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Summary. Some basic properties of the solar convection zone are considered and
the use of helioseismology as an observational tool to determine its depth and
internal angular velocity is discussed. Aspects of solar magnetism are described
and explained in the framework of dynamo theory. The main focus is on mean field
theories for the Sun’s magnetic field and its differential rotation.

1 Introduction

The purpose of this chapter is to discuss the conditions that lead to the
magnetic activity observed at the surface of the Sun. Only to a first ap-
proximation is the Sun steady and spherically symmetric. A more detailed
inspection reveals fully three-dimensional small scale turbulent motions and
magnetic fields together with larger scale flows and magnetic fields that lack
any symmetry. The cause of the large scale and small scale magnetic fields,
as well as large scale circulation and differential rotation, is believed to be
the turbulent convection which, in turn, is caused by the increased radiative
diffusivity turning much of the radiative energy flux into convective energy
flux.

The magnetic field is driven by a self-excited dynamo mechanism, which
converts part of the kinetic energy into magnetic energy. As in technical dy-
namos the term ‘self-excited’ refers to the fact that part of the electric power
generated by induction is also used to sustain the ambient magnetic field
around the moving conductors. How the conversion of kinetic energy into
magnetic energy works will be discussed in some detail in this chapter. The
kinetic energy responsible for this process can be divided into (i) small scale
irregular turbulent motions (convection) and (ii) large scale differential rota-
tion and meridional circulation. It is the anisotropy of the small scale motions
that is responsible for making the rotation nonuniform. Furthermore, lack of
mirror symmetry of the small scale motions is responsible for producing large
scale magnetic fields. This process is explained in many text books, e.g. Mof-
fatt (1978), Parker (1979), Krause & Rädler (1980), Stix (2002), or Rüdiger
& Hollerbach (2004).

The magnetic field is also responsible for linking solar variability to natu-
ral climate variations on Earth. Changes in the Sun’s magnetic activity affect
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the solar irradiance by only 0.1%, which is generally regarded as being too
small to affect the climate. However, the UV radiation is more strongly mod-
ulated and may affect the climate. According to an alternative proposal, the
Sun’s magnetic field shields the galactic cosmic radiation, which may affect
the production of nucleation sites for cloud formation that in turn affects the
climate. Thus, an increase in the solar field strength increases the shielding,
decreases the cosmic ray flux on Earth, decreases the cloud cover, and hence
increases the temperature. This chain of events is rather simplified, and there
can be drastically different effects from high or low clouds, for example. For a
recent review of this rapidly developing field see Marsh & Svensmark (2000).

We begin by discussing the theoretical foundations governing the prop-
erties of turbulent convection zones, and discuss then helioseismology as an
observational tool to determine, for example, the location of the bottom of
the convection zone as well as the internal angular velocity. We turn then
attention to the properties of the Sun’s magnetic field and discuss dynamo
theory as its theoretical basis. Magnetic field generation is caused both by
the turbulent convection and by the large scale differential rotation, which
itself is a consequence of turbulent convection, as will be discussed in the last
section of this chapter. Only a bare minimum of references can be given here,
and we have to restrict ourselves mostly to reviews which give an exhaustive
overview of the original literature. Original papers are here quoted mainly in
connection with figures used in the present text.

2 Radial structure

In order to determine the depth of the convection zone in the Sun and the
approximate convective velocities it is necessary to solve the equations gov-
erning the radial structure of a star. For this purpose the Sun can be regarded
as spherically symmetric. The equations governing the radial structure of the
Sun (or a star) are quite plausible and easily derived. They can be written
as a set of four ordinary differential equation, namely the

– equation for the Sun’s gravitational field (Poisson equation),
– hydrostatic equilibrium (momentum equation),
– thermal equilibrium (energy equation),
– radiative equilibrium (radiation transport equation, convection).

These are given in all standard text books on stellar structure (e.g. Kippen-
hahn & Weigert 1990). In the following we discuss only a subset of these
equations in order to describe some essential properties of the solar convec-
tion zone.

2.1 Global aspects

The rate of energy production of the Sun, i.e. its luminosity, is L⊙ = 4 ×
1026 W or 4×1033 erg s−1. The total intercepted by the Earth is only a small
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fraction,
πR2

E

4πR2
E⊙

= 4 × 10−10, (1)

where RE is the radius of the Earth (6400 km) and RE⊙ is the distance be-
tween the Earth and the Sun (= 1 AU = 1.5×1011 m). Thus, the total power
reaching the projected surface of the Earth is 4 × 10−10 × 4 × 1026 W =
1.6 × 1017 W. This is still a lot compared with the total global energy con-
sumption, which was 1.4 × 1013 W in the year 2001.

The total thermal energy content of the Sun can be approximated by half
its potential energy (Virial theorem), i.e.

Eth ≈ GM2
⊙

2R⊙

= 2 × 1041 J, (2)

where G ≈ 7 × 10−11 m3 kg−1 s−2 is Newton’s constant, M⊙ ≈ 2 × 1030 kg is
the mass of the Sun, and R⊙ ≈ 7×108 m is its radius. The time it would take
to use up all this energy to sustain the observed luminosity is the Kelvin-
Helmholtz time,

τKH = Eth/L⊙ ≈ 107 yr, (3)

which is long compared with time scales we could observe directly, but short
compared with the age of the Sun and the solar system (5 × 109 yr). There-
fore, gravitational energy (which is extremely efficient in powering quasars!)
cannot be the mechanism powering the Sun. This motivated the search for an
alternative explanation, which led eventually to the discovery of the nuclear
energy source of stars.

The similarity between gravitational and thermal energies can be used to
estimate the central temperature of a star by equating GM/R = RTc/µ. For
the Sun this gives

Tc ∼ µ

R
GM

R
= 1.5 × 107 K (4)

for its central temperature. Here, R ≈ 8300 m2 s−2 K−1 is the universal gas
constant and µ ≈ 0.6 is the non-dimensional mean molecular weight for a
typical mixture of hydrogen and helium. The estimate (4) happens to be
surprisingly accurate. This relation also tells us that the central temperature
of the Sun is only determined by its mass and radius, and not, as one might
have expected, by the luminosity or the effectiveness of the nuclear reactions
taking place in center of the Sun.

2.2 Thermal and hydrostatic equilibrium

The condition of hydrostatic equilibrium can be written in the form

0 = −1

ρ
∇p + g, (5)
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where ρ is the density, p is the pressure, and g is the gravitational accel-
eration. In the spherically symmetric case we have g = −(GMr/r2, 0, 0) in
spherical polar coordinates, where Mr is the mass inside a sphere of radius r.
Equation (5) is readily solved in the special case where the radial dependence
of the density is polytropic, i.e. ρ(r) ∼ T (r)m, where m is the polytropic in-
dex. This yields

T (r) = Tc −
1

1 + m

µ

R

∫ r

0

GMr

r2
dr. (6)

So, in the outer parts of the Sun, where Mr ≈ const, equation (6) can be
integrated, which shows that the temperature has a term that is proportional
to 1/r.

Significant amounts of energy can only be produced in the inner parts of
the Sun where the temperatures are high enough for nuclear reactions to take
place. The central temperature is characterized by the condition of thermal
energy equilibrium, which quantifies the rate of change of the local luminosity,
Lr, with radius. Outside the core, nuclear reactions no longer take place, so
Lr can be considered constant. The radiative flux is given by F = Lr/(4πr2),
which thus decreases like 1/r2 in the outer parts.

In the bulk of the Sun, energy is transported by photon diffusion: the
optical mean-free path is short compared with other relevant length scales
(e.g. pressure scale height), so we are in the optically thick limit and can use
the diffusion approximation for photons. The radiative flux, F , is therefore
in the negative direction of and proportional to the gradient of the radiative
energy density, aT 4, where a = 7.57 × 10−15 erg cm−3 K−4 is the radiation-
density constant. The connection between fluxes and concentration gradients
is generally referred to as Fickian diffusion. As in kinetic gas theory, the
diffusion coefficient is 1/3 times the typical particle velocity (=speed of light
c) and the mean free path ℓ of the photons, so

F = − 1
3cℓ

d

dr
(aT 4) = − 4

3acℓT 3 dT

dr
≈ −K

dT

dr
, (7)

which is basically the condition of radiative equilibrium. Here we have intro-
duced the radiative conductivity K. The photon mean free path is usually
expressed in terms of the opacity κ, which is the effective cross-section per
unit mass, so ℓ = (ρκ)−1. Expressing a in terms of the Stefan-Boltzmann
constant, σSB = ac/4, we have

K =
16σSBT 3

3κρ
. (8)

An approximation for the opacity κ that is commonly used for analytic con-
siderations is Kramer’s formula

κ = κ0ρT−7/2 (Kramer’s opacity), (9)
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where κ0 = 6.6 × 1018 m5 K7/2 kg−2 for so-called free-free transitions where
two charged particles form a system which can absorb and emit radiation.
This value may well be up to 30 times larger if the gas is rich in heavier
elements, so it is a good electron supplier and bound-free processes (ionization
of neutral hydrogen by a photon) become important as well. In practice, a
good value is κ0 ≈ 1020 m5 K7/2 kg−2 (corresponding to 1024 cm5 K7/2 g−2).
With Kramer’s formula, the conductivity is

K =
16σSBT 13/2

3κ0ρ2
. (10)

For a polytropic stratification, i.e. when the density is given by a power law
of the temperature, ρ ∼ T m, we have

K ∼ T 13/2−2m, (11)

which is constant for an effective polytropic index m = 13/4 = 3.25. This
gives indeed a reasonable representation of the stratification of stars in con-
vectively stable regions throughout the inner parts of the Sun. At the bottom
of the solar convection zone the density is about 200 kgm−3 and the tempera-
ture is about 2×106 K. This gives K = (3...100)×109 kg m s−3 K−1. In order
to carry the solar flux the average temperature gradient has to be around
0.01 K/ m.

2.3 Transition to adiabatic stratification

In reality K does change slowly with height. Therefore the polytropic index ef-
fectively changes with height. If m < 13/4, then K decreases with decreasing
T . However, in order to transport the required energy flux, the temperature
gradient has to increase, so the polytropic index decreases further, until it
reaches a critical value where the specific entropy gradient reverses sign. This
leads to the onset of Rayleigh-Benard convection.

Specific entropy is an important quantity, because it does not change
in the absence of local heating or cooling processes. For a perfect gas, and
ignoring partial ionization effects, the specific entropy can be defined, up to
a constant s0, as

s = cv ln p − cp ln ρ + s0, (12)

where cp and cv are the specific heats at constant pressure and constant
volume, respectively. Their ratio is γ = cp/cv, which is 5/3 for a monatomic
gas, and their difference is cp − cv = R/µ.

If the specific entropy of the environment decreases in the upward direc-
tion, an upward moving blob of gas will develop excess entropy; see Figure 1.
Assuming pressure equilibrium across the blob, equation (12) shows that a
positive entropy excess δs corresponds to a density deficit, −cpδ ln ρ. Thus,
the blob will be lighter than its surroundings and will therefore be buoyant,
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s

z

entropy
difference
increases

Fig. 1. Specific entropy profile for an unstable atmosphere. The difference in spe-
cific entropy between the blob and the surroundings increases as the blob ascends.
Gravity points in the negative z direction, so g · ∇s > 0 in this case.

which drives the convection. Likewise, a downward moving blob will become
heavier and fall even faster.

Using an equation of state for a perfect gas, i.e. p = (R/µ)ρT we have
d ln p = d ln ρ + d lnT , and therefore equation (12) gives

µ

R
ds

d lnT
=

1

γ − 1
− m. (13)

This shows that, once m drops below 1/(γ − 1) = 1.5, specific entropy de-
creases in the upward direction, i.e. in the direction of decreasing tempera-
ture. As a result, convection sets in which rapidly mixes the gas and causes
the specific entropy to be nearly constant, keeping the effective value of m
always close to the critical value of 1.5.

In order to calculate the actual stratification, we need to solve equa-
tions (5) and (7) together with the equations describing the increase of Mr

and Lr with radius. Assuming that Mr and Lr are constant (valid far enough
away from the core), we are left with two equations, which we express in terms
of ln p and ln T , so

d ln p

dr
= − µ

RT

GMr

r2
, (14)

d lnT

dr
= − 1

KT

Lr

4πr2
. (15)

It is convenient to integrate these equations in the form

d ln p

dr
= − 1

Hp
and

d lnT

dr
= − ∇

Hp
, (16)

where the symbol ∇ is commonly used in astrophysics for the local value of
d lnT/d ln p, and Hp = RT/(µg) is the local pressure scale height. In the
convectively stable regions, i.e. where m > 3/2 (corresponding to ∇ < ∇ad =
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Fig. 2. Solutions of equations (16) and (17), starting the integration at r = 350 Mm
with T = 4 × 106 K and three different values of the density: ρ = 1.340 (dashed
line), ρ = 1.345 (solid line), and ρ = 1.350 (dotted line). The left hand panel shows
temperature versus density. In this panel the integration goes from right to left (i.e.
in the upward direction toward lower density). The middle panel shows the radial
specific entropy profile; note that for the two cases with ρ ≤ 1.345 (solid and dotted
lines) a convection zone develops at r ≈ 500 and 420 Mm, respectively. These two
cases correspond to cases where m < 13/4 at the lower boundary, as seen from the
right hand panel. Note the positive entropy gradient indicating stability. In the last
two panels the integration goes from left to right.

2/5, and neglecting partial ionization effects), we have ∇ = ∇rad, where ∇rad

can be found by dividing (15) by (14), so

∇rad =
1

K

R
µ

Lr

4πGMr
. (17)

Inside convection zones, on the other hand, ∇ is replaced by ∇ad, so in general
we can write ∇ = min(∇rad,∇ad). In Figure 2 we show solutions obtained by
integrating from r = 500 Mm (1 Mm=1000km) upward using T = 4 × 106 K
as starting value with ρ chosen such that the resulting value of m is either
just below or just above 13/4 = 3.25.

The considerations above have demonstrated that m must indeed be quite
close to 13/4 = 3.25 in the radiative interior, but that its value decreases over
a depth of about 50 Mm to the adiabatic value of 1.5 just below the bottom of
the convection zone. The precise location of the bottom of the convection zone
depends on the value of specific entropy in the bulk of the convection zone;
see the middle panel of Figure 2. This value depends on the detailed surface
physics and in particular the value of the opacity at the top of the convection
zone. Here the Kramers opacity is no longer appropriate and the opacity
from producing a negative hydrogen ion by polarizing a neutral hydrogen
atom through a nearby charge becomes extremely important.
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2.4 Mixing length theory and convection simulations

The approximation of setting ∇ = 2/5 in the unstable region becomes poor
near the surface layers where density is small and energy transport by tur-
bulent elements less efficient. In fact, if the specific entropy were completely
constant throughout the convection zone, there would be no net exchange of
entropy by the turbulent elements. The definition for the convective flux is

F conv = (ρu)′cpT ′, (18)

where overbars denote horizontal averages and primes denote fluctuations
about these averages. A mean field calculation shows that F conv is propor-
tional to the negative entropy gradient (see the monograph by Rüdiger 1989),

F conv = −χt ρ T ∇ s (if g · ∇ s > 0), (19)

where χt is a turbulent diffusion coefficient. In the following we omit the over-
bars for simplicity. Note that, by comparison with equation (7), in a turbulent
environment Fickian diffusion down the temperature gradient gets effectively
replaced by a similar diffusion down the entropy gradient. As with all other
types of diffusion coefficients, the diffusion coefficient is proportional to the
speed of the fluid parcels accomplishing the diffusion, and the length over
which such parcels stay coherent (i.e. the mean free path which is commonly
also denoted as the mixing length). Thus, we have

χt = 1
3urmsℓ. (20)

The subscript t indicates that this coefficient applies to turbulent transport
of averaged fields. Given that the total flux is known, and also the fractional
contribution from the radiative flux, we know also the convective flux. Thus,
equation (19) can be used to determine the radial entropy gradient, provided
we know χt, and hence urms and ℓ.

A natural length scale in the problem is the scale height, so we assume
that the mixing length is some fraction αmix of the local vertical pressure
scale height, i.e.

ℓ = αmixHp. (21)

The scaling of the rms velocity is constrained by equation (18). Assuming
that temperature and velocities are well correlated (warm always up, cool
always down), we can also write

Fconv ≈ ρurmscpδT, (22)

where δT = (T ′2)1/2 is the rms temperature fluctuation. The relative propor-
tion, with which convection produces velocity and temperature fluctuations,
can be estimated by balancing the buoyancy force of a blob against its drag

force, so Fbuoy = F
(turb)
D and therefore δρ gV = CDρu2

rmsS, where CD is the
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drag coefficient, V is the volume of the blob, and S its cross-sectional area.
We parameterize the ratio V/(CDS) = αvolHp, where αvol is a nondimen-
sional factor of order unity characterizing the blob’s volume to surface ratio.
Assuming pressure equilibrium we have furthermore |δρ/ρ| = |δT/T |, and

u2
rms = αvol gHp

δT

T
. (23)

Thus, urms is proportional to (δT/T )1/2, so Fconv is proportional to (δT/T )3/2,
and therefore

δT/T ∼ F 2/3
conv and urms/cs ∼ F 1/3

conv. (24)

These scaling relations hold also locally at each depth; see Figure 3, where
we show that in simulations of Rayleigh-Benard convection; the vertical
profiles of the normalized mean squared vertical velocity, 〈u2

z〉/c2
s , and of

the relative temperature variance, δT/T , are indeed locally proportional to
[Fconv/(ρc3

s )]
2/3. In Figure 3 the nondimensional coefficients are kT ≈ 1.1 and

ku ≈ 0.4, which implies

Fconv ≈ k−3/2
u ρu3

rms, (25)

where k−3/2 ≈ 4 and 〈u2
z〉 = u2

rms has been used. Using Fconv = 7×107 W m−2

and ρ = 10 kgm−3 at a depth of about 40 Mm this equation implies urms =
120 m s−1.

Using equation (19) and the fact that χt ∝ urms ∝ F
1/3
conv we have Fconv ∝

F
1/3
conv|ds/dz|, or1

|ds/dz| ∝ F 2/3
conv. (26)

In calculating the specific entropy gradient, we can, as a first approximation,
assume that Fconv is approximately the total flux. However, it would not be
difficult to calculate the entropy gradient self-consistently by solving a cubic
equation. We also note that the entropy gradient is related to ∇ by

ds/cp

d ln p
= ∇−∇ad, where ∇ad = 1 − 1

γ
. (27)

A solution of the full system of equations, which include more realistic physics
than what has been described here, has been given by Spruit (1974); see Ta-
ble 1. The rms velocities are about half as big as expected from equation (25).

Near and beyond the upper and lower boundaries of the convection zones
the approximation (23) becomes bad, because it ignores the fact that convec-
tive elements have inertia and can therefore overshoot a significant distance

1 A more rigorous calculation using the equations above shows that

ds/cp

dz
= −

k

Hp

(

Ftot

ρc3
s

)2/3

, where k = 3
γ − 1

αmix

[

αvol

(

1 −
1

γ

)]−1/3

,

and k ≈ 1 for αmix = αvol = 2.
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Fig. 3. Vertical profiles of the normalized mean squared vertical velocity fluctua-
tions and temperature fluctuations, compared with the normalized convective flux
raised to the power 2/3. Note the good agreement between the three curves within
the convection zone proper. In this plot, z denotes depth. The positions z = 0 and
1 corresponds to the top and bottom of the convection zone, respectively. There is
a lower overshoot layer for z > 1 and an upper overshoot layer for z < 0. [Adapted
from Brandenburg et al. (2005).]

into the stably stratified regions. In those layers where the entropy gradient
has reversed, a downward moving fluid parcel becomes hotter than its sur-
roundings. Thus, in these layers the convection carries convective flux down-
ward, so its sign is reversed. Simulations have clearly demonstrated that,
owing to strong stratification, convection will be highly inhomogeneous, with
narrow downdrafts and broad upwellings. This leads to a characteristic (but
irregular) pattern of convection; see, e.g., the text book by Stix (2002).

Table 1. The solar mixing length model of Spruit (1974).

z [Mm] T [K] ρ [g cm−3] Hp [Mm] urms [m/s] τ [d] νt [cm2/s] Ω0τ

24 1.8 × 105 0.004 8 70 1.3 1.5 × 1012 0.6
39 3.0 × 105 0.010 13 56 2.8 2.0 × 1012 1.3
155 1.6 × 106 0.12 48 25 22 3.2 × 1012 10
198 2.2 × 106 0.20 56 4 157 0.6 × 1012 70
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The precise location of the bottom of the convection zone in now fairly well
determined from detailed models of stellar structure, where the full evolution
from a zero-age main sequence star to a chemically evolved star where some of
the hydrogen has been burnt into helium and other elements, has been taken
into account. An even more accurate and quite independent determination
of the bottom of the convection zone and the overall stratification is possible
through helioseismology. This will be discussed in the next section.

3 Helioseismology

The Sun exhibits so-called five-minute oscillations that are best seen in spec-
tral line shifts. These oscillations were first thought to be the oscillatory re-
sponse of the atmosphere to convection granules pushing upwards into stably
stratified layers. This idea turned out to be wrong, because the oscillations
are actually global oscillations penetrating deep layers of the Sun. In fact,
they are just sound waves that are trapped in a cavity formed by reflection
at the top and refraction in deeper layers. At the top, sound waves cannot
penetrate if their wave length exceeds the scale on which density changes.
The refraction in deeper layers is caused by the higher wave speed of the
wave front in those parts that are deeper in the Sun. This makes the wave
front bend back up again.

The decisive observation came when a wavenumber–frequency (or k–ω)
diagram was produced that showed that these modes have long term and
large scale spatio-temporal coherence with wavenumbers corresponding to
20–60 Mm; see Figure 4.

By now the determination of k–ω diagrams has grown to a mature and
standard tool in solar physics.

3.1 Qualitative description

Since the beginning of the eighties, standing acoustic waves in the Sun have
been studied in great detail. It has become possible to measure directly (i.e.
without the use of a solar model)

(i) the radial dependence of the sound speed, cs(r), which is proportional to
the temperature. Note that c2

s = γp/ρ = γRT/µ, but the mean molecular
weight increases near the core due to the nuclear reaction products.

(ii) the radial and latitudinal dependence of the internal angular velocity,
Ω = Ω(r, θ), throughout the Sun.

This technique is called helioseismology, because it is mathematically similar
to the techniques used in seismology of the Earth’s interior. Qualitatively,
the radial dependence of the sound speed can be measured, because stand-
ing sound waves of different horizontal wave number penetrate to different
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Fig. 4. Comparison between the kh–ω (or l–ν) diagrams obtained by Deubner in
1975 (left), and by the SOHO/MDI team in 2000 (right). The figure by Deubner,
where he compares observations with the predictions by Ulrich (1970, solid lines),
proved that the 5-min oscillations were global modes. Courtesy F.-L. Deubner (left)
and P. Scherrer (right).

depths. Therefore, the frequencies of those different waves depend on how ex-
actly the sound speed changes with depth. Since the Sun rotates, the waves
that travel in the direction of rotation (i.e. toward us) are blue-shifted, and
those that travel against the direction of rotation (i.e. away from us) are
red-shifted. Therefore, the frequencies are split, depending on the amount
of rotation in different layers. There are many reviews on the subject (e.g.,
Demarque & Guenther 1999). Here we follow the text book by Stix (2002).

Acoustic waves are possible, because they are constantly being excited by
the “noise” generated in the convection zone via stochastic excitation. The
random fluctuations in the convection are turbulent and contain power at all
frequencies. Now the Sun is a harmonic oscillator for sound waves and the
different sound modes can be excited stochastically.

Helioseismology has now grown to be immensely sophisticated and more
accurate data have emerged from observations with the Michelson Doppler
Imager aboard the SOHO spacecraft, located at the inner Lagrange point
between Sun and Earth, and also the GONG project (GONG = Global Os-
cillation Network Group). The latter involves six stations around the globe
to eliminate nightly gaps in the data.
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3.2 Inverting the frequency spectrum

As with a violin string, the acoustic frequency of the wave increases as the
wavelength decreases. More precisely, the frequency is given by ν = cs/λ,
where λ is the wavelength and cs is the sound speed. We will also use the
circular frequency ω = 2πν with ω = csk, where k = 2π/λ is the wavenumber.
If sound waves travel an oblique path then we can express the wavenumber
in terms of its horizontal and vertical wavenumbers, kh and kv, respectively.
We do this because only the horizontal wavenumber can be observed. This
corresponds to the horizontal pattern in Figure 4. Thus, we have

k2 = k2
h + k2

v. (28)

The number of radial nodes of the wave is given by the number of waves that
fit into that part of the Sun where the corresponding wave can travel. This
part of the Sun is referred to as the cavity. The larger the cavity, the more
nodes there are for a given wavelength. The number of modes n is given by

n = 2∆r/λ = 2∆r
kv

2π
= ∆r kv/π, (29)

where ∆r is the depth of the cavity. If the sound speed and hence kv depend
on radius, this formula must be generalized to

n =
1

π

R⊙
∫

rmin

kv dr, (30)

supposing the cavity to be the spherical shell rmin < r < R⊙.
The horizontal pattern of the proper oscillation is described by spherical

harmonics with indices l and m, hence the horizontal wavenumber is

k2
h =

ℓ(ℓ + 1)

r2
, (31)

and we can write

kv =

√

ω2
nl

c2
s

− ℓ(ℓ+1)

r2
=

ωnl

r

√

r2

c2
s

− ℓ(ℓ+1)

ω2
nl

. (32)

where the subscripts of ωnl denote the radial order n and the spherical har-
monic degree l of the modes. Therefore, the number n of radial nodes is given
by

π(n + α)

ωnl
=

R⊙
∫

rmin

√

r2

c2
s

− ℓ(ℓ+1)

ω2
nl

dr

r
, (33)
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Fig. 5. The Duvall law. The vertical axis (ordinate) corresponds to F in equa-
tion (37) and the horizontal axis (abscissa) is basically u−1. He found this law well
before its significance was understood in terms of one of the functions in Abel’s
integral transformation. [Courtesy J. Christensen-Dalsgaard et al. (1985).]

where an empirically (or otherwise) determined phase shift α ≈ 1.5 accounts
for the fact that the standing waves are confined by barriers that are “soft”
and extended, rather than rigid and fixed.

The location of the inner turning radius is given by the point where the
wavevector has become completely horizontal. Using

ω2
nl/c2

s = k2 = k2
h + k2

v, (34)

together with kv = 0 at r = rmin and k2
h = ℓ(ℓ + 1)/r2, we have (rmin/cs)

2 =
ℓ(ℓ + 1)/ω2

nl. This implies that

rmin =
cs

ωnl

√

ℓ(ℓ + 1), (35)

so only modes with low ℓ values have turning points close to the center and
can be used to examine the Sun’s core. We now introduce new variables

ξ =
r2

c2
s

, u =
ℓ(ℓ+1)

ω2
nl

, (36)
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so the inner turning point of the modes corresponds to ξ = u. Furthermore,
we denote the left hand side of equation (33) by F (u), so we can write

F (u) =

ξ⊙
∫

u

√

ξ − u
d ln r

dξ
dξ, (37)

where the location of the inner refraction point corresponds to u = ξ.
The function F (u) was obtained from observations by Duvall (1982) on the
grounds that this combination of data makes the different branches collapse
onto one (see Figure 5). He discovered this well before its significance was
understood by Gough (1985) several years later.

Since we know F (u) from observations and are interested in the connection
between r and ξ (i. e. r and cs), we interpret (37) as an integral equation for
the unknown function r(ξ). Most integral equations cannot be solved in closed
form, but this one can. Gough (1985) realized that it can be cast in the form
of Abel’s integral equation. The pair of complementary equations (primes
denote derivatives) is

F (u) =

ξ⊙
∫

u

√

ξ − u G′(ξ) dξ, (38)

G(ξ) =
2

π

ξ⊙
∫

ξ

1√
ξ − u

F ′(u) du. (39)

Inserting the definitions for ξ and u into equation (39), we obtain

ξ⊙
∫

ξ

F ′(u)√
u − ξ

du = −π

2

ξ⊙
∫

ξ

d ln r

dξ′
dξ′ = −π

2
ln r
∣

∣

∣

ξ⊙

ξ′=ξ
=

π

2
ln

r(ξ)

R⊙

. (40)

This equation can be solved for r = r(ξ):

r(ξ) = R⊙ exp

(

2

π

ξ⊙
∫

ξ

F ′(u)√
u − ξ

du

)

. (41)

This is the final result of inverting the integral equation (37). It establishes the
link between the observable function F (u) and the function r(ξ), from which
the radial profile of the sound velocity cs can be obtained. Figure 6 gives the
result of an inversion procedure that computes the radial dependence of the
sound speed on depth, using the detailed frequency spectrum as input.

It should be noted, however, that this approach is usually not practical
when input data are noisy. Instead, a minimization procedure is often used



16 Axel Brandenburg

Fig. 6. Radial dependence of the sound speed on radius in the Sun. Note the
change in slope near a radius of 0.7 solar radii. The oscillations near the center are
not physical. The theoretical model (dotted line) is in fair agreement with the direct
measurements. The sound speed has its maximum not in the center, because the
mean molecular weight µ increases towards the center, which causes cs to decrease.
(We recall that c2

s (r) = γRT/µ.) [Adapted from Stix (2002).]

where the resulting function is by construction smooth. This procedure falls
under the general name of inverse theory and is frequently used in various
branches of astrophysics.

Historically, the model independent determination of the sound speed and
thereby the temperature in the center of the Sun has been important in con-
nection with understanding the origin of the solar neutrino problem. In fact,
the solar neutrino flux was measured to be only one third of that originally
expected. A lower core temperature could have resolved this mismatch, but
this possibility was then ruled out by helioseismology. Now we know that
there are neutrino oscillations leading to a continuous interchange between
the three different neutrino species, which explains the observed neutrino flux
of just one species.

3.3 The solar abundance problem

Opacities depend largely on the abundance of heavier elements. The solar
models calculated with the old tables agreed quite well using the conven-
tional abundance ratio of heavier elements to hydrogen, Z/X = 0.023. How-
ever, the abundancies were based on fits of observed spectra to synthetic line
spectra calculated from model atmospheres. These models parameterize the
three-dimensional convection only rather crudely. New synthetic line spectra
calculated from three-dimensional time-dependent hydrodynamical models of
the solar atmosphere give a lower value of the solar oxygen abundance. With
the new values (Z/X = 0.017) it became difficult to reconcile the previously
good agreement between stellar models and helioseismology. The solution to
this problem is still unclear, but there is now evidence that the solar neon
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abundance may have been underestimated. A neon abundance enhanced by
about 2.5 is sufficient to restore the good agreement found previously.

The detailed stratification depends quite sensitively on the equation of
state, p = p(ρ, T ). However, the uncertainties in the theoretically determined
equation of state are now quite small and cannot be held responsible for
reconciling the helioseismic mismatch after adopting the revised solar abun-
dancies.

3.4 Internal solar rotation rate

Another important problem is to calculate the internal rotation rate of the
Sun (Figure 7). This has already been possible for the past 20 years, but the
accuracy has been ever improving. We will not discuss here the mathematics
in any further detail, but refer instead to the review by Thompson et al.
(2003). The basic technique involves the prior calculation of kernel functions,
Knlm(r, θ), that are independent of Ω, such that the rotational frequency
splitting can be expressed as

ωnlm − ωnl0 = m

∫ R

0

∫ π

0

Knlm(r, θ)Ω(r, θ)rdrdθ (42)

Several robust features that have emerged from the work of several groups
include

– The contours of constant angular velocity do not show a tendency of
alignment with the axis of rotation, as one would have expected, and as
many theoretical models still show.

– The angular velocity in the radiative interior is nearly constant, so there
is no rapidly rotating core, as has sometimes been speculated.

– There is a narrow transition layer at the bottom of the convection zone,
where the latitudinal differential rotation goes over into rigid rotation (i.e.
the tachocline). Below 30◦ latitude the radial angular velocity gradient
is here positive, i.e. ∂Ω/∂r > 0, in contrast that what is demanded by
conventional dynamo theories.

– Near the top layers (outer 5%) the angular velocity gradient is negative
and quite sharp.

A completely model-independent knowledge about the internal rotation
rate of the Sun has proved to be invaluable for the theory of the magnetic
field in the Sun, for its rotation history, and for solar dynamo theory. Prior to
the advent of helioseismology some 25 years ago, the idea of a rapidly rotating
core was quite plausible, because at birth the Sun is believed to have spun
at least 50 times faster than now, and because in the Sun the viscous time
scale exceeds the age of the Sun. The fact that also the core has spun down
means that there must be some efficient torques accomplishing the angular
momentum transport inside the Sun. A likely candidate is the magnetic field.
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Fig. 7. Angular velocity profile in the solar interior inferred from helioseismol-
ogy (after Thompson et al. 2003). In panel (a) a two-dimensional (latitude-radius)
rotational inversion is shown based on the Subtractive Optimally Localized Aver-
aging (SOLA) technique. In panel (b) the angular velocity is plotted as a function
of radius for several selected latitudes, based on both SOLA (symbols, with 1σ
error bars) and regularized least squares (RLS; dashed lines) inversion techniques.
Dashed lines indicate the base of the convection zone. All inversions are based on
data from the Michelson Doppler Imager aboard the SOHO spacecraft, averaged
over 144 days. Inversions become unreliable close to the rotation axis, represented
by white areas in panel (a). Note also that global modes are only sensitive to the ro-
tation component which is symmetric about the equator (courtesy M.J. Thompson
et al. 2003).

It it indeed well known that only a weak poloidal field is needed to brake the
rotation of the radiative interior.

Helioseismology has indicated that the transition from latitudinal differ-
ential rotation in the bulk of the convection zone to nearly rigid rotation in
the radiative interior is relatively sharp. This transition region is called the
tachocline. The idea of a sharp transition region has problems of its own, be-
cause viscous spreading would tend to smooth the transition with time. The
solution to this problem was thought to be related to the effect of a mostly
horizontal turbulence. However, it can be argued that the rigidity of the ra-
diative interior is constantly maintained by the presence of a weak magnetic
field of about 1 G; see Rüdiger & Hollerbach (2004) for a recent monograph
covering also this aspect.

3.5 Local helioseismology

At larger values of ℓ the coherence time of the waves becomes rather short and
the modes are no longer global and take on a more local character. There
are various techniques that use these modes to extract information about
local variations of sound speed and local flows. The most popular method is
the ring diagram technique. For a detailed review see Gizon & Birch (2005).
Among other things this method has demonstrated the presence of converging
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flows around sunspots and a rather shallow temperature subsurface structure.
However, a serious shortcoming of the present approach is the neglect of
magnetosonic and Alfvén waves.

4 Solar activity cycle

In the following we discuss some basic properties of the solar magnetic field.
Its main feature is the 11 year cycle, as manifested in the (approximately)
eleven year variation of the sunspot number. Sunspots are associated with
sites of a strong magnetic field of about 2–3 kG peak field strength. Sunspots
appear typically at about ±30◦ latitude at the beginning of each cycle, i.e.
when the sunspot number begins to rise again. During the course of the cycle,
spots appear at progressively lower latitudes. At the end of the cycle, sunspots
appear at low latitudes of about ±4◦. Again, detailed references cannot be
given here, but we refer to the paper by Solanki et al. (2006) for a recent
review.

4.1 The butterfly diagram

Although the detailed mechanism of their formation is still uncertain, it seems
that sunspots form when a certain threshold field is exceeded, so they occur
usually only below ±30◦ latitude. However, magnetic fields can still be de-
tected at higher latitudes all the way up to the poles using the Zeeman effect.
Figure 8 shows, as a function of latitude and time, the normal component of
the azimuthally averaged surface field, B(R⊙, θ, t), where

B(r, θ, t) =

∫ 2π

0

B
dφ

2π
. (43)

Such diagrams, which can also be produced for the mean number of sunspots
as function of time and latitude, are generally referred to as butterfly dia-
grams.

Although the field strength in sunspots is about 2 kG, when the field is
averaged in longitude only a small net field of about ±20 G remains. Near
the poles the magnetic field is more clearly defined because it fluctuates less
strongly in time near the poles than at lower latitudes. A characteristic feature
is that the polar field changes sign shortly after each sunspot maximum.

At intermediate latitudes | cos θ| = 0.5...0.7, corresponding to a latitude,
90◦ − θ, of ±(30◦...45◦), there are characteristic streaks of magnetic activity
that seem to move poleward over a short time (∼ 1...2 yr). These streaks are
rather suggestive of systematic advection by poleward meridional circulation
near the surface. This indicates that the streaks are really just a consequence
of the remaining flux of decaying active regions being advected poleward from
lower latitudes. Looking at a plot of the magnetic field at poorer resolution
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Fig. 8. Longitudinally averaged radial component of the observed solar magnetic
field as a function of cos(colatitude) and time. Dark shades denote negative values
and light shades denote positive values. Note the sign changes both in time and
across the equator (courtesy of R. Knaack).

would show what is known as the polar branch, whose presence has been
found previously through various other proxies (e.g. through the migration
of the line where prominences occur). This has been reviewed in detail by
Stix (1974).

In summary, the cyclic variation of the field together with its latitudinal
migration, and the alternating orientation of bipolar magnetic regions are
the main systematic properties of the solar magnetic field. In § 5 we discuss
theoretical approaches to the present understanding of this phenomenon.

4.2 Cyclic activity on other solar-like stars

It should be noted that magnetic activity and activity cycles are not unique
to the Sun. In fact, many stars with outer convection zones display magnetic
activity, as is evidenced by proxies such as the H and K line emission within
the Calcium absorption line. This H and K line emission is caused by hot
plasma that is confined in the magnetic flux tubes in the coronae of these
stars. Among the solar-like stars of spectral type G and solar-like rotation,
many have cyclic magnetic activity while others show time-independent mag-
netic activity that is believed to be associated with the possibility that these
stars are in a grand minimum, such as the famous Maunder minimum.
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4.3 Grand minima

Grand minima are recurrent states of global magnetic inactivity of a star.
This behavior may be associated with the chaotic nature of the underlying
dynamo process. For the Sun this behavior is evidenced through the record
of the Carbon 14 isotope concentrations in tree rings as well as through
the Beryllium 10 isotope concentrations of ice core drillings from Greenland.
It is interesting to note that during the Maunder minimum between 1645
and 1700 the magnetic activity was not completely suppressed; 10Be still
show cyclic variability, albeit with a somewhat longer period of about 15
years. Shortly after the Sun emerged from the Maunder minimum the sunspot
activity was confined only to the northern hemisphere. This type of latitudinal
asymmetry has been seen in some dynamo models that display sporadically a
mixture of modes that are symmetric and antisymmetric about the equator.
For the Sun, some of the earlier grand minima have specific names such as
the Spörer minimum (1420–1530), the Wolf Minimum (1280–1340), and the
Oort minimum (1010–1050).

Grand minima can be important for the Earth’s climate. For example
the Maunder minimum is associated with the ‘Little Ice Age’ that occurred
from 1560 to 1850. During the 500 years before that the Sun was particularly
active as is evidenced by the high levels of 14C production: this was the period
when wine was made from grapes grown in England and when the Vikings
colonized Greenland.

By combining different proxies of solar activity, several typical time scales
can be identified, the Schwabe 11-year cycle, the 88-year Gleissberg cycle, the
205-year De Vries cycle, and the 2100 or 2300 year Hallstatt cycle.

4.4 Active regions and active longitudes

Active regions are complexes of magnetic activity out of which sunspots,
flares, coronal mass ejections, and several other phenomena emerge with some
preference over other regions. These regions tend to be bipolar, i.e. they
come in pairs of opposite polarity and are roughly aligned with the east–west
direction.

Over periods of up to half a year active regions appear preferentially at
the same longitude and follow a latitude-dependent rotation law. An analysis
of solar magnetograms show that at the beginning of each cycle, when most
of the activity occurs at about ±30◦ latitude, the rotation rate of the active
longitudes is less than at the end of each cycle, when the typical latitude is
only ±4◦ latitude. There are various reports that these longitudes might be
stable over longer periods of time (so-called active longitudes), but this is
still very much a matter of debate.

The notion of field line anchoring is occasionally used in connection with
sunspot proper motions. Long before the internal angular velocity was deter-
mined via helioseismology, it was known that sunspots rotate faster than the
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surface plasma. Moreover, young sunspots rotate faster than old sunspots. A
common interpretation is that young sunspots are still anchored at a greater
depth than older ones, and that therefore the internal angular velocity must
decrease with height. This provided also the basis for the classical mean field
dynamo theory of the solar cycle according to which the radial angular ve-
locity gradient has to be negative. This will be discussed in more detail in
§ 5.

With the advance of helioseismology, it has become clear that at low
latitudes the angular velocity decreases with radius throughout the bulk of
the convection zone. A negative radial gradient exists only in the upper
30 Mm (sometimes referred to as the supergranulation layer). Indeed, the
very youngest sunspots have a rotation rate that is comparable to or even
slightly in excess of the fastest angular velocity seen with helioseismology
anywhere in the Sun (i.e. at r/R⊙ ≈ 0.95).

4.5 Torsional oscillations

At the solar surface the angular velocity varies with the 11 year cycle. In
other words, Ω at the surface (at r = R⊙) is not only a function of colatitude
θ, but also of time. The pattern of Ω(R⊙, θ, t) shows an equatorward migra-
tion, similar to the butterfly diagram of the mean poloidal magnetic field in
Figure 8. Helioseismology has now established that this pattern extends at
least half way into the convection zone. At the bottom of the convection zone
the 11 year variation is not (yet?) observed, but there is possibly a 1.3 year
modulation of the local angular velocity, although this is still unclear and
debated (see the review by Thompson et al. 2003). In recent years this 1.3
year modulation has gone away, but it has been speculated that the presence
of a modulation may depend on the phase in the cycle.

The 11 year cyclic modulation is known as torsional oscillation, but model
calculations demonstrate that these oscillations can be understood as a di-
rect response to the varying magnetic field. The amplitude of the torsional
oscillations is about 8%, suggesting that magnetic effects must be moderate
and the fields of sub-equipartition strength.

5 Dynamo theory

Given that the magnetic decay times in astrophysical plasmas are generally
very long, there have been a number of attempts in the literature to ex-
plain the Sun’s magnetic field in terms of a primordial, frozen-in field. Such
approaches tend to be rather sketchy when it comes to predicting any quanti-
tative details that can be tested. Dynamo theory, on the other hand, provides
a self-consistent framework of magnetic field generation in general that can
be tested against direct simulations. Owing to the turbulent nature of the
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flows, such dynamos are generally referred to as “turbulent dynamos”. Un-
fortunately, early simulations did not reproduce the solar behavior very well.
The reason for this may simply be that, for example, the resolution was insuf-
ficient to capture important details. The failure to explain the observations
has led to a number of ad hoc assumptions and modifications that are not
satisfactory. At the same time, dynamo theory itself has experienced some
important extensions that followed from trying to explain a long standing
mismatch between simulations and theory, even under rather idealized con-
ditions such as forced turbulence in a periodic domain. In this section we
can only outline the basic aspects of dynamo theory. For a more extensive
review, especially of the recent developments, see Ossendrijver (2003) and
Brandenburg & Subramanian (2005).

5.1 The induction equation

At the heart of dynamo theory is the induction equation, which is just the
Faraday equation together with Ohm’s law, i.e.

∂B

∂t
= −∇ × E and J = σ (E + U × B) , (44)

respectively. The initial conditions furthermore must obey ∇ ·B = 0. Elimi-
nating E yields

∂B

∂t
= ∇ × (U × B − J/σ) . (45)

Then, using Ampere’s law (ignoring the Faraday displacement current), J =
∇ × B/µ0, where µ0 is the vacuum permeability, one obtains the induction
equation in a form that reveals the diffusive nature of the last term as ... +
η∇2B, where η = (σµ0)

−1.
A complete theory of magnetic field evolution must include also the mo-

mentum equation, because the magnetic field will react back on the velocity
field through the Lorentz force, J × B, so

ρ
DU

Dt
= −∇p + J × B + F , (46)

together with the continuity equation, ∂ρ/∂t = −∇ · (ρU). In equation (46),
F subsumes a range of possible additional forces such as viscous and gravi-
tational forces, as well as possibly Coriolis and centrifugal forces.

To study the dynamo problem, the complete set of equations is often
solved using fully three-dimensional simulations both in Cartesian and in
spherical geometries. Especially in early papers, the continuity equation has
been replaced by the incompressibility condition, ∇ ·U = 0, or by the anelas-
tic approximation, ∇·(ρU) = 0. In both cases, ρ no longer obeys an explicitly
time-dependent equation, and yet ρ can of course change via the equation
of state (pressure and temperature are still changing). These approximations
are technically similar to that of neglecting the Faraday displacement current.
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As long as the magnetic field is weak, i.e. B2/µ0 ≪ ρU2 at all scales and
all locations, it may be permissible to assume U as given and to solve only
the induction equation for B. This is called the kinematic dynamo problem.

Meanwhile some types of dynamos have been verified in experiments. One
is the Ponomarenko-like dynamo that consists of a swirling flow surrounded
by a nonrotating counterflow (Gailitis et al. 2001). The flow is driven by
propellers and leads to self-excited dynamo action when the propellers exceed
about 1800 revolutions per minute (30 Hz), producing peak fields of up to
1 kG. Another experiment consists of an array of 52 connected tubes with an
internal winding structure through which liquid sodium is pumped, making
the flow strongly helical with nearly uniform kinetic helicity density within
the dynamo module containing the pipes (Stieglitz & Müller 2001). Such a
flow is particularly interesting because it allows meaningful averages to be
taken, making this problem amenable to a mean field treatment. The mean
field approach is important in solar physics and will be discussed in § 5.3.
First, however, we discuss the case where no mean field is produced and only
a small scale field may be generated.

5.2 Small scale dynamo action

There is an important distinction between small scale and large scale tur-
bulent dynamos. This is mainly a distinction by the typical scale of the
field. Both types of dynamos have in general a turbulent component, but
large scale dynamos have an additional component on a scale larger than
the typical scale of the turbulence. Physically, this can be caused by the ef-
fects of anisotropies, helicity, and/or shear. These large scale dynamos are
amenable to mean field modeling (see below). On the other hand, small scale
dynamo action is possible under fully isotropic conditions. This process has
been studied both analytically and numerically; see Brandenburg & Subra-
manian (2005) for a review. Indeed, small scale dynamos tend to be quite
prominent in simulations, perhaps more so than what is realistic. This may
be a consequence of having used unrealistically large values of the magnetic
Prandtl number, as will be discussed in the following.

The strength of the small scale dynamo depends significantly on the value
of the magnetic Prandtl number PrM ≡ ν/η, i.e. the ratio of the viscosity,
ν, to the magnetic diffusivity η. In the Sun, PrM varies between 10−7 and
10−4 between the top and the bottom of the convection zone, but it is al-
ways well below unity. In this case the Kolmogorov cutoff scale of the kinetic
energy spectrum of the turbulence is much smaller than the resistive cut-
off scale of the magnetic energy spectrum. Therefore, at the resistive scale
where the small scale dynamo would operate fastest, the velocity is still in its
inertial range where the spatial variation of the velocity is much more pro-
nounced than it would be near the Kolmogorov scale, relevant for a magnetic
Prandtl number of order unity. This tends to inhibit small scale dynamo
action. In many simulations PrM is close to unity, because otherwise the
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Fig. 9. Magnetic and kinetic energy spectra from a nonhelical turbulence simu-
lation with Pm = 1. The kinetic energy is indicated as a dashed line (except for
the first time displayed where it is shown as a thin solid line). At early times the
magnetic energy spectrum follows the k3/2 Kazantsev (1968) law (the dashed line
gives the fit to the analytic spectrum), while the kinetic energy shows a short k−5/3

range. The Reynolds number is urms/(νkf) ≈ 600 and 5123 meshpoints were used.
The time difference between the spectra is about 14 (kfurms)

−1. [Adapted from
Brandenburg & Subramanian (2005).]

magnetic Reynolds number would be too small for the dynamo to be excited.
As a consequence, the production of small scale field may be exaggerated
in simulations. It is therefore possible that in the Sun small scale dynamo
action is less important, and that large scale dynamo action is by comparison
much more prominent, than found in simulations. An example may be the
simulations of Brun et al. (2004), which are currently the highest resolution
turbulence simulations of solar-like convection in spherical shell geometry.
Here the magnetic field is indeed mostly of small scale.

In mean field models only the large scale field is modeled. This large
scale field is governed both by turbulent magnetic diffusion as well as non-
diffusive contributions such as the famous α effect. As will be explained in the
next section, this means that the mean electromotive force has a component
parallel to the mean field, so it has a term of the form αB; see Brandenburg
& Subramanian (2005) for a recent review. However, once a large scale field
is present, the turbulent motions (which are always present) will wind up and
mix the large scale field and will hence also produce a small scale field. This
does not represent small scale dynamo action, even though there is a small
scale field; if the large scale field is absent, the small scale field disappears.
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Let us emphasize again that the Sun does possess a large scale field,
with spatio-temporal order, as is evidenced by Figure 8. This automatically
implies a small scale field. In addition, there may be small scale dynamo
action occurring locally in the near-surface layers where the Coriolis force is
comparatively weak, but this depends on whether or not small scale dynamo
action is inhibited by a small value of the magnetic Prandtl number.

5.3 Mean field theory

The mean field approach allows the complicated three-dimensional dynamics
to be treated in a statistical manner. The averaged equations are then only
two-dimensional. In some cases, e.g. in Cartesian geometry, it can be useful
to define two-dimensional averages, so that the resulting mean field equations
are only one-dimensional. In the following we describe the essential features
of this approach. By averaging the induction equation (45), e.g. according to
the toroidal averaging procedure, we obtain

∂B

∂t
= ∇ ×

(

U × B + E − ηµ0J
)

, (47)

where E = u × b is the mean electromotive force from the small scale mag-
netic and velocity fields, with u = U −U and b = B −B being the fluctua-
tions, i.e. the deviations from the corresponding averages.

There are two quite different approaches to calculating E and its depen-
dence on B. The first order smoothing approximation uses just the linearized
evolution equation for b, while the tau approximation uses also the linearized
momentum equation together with a closure hypothesis for the higher order
triple correlation terms. For references and historical aspects we refer to the
review by Brandenburg & Subramanian (2005). Both approaches predict the
presence of terms of the form

E i = αipBp + ηiplBp,l, (48)

where a comma denotes partial differentiation. The tau approximation gives

αip = −τǫijkukuj,p + τǫijkbkbj,p/ρ0, (49)

where τ is the correlation time. However, within the first order smoothing
approximation the magnetic term in αip is absent. In order to illuminate the
meaning of these tensors, it is useful to make the assumption of isotropy,
α̃ip = α̃δip and η̃ipl = η̃tǫipl. This yields

α̃ = − 1
3

(

ω · u − j · b/ρ0

)

, η̃t = 1
3u2, (50)

where ω = ∇ × u is the small scale vorticity and j = ∇ × b/µ0 is the small
scale current density. Thus, α̃ is proportional to the residual helicity, i.e. the
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difference between kinetic and current helicities, and ηt is proportional to the
mean square velocity.

Using a closure assumption for the triple correlations we have, under the
assumption of isotropy, the important result

α = − 1
3τ
(

ω · u − j · b/ρ0

)

, ηt = 1
3τu2. (51)

The electromotive force takes then the form

E = αB − ηtµ0J . (52)

This equation shows that the electromotive force does indeed have a com-
ponent in the direction of the mean field (with coefficient α). The ηt term
corresponds to a contribution of the electromotive force that is formally sim-
ilar to the microscopic diffusion term, ηµ0J , in equation (47). Therefore one
speaks also of the total magnetic diffusivity, ηT = η + ηt. The presence of the
α term, on the other hand, has no correspondence to the non-turbulent case,
and it is this term that invalidates Cowling’s anti-dynamo theorem for mean
fields. Indeed, there are simple self-excited (exponentially growing) solutions
already in a one-dimensional model (see below).

Equation (51) shows that the presence of an α effect is closely linked
to the presence of kinetic and/or current helicity, while turbulent magnetic
diffusion is always present when there is a small scale turbulent velocity
field. This shows immediately that just increasing the turbulence (without
also increasing the helicity) tends to diminish turbulent mean field dynamo
action, rather than enhancing it, as one might have thought.

The formalism discussed above does not address the production of kinetic
helicity in the Sun. This can be calculated perturbatively by considering the
effects of vertical density and turbulent intensity stratification and rotation.
At lowest order one finds

αφφ = − 16
15τ2u2

rmsΩ · ∇ ln(ρurms) + ... (53)

for the first term in equation (49). For details we refer to the reviews by
Rüdiger & Hollerbach (2004) and Brandenburg & Subramanian (2005). The
magnetic contribution to the α effect proportional to j · b (in the isotropic
case) still needs to be added to the right hand side of equation (53). This j · b
contribution is mainly the result of the dynamo itself, which tends to built up
small scale current helicity along with the large scale magnetic field. Thus,
the value of j · b cannot be obtained independently of the actual solution to
the dynamo problem.

5.4 Numerical determination of α

A simple way of determining α numerically is by imposing a constant field of
strength B0 over a domain of simulated turbulence. Since the mean field is
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Fig. 10. Rm dependence of the normalized α compared with dependence of α̃
(k)
K

for B0/Beq around unity. Vertical bars give error estimates. The vertical bars on
the data points give estimates of the error (see text). [Adapted from Brandenburg
& Subramanian (2005).]

constant, i.e. B = B0, the mean current density vanishes in equation (52),
so α can directly be determined by measuring the electromotive force, u × b,
in the direction of the imposed field, and dividing one by the other. In other
words, α = u × b·B0/B2

0 . The values of α collapse onto a single line. Looking
at equation (51), such a decline of α can only come about if either τ or ω · u
decrease with B0, or, alternatively, if ω · u and j · b approach each other. It
is quite clear from the data that neither ω · u nor τ decrease and that instead
there is, at least for small values of Rm(B0/Beq)

2, a tendency for ω · u and
j · b to approach one another.

The “catastrophic” decrease of α with decreasing η is directly a conse-
quence of magnetic helicity conservation in a closed or periodic domain, but
this can be alleviated in the presence of helicity fluxes out of the domain. We
return to this discussion in § 6.3 when we consider the consequences for the
nonlinear saturation of the dynamo effect.

5.5 Other effects

There are a number of other effects that contribute to the algebraic relation-
ship between the electromotive force and the mean field. One is a pumping
effect associated with the antisymmetric components of the α tensor,
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α
(A)
ij = 1

2 (αij + αji) ≡ − 1
2ǫijkγk (pumping), (54)

where γk is the pumping velocity. This name is motivated by the fact that

the term α
(A)
ij Bj can also be written as (γ ×B)i. This shows that the vector

γ plays the role of an effective advection velocity.
The pumping effect is sometimes called turbulent diamagnetism. This has

to do with a remarkable relation between pumping velocity and turbulent
magnetic diffusion,

γ = − 1
2∇ηt. (55)

Calculating the contribution to the electromotive force from this term to-
gether with the turbulent diffusion term gives

E = ... − 1
2∇ηt × B − ηt∇ × B = ... − 1

σt
∇ ×

(

B/µt

)

, (56)

where
σt = σ(ηt/η)−1/2 and µt = µ0(ηt/η)−1/2 (57)

are turbulent conductivity and turbulent permeability, respectively. (The nor-
malization with the microscopic values of σ and µ0 is done in order for the
turbulent values of σt and µt to have correct dimensions.)

Another potentially important term is an effect of the form δ ×J , which
has long been known to be able to produce dynamo action if its components
are of the appropriate sign relative to the orientation of shear. It is clear that
δ must be an axial vector, and both the local angular velocity, Ω, as well as
the vorticity of the mean flow, W = ∇×U are known to contribute. Dynamo
action is only possible when δ and W are antiparallel. It is still not quite
clear from turbulence calculations whether the orientation of the vector δ

relative to the shear is appropriate for dynamo action in the convection zone.

6 Models of the solar cycle

6.1 One-dimensional models

It has long been known that an α effect combined with differential rota-
tion can cause oscillatory propagating solutions. In order to appreciate the
possibility of oscillatory self-excited solutions, let us consider one-dimensional
solutions, allowing for variations only in the z direction, but field components
still pointing in the two directions. Applied to the Sun, we may think of the
z direction being latitude (= negative colatitude, −θ), x being radius, and y
being longitude, so (x, y, z) −→ (r, φ,−θ). Let us consider a mean flow of the
form U = (0, Sx, 0), i.e. the flow has only a y component that varies linearly

in the x direction. We write the field in the form B(z, t) = (−A
′

y, By, 0),
where a prime denotes a z derivative. The corresponding dynamo equation
can then be written as
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Ȧy = αBy + (η + ηt)A
′′

y , (58)

Ḃy = SBx + (η + ηt)B
′′

y , (59)

where we have neglected a term (αBx)′ in comparison with SBx in the second

equation. (Here Bx = −A
′

y is the radial field.)
Solutions to these equations are frequently discussed in the literature (e.g.

Moffatt 1978, Brandenburg & Subramanian 2005). It is instructive to consider
first solutions in an unbounded domain, e.g. 0 < z < Lz, so the solutions are
of the form

B(z, t) = Re
[

B̂k exp (ikz + λt)
]

. (60)

There are two physically meaningful solutions. Both have an oscillatory com-
ponent, but one of them can also have an exponentially growing component
such that real and imaginary parts of λ are given by

Reλ = −ηTk2 +
∣

∣

1
2αSk

∣

∣

1/2
, (61)

Imλ ≡ −ωcyc =
∣

∣

1
2αSk

∣

∣

1/2
. (62)

The solutions are oscillatory with the cycle period ωcyc. This shows that, in
the approximation where the (αBx)′ term is neglected (valid when Sk ≫ α),
the mean field dynamo is excited when the dynamo number,

D = | 12αSk|1/2/(ηTk2), (63)

exceeds a critical value that is in this simple model Dcrit = 1.
A number of important conclusions can be drawn based on this simple

model. (i) The cycle frequency is proportional to
√

αS, but becomes equal to
ηTk2 in the marginal or nonlinearly saturated cases. (ii) There are dynamo
waves with a pattern speed proportional to ηTk propagating along contours
of constant shear. For example, for radial angular velocity contours with
angular velocity decreasing outwards, and for a positive α in the northern
hemisphere, the propagation is equatorward. If the sign of either S or α is
reversed, the propagation direction is reversed too.

For more realistic applications to the Sun one must solve the mean field
dynamo equations in at least two dimensions over a spherical domain with
appropriate profiles for α, ηT, and Ω. In the following we discuss four different
dynamo scenarios that have been studied over the years.

If the flow is assumed given, no feedback via the Lorentz force is allowed,
so the dynamo equations are linear and the magnetic energy would eventually
grow beyond all bounds. In reality, the magnetic field will affect the flow and
hence U , as well as α, ηt, and other turbulent transport coefficients will be
affected. We will postpone the discussion of the nonlinear behavior to § 6.3.
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Fig. 11. Butterfly diagram of Bφ taken at reference depth r = 0.85R⊙. [Adapted
from Brandenburg & Tuominen (1988).]

6.2 Different solar dynamo scenarios

A traditional and also quite natural approach is to calculate the profiles for
α and ηt using the results from mean field theory such as equation (53)
and to take the profiles for the rms velocity and the correlation time, τ =
ℓ/urms, from stellar mixing length models using ℓ = αmixHp for the mixing
length, where Hp is the pressure scale height. For Ω(r, θ) one often uses
results from helioseismology. In Figure 11 we reproduce the results of an
early paper where the Ω(r, θ) profile was synthesized from a collection of
different helioseismology results then available. The α and ηt profiles, as well
as profiles describing some other effects (such as pumping and Ω×J effects)
where taken from a solar mixing length model. In this model an equatorward
migration is achieved in a limited range in radius where ∂Ω/∂r < 0. In this
model this is around r = 0.8R⊙. Note also that in this case Br and Bφ are
approximately in antiphase, as is also seen in the Sun.

Distributed dynamos have been criticized on the grounds that magnetic
buoyancy will rapidly remove the magnetic field from the convection zone.
Since then, helioseismology has shown that the radial Ω gradient is virtually
zero in the bulk of the convection zone and only at the bottom is there a finite
gradient, but it is positive at latitudes below ±30◦. This may still yield an
equatorward migration in the butterfly diagram, because equation (53) would
predict that at the bottom of the convection zone, where the magnitude of the
positive ∇r lnurms gradient exceeds that of the negative ∇r ln ρ gradient. This
changes the sign of α, and makes it negative near the bottom of the convection
zone in the northern hemisphere. This led to the idea of the overshoot dynamo
that is believed to operate only in a thin layer at or just below the convection
zone proper. Such dynamos have been considered by a number of different
groups.

In Figure 12 we show the result of an overshoot dynamo calculation. An
important problem that emerges from such an approach is that when the
dynamo layer is too thin, the toroidal flux belts are too close to each other
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Fig. 12. Butterfly diagram of Bφ evaluated at the bottom of the convection zone
at r = 0.7R⊙. [Adapted from Rüdiger & Brandenburg (1995).]

in latitude. This leads to the conclusion that the thickness of the dynamo
region should not be less than 35 Mm. At the bottom of the convection zone
this corresponds to half a pressure scale height. However, this value is already
rather large and no longer supported by helioseismology, which predicts the
thickness of the overshoot layer to be about 7 Mm or less.

Another variant of this approach is the interface dynamo. The main dif-
ference here is that α is assumed to operate in the bulk of the convection
zone, but it is still taken to be negative, so as to give equatorward migration.
Also important is the sharp jump in ηt at the bottom of the convection zone.
However, when the latitudinal variation of the angular velocity is included,
no satisfactory butterfly diagram is obtained.

A completely different class of dynamos are the flux transport dynamos
that are governed by the effect of meridional circulation transporting surface
flux to the poles and flux along the tachocline toward the equator. The α
effect is now assumed positive, so in the absence of meridional circulation the
dynamo wave would propagate poleward. However, under certain conditions,
meridional circulation can actually reverse the direction of propagation of
the dynamo wave. A calculation with a realistic solar angular velocity profile
has been presented by Dikpati & Charbonneau (1999); see Figure 13. They
establish a detailed scaling law for the dependence of the cycle period on the
circulation speed, the α effect (or source term), and the turbulent magnetic
diffusivity. To a good approximation they find the cycle period to be inversely
proportional to the circulation speed.

With such a variety of different models and assumptions (most of them
ignoring what was previously derived for α(r, θ), ηt(r, θ), and other transport
effects), dynamo theory has been perceived as rather arbitrary. One reason
for this level of arbitrariness that developed in modeling the solar dynamo
is that the effects of nonlinearity are not well understood. This might af-
fect the properties of the dynamo coefficients in the saturated state making
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Fig. 13. Butterfly diagram of Bφ at r = 0.7R⊙. The maximum circulation speed
at the surface is 15m s−1 and the turbulent magnetic diffusivity is assumed to be
ηt = 3 × 1011 cm2 s−1. [Courtesy of Dikpati & Charbonneau (1999).]

them quite different from those obtained in linear theory. In the following
we sketch briefly the tremendous developments on nonlinear saturation that
have occurred in the past few years.

6.3 Nonlinear saturation

The effects of nonlinearity can be divided into macroscopic and microscopic
effects. The former is simply the result of B on U , as described by the Lorentz
force, J ×B, in the mean field momentum equation. This effect is sometimes
also referred to as the Malkus–Proctor effect and has been incorporated to
various degree of sophistication in a number of models starting with incom-
pressible models in the context of the geodynamo and the solar dynamo.

The microscopic feedback can be subdivided into two different contribu-
tions. The effect of B on the turbulent velocity (conventional α quenching),
and the more direct effect of the small scale current helicity, j · b (or ǫijkbkbj,p

in the anisotropic case), on the α effect or, more precisely, on the electromo-
tive force. The latter can, under some conditions, lead to catastrophic α
quenching; see Brandenburg & Subramanian (2005) for a review of this vast
field of recent research.

The j · b term cannot be implemented directly, because it is necessary to
have a theory for how j · b depends on the mean field. Under some idealized
conditions (steady state, triply-periodic boundary conditions) the answer can
be obtained from the general evolution equation for magnetic helicity, which
reads

∂

∂t
(A · B) + ∇ · FH = −2ηµ0(J · B). (64)
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Here, A is the magnetic vector potential with B = ∇×A, while A ·B is the
magnetic helicity density, and FH is its flux. Magnetic helicity and its flux
are gauge-dependent, i.e. they are not invariant under the transformation
A → A′ = A + ∇Λ. However, when averaging over a triply-periodic volume
this ambiguity disappears and 〈A · B〉 is gauge-invariant and obeys

d

dt
〈A · B〉 = −2ηµ0〈J · B〉. (65)

(The spatial average of a divergence also vanishes for triply periodic domains.)
We see that in the steady state, d/dt = 0, so 〈J ·B〉 = 0. Splitting into large
scale and small scale contributions, we have 〈j ·b〉 = −〈J ·B〉. This connects
the small scale current helicity explicitly with the properties of the large scale
field.

The same procedure can still be applied in the unsteady case by consider-
ing magnetic helicity evolution for the large scale and small scale components,
i.e. for 〈A ·B〉 and 〈a · b〉. The evolution of 〈A ·B〉 follows straightforwardly
from the mean field equations, which shows that there is continuous produc-
tion of large scale magnetic helicity given by 2E ·B. In order not to produce
any net magnetic helicity, as required by equation (65), the evolution of 〈a ·b〉
has the same term but with the opposite sign. Furthermore, under isotropic
conditions, 〈a · b〉 is proportional to 〈j · b〉, which in turn is proportional
to the magnetic contribution to the α effect. Finally, the restriction to triply
periodic boundary conditions can be relaxed (and hence a flux divergence can
be permitted) if there is sufficient scale separation, i.e. if the energy carrying
scale of the turbulence is clearly smaller than the domain size.

This then leads to an explicit evolution equation for the magnetic α effect,

∂αM

∂t
+ ∇ · Fα = −2ηtk

2
f

(

E · B
B2

eq

+
αM

Rm

)

, (66)

where αM = 1
3τj · b is the magnetic α effect and Fα = 1

3τFC, where

FC ≈ k2
f FH is the current helicity flux. This so-called dynamical α quench-

ing equation is able to reproduce the resistively slow saturation behavior,
found in simulations of helically driven turbulence. In the steady state, this
equation predicts for α = αK + αM

α =
αK + Rm

(

ηtJ · B + ∇ · Fα

)

1 + RmB
2
/B2

eq

. (67)

Note that in the special case of periodic domains, used in some simulations
where J = 0 and ∇ ·Fα = 0, this equation predicts catastrophic quenching,

i.e. α = αK/(1+RmB
2
/B2

eq), so α is suppressed relative to its kinematic value
αK in a strongly Reynolds number-dependent fashion–as seen in Figure 10.

In the case of open boundaries, there is a flux of magnetic helicity. Under
the two-scale hypothesis this can be defined in a gauge-invariant manner.
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Magnetic helicity fluxes provide a way to escape the otherwise resistively
limited saturation and catastrophic quenching. Several simulations and mean
field models have confirmed this. Although dynamical quenching has already
been applied to solar dynamo models it remains to be seen to what extent
the previously discussed conclusions about distributed versus overshoot layer
dynamos are affected, and what the role of meridional circulation is in such
a model.

6.4 Location of the dynamo

It is generally believed that the magnetic field emergence in the form of
sunspots is deeply rooted and associated with strong toroidal flux tubes of
strength up to 100 kG, as predicted by the so-called thin flux tube models.
When parts of the flux tube become destabilized due to magnetic buoyancy,
it rises to the surface to form a sunspot pair. However, there are some open
questions: how are such coherent tubes generated and what prevents them
from breaking up during the ascent over 20 pressure scale heights? Alter-
natively, the usual mean field dynamo would actually predict magnetic field
generation distributed over the entire convection zone. Sunspot formation
would mainly be associated with local flux concentration within regions of
enhanced net flux. This picture is appealing in many ways and has been
discussed in more detail in Brandenburg (2005). However, although both pic-
tures (deep rooted versus distributed dynamo) have received some support
from mean field modeling, there is still no global turbulence simulations that
reproduces the solar activity cycle without questionable assumptions.

7 Differential rotation

It became clear from the discussion in § 6 that differential rotation plays an
important role in producing a large scale magnetic field in the Sun. It may
also be important for the dynamo in disposing of its excess small scale current
helicity, as discussed in the previous section. In this section we discuss the
theoretical basis for explaining the origin and properties of solar and stellar
differential rotation.

7.1 Mean field theory of differential rotation

The origin of differential rotation has long been understood to be a conse-
quence of the anisotropy of convection. It has long been clear that the verti-
cal exchange of momentum by convection should lead to a tendency toward
constant angular momentum in the radial direction, i.e. Ω̟2 = const, and
hence the mean angular velocity scales with radius like Ω(r) ∼ r−2. Here,
̟ = r sin θ denotes the cylindrical radius (i.e. the distance from the rotation
axis).
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The rφ component of the viscous stress tensor contributes to the angular
momentum equation,

∂

∂t

(

ρ̟2Ω
)

+ ∇ ·
[

ρ̟
(

U Uφ + uuφ

)]

= 0, (68)

where uiuj = Qij are the components of the Reynolds tensor. In spherical
coordinates the full mean velocity vector is written as U = (U̟, ̟Ω, Uz).

The early treatment in terms of an anisotropic viscosity tensor was purely
phenomenological. A rigorous calculation of the Reynolds stresses shows that
the mean Reynolds stress tensor is described not only by diffusive compo-
nents that are proportional to the components of the rate of strain tensor
of the mean flow, but that there are also non-diffusive components that are
directly proportional to the local angular velocity. In particular the rφ and
θφ components of the Reynolds tensor are of interest for driving r and θ
gradients of Uφ ≡ ̟Ω. Thus, for ordinary isotropic turbulent viscosity one
has, using Cartesian index notation,

Qij = −νt

(

U i,j + U j,i

)

− ζtδijUk,k, (69)

where ζt is a turbulent bulk viscosity, and commas denote partial differenti-
ation. This expression implies in particular that

Qθφ = −νt sin θ
∂Ω

∂θ
. (70)

Note that for the Sun, where ∂Ω/∂θ > 0 in the northern hemisphere, this
formula would predict that Qθφ is negative in the northern hemisphere. How-
ever, it was noted long ago from correlation measurements of sunspot proper
motions that Qθφ is in fact positive in the northern hemisphere. The observed
profile of Qθφ is also known as the Ward profile. The observed positive sign
was used to motivate that there must be an additional term in the expression
for Qij . Using a closure approach, such as the first order smoothing approxi-
mation that is often used to calculate the α effect in dynamo theory, one can
find the coefficients in the expansion

Qij = ΛijkΩk −NijklUk,l, (71)

where Λijk describes the so-called Λ effect and Nijkl is the turbulent viscos-
ity tensor. The viscosity tensor Nijkl must in general be anisotropic. When
anisotropies are included, Nijkl gets modified (but it retains its overall diffu-
sive properties), and Λijk takes the form

ΛijkΩk =





0 0 V sin θ
0 0 H cos θ

V sin θ H cos θ 0



Ω, (72)
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where V and H are still functions of radius, latitude, and time; V is thought
to be responsible for driving vertical differential rotation (∂Ω/∂r 6= 0) while
H is responsible for latitudinal differential rotation (∂Ω/∂θ 6= 0).

The first order smoothing approximation predicts the following useful
approximations for V and H :

V ≈ τ
(

u2
φ − u2

r

)

, (73)

H ≈ τ
(

u2
φ − u2

θ

)

. (74)

These expressions show that when the rms velocity in the radial direction
is larger than in the azimuthal direction we must expect V < 0 and hence
∂Ω/∂r < 0. In the Sun, this effect is responsible for the negative radial shear
near the surface where strong downdrafts may be responsible for a compar-
atively large value of u2

r. Likewise, when the rms velocity in the latitudinal
direction is larger than in the azimuthal direction we expect H < 0 and hence
∂Ω/∂θ < 0, so the equator would spin slower than the poles. This does not
apply to the Sun, but it may be the case in some stars, especially when the
flows are dominated by large scale meridional circulation.

7.2 The Λ effect from turbulence simulations

Several of the relationships described above have been tested using convection
simulations, both in local Cartesian boxes located at different latitudes as
well as in global spherical shells. Generally, the various simulations agree in
that the sign of the horizontal Reynolds stress is positive in the northern
hemisphere and negative in the southern, reproducing thus the Ward profile.
The simulations also show that the off-diagonal components of the turbulent
heat transport tensor are mostly positive in the northern hemisphere, and
negative in the southern hemisphere. This agrees with the sign required if the
baroclinic term is to produce a tendency toward spoke-like angular velocity
contours. Simulations also reproduce the sudden drop of angular velocity at
the top of the convection zone. This agrees with a predominantly negative
sign of the vertical Reynolds stress at a similar depth. Furthermore, some
of the more recent simulations show an unexpectedly sharp increase of the
horizontal Reynolds stress just near the equator (at around ±5◦ latitude),
before changing sign right at the equator. The significance of this result for
the solar differential rotation pattern is still unclear.

7.3 Meridional flow and the baroclinic term

According to the formalism described in the previous section, a finite dif-
ferential rotation can be obtained by ignoring meridional flows and solving
equation (68) in isolation. However, this would only be a poor approximation
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Fig. 14. Contours of constant Ω for different values of Taylor number (upper
panel) and different values of the inverse Rossby number, affecting the relative
importance of H over V (lower panel). [Adapted from Brandenburg et al. (1990).]

that becomes quickly invalid when the angular velocity becomes large com-
pared with the turbulent viscous decay rate. This is quantified by the Taylor
number

Ta =
(

2Ω0R
2/νt

)2
. (75)

Using the first order smoothing expression from Rüdiger (1989), νt =
(2/15) τu2

rms, we have for values typical for the Sun (see Table 1), i.e.
νt ≈ 1012cm2/s, Ta ≈ 109. This value of Ta is rather large so that non-
linearities produce strong deviations from linear theory.

As the value of Ta is increased, the Coriolis force increases, which then
drives a meridional flow. This meridional flow first increases with increasing
values of Ta, but then it reaches a maximum at Ta ≈ 3 × 105, and later
declines with increasing values of Ta. (The solar value is Ta ≈ 3× 107.) This
decline is because eventually the Coriolis force can no longer be balanced
against advection or diffusion terms. This can best be seen by considering
the curl of the momentum equation,

∂Wφ

∂t
+ ̟U · ∇

(

Wφ

̟

)

− νtD
2Wφ = ̟

∂Ω
2

∂z
+ φ̂ · ∇T × ∇S. (76)

We recall that we consider here a nonrotating frame of reference, so there is
no Coriolis force. Nevertheless, part of the inertial term takes a form that is
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quite similar to the Coriolis term, but here Ω is a function of position, while
in the Coriolis term the angular velocity would normally be a constant.

In the barotropic case one has ∇T ‖ ∇S so there is no baroclinic term,

i.e. φ̂ · (∇T × ∇S) = 0. So, if viscous and inertial terms are small, which is

indeed the case for rapid rotation, then ∂Ω
2
/∂z has to vanish, so Ω would be

constant along cylinders; see Figure 14. It is generally believed that the main
reason for Ω not having cylindrical contours in the Sun is connected with the
presence of the baroclinic term. The presence of magnetic forces may also
play a role, but unlike the baroclinic term, magnetic forces tend to produce
a rather variable Ω patterns, often connected with rapid motions near the
poles where the inertia is lower.

Currently the highest resolution simulations of global convection in spher-
ical shells are those by Miesch et al. (2000). These simulations show a great
amount of detail and reproduce some basic features of the Sun’s differential
rotation such as the more rapidly spinning equator. However, in low lati-
tudes they show strongly cylindrical Ω contours that deviate markedly from
the more spoke-like contours inferred for the Sun using helioseismology. These
simulations also do not show the near-surface shear layer where the rotation
rate drops by over 20 nHz over the last 30 Mm below the surface.

Mean field simulations using the Λ effect show surprisingly good agree-
ment with the helioseismologically inferred Ω pattern, and they are also
beginning to address the problem of the near-surface shear layer. In these
simulations it is indeed the baroclinic term that is responsible for causing the
departure from cylindrical contours. This, in turn, is caused by an anisotropy
of the turbulent heat conductivity which causes a slight enhancement in tem-
perature and entropy at the poles. In the bulk of the convection zone the en-
tropy is nearly constant, so the radial entropy variation is smallest compared
with the radial temperature variation. It is therefore primarily the latitudinal
entropy variation that determines the baroclinic term, with

̟
∂Ω

2

∂z
≈ −φ̂ · ∇T × ∇S ≈ −1

r

∂T

∂r

∂S

∂θ
< 0. (77)

The inequality shows that negative values of ∂Ω
2
/∂z require that the pole

is slightly warmer than the equator (∂S/∂θ < 0). However, this effect is so
weak that it cannot at present be observed. Allowing for these conditions in
a simulation may require particular care in the treatment of the outer bound-
ary conditions. In Figure 15 we show the plots of angular velocity contours
and convective energy transport in a model with anisotropic turbulent con-
ductivity tensor, χij . Given that the flux, F , is proportional to −χij∇jS, a
negative ∂S/∂θ can be produced from a positive Fr with a positive value of
χrθ.

In the discussion above we ignored in the last step a possible correlation
between entropy and temperature fluctuations, i.e. a contribution from the
term ∇T ′ × ∇S′ where primes denote fluctuations. Such correlations, if of
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Fig. 15. Contours of angular velocity (left) and turbulent convective energy flux
(right) for a model with anisotropic heat transfer tensor. [Adapted from Branden-
burg et al. (1992).]

suitable sign, might provide yet a further explanation for a non-zero value of

∂Ω
2
/∂z.

7.4 Near-surface shear layer

The first results of helioseismology indicated significantly higher angular ve-
locities in the sub-surface than what is seen at the surface using Doppler
measurements. This apparent conflict is now resolved in that helioseismolog-
ical inversions of the data from the SOHO spacecraft show a sharp negative
gradient, connecting the observed surface values smoothly with the local max-
imum of the angular velocity at about 35 Mm depth; see Figure 16.

The theory of this negative near-surface shear layer is still a matter of
ongoing research, but it is clear that negative shear would generally be the
result of predominantly vertical turbulent velocities such as strong downdrafts
near the radiating surface. However, such a layer that is dominated by strong
downdrafts was only thought to be several megameters deep, and not several
tens of megameters. With an improved theory for the anisotropy of the tur-
bulence especially near the surface layers, one obtains a clear radial decline
of the local angular velocity near the surface, although still not quite as much
as is observed; see Figure 17. In any case, these results do at least reproduce
the near-surface shear layer qualitatively correctly. A proper understanding
of this layer is now quite timely in view of the fact that near-surface shear is
likely to contribute to the production of strong toroidal fields.

7.5 Magnetic effects

In § 4.5 we mentioned the torsional oscillations, which is a cyclic modulation
of the latitudinal profile of the angular velocity at the surface of the sun.
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Fig. 16. Radial profiles of the internal solar rotation rate, as inferred from helio-
seismology (sidereal, i.e. in a fixed frame). The rotation rate of active zones at the
beginning of the cycle (at ≈ 30◦ latitude) and near the end (at ≈ 4◦) is indicated
by horizontal bars, which intersect the profiles of rotation rate at r/R⊙ ≈ 0.97.
For orientation, the conventionally defined Carrington rotation period of 27.3 days
(synodic value, corresponding to 424 nHz) has been translated to the sidereal value
of 456 nHz. Courtesy of Benevolenskaya et al. (1999).

Model calculations suggest that these oscillations can well be modeled by
restoring the Lorentz force by adding a term −̟BBφ under the divergence
in equation (68). Unfortunately, given that there is no definitive solar dynamo
model, models for the Sun’s torsional oscillations are equally preliminary and
still a matter ongoing research.

In this connection it may be worth noting that there are also magnetic
effects on other properties of the sun, most notably luminosity variations (by
about 0.1%) and changes of the Sun’s quadrupole moment. The latter does
not really seem to be important for the Sun, but in close binaries this effect
leads to measurable changes in the orbital period.
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Fig. 17. Rotation law obtained by Kitchatinov & Rüdiger (2005) taking the
anisotropy of the turbulence near the surface into account. [Courtesy Kitchatinov
& Rüdiger (2005).]

8 Conclusions

In the past few decades there have been significant developments in under-
standing the physics of the Sun. Even regarding the radial structure of the
Sun, which was thought to be qualitatively well understood, major revisions
have emerged just recently with the refinement of three-dimensional simula-
tions of solar granulation. Such simulations have led to new spectral line fits
that imply a drastically reduced abundance of the heavier elements. This has
consequences for the opacities that affect the deep parts of the Sun’s interior.

There are many aspects of solar physics where a detailed understanding
of the three-dimensional flow pattern of the Sun is crucial. It is not surprising
that effects involving details of the turbulent flow field in the solar convection
zone, such as the theory of differential rotation and magnetic field generation,
provide other examples where the three-dimensional dynamics is important.
Fully three-dimensional simulations of solar convection with magnetic fields
produce flow and magnetic field structures in great detail, but at present they
deviate in some important aspects from the Sun (e.g. the fraction of small
scale to large scale field is rather large; and the angular velocity contours are
still too strongly aligned with the rotation axis). Some tentative explanations
are available (magnetic Prandtl number not small enough in the simulations
to reduce or even suppress small scale dynamo action, and surface condi-
tions not realistic enough to allow for sufficiently large a baroclinic term).
Future advances in computer technology will bring a steady increase in nu-
merical resolution. However, increase of spatial resolution by a factor of two
will always be very difficult when close to the machine capacity. Substantial
progress may rather hinge on new insights that may emerge from a closer
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interrelation between local simulations where turbulence is well resolved and
mean field calculations that benefit from input and calibration of detailed
simulations.
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