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Abstract. By employing direct simulations of turbulent
magneto-convection we determine the turbulent diffusivities,
such as the turbulent magnetic diffusivity, the eddy viscosity
and the turbulent heat conductivity. The fluid extends over
one scale height and is confined between impenetrable bound-
aries. With our technique it is essential for the determination
of such quantities to enforce a non-vanishing mean current
and a gradient in the mean velocity. We find that the order
of magnitude obtained for the various turbulent diffusivities is
in some cases compatible with the customary expression %u,(f,
where u; is the rms-velocity and ¢ = d is the mixing length
which is here taken to be the depth of the layer. However, there
is evidence that the eddy viscosity does not allow a suitable
description in the present cases where the turbulence is caused
by convection. Finally, results for the mean Lorentz force are
presented and discussed in the context of recent predictions
based on the first order smoothing approach.
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1. Introduction

In a previous paper (Brandenburg et al., 1990, hereafter re-
ferred to as Paper I) we have described a method for deter-
mining mean-field transport coefficients, such as the a-effect
and the turbulent magnetic diffusivity, by means of direct
simulations of turbulent magneto-convection. These turbulent
transport coefficients describe the dependence of certain cor-
relation functions on the mean magnetic field (B), the mean
velocity (u), and other quantities. They allow closure of the
differential equations for (u), (B), and other (thermodynamic)
quantities. Such equations are employed for example in mean-
field dynamo theory (e.g. Krause & Radler, 1980).

In Paper I we chose boundary and initial conditions such
that a systematic average magnetic field with a certain ori-
entation is present. By “systematic” we mean a mean field
whose properties are independent of details of the initial con-
ditions, so that its spatial variation and magnitude are then
more-or-less predictable. This approach reflects the intention
of simulating the turbulent flow only in a small test volume in
the solar convection zone.

Our previous results have indicated the importance of
anisotropies in the a-effect. The determination of the tur-
bulent magnetic diffusivity n;, however, seemed somewhat un-
reliable because negative values were typically obtained. This
is unphysical, because the mean-field equations possess stable
solutions only for positive turbulent diffusivities.

One of the aims of this paper is to reconsider the deter-
mination of 7;. In the theory of mean-field electrodynamics it
is shown that the turbulent electromotive force (u’ x B’) can
be expressed as a linear functional of (B). For example in the
simplest case of isotropic turbulence one finds

(v’ x By = a(B) — nscurl (B)

(e.g- Roberts & Sowards, 1975). In the models investigated in
Paper I the z- and y-components were equally preferred. Typ-
ically, the horizontal components of curl (B) are then nearly
vanishing and the vertical component of curl (B) vanishes
identically since div (B) = 0 and by definition of the averages
adopted (cf. Paper I). Thus, 7; multiplies a very small quan-
tity. This makes an reliable determination of »; impossible. It
appears therefore necessary to impose a systematic (vertical)
gradient in (B). This can be done by choosing appropriate
boundary conditions. The same concept can be applied to the
determination of v; by imposing a systematic vertical gradient
in the average velocity (u).

This paper is organized as follows. In Sect. 2 we summarize
the basic equations and describe briefly the model for simulat-
ing magneto-convection. The equations for determining o and
n¢ are given in Sect. 3. Results for n; and also for the eddy
viscosity and the turbulent heat conductivity are shown in
Sect. 4. Finally, we discuss implications for the mean Lorentz
force (Sect. 5) and give our conclusions (Sect. 6).
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2. Simulating magneto-convection

We consider a fully compressible fluid heated from below and
take the dynamical effects of magnetic fields and rotation into
account. We are interested in the lower layers of the convec-
tion zone and can treat radiation therefore in the diffusion
approximation. We assume all variables to be periodic in the
horizontal direction. This is numerically convenient and avoids
artificial boundaries. (However, it is then impossible to include
the centrifugal force in the momentum equation; see discussion
in Paper I.)

We solve the equations for conservation of mass, momen-
tum, energy, and the induction equation in the form

Dll)’;p +divu =0, (1)
Du P 1 o2 1

— =-=V -2 ~JxB+=(V 3VV.u), (2
D p Inp+g xu+p x +p( u+3 u), (2)
D 5 K 2

'D_:' = _Edlv u+ — Ve + Quisc + Quoule; (3)

P p
66—13- =curl(u x B - J/o), (4)

where e is the specific internal energy of the gas which we
assume to be ideal, i.e. p/p = (v — 1)e. Here, 7 is the ratio of
the specific heats c¢p and cy, which are assumed to be constant.
Qvisc is the rate of viscous heating, and Qjoue = Jz/pa is
the rate of Joule heating per unit mass, J = curl B/pg is the
electric current, and o the electric conductivity. If the condition
div B = 0 is satisfied by the initial field, div B remains zero.
In the derivation of Egs. (2) and (3) we have assumed constant
values for g and K.

As in Paper I we exclude penetration of the motions
through the boundaries of the computational volume. If not
stated otherwise we require the horizontal components of vis-
cous and magnetic stress to vanish on both boundaries, i.e.
w33 = u33 = u3 = 0 and B; = By = 0 at the top and
bottom. Commas denote derivatives and index 3 refers to the
z-direction. We keep e constant at the top and prescribe the
vertical gradient of e on the bottom.

The initial velocity field consists of a superposition of many,
spatially smooth, but randomly distributed perturbations in
all three components. We take the ratio between horizontal and
vertical extent of the model (aspect ratio) A = 2, a density
contrast y = 2, and ¥ = 5/3. The Chandrasekhar number is
Q= Bgdg/uo;m = 72, and the Taylor number is Ta = 10%.
The two Prandtl numbers, Pr and Pp,, are taken to be unity.
Non-dimensional quantities are introduced by measuring time
in sound travel times (see Paper I). The unit length is the
depth of the layer. Density is measured in units of the inital
density at the top, po.

We solve the equations (1)-(4) numerically, using a modifi-
cation of the code by Nordlund and Stein (1989), that employs
a second order Adams-Bashforth time advance and spatial
derivatives calculated from cubic splines. Further details were
described in Paper I. The calculations were carried out on
the Cray XMP-EA/432 of the National Computing Center of
Finland. For a resolution of 313 meshpoints the code needs
about 0.1-0.2 sec real time per time step and 1.3 Mwords of
memory. A typical run covering one diffusion time (500 sound
travel times) requires 10° timesteps.

3. Determining transport coefficients from simulations

We split the velocity and the magnetic field into mean and
fluctuating parts, i.e. u = {(u)+u’ and B = (B)+B’. We adopt
here a combined horizontal and temporal average, i.e. (f) =
fdt dz dy f/ fdt dr dy. Averaging the induction equation (4)
leads to a new term

E=(u'xB'). (5)

In the theory of mean-field electrodynamics £ is expressed as
a linear functional of (B) with

& = a;ij(Bj) — Bijrdk(Bj). (6)

(e.g. Krause & Raidler, 1980). In Paper I we concentrated
primarily on the determination of a;;. The basic result was
that only an anisotropic a-tensor can explain the numerically
determined dependence £ = £(B). Writing o;; = 16 +
@2§;g; it turned out that o) and ) + a3 have opposite signs.
Here, g is the unit vector in the direction of gravity.

In the following we wish to determine the 3-tensor. The
simplest possible form for f;;; is proportional to the totally
antisymmetric tensor €;;. Writing 8;jx = n:€;j; we have then

E=ayg(By)+ ay(By) — npe(J), (7)

where (Bg) = &(Bz) + §(By), (By) = #(B:), and po(J) =
curl (B). ag, ay, and 7; can be readily determined from this
equation by multiplying with (By ), (Bg), and (J). Note that
(Jz) = 0 by definition of the horizontal averages adopted. We
then find

ay =£z/(Bz), (8)

g = AL (B ))(J)? = (£ (IN(J) - (Br)) 9)

(Bu)*(J)? = ((9) - (Ba))?

_E B~ (EBa)W) - (Ba)
BT (D (Ba)?

Although we have always used the above expressions, it is
worthwhile to note for the purpose of discussion that a good
approximation is usually afyg = € - (BH)/(BH)Q and nug =
—E (DD,

neo =

4. Turbulent diffusivities
4.1. The turbulent magnetic diffusivity

As discussed in the Introduction we impose here a gradient of
the y-component of (B) by replacing the boundary condition
By =0 at top and bottom by

By=0
B> = By

at the top,

(11)

at the bottom.

This leads to a systematic electric current in the z-direction.
The resulting depth dependence of 7; is displayed in the lower
panel of Fig. 1. The corresponding profile of a g, derived from
Eq. (9), is shown in the upper panel. The results for o and
nt are more-or-less independent of the magnetic field strength
(cf. dotted and solid lines in Fig. 1). This means that a linear
functional dependence £ = £(B) is in principle justified. The



resulting turbulent magnetic diffusivity, derived from Eq. (10),
has then a positive extremum in the middle of the layer with
max(n:) =~ 57. This value seems to be very small. This is
a consequence of the small Reynolds number Re = u;d/v
which is in the present case approximately 25. (Much higher
values are normally not accessible with only 31 meshpoints
in one direction.) The customary expression for the turbulent
diffusivity is %uzf, where u; is the rms-velocity. Assuming the
mixing length to be the depth of the layer (¢ = d) we find here
n =~ 0.2u,£.
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Fig. 1. The profiles of gy (normalized with 2d, upper panel) and
nt (normalized with n, lower panel) for Q = 72. The dotted curves
refer to a run with Q@ = 31

4.2. Eddy viscosity?

It is tempting to determine the eddy viscosity v; similarily by
imposing a systematic gradient in (u). The usual Boussinesq
ansatz for the Reynolds stress is

(u:u;) = —ve((ui ;) + (uj ;i) — pebijdiv (u). (12)

Further (non-diffusive) terms enter into Eq. (12) due to the
presence of rotation. In the compressible case further terms
occur. However, in the cases considered below we find always
(o' uf) < (o) (us).

A systematic gradient in the velocity can be achieved by
replacing the boundary condition u3 3 =0 by

u3 3 = Uaz at top and bottom,

(13)
where Uss is some constant. This boundary condition is a
generalization of the stress free condition u3 3 = 0, which is in
contrast to a rigid one where uj is prescribed.

We have computed models for different values of Usz. The
resulting profiles of (u5u%) and (u2,3) are shown in Fig. 2.
Note that (uhuj) is always negative. This means that vertical
transport of momentum pus is upwards, i.e. in the negative
z-direction. In the upper parts us is smaller than in the lower
parts. Downflow transports a deficit velocity into regions with
larger u2 and vice versa. It is remarkable that the gradient
(u2,3), imposed at both boundaries, becomes very small in
the inner parts of the layer. In fact, (u2,3) does even change

sign. This means that in this case the vertical transport of
momentum cannot be described by positive eddy viscosity
coefficients. In other words, the simple expression (12) is not
suitable to describe the Reynolds stress (ubuj3) by means of
gradients of the average velocity (u2).
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Fig. 2. The profiles of uzu3 and uz 3 (normalized with d2/v2? and
d? /v, respectively). The solid lines are for U3 = 1.0. The dotted
and dashed curves refer to runs with Uz3 = 0.5 and 0.2, respectively

4.8. Turbulent heat conductivity

Let us finally consider the turbulent heat conductivity x:. In
a compressible stratified medium the convective flux Feony =
v{epu) scales with the entropy gradient, V(s), via
Feonv = —Xg(“/e)(p>V(3/Cp>- (14)
The resulting profile for x: is displayed in the lower panel of

Fig. 3. In the upper panel are also shown the z-components of
Feonv and F,4.
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Fig. 3. The profiles for x; normalized with x = X/po (lower panel)
and the z-components of Fconv and F[,4 normalized with the total
flux (upper panel)



5. The mean Lorentz force

The presence of a systematic mean current (J) in the simu-
lations allows us to investigate also the mean Lorentz force
(J x B). This quantity has been investigated recently by
Ridiger & Kichatinov (1990). They have stressed that for
a wide class of turbulence models it is possible for (J x B)
to degenerate to a gradient term. This would have dramatic
consequences for the theory of the solar torsional oscillations.
Note however that this result is obtained in the framework of
the first order smoothing approximation. The result for (B; BJ')
derived by Riidiger & Kichatinov is similar to that found by
Roberts & Sowards (1975) and it leads to

(7 x B) = ~(% ~1)(7) x (B) = T-V(B)’/no. (15)

In Fig. 4 we present the result for (J x B) obtained from
our simulations taking Eq. (11) as boundary condition. Ad-
ditionally we take B3z = Bp as initial condition. This leads
to a constant (Bgz), following from div(B) = 0 and the as-
sumption of periodic boundary conditions in the horizontal
direction (Paper I). The systematic Lorentz force is expected
to be (J) x (B) = (0,d,d — z) B} /pod?.
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Fig.4. The y-component of (J x B) (solid lines) compared with
(J) x (B) (dotted lines). The curves are in units of B3 /uod

The result for the y-component of (J x B) is shown in Fig. 4.
We see that (J x B)y is twice as large as ((J) x (B))y. This
is in contrast to Eq. (15), which would predict the opposite
behavior.

One should bear in mind that the results presented here
cannot be compared directly with those obtained in the frame-
work of first order smoothing. Both approaches represent two
extreme cases: here we deal with relatively slow and smooth
flows confined in a thin layer whereas first order smoothing
is applicable only to flows with short correlation time and
short correlation length. Our results should therefore merely
be understood just as a demonstration of the other extreme.

6. Discussion

The present investigations have shown that convective turbu-
lence can efficiently smooth advected quantities (B, u, and
s) in the vertical direction. The approach to describe this by
z-dependent diffusivities may be in some cases questionable.
This becomes evident in particular when the vertical gradi-
ents of these quantities change sign. It is also questionable,
whether the retained z-dependence of the averages is useful.

The correlation length in the z-direction is in our model al-
ready comparable with the height of the box. Alternatively
one could therefore average also over the z-direction

This result that advected quantities are efficiently smoothed
out in the vertical direction may have implications for un-
derstanding properties of the solar differential rotation. The
dominant feature of convective motions are isolated, fast, fila-
mentary, and twisting downdrafts that merge into successively
larger scale downdrafts with depth (Stein & Nordlund, 1989).
Such filamentary downdrafts may work to “stiffen” the vertical
structure. Only near the boundaries does this mechanism be-
come ineffective and deviations from radial rotation contours
can occur.

As long as it is impossible to resolve sufficiently small scales
in a global 3-D simulation it may be useful to incorporate a
mean-field approach with simulations of the small-scale behav-
ior. The ultimate aim would be to apply the results for the
derived mean-field transport coefficients to the computation of
such global models. However, there are major problems with
this approach. The presence of artificial boundaries, the only
slightly turbulent flow, and the relatively short range of differ-
ent length scales are all unrealistic properties of our simulated
flow. It might appear reasonable to identify the computational
boundaries with the upper and lower boundaries of the con-
vection zone. This would be, however, incompatible with the
idea of examining the turbulent flow only in a small test vol-
ume. The present investigations have demonstrated that the
test volume concept allowes us to impose systematic gradients.
This is important, because plausible results for the turbulent
diffusivities were only obtained after imposing such gradients.

Future investigations should be performed also with quite
different boundary conditions, because this can give some in-
formation about the restrictions imposed by such conditions.
It has now become feasible to perform a number of runs with
different magnetic field strength (Chandrasekhar number) to
see at what parameter values nonlinear effects set in. Similarly
a possible saturation for high inverse Rossby numbers might
be detected by varying the ratio of Taylor number to Rayleigh
number. Investigating the dependence of the a-effect on lati-
tude as well as on the field orientation would provide a further
test.
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