ntral limit theorem, and is invalid for
systems which possess broad distribution functions or
large scale correlations in the velocity field (Bouchaud &
Georges 1990). Since convective plumes and other coher-
ent structures often play an important role in astrophys-
ical and geophysical flows, classical diffusion is often not
applicable (although it is often employed), and more gen-
eral formulations are necessary to accurately describe the
transport of passive tracer particles. Stull and colleagues
(reviewed by Stull 1993; see also Ebert et al. 1989)
have developed such a formulation for use in describing
the transport characteristics of turbulent convection in
the earth’s atmosphere. Rather than considering an ex-
pansion of particle fluxes in terms of local derivatives of
the particle concentrations, they instead quantify trans-
port by means of ”transilient”, or ”probability” matrices,
which are related to Green’s functions and which describe
the probability that a particle beginning at some position
in the flow will end up at another particular position after
a specified time interval. Although other descriptions of
non- diffusive transport do exist (reviewed by Stull 1993),
the transilient matrix approach has the advantage that
it’s straightforward to calculate for a given velocity field,
it’s relatively easy to interpret, and it provides a wealth of

information on the large and small scale mixing proper-
ties of the flow. In the present work, we use the transilient
matrix framework to describe the non-diffusive, non-local
transport of tracer particles in simulations of turbulent,
compressible, rotating, three-dimensional, MHD convec-
tion with overshoot. Two different resolutions were used,
the first being 633, and the second 1262 x 105 (see Bran-
denburg et al. 1995a for a description of the simulations).

Understanding and quantifying mixing processes in sim-
ulation data, will help to interpret future helioseismolog-
ical data on elemental abundances and distributions. A
more detailed account of the present work will be pre-
sented elsewhere (Brandenburg et al 1995b).

2. THE TRANSILIENT MATRIX APPROACH

The concentration per unit mass of a chemical species
passively advected by a flow in the absence of molecular
diffusion evolves according to the equation

De
Dt
where D/Dt denotes the Lagrangian derivative, /0t +
u - V. In what follows, we are primarily concerned with
vertical transport, so it is of interest to consider the hor-

izontally averaged particle concentration as a function of
depth and time, ¢;(t), which can be written as follows:

a(t) =3 Gii(1)E(0) (1.2)

=0, (1.1)

where ;5 is in effect a Green’s function which describes
the re~ponse of the system to an injection of particles on
level 7. We hereafter refer to G;; as the ”transilient” ma-
trix for the flow, after Stull (1993). Note that since c is
the concentration per unit mass (satisfying equation 1.1),
the levels ¢ and 7 must be chosen to be of constant mass
and their spatial width must therefore vary if the fluid is
stratified in the vertical (2) direction. In some instances,
it is also useful to conmsider levels, or bins, of constant
volume (see below), although the transport in this case
is dominated by a net downward motion of particles un-
til their mean concentration matches the stratification.
Unless otherwise noted, constant mass bins will be used
for the present work.

In practice, we calculate the matrix G; by injecting par-
ticles into simulations of turbulent MHD convection af-
ter it has evolved to a statistically steady state. The
particle trajectories are then calculated (using either a
time-independent “snapshot” of the velocity field, or one
that includes the full time dependence), and their statis-
tics then give a direct measure of the transilient matrix.
This is more computationally efficient, but less rigorous
than the procedure originally developed by Stull and col-
leagues which involves the solution of a differential equa-
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tion for a scalar field at each initial level, following a large
eddy simulation model. The simulations used here have
been presented and analyzed elsewhere (Brandenburg et
al. 1995a) and are intended to model rotating, compress-
ible, stratified, MHD, turbulent, penetrative convection
in solar-type stars, but the method and results presented
here are of general interest in understanding and quanti-
fying transport in convective turbulence.

A sample slice along one of the columns of the transilient
matrix for the simulations is shown in Figure 1. These
plots were made using bins of constant volume and corre-
spond to the higher resolution run, including the full time
dependence of the flow (i.e. the fully compressible MHD
equations were solved to evolve the velocity field in time
after the addition of the tracer particles), although the
steady state version (i.e. using only a time-independent
“snapshot” of the velocity field) looks similar. The z
coordinate (depth) is opposite to gravity, so the convec-
tively unstable region lies below z = 1, while z > 1 cor-
responds to the convectively stable region underneath.
Note the asymmetric spread away from the dashed line,
which represents the initial state. Although the peak
concentration arising from a source level is usually ad-
vected upward, the downward moving particles tend to
propagate away from the diagonal more quickly, charac-
teristic of the broad upflows and relatively strong, narrow
downflows typically seen in compressible, stratified con-
vection.
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Figure 1. A cross section through the transilient matrix
for the 1262 x 105 resolution run for ¢ = 2.3 to 13.8,
in increments of 2.3, using bins of constant volume. The
concentration begins as a delta function at the source
depth, marked with a dotted line, and the progressively
more disperse curves correspond to later times. The base
of the convection zone is marked with a dotted line.

The horizontal averaging in equation (1.2) is only strictly
valid if the initial concentration, ¢(z,y, z,0) is indepen-
dent of £ and y. Homogeneity in the horizontal directions
is also necessary if the matrix is to have any predictive
capabilities. That is, if one wishes to calculate the tran-

silient matrix at a later time, formally we have
ait+ At) = Gij(t + At)e; (0) = Gij (At)e (t), (1.3)

where the final equality treats ¢;(t) as an initial condi-
tion. But, since ¢;(t) = Gji(t)¢x(0) (c.f. eqn 1.2), we
have

Gij(t + At) = Gi(t)Grj(AL) (1.4)

for a process which is statistically homogeneous in the
horizontal directions. However, the horizontal averaging
represents a loss of information about horizontal particle
positions, so if significant inhomogeneities are present,
such as those due to coherent structures, equation (1.4)
breaks down. Note, however, that the transilient ma-
trices presented here are exact in that the full three-
dimensional dependence of particle trajectories is fol-
lowed, and horizontal averaging is only performed when
it comes time to compute the matrices.

A more general Green’s function which depends on six
spatial dimensions z, y, z, z’, ', and 2’, is possi-
ble in principal, but memory requirements become pro-
hibitively large unless some “coarse graining” is invoked.
However, we can generalize the matrix to study horizon-
tal transport without too much trouble if we include the
average horizontal displacement as an extra dimension,
i.e. if we consider G#ij(t), where p is the root-mean-
square horizontal displacement of a particle which be-
gins on level 7 and ends up on level 7 after a time ¢. In
practice, even the memory requirements for this reduced
matrix are substantial, so here we only consider partic-
ular source levels, j, and use a more coarse binning for
the destination levels (typically the destination bins for
the horizontal matrix, Guij, contain 10 of the mass or
volume levels used for the (;; matrices, with one of the
larger bins always centered around :he source level, j).

3. DIAGNOSTICS

Several useful measures of nonloca! and local transport
are readily available from the tran-ilient matrix once it
has been calculated for a given flow. The most straight-
forward are the various rhoments, and in particular, the
second and and the normalized fourth order moments
(variance and kurtosis) relative to the destination index,
which are defined as

o5 =y (5 —2)°Gyj (2.1)

i

and

Lila = 5)Cy (2.2)

7;

fﬁj:

Because of the inherent anisotropy of the vertical trans-
port, we generally split the moments up into upward
and downward components and consider them separately.
The square root of the variance is a measure of the typical
mixing length (measured in mass binsif levels of constant
mass are used) as a function of depth and time, and the
kurtosis is a good quantitative descriptor of the shape of
the distribution function (i.e. Gj;) as a function of time
after an injection of particles on a given level.
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The upward, downward, and horizontal variances as a
function of time for the higher resolution run at a level
within the convection zone are shown in Figure 2(a). The
axes are logarithmic so the linear behavior (at least over
some time interval) apparent in the plots implies a power
law relationship of the form 02 ~ tP. A similar power-
law behavior is found for most levels, and the value of the
best-fit exponents, 5, as a function of depth are shown in
Figure 2(b). The fits typically yield a value close to two,
characteristic of advection rather than diffusion (which
gives § = 1). The relatively large value of 3 for the
downward variance near the top of the layer can be un-
derstood if the top layers are modeled as horizontal flows
which converge into downward plumes. In this case, the
time derivative of the mean downward displacement of
particles originating on some level would be given ap-
proximately by the characteristic velocity of a plume, w,,
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multiplied by the relative number of particles that have
entered it - i.e. do/dt & wo(w(uot)2Azc/N), where u,
is a characteristic horizontal velocity scale of the converg-
ing flow, V is the average number of particles in the level,
Az is the level’s thickness, and c is the average particle
concentration on that level per unit volume. Thus, o
would increase approximately as t3, which would imply
a [ of 6. So, converging flows could be responsible for
the tendency for 3 to increase near the top of the convec-
tion zone, where such flows may dominate the horizontal
transport. The small values of the upward variance near
the top can be attributed to the flattening of the 0’2(t)
curve as particles reach the top of the convection zone
and turn around (see Fig. 2a). Similar results are found
to hold for the lower resolution run, with the exception
that the value of  for the upward variance near the top
of the layer is significantly larger.

6 T T T
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Depth (z)
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Figure 2. (a) The mean square upward (dotted line), downward (dashed line), and horizontal (solid line) particle
displacement, or variance as a function of time for one particular level in the middle of the convection zone using the
higher resolution data. Note the vertical displacements are given in terms of mass levels, which vary with depth but
are comparable to the vertical grid spacing, while the horizontal variances are in terms of the horizontal grid spacing.
(b) The best-fit po.rer law exponents which satisfy 02 o tP as a functior of depth, again for the higher resolution run,
and again with th= dotted, dashed, and solid lines <orresponding to the upward, downward, and horizon:al variances

respectively.
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Figure 3. The kurtosis in the upward (dotted lines), downward (dashed lines), and horizontal (solid lines) directions are
shown as a function of depth for both the higher and lower resolution runs at a time ¢ = 15. The cutoffs for the upward
kurtosis near the top of the convection zone are imposed because there are too few data points (< 5) there to give a

reliable result.
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The upward, downward, and horizontal kurtoses as a
function of depth are shown in Figure 3. The kurtosis
values, especially those in the horizontal and upward di-
rections, are found to remain relatively constant in time.
The layer corresponding to the plots in Figure 2(a), for
example, shows a variation of the kurtoses of less than
25%, over a time range where the variances increase by
three or four orders of magnitude (see Fig. 2a). The kur-
toses therefore provide a useful quantitative measure for
the shape of the matrix as it evolves away from the diag-
onal. The value k = 3 is expected for diffusive processes
and k = 1 characterizes pure advection at a specific ve-
locity. The large downward kurtoses just below the base
of the convection zone indicate the relative importance
of extreme events, wherein relatively few particles go on
long excursions into the stable region below and enhance
the tails of the distribution functions relative to the cores.
Likewise, the upward kurtosis peaks below the convec-
tion zone, indicating the importance of long range mixing
events relative to that expected for diffusion. This may
have important implications for light element depletion
in the Sun and similar stars.

Time derivatives of the moments of the Green’s function
can be used to derive transport coefficients and yield an
expansion in terms of its local spatial derivatives. Follow-
ing Van Beijeren (1982), we first write the fourier trans-
form of the Green’s function (written here as a continuous
function for simplicity) as

Gk, 2" t) = / eTHG(C, 2 t)dC =< e >,
(2.3)

where z’ and z are the source and destination levels (cor-
responding to z; and z; above), { = z — 2’ and the an-
gular brackets denote an average over all particles. The
Greens function can then be expanded in a Taylor series
and written as follows:

é(k,z’,t) _ Z (_:lk)n < Cn >

1.0
™M
o~ 0.5
Xl
T 0.0r
5_ —0-5F  vertical
— Transport
-1.0 . . .
0.0 0.5 1.0 1.5
Depth (z)

= ezp()_(ik)" xa/nY), (2.4)

where the x, are cumulative moments (see Van Beijeren
1982):
X1=-<¢>

X2 =< P> —<(>? (2.5)
Ya= —<C>43<(><?>-2<¢>3

Taking a time derivative and applying an inverse fourier
transformation then yields:

0G(z,2\t) _ <~ 1 0G(z,2,1)
at - nZ::lTn(" )t) 62 ) (26)

where the transfer coefficients are given by

1 Oxn

T, = o8, (2.7)
Again, in the spirit of the Green’s function formalism, an
expansion in terms of these transport coefficients yields
the particle fluxes that would arise in terms of local deriva-li
tives of the concentration if the initial concentration were
a delta function at level z’. Thus, the time derivative
of the concentration for an arbitrary initial condition is
again a sum over all the individual contributions:

N~ / = -/
d¢(z,t) _ /ZTn(Z'J)aG(Z’Zé?C(Z ,0) dz

ot
(2.8)
and if the T}, are independent of depth, this reduces to
the more familiar, but less general equation,

aégzt,t) _ ;Tn(t)aéf;z’ H 29)

Similar relations also hold for horizontal transport, but
note that the assumption of isotropy inherent in our ap-
proach implies that the only nonzero ho:i: ontal transport
coefficients are *) ose with n even.
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Figure 4. (a) The transfer coefficients T3, T», and T3 (solid, dotted, and dashed lines respectively) describing vertical
transport as a function of depth for the higher resolution run at a time ¢ = 4.41, which is about 1/5 of the convective
turnover time. All are normalized with respect to their maximum values. (b) The normalized values of T3, T4, and T§
(solid, dotted, and dashed lines) corresponding to horizontal transport for the same data set and time.
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The first three nonzero horizontal and vertical transport
coefficients are shown in Figure 4. Note that, for the hor-
izontal transfer, only 14 levels in depth are shown out of
the 105 available, so the curves are not complete, but do
show a definite tendency for the coeflicients, especially
those of higher order, to decrease with depth. This de-
crease is expected because the characteristic horizontal
velocity decreases with increasing density, although the
relative decrease of the higher order coefficients is not
obvious and indicates a relatively more diffusive behav-
ior for the larger depths. The first vertical coefficient
(n = 1) can be regarded as a typical advection velocity,
and shows positive (downward) values throughout most
of the convection zone and negative values in the upper
part of the penetrative region. The secondary positive
peak for the higher order coefficients just below the in-
terface with the stable region indicates a typical scale at
which downward plumes penetrate, then turn around and
transport particles back upward. The relative magnitude
of the coefficients as a function of order is shown in Figure
5 and is found to converge exponentially with increasing
n for both vertical and horizontal transport. The relative
dominance of the T} coefficient indicates again that the
transport in the vertical direction is more advective than
diffusive, although diffusion, as measured by the second
coeflicient, is non-vanishing.

Figure 5. The typical magnitude for the transfer coeffi-
cients, |Ty|, averaged over depth for the higher resolu-
tion data set at time ¢ = 4.41, as a function of order, n
(plotted on log-linear axes). Results are shown for both
vertical (asterisks) and horizontal (diamonds) transport.
Recall that T,, = 0 by assumption for n odd in the hor-
izontal case.

Other useful measures not related to the moments of the
Green’s function are obtained by summing the total par-
ticle fluxes across particular levels which arise from parti-
cle displacements of a specified length (Stull 1993). Thus,
we define upward and downward “eddy fluxes” as follows:

N, &
FeP) =Y Gijbui-j) (2.10)
i=k j=0

and

kN,
Fi() = ZZGijée(j_i). (2.11)

i=0j=k
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These can be roughly associated with the scale, £, of ed-
dies that transport particles through the level &, although
that identification is somewhat ambiguous because “ed-
dies” of a given size would contribute to eddy fluxes at all
smaller scales at time intervals which are not nearly mul-
tiples of the turnover time of that particular eddy. Still,
they can give some useful information on the typical scale
of mixing across a given level. We are interested in associ-
ating £ with a real physical length scale, so in calculating
equations (2.10) and (2.11) from the simulation data, we
use layers of constant volume rather than constant mass.
It is therefore necessary to first evolve the particles to a
statistically steady state before initializing the matrices
to avoid the transient initial large downward flux of par-
ticles that occurs with stratified flows when volume shells
are used.

Figure 6 illustrates typical results for Fyy (t) and F2 ()
as a function of eddy size, £. Note that the upward flux
tends to peak at somewhat smaller values of ¢ relative to
the downward flux, leading to a net upward flux which
is positive and negative respectively for small and large
particle displacements. There is virtually no upward flux
carried by eddies which exceed the size of the convection
zone ¢ > 1, although a significant amount of downward
transport occurs on these scales. In other words, particles
beginning in the convection zone often end up deep in the
stable layer, but rarely does the opposite happen. The
mixing intensity, Fyp + Fyn (not shown) peaks at fairly
large eddies, typically about 70 - 80 % of the depth of
the convection zone.
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Figure 6. Shown are the upward, downward, and net
particle flux (dotted, dashed, and solid lines respectively)
after the particle concentration has reached a roughly
steady state for a layer near the base of the convection
zone (using the lower resolution data). The abscissa is
the “eddy size”, ¢, as defined in equations (2.10) and
(2.11).

CONCLUSIONS

We have investigated the chemical transport and mixing
properties of convective MHD turbulence by applying a
Greens-function-type formalism to numerical simulation
data. This formalism has been developed by others (re-
viewed by Stull 1993) and has been used to study at-
mospheric flows (e.g. Ebert et al. 1989) , but to our
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knowledge, has not yet been applied in an astrophysical
context. The transilient or probability matrices which
form the basis of the theory and which describe the time
evolution of an arbitrary initial concentration of a passive
scalar field are computed directly by following the trajec-
tories of tracer particles, rather than solving additional
differential equations as has been done previously (Ebert
et al. 1989; Stull 1993). When computing moments and
transfer coefficients, vertical displacements are measured
in mass layers (vertical bins of constant mass) to take
into account the anisotropic effects of stratification. The
primary results for the flow simulations we have studied
are as follows.

The mean square displacement of particles in both the
horizontal and vertical directions closely follows a power
law (at least for times less than a convection time scale)
with an exponent greater than unity, characteristic of
?anomalous” diffusion. In fact, the exponents are often
close to the value 2, implying that the flows we have con-
sidered are much more advective than diffusive. In the
convection zone, this is likely to be the case due to the
influence of coherent structures such as vertical plumes
and coherent, converging and diverging horizontal flows.
Advective transport in the stable layer could arise from
particle trapping in traveling gravity waves (Knobloch &
Merryfield 1992), although the wave field in the stable
layer should be dominated by standing waves as a result
of the reflective lower boundary conditions. To shed fur-
ther light on these issues, it is important to redo the sim-
ulations with boundary conditions on the lower boundary
which allow gravitational wave radiation, or alternatively,
to see how sensitive the nature of transport in the stable
layer is to the layer’s width.

The normalized fourth moment, the kurtosis, of each col-
umn of the transilient matrix is found to be relatively
invariant with time, at least for some levels, so it pro-
vides a good measure of how an injection of particles
at a given level spreads out initially with time. Signif-
icant deviations both greater and less than 3 (which is
expected for diffusion) are observed. Typical values are
largest just above the base of the convection zone, es-
pecially for downward transport, indicating the impor-
tance of intermittency - i.e. extreme events with large
displacements are common relative to diffusion. This im-
plies that penetrative convection could play an important
role in transporting small amounts of Lithium and other
light elements from the convection zone to a depth in the
radiative interior where they are efficiently burned, and
may therefore be a significant factor in determining the
Li depletion observed on the solar surface.

Transport coefficients are calculated and are found to
converge exponentially with order, n. The relative domi-
nance of the n = 1 (advective) coefficient suggests again
that the flows studied here are more advective than dif-
fusive. It would be interesting to apply the present for-
malism to more turbulent flows to see if this conclusion
remains true as the forcing is increased.

On average, downward transport occurs on larger scales
than does upward transport, with a net flux that is typ-
ically positive for smaller ”eddys” and negative (down-
ward) on length scales comparable to and larger than the
depth of the convection zone.
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