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The stability of different nonlinear a-effect dynamos in spherical geometry is studied. A critical
value of the dynamo number is found, above which steady hydromagnetic solutions of even and
odd parity are both stable. In aw-dynamos long-term variations between even and odd parity
are possible. Comparison with similar variations of the sunspot number is made.

1. INTRODUCTION

The study-ofstul]ar stability is a traditional branch in stellar physics. Certain gaps in the Herzsprung
Russel diagram and the location of pulsating stars are closely related to the star’s stability. A similar
issue was proposed in the study of stellar dynamo theory (Krause and Meinel, 1988). Many different
dynamo modes are excited, when the dynamo number is highly supercritical. However, Krause and
Meinel showed for a simple 1-dimensional model that only the solution with the smallest critical
dynamo number is stable. All other solutions, bifurcating from the trivial solution, are unstable.
They suggested, using general results of bifurcation theory, that this holds also for other, more
complex dynamos, at least in a finite surrounding of their bifurcation from the trivial solution.

The stability of nonlinear dynamos was already considered by Klecorin and Ruzmaikin (1984).
They found stability for the first bifurcating solution, when it is supercritical, and instability, when
it is suberitical. Recently, Brandenburg et al. (1988a) investigated the stability of dynamos in 2-D
and spherical geometry assuming axisymmetry. They confirmed the stability criterion of Krause and
Meinel in the case, where the nonlinear feedback com s solely through a dependence of a on the
magnetic field. But the region of validity was quite small. Already at dynamo numbers exceeding
by 1% the critical value at the second bifurcation this second solution was stable. This solution is
of even symmetry type. However, investigations by Réidler and Wiedemann (1988) suggest that this
solution is unstable against 3-D perturbations. Stability of both even and odd solutions was found
in certain examples of hydromagnetic dynamos, where the equations for the mean motions were also
solved. In addition, oscillatory aw-dynamo solutions without any symmetry (‘mixed parity’) were
found to be stable for certain parameters.

The goal of the present report is to examine further the stability of these different dynamo

models. We will pay particular attention to the stability behavior in the immediate neighborhood of

-
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the second bifurcation for hydromagnetic dynamos. Furthermore, we will study mixed solutions in

the aw-dynamo and discuss the relevance to solar long-term variations.

2. HYDROMAGNETIC MEAN-FIELD DYNAMOS

We consider here the generation of a mean magnetic field B by the a-effect (Steenbeck et al. , 1966).
The induction equation, supplemented by this additional term is, in dimensionless form:

aﬂ—'?:curl{uxB+aB—curlB), (1)

with @ = C, cos@. This equation is solved inside a conducting sphere of constant density together
with the momentum equation:

% = —grad P — Ta? 2 x u— B x curl B + P, Vu, ()

where Ta = (2QR?/v)? is the Taylor number and P, = v/n the magnetic Prandtl number (v and
n afe kinematic viscosity and magnetic diffusivity, and R is the radius of the conducting sphere).
P is a reduced pressure (which can contain also gravitational and centrifugal potentials), and the
other quantities have their usual meaning. The time unit is the magnetic diffusive time, as is usual
in dynamo theory. We assume w and B to be solenoidal, i.e. divu = divB = 0.

Qutside the sphere we assume a vacuum, which implies curl B = 0. This leads to a boundary
condition for B on 7 = R, which is handled using a method described by Jepps (1975). The boundary
is assumed to be stress free, i.e. no angular momentum can leave the sphere. We restrict ourselves
to axisymmetric fields so that it is possible to solve this problem in terms of stream functions for
u and B together with their azimuthal components. We use a numerical method similar to that
of Proctor (1977). The solutions published by Proctor are all antisymmetric with respect to the
equatorial plane (dipolar type or odd). The stability of both symmetric and antisymmetric solutions
has been investigated for some examples by Brandenburg et al. (1988a,b). The test of perturbing
the solution with another one of opposite symmetry type was usually applied. The variation of the
degree of symmetry was measured by the quantity:

(8) — g(4)
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wlhere £(5) and E() are the energies of the symmetric and antisymmetric part of the magnetic
field. For pure symmetric solutions we have P = 1, while for pure antisymmetric solutions P = —1.
For a dynamo number C, = 10 both symmetric and antisymmetric solutions proved to be stable.
This seems to be in contradiction to the general statement of Krause and Meinel (1988) that the
second nonlinear solution, bifurcating from C3 is in any case unstable. In the case where the only
nonlinearity comes through a B-dependent « it was shown that in a very small neighborhood of (a5

(about 1%) the symmetric solution was really unstable. We consider now the same problem for the
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hydromagnetic dynamo. The result for Ta = 4 and P, = 1 is depicted in Figure 1, where we have
plotted the variation of P against time ¢ for two different dynamo numbers. For C, = 7.88 (right
panel) we find still stability of the symmetric solution, because P always tends back to +1 after the
disturbance has been applied. However, this solution becomes unstable when the dynamo number is
only slightly reduced (C, = 7.86, left panel). We note that the marginal value for the S-type solution
is 5 = 7.81. So we must conclude that the stability criterion of Krause and Meinel holds also for
this example of a more complicated dynamo model, but it is perhaps more of academic interest,

because the range of validity is so extremely small (less then 1%).
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Figure 1: Variation of P for two different dynamo numbers. For C, = 7.88 the quantity P always returns to

+1 after the perturbation (right panel). This is not the case for Cy = 7.86

A snapshot showing the magnetic- and velocity fields of ‘mixed parity’ type for another dynamo
with Ta = 4 x 10* (and P,, = 1) is given in Figure 2. The time after the perturbation was { = 0.15

and C, = 10. The final state is reached at ¢t = 0.6 and is of quadrupole type.
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Figure 2: A snapshot showing the poloidal magnetic field, contours of constant toroidal field strength, merid-

jonal streamlines and contours of angular velocity for a dynamo with Ta = 4 x 10%.
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3. aw-DYNAMOS

The solutions considered so far have all a stationary final state. A richer variety of stability behavior
was found for oscillatory nonlinear aw-dynamos (Brandenburg et al. , 1988b). In particular the
occurence of stable, but not steady, solutions, which are neither symmetric nor antisymmetric with
respect to the equatorial plane, is of interest. The mean magnetic fields on the Sun and several
planets are not perfectly antisymmetric and it is tempting to relate this to certain solutions found
for the aw-dynamo.

One of the features of our solutions is that the symmetry type can vary on a very long time scale
compared to the magnetic cycle frequency. In some cases this long term variation corresponds to the
beat frequency of the two pure solutions. The occurence of a second frequency is typical for solutions
whose trajectory describes a torus in some phase space. Poincaré maps showing intersections with a
a suitable plane in phase space confirm this (see Brandenburg el al. , 1988b for details).

_:l‘he quantity P, introduced in the previous section, is not so easy to measure, since it involves
the knowledge of the magnetic polarity. This has been measured on the Sun only over the last sixty
vears (Hale and Nicholson, 1925). It would be, however, important to have a much longer data
base. What has been measured over many centuries is the sunspot number. Counting this number

separately on the northern and southern hemisphere might provide a simple tool to infer a variation
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Figure 3: Variation of magnetic energy E, and the quantities P and Q for C, = 0.83 and 8Q/dr = C,, = 10%.
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of the symmetry type. In Figure 3 we have compared the variation of total magnetic energy and the

quantity P with another number @, defined as:
NE) - N )
S NE N )

where N+) and N(=) are the mean squared toroidal fields on northern and southern hemisphere,
respectively.

Figure 3 makes evident that @ is, indeed, a suitable indicator for the variation of the degree of
symmetry as well. Qualitatively the same information can be read from the quantities P and Q.
During phases of little total magnetic energy (upper panel) a strong asymmetry between fields in the
northern and southern hemisphere appears. @ becomes nearly +1, that is the field on the northern
hemisphere exceeds that of the southern hemisphere. This can also be seen from a butterfly diagram

(Pigure 4) showing the latitudinal distribution of toroidal field versus time.
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Figure 4: Butterfly diagram of the toroidal magnetic field for the same model as in Figure 3. The dashed lines

indicate a couterclockwise directed field.
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Figure 5: Variation of @ obtained from historical sunspot observations.
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Finally, we compare our results with historical measurements of sunspots. We applied Eq.(4)
using for N and N(-) the total sunspot area (from Greenwich Photographic Results) on the
northern and southern hemispheres, respectively. The time series of (2, obtained from the yearly
values of the total areas, was filtered to reduce the 11-year signal of the solar cycle. The result may

suggest that the value of @ changes sign from negative to positive in the beginning of this century.

4. CONCLUSIONS

T]ler general statement by Krause and Meinel saying that only the solution with the lowest marginal
dynamo number is stable is confirmed also for an example of a more complicated dynamo model
including the dynamics of the mean flow. The regime of validity is finite, but it can be quite small. We
have also demonstrated some more of the richness that even a simple nonlinearity (a quenching) can
introduce into oscillating aw-dynamos. In particular a long-term variation of the type of symmetry,
found in these models, may be of relevance for understanding solar “grand minima”. We note,
however, that the models we consider here are not really of solar type. Firstly, the (turbulent)
conductivity is not constant, but varies considerably through the Sun. Secondly, the gradient of
angular velocity is in these models prescribed and constant. More realistic and self-consistent models
should therefore be investigated. But is it hoped that some of the features found in these simplified

models may still be relevant.
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