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Convection can occur in various astrophysical settings. In this review some aspects of solar convec-
tion are highlighted. In deeper layers of the solar convection zones rotation becomes important and
can lead to effects such as downward pumping of vorticity and magnetic fields. Rotation has the
tendency to partially evacuate vortex tubes making them lighter. This effect can sometimes reverse
the core of a downdraft and make it buoyant. The problem of different thermal and dynamical
timescales is addressed and finally the formation of magnetic structures by convection is discussed.

1 Introduction

In astrophysics convection can occur in various settings. Convection in stars is ubiquitous.
In stars of mass M < 2Mg (1 Mg = 2 x 1033 g is the mass of the sun) convection occurs
in the outer layers of the star because the gas becomes relatively opaque. At the surface
of the sun this convection is manifested by the granulation (Bray et al. 1984), which is
a time-dependent cellular pattern similar to classical Rayleigh-Benard convection, such as
may be seen by heating a shallow container of 0il mixed with aluminum powder as tracer.
A comparison with such a kitchen experiment is misleading, however, because it suggests
that solar convection is a rather viscous phenomenon. While it is actually true that the
viscosity of the gas in the sun (mostly hydrogen and helium) is comparable with that of
honey (something like 102 cm?/s), the Reynolds numbers Re = UL/v are in fact rather
large, because of the large length scales L. It is indeed quite typical for astrophysical bodies
that such dimensionless numbers take astronomically large values. The Rayleigh number,
for example, is around 10?* or larger, but we will come back to this below. Before that, let
us discuss other examples of astrophysical convection.

Shallow surface convection zones also occur in white dwarfs, one of the end products of
stellar evolution of stars with mass less than about eight solar masses. The end products of
stars with larger mass are often neutron stars, the remnants of supernova explosions. Just
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after a neutron star has formed convection may occur for a very short period of time of a
few seconds (see e.g. Thompson & Duncan 1993).
A the typical (local) turnover time is

Tturnover — Hp/ut- (1)

Here, H, = |dIn P/dr|! is the local pressure scale height, and u; is the turbulent root-
mean-square velocity. In solar like stars this ranges from minutes near the surface to months
near the bottom. In neutron stars and white dwarfs the typical turnover times are more like
1 — 10 ms. The integrated turnover time is

dr
tyurnover = / . (2)

ug(r)

For the sun, which has a rather deep convection zone (30% by radius, or 200 Mm), this is
around a month.

The outer layers of stars of mass > 2Mg are stably stratified, except for very shallow
outer convection zones associated with the ionization zones of hydrogen and helium, but
stars more massive than 1 — 2M, have convective cores due to high temperature gradients
arising from the high temperature sensitivity of nuclear reactions that become possible for
stars hotter than the sun.

The energy source of convection is not always nuclear energy. In galaxies, a rather dif-
ferent type of convection occurs. Although galaxies are on average stably stratified, isolated
events like supernova and superbubble explosions (collective supernova explosions triggering
each other) lead to buoyant outflows. Those events heat the gas locally to 10° K, leading to
buoyant bubbles that shoot through the gaseous galactic disc into the outer halo. Here the
typical dimensions are kiloparsecs, where 1kpc = 3 x 102! cm or 3000 light years.

Convection also occurs in another important class of objects — accretion discs — where
the source of energy is gravitational potential energy. Matter gradually spirals onto a central
object, which could be a protostar or stellar remnant (white dwarf, neutron star, black hole),
or it could be a supermassive black hole of 108 solar masses or more. In the absence of friction
matter would just stay in the same orbit, like the particles in Saturn’s rings, and there would
be no accretion onto the central object. It is only due to turbulent friction and magnetic
fields that matter loses angular momentum. Associated with this is a conversion of potential
energy into heat via viscous and Joule heating. This is a remarkable point. Although in
astrophysics the microscopic viscosity v and magnetic diffusivity n are generally very small
(in the sense of huge Reynolds numbers), this does not imply that the total viscous and
Joule dissipation are necessarily small.

One of the corner stones of Kolmogorov (1941) scaling in turbulence is that the average
dissipation is of the order of pU®/L, and does not depend on the value of the molecular
viscosity. A similar result has recently been demonstrated for magnetic dissipation in driven,
low-beta plasmas, where the dissipation scales as B2UL/L%, Lg being the characteristic
length of the field lines (Galsgaard & Nordlund 1996). In accretion discs, turbulent viscous
and Joule dissipation can be extremely important. For instance, the most luminous objects
in astrophysics are quasars, quasi-stellar objects, which are now believed to be gigantic
accretion discs around supermassive black holes, where the source of radiation is viscous and
Joule dissipation. So, although viscosity and magnetic diffusion may be “negligibly small”,
they cannot be neglected and may well be energetically very important. If convection occurs
in accretion discs, it is probably not the main source of turbulence.
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We conclude this introduction to the rather broad range of astrophysical convection by
mentioning a few references. The extent and location of stellar convection zones is described
in Kippenhahn & Weigert (1990). Gas flows and related magnetic fields in galaxies are
described in Ruzmaikin et al. (1988), and the topic of accretion discs is introduced in the
book by Frank et al. (1992). In the following we focus on solar convection.

2 Deep solar convection

In solar convection the Reynolds number, R, = UL/v, is very large. The kinematic viscosity
v rises from about 1cm?/s near the surface to about 10 cm?/s in deeper layers (due to
radiative viscosity, i.e. momentum exchange by photons; e.g. Kippenhahn & Weigert 1990).
The typical velocities U and vertical scale heights vary from 1 km/s and 1 Mm (= 1000 km)
near the surface to 0.1 km/s and 100 Mm deeper down, so the Reynolds number is then
roughly
UL 10°10% 10*10%
Re=—~x
v 1 104
The Peclet number, Pe = UL/y, that compares advective effects to thermal diffusion
effects, is also very large. Thermal conduction is quite unimportant. Instead there is radia-
tive diffusion of photons, whose mean free path is much larger than that of the electrons.
Radiative diffusion can be described by Fick’s law, so the radiative flux is

=10"...10"°. (3)

Fraa = _K(pa T)VT (4)

The radiative conductivity K depends strongly on density p and temperature 7. In the
deeper parts of the solar convection zone most of the opacity is due to close encounters of
free electrons passing nearby an ion. This can absorb and emit radiation (free-free transition),
and the opacity can be described by a power law (Kramers’ opacity), so K is then

wen(2) ()

The value of Ky is well known (Ko = 5x 10" 2Terg cm ™! s ' K™, where py = 1g/ cm?® and
To = 1K). In the following, however, we shall refer to Kramers’ opacities even when the
value of K is modified (see below). K increases by about ~ 10% from the top to the bottom
of the convection zone, so the radiative flux increases gradually towards the bottom of the
convection zone (the temperature gradient is roughly constant), and takes over completely
from convection in the radiative layers below the convection zone. Here, the further increase
in conductivity is compensated for by a decrease in the temperature gradient (and a decrease
in the surface area), to keep the total luminosity constant.
The radiative diffusivity coefficient, that characterizes the diffusion of temperature per-
turbations, is X
X= oo (6)
where ¢, is the specific heat at constant pressure. The factor pcp, the thermal energy per
unit mass and Kelvin, increases by about five orders of magnitude through the convection
zone (in the surface layers ¢, is enhanced by about one order of magnitude relative to an
ideal gas). Thus, the rate at which temperature fluctuations are smoothed out by diffusion
decreases by about three orders of magnitude from the top to the bottom of the convection
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zone. Near the bottom of the solar convection zone x is around 107 cm?/s, so the Peclet

number is
_ UL _10*10"

P ~ 107 7
=~ : ™
whereas near the surface typical values based on Kramers’ opacity are
105108 3

Additional opacity in the surface layers, in particular from the negative hydrogen ion, in-
creases the actual Peclet number there considerably.
It is worth noting that one may write the Peclet number as

UL  pc,UT T _ Feony 1

P = B lpey) = KTJL 6T ~ Fraq 80T ©)

i.e., as the ratio of the convective and radiative fluxes, divided by the relative temperature
fluctuation. Near the surface, §InT ~ 1, but the radiative flux is only a tiny fraction of the
total flux. Near the bottom, Frag ~ Fiony, but 61nT ~ 1076,

Thus, for both the momentum and the energy equation, it is clear that the real diffusive
effects are much smaller than what can be handled by direct numerical simulations, even
though the situation is less extreme in the energy equation. The ratio of the diffusion
coefficients in the momentum or energy equations is the Prandtl number,

Pr = v/x = Pe/Re ~ 10%/10"...107/10'° ~ 1071°...1073 (10)

At this point there is a crucial decision to be made. One can either resort to some kind
of subgrid scale modeling, or one can use scaled values for the viscosity and the radiative
diffusivity, trying to preserve a reasonably small value for the Prandtl number, even though
it is clear that one cannot come (even in a logarithmic sense) near solar values. Subgrid
scale models, on the other hand, are normally insensitive to the value of Pr and resemble
more the conditions for Prandtl number equal unity.

We have taken the attitude that on scales that can be resolved by the simulations, diffusive
effects do not depend on the actual values of the microscopic diffusion coefficients, consistent
with the Kolmogorov assumption mentioned earlier. Effects due to small Prandtl numbers
are then expected only in the range of scales where diffusion of momentum is turbulent, but
thermal diffusion is not. In the next section, we briefly mention some effects that may be
expected there.

3 Low Prandtl number effects

The importance of the Prandtl number has been emphasized in the context of laboratory
convection, but not so much in the context of astrophysical convection. There is one quali-
tative aspect that arises due to a small value of the Prandtl number. Small Prandtl number
means that radiative diffusion is large compared with viscosity. The viscosity determines
the typical scale of vortex tubes (Constantin et al. 1995), so a small Prandtl number means
that the temperature will rapidly equilibrate across such vorticity structures. The pressure
is reduced inside vortex tubes, in proportion to the square of the speed of rotation. Using
now the equation of state for a perfect gas,
RT

p=—0p, (11)
W
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Figure 1: Contours of horizontal slices (just below the surface, z = 0.1) of the density fluctu-
ation p’ = p—{(p) (dotted contours mean lighter material and solid contours heavier material)
and the vertical velocity u, (dotted contours mean upward, solid contours downward flow).
The downdraft lanes are characterized by p’ > 0 and uw, > 0, except in the vortex near
the top of the figure, where p' < 0 (vortex buoyancy) and a small region with u, < 0 has
developed. Run D of Brandenburg et al. (1996).

where R is the universal gas constant and g the mean molecular weight, we see that for
almost uniform temperature across the tube, the density in the tube must be lowered. This
has consequences for convective downdrafts, that will be explained next.

First we need to emphasize that, because of vertical density stratification, the area occu-
pied by the convective downdrafts is smaller than the area of the upwelling motions. This is
simply because a fluid parcel contracts as it descends and it expands as it ascends. In order
to conserve mass (pvS = const), the downdrafts have to speed up (their cross-sectional area
S decreases, so the velocity v increases); see Stein & Nordlund (1989). This, together with
the Coriolis force, sets them into rapidly swirling motion. This is all not very surprising and
quite similar to geophysical convection. Also, what does it have to do with small Prandtl
numbers? In fact, in what we said above there seems to be a contradiction as to whether
the density in the downdrafts is large or small. We started by saying that the density has to
be small, because vortex tubes have low pressure. On the other hand, what generates those
rapidly spinning downdrafts in the first place is of course the fact that they are cool and
therefore dense, so the density cannot be low. This can be understood by considering the
following sequence of events: material at the surface cools, becomes dense and begins to de-
scend. As it descends, it contracts and is set into spinning motion. The spinning downdrafts
then tend to eject material centrifugally, so the pressure is lowered, relative to what it would
otherwise be. If the corresponding density reduction is larger than the density enhancement
associated with the downdraft, the buoyancy may actually reverse, and eventually cause
also the vertical velocity to reverse. This process has indeed been observed in numerical
simulations of low Prandtl number convection in the presence of rotation (Brandenburg et
al. 1996, Brummel et al. 1996; see also Fig. 1).

If the Prandtl number were of order unity this process would have been less pronounced,
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because the temperature would have been able to adjust to the smaller adiabatic value, so
the density reduction would have been smaller by a factor ~.

4 The entropy gradient

In ordinary Boussinesq convection the degree of instability is characterized by the Rayleigh

number
4

Ra g-VinT), (12)

= ij(
where the subscript 0 refers to the (unstable) nonconvective hydrostatic state, which is
sometimes also the initial state used in simulations. Here, T is the temperature, H the
height of the layer, and g is the gravitational acceleration. (Normally one would write a VT
instead of VInT, where « is the expansion coefficient, but for a perfect gas a = 1/T;
see Chandrasekhar 1961.) This definition is readily extended to the regime of stratified
convection by replacing the logarithmic temperature by the normalized specific entropy s/c,,
o)

H4

vXCyp

Ra =

(g - Vs)o, (13)

where s/c, =InT — (1 — 1/7)Inp is the normalized specific entropy, (Vs)o is the entropy
gradient of the unstably stratified nonconvective hydrostatic solution and c, is the specific
heat at constant pressure. For a perfect monoatomic gas, ¢, = %R/ -

In the inviscid limit, v — 0, stability is simply governed by the sign of g - Vs. In
astrophysics this is known as Schwarzschild’s criterion,

g-Vs>0 (instability). (14)

Let us now look at the profile of the horizontally averaged entropy, (s), as a function of z
using data of a simulation. In Fig. 2 we show the entropy profile from a simulation where
Kramers’ opacity law is used. The vertical scale in the figure does not accurately represent
the sun, especially near the surface which has artificially been pulled further down into the
convection zone relative to the sun.

There are basically five regimes; see Fig. 2. The first regime (below 470 Mm) is the stably
stratified radiative interior where the average entropy (here normalized by cp/g) rises at a
rate

~9 - V(s/cp) = Ny >0, (15)

where Ngy is the Brunt-Vaisila frequency if the stratification were isothermal. (Because of
temperature stratification the actual Brunt-Véiiséld frequency is somewhat different.) Be-
tween 470 and 500 Mm (regime II) there is another layer where N3y is almost unchanged,
but the convective flux is now negative. Here are only sporadically entering plumes from
the convection zone above that stir up the gas. In regime III (500-540 Mm) N3y is still
positive, but much smaller than in the deep radiative interior. This regime should be con-
sidered as part of the convection zone, because there is a convective flux that is directed
upwards. However, according to Schwarzschild this entire layer is still stable. At some point
in the middle of the convection zone there is a point (near 540 Mm) where N3y, finally turns
negative and its magnitude increases until one reaches the surface layers (near 690 Mm in
the plot), where there is a sharp increase of the entropy. This is then the fifth regime which
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Figure 2: Profiles of entropy and convective flux in a single snapshot of the simulations with
Kramers’ opacities. Region I is the radiative interior, IT the overshoot layer, III the radiative
heating layer, IV the bulk of the convection zone, and V the surface layer.

is a stably stratified overshoot layer above the convection zone. Here, N3y is again positive
and its value is larger than the value for the radiative interior.

To appreciate the properties of the slightly stable profile of (s) in the lower part of the
convection zone (region III) we should first point out that in simulations with fixed vertical
profiles of the conductivity, K = K (z), having a narrow transition region between stable
and unstable layers, this regime is very narrow. In Fig. 3 we show the profile of (s) from
a snapshot of a simulation of Brandenburg et al. (1996), where there are three layers with
different values of the conductivity K = K(z). The unstable hydrostatic reference solutions
have different polytropic indices in the three regions, with a continuous but rather abrupt
change from region to region. As a consequence, the transition from transport by radiation
to transport by convection is more abrupt than in the case with Kramers’ opacity (Fig. 2).

The existence of a region with positive convective flux but stable average stratification
is intimately related to the transition from radiative to convective energy transport (Nord-
lund et al. 1996). The decrease of the radiative energy flux with radius implies a negative
divergence of the radiative energy flux, corresponding to heating of the fluid. Of course, the
increase of the convective flux with radius corresponds to a cooling that, on the average, bal-
ances the heating from the decrease of the radiative flux. However, the heating and cooling
have quite different horizontal distributions, and only cancel when averaged over horizontal
area (and time). The radiative flux is approximately uniform, being proportional to the
temperature gradient of a medium with very small relative temperature fluctuations. The
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Figure 3: Profiles of entropy and convective flux in a single snapshot of the simulations with
fixed piecewise constant conductivity K (z).

convective flux is very non-uniform, being carried mostly by localized, cool downdrafts.

On the background of these considerations, it is easy to understand the reason why the
average stratification must be weakly stable in this region (regime III in Fig. 2). The nearly
uniform positive heating from the decreasing radiative flux gradually increases the entropy
of the ascending material. Cool downdrafts that penetrate into this weakly stable region
are decelerated and also gradually loose their entropy contrast relative to the background.
In order to penetrate all the way through region III, they must arrive with a sufficient
entropy deficiency and/or excess momentum. The gradually decreasing convective flux with
depth is the horizontally averaged manifestation of both the decreasing entropy contrast of
those downdrafts that manage to penetrate, and the decreasing number of downdrafts that
succeed.

In Fig. 4 we show the evolution of two plumes in two different vertical slices of the entropy
for the run described in Fig. 2 (i.e. the run with Kramers’ opacity). The boundaries between
regions II, ITI, and IV are marked by dotted and dashed lines, respectively. Two different
types of plumes are visible: one that plunges down through the entire convection zone into
the stable layer below and another that develops a typical mushroom shaped head. The
extent of plume penetration is an important problem that needs further investigation.

Figure 5 shows horizontal images of the temperature in four selected layers. Around
the upper entropy minimum near the surface (z = 683 Mm) there is a clear granulation-like
pattern with cool downdraft lanes between warm upwellings. This is qualitatively similar
to the solar granulation, but here in the model the stratification is less than in reality, so
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Figure 4: Evolution of two downdrafts shown as vertical slices of the entropy. Dark means
low entropy.
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Figure 5: Horizontal slices of the temperature through a downdraft.

this “surface layer” does not correspond to the real surface of the sun which is still further
up in the atmosphere. In the bulk of the convection zone (z = 600 Mm and z = 545 Mm)
the temperature pattern is rather different with cool regions now being disconnected. In the
lower overshoot later the situation is different again. Even at the top of the overshoot layer
(z = 500 Mm) there are now warm isolated spots. They are a consequence of cool downdrafts
that shoot into the stable layer, where they appear hot in comparison to the surroundings,
whose entropy decreases rapidly with depth (cf. Fig. 2).
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5 The thermal time scale problem
In deeper layers of the sun the thermal time scale

Tth = HZ/X = Pe Tturnover (16)

becomes extremely long compared with the turnover time (Pe ~ 107). Using Eq. (6), Tin

may also be written

_ pcpTHp ~ Ethermal
KT/H, Fiog

where Fihermar 1S the thermal energy content and Fi,q4 is the radiative flux. Near the bottom

of the convection zone this is nearly the same as the local Kelvin-Helmholtz time scale

(17)

Tth

TKH = —( (18)

but in the bulk of the solar CZ and at the top, 7y is much smaller than 7y, because Fraq is
tiny in comparison to Fio¢. When discussing thermal relaxation of simulations of deep solar
convection, it is really 7y rather than 7y, that is relevant, but since the two are similar in
the bottom layers, where thermal relaxation is the biggest problem, we continue to use 7y
in the discussion below.

Note that kg varies by about eight orders of magnitude between the top and the bottom
of the convection zone. On the other hand, the turnover time varies by only three orders of
magnitude.

Table 1: Typical orders of magnitude of radiative diffusion x, pressure scale height Hp,
turbulent velocity u;, as well as dynamical, thermal and Kelvin-Helmholtz time scales, re-
spectively, at two different depths (cgs units).

location r/R  x H, uw Tsh TKH Tturnover
surface 1.0 10" 108 10° 10® 10° 103
bulk of CZ 0.8 107 109 10* 10 103 106

The increasing gap between thermal and turnover time scales in deeper layers has im-
portant consequences for the evolution of the flow. Any perturbation will take a time much
longer than the turnover time to relax. The problem of the thermal relaxation of simulations
covering deeper parts of the solar convection zone was first pointed out by Chan & Sofia
(1986). One may think that by setting up an initial state sufficiently close to the final one
the relaxation time may be reduced, but this does not seem particularly helpful in practice.
There is always a little perturbation in the initial state, which still takes a long time to relax.
Faster relaxation could be achieved using for example an implicit or semi-implicit scheme
(Fox 1994) that allows a longer time step, or by just using lower resolution, but again the
danger is that a new and time consuming relaxation process will be necessary when switch-
ing back to a shorter time step or to higher resolution. Furthermore, any changes in the
physics of the simulation (e.g. adding magnetic fields or rotation) may result in a new long
relaxation period.

One may then ask the question how the results change if one brings the thermal and
turnover times closer together. The ratio between thermal and dynamical (or turnover) time
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scales is ~ Pe = (Feony/Frad) (T/0T); see Eq. (9). In order to simplify the discussion, we
consider the scaling of the Peclet number near the bottom of the convection zone, where
Feony ~ Fraqg ~ F. The scaling may be expressed either in terms of the total flux F, or in
terms of the product of the Rayleigh and Prandtl numbers RaPr.

The scaling of the relative temperature fluctuation may be obtained from considering the
convective flux Feony, that is proportional to the product u.07', and the kinetic energy per
unit mass u?, that is proportional to 87" (buoyancy), so

Feony ~ u} ~ 8T3/? (19)

The relation to the Rayleigh and Prandtl numbers may be obtained by observing that
the radiative flux F.q is proportional to ¥, so the product RaPr (~ x~2) is proportional to
Frgg. Since Feony ~ Frag ~ F in the layer we are considering, we obtain

7—t;h/Tturnover ~ Pe ~ (RaPr)l/s ~ F72/3 (20)

Thus, in order to bring the thermal and dynamical time scales closer together, one must
increase the total flux or, equivalently, lower the Rayleigh number. The fact that the flux
decreases with increasing Rayleigh number may appear counterintuitive, but is because a
reduced radiative diffusivity corresponds to a reduced radiative energy flux.

Thus, the significance of increasing the Rayleigh number in numerical experiments is not
just to lower the viscosity and diffusivity, but also to lower the total flux and thus bring the
thermal time scale closer to that of the real system.

Table 2: Mach number, flux (relative to the solar value), and Peclet number for different
values of the Rayleigh number (or rather the product RaPr). The degree of feasibility in
subjective terms is also indicated.

RaPr Ma F/F; Pe feasibility
108 10! 109 10 “trivial”
102 1072 106 10%® feasible
10 1073 10®° 10° not feasible
10 10~ 1 107  the sun

In Table 2 we have listed some relevant parameters for a few cases. From this we see
that currently feasible models must have a flux that is of the order of a million times the
solar flux, in order to avoid the problem with the thermal relaxation time scale. Such “toy
models” may still be quite useful, because they display qualitative features that may also be
expected to appear in models with lower fluxes (and ultimately in the real thing). To the
extent that one can understand and derive the scaling of these features with total flux, the
toy models still serve a useful purpose.

Some features may be expected to be difficult to find scaling relations for. For example,
the extent of the overshoot layer will be too large in the toy models and the braking of
overshooting bubbles has a strongly nonlinear dependence on the overshooting distance.
The extent of the overshoot layer could be reduced by making the subadiabatic gradient
steeper, but this requires modifying the opacity law.

The main moral of all this is that it is currently impractical to model solar convection in
deeper layers using realistic fluxes. Instead, we must rely on toy models with excess flux, i.e.
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Figure 6: Upper row: histograms of the cosines of the angles between w and the three
eigenvectors e, e, es, of the rate of strain matrix. Lower row: same, as upper row, but
for B. The direction of compression corresponds to e; and the direction of stretching to es.
Note the enhanced probability of the intermediate eigenvector e, to be aligned with w or B.

with values of F'/Fy, significantly larger than unity, and try to understand the model output
as F'/Fg approaches the solar value. The scaling relations discussed here should be tested
and deviations be understood in terms of the specific physical processes involved.

6 The formation of magnetic structures

In the sun the gas is hot enough to be ionized in the bulk of the convection zone, so it
is electrically conducting. Consequently, the Maxwell equations are then coupled to the
fluid equations via the Lorentz force and Ohm’s law. It is generally found that turbulent
convection can lead to dynamo action (e.g. Gilman 1983, Glatzmaier 1985, Meneguzzi &
Pouquet 1989), which is the self-excited (spontaneous) conversion of kinetic energy into
magnetic energy. Although this process is actually central to some of our work we are going
to quote below, we only want to discuss those aspects that are of somewhat wider interest.
Important aspects concern the formation and advection of magnetic structures. This is
generally relevant, because magnetic fields behave in many ways similar to vorticity.

In ordinary nonmagnetic turbulence the flow consists of a large number of vortex tubes
(Siggia 1981, Kerr 1985, Vincent & Meneguzzi 1991). Something similar happens with the
magnetic field, at least when the field is developing freely and not imposed externally. In
the inviscid hydrodynamical case the vorticity occurs rather in the form of sheets (Cao et
al. 1996). In the magnetic case the situation is not quite clear yet. Visualisations of the
strongest B-vectors suggests mostly tube-like structures (Nordlund et al. 1992), although
sometimes sheets can also be found. A multifractal analysis of the data also suggests that
the strongest flux concentrations have the form of tubes (Brandenburg et al. 1992). However,
the structure function exponents in MHD turbulence can best be understood using a model
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Figure 7: Cosines of the angles between different vector fields in the simulation. Note espe-
cially the strong tendency for alignment (or anti-alignment) between between the vorticity
w and the magnetic field B. The dotted lines refer to all points in a snapshot and the solid
lines only to those where the magnetic field exceeds its root mean square value by a factor
of three.

that assumes sheet-like structures (Politano & Pouquet 1995).

In hydrodynamical turbulence the vortex tubes are aligned with the individual vorticity
vectors w. Likewise, in MHD turbulence the magnetic flux tubes are aligned with the
individual magnetic field vectors B. In both cases the tendency for alignment is thought to
be a diffusive phenomenon (Constantin et al. 1995, Brandenburg et al. 1995a). In ordinary
turbulence the vortex tubes are aligned with the intermediate eigenvector of the rate of strain
matrix. The same is true of the magnetic field which is mostly parallel to the intermediate
eigenvector (Fig. 6). It is then not surprising that the vorticity and magnetic field vectors
are mostly parallel to each other (Fig. 7). There is also a tendency for u and B to be aligned,
but this effect is quite weak in comparison with the enhanced alignment of w and B. In
the plot we have distinguished between all data points in the simulations (dotted lines) and
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Figure 8: Left panel: power spectra of the kinetic energy (solid line), magnetic energy (dotted
line) and temperature fluctuation (dashed line). Right panel: power spectra of the kinetic
and magnetic helicities, Hi (k) and Hys(k), respectively.

those where the field is strong (solid line). The correlation plot of J and B indicated that
the two vectors tend to be perpendicular on average (dotted line), but this is no longer true
of those regions where the field is strong (solid line). Details of this analysis can be found
in Brandenburg et al. (1996).

Nevertheless, despite their similarity, in other respects the magnetic field and the vorticity
are actually quite different. The powerspectrum of the velocity has a short range roughly like
a Kolmogorov k~5/3 spectrum, so the vorticity has a k*'/3 spectrum. However, a similar
spectrum is not observed for the magnetic field, except very early in the evolution when
nonlinear effects were still unimportant (Brandenburg et al. 1996).

7 Magnetic dynamo action

Video animations of the strong magnetic field vectors show how magnetic flux tubes evolve.
Some snapshots of such animations are reproduced in Fig. 9. One sees a tendency for
magnetic loops to fold onto themselves. This appears to be similar to the stretch-twist-
fold dynamo of Vainshtein & Zeldovich (1972), (see also a recent monograph by Childress
& Gilbert 1995). In this type of dynamo constructive folding of tubes enhances the flux.
Whether or not this is really the dominant process in the simulations remains to be seen. It
is clear, however, that there is a dynamo acting in the simulations: magnetic energy increases
exponentially in time over many orders of magnitude until saturation sets in (Fig. 10). For
further details see Nordlund et al. (1992) and Brandenburg et al. (1996). After some period
of exponential growth two solutions with different initial conditions settle at the same value.
During the growth phase the size of magnetic structures, as measured by the magnetic Taylor
microscale,

A = /5(B%) /((V x B)?), (21)

increase with time. This suggests that the magnetic structures are intensifying not just by
stretching, but in particular by growing in thickness, possibly via folding.
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Figure 9: Snapshots of a video animation showing a strong magnetic flux tube (white) being
wrapped around a spinning downdraft (dark grey, extending from the top of the box to the
middle). As time goes on (frames a-d) the magnetic flux loop appears to be folded onto
itself and is being pushed further down to the bottom the convection zone and into the lower
overshoot layer (lower half of the box).

8 Downward pumping

In the presence of rotation and stratification there is a pronounced phenomenon of downward
“pumping” of magnetic fields and vorticity. This is seen in images of the magnetic energy
density B? (Fig. 11) and the enstrophy density w? (Fig. 12), showing that most of the field
and vorticity accumulates near the lower overshoot layer. This is also clearly seen in video
animations of the magnetic field, as described by Nordlund et al. (1992) and Brandenburg et
al. (1996), see also Fig. 9. The amount of vorticity and magnetic field that has been pumped
downwards is however much weaker if there is no rotation (Fig. 13). In that case most of
the vorticity is seen near the top where fluid overturns into the downdraft lanes.

The nature of this pumping effect is not fully clarified. There are two forms of pumping
that have been discussed in the context of magnetic fields. One is topological pumping of
a horizontal magnetic field by convection in a connected network of downward or upward
motion. The other is turbulent pumping. The two mechanism are quite distinct, but easily
confused because both start with ‘t’. (See Brandenburg et al. 1995¢ for references and a
recent discussion of the two effects.) In our simulations with rotation the pumping cannot be
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Figure 10: Left: evolution of the magnetic energy Ex and kinetic energy Ex for two different
runs. Right: evolution of the magnetic Taylor microscale for different magnetic Prandtl
numbers Prj,.

Figure 11: Three-dimensional image of the magnetic energy density B2. Note that most of
the magnetic field is near the lower overshoot layer, which is located just a little below the
middle of the box.

topological, because the downdrafts do not form a connected network. Turbulent pumping
remains a possibility, but the details of the actual mechanism must be different from the
original turbulent pumping, which corresponds to a net transport velocity ©pymp = —%Vnt,
where 7; ~ %utﬁ is the standard expression for the turbulent magnetic diffusivity, where ¢
is the correlation length of the turbulence. This expression involves just £ and wu;, which is
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Figure 12: Three-dimensional image of the enstrophy density w?. Similar to Fig. 11 most of
the vorticity is near the lower overshoot layer.

independent of rotation, so this expression is too simplistic in describing our results.

9 Outstanding problems

In the last three sections we have touched upon some aspects of magnetic field evolution in
solar convection. This poses indeed a challenging problem. Among other reasons, we need
to study solar magnetism in order to understand variations of the solar luminosity which, in
turn, can influence the earth’s climate.

A particularly important problem is to understand the origin of the large scale magnetic
field and its 11 years cyclic variations (i.e. the sunspot cycle). Simulations are currently
under way to investigate the effect of shear on a convective dynamo. Promising results have
emerged in the context of accretion disc turbulence simulations where strong shear leads to
a cyclic large scale magnetic field (Brandenburg et al. 1995b). In this case the magnetic field
evolution is governed by flows that result from the magnetic field itself due to an instability.
In the case of accretion discs relevant instabilities include the magnetic shear and buoyancy
instabilities (for a review see Schramkowski & Torkelsson 1996). The same idea may also
apply to stars where, in addition to magnetic buoyancy and shear instabilities, destabilized
magnetostrophic waves have been discussed (Schmitt 1985). There is a related approach
based on the Parker and other magnetic instabilities of flux tubes by Ferriz-Mas, Schmitt &
Schiissler (1994). More recently, similar investigations have been carried out in connection
with the dynamo effect in galaxies (Hanasz & Lesch 1997).

Future simulations will hopefully reveal whether the large scale field of the sun is really
governed by magnetic instabilities, or whether cyclonic convection alone can do the job. An
important prerequisite of realistic models of solar convection and magnetic field generation
are high Rayleigh numbers and small fluxes. We hope that significant progress can be made
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Figure 13: Three-dimensional visualisation of the vorticity in a simulation without rotation.

in addressing these issues in the near future.
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