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Abstract:

Numerical simulations of hydromagnetic turbulence in the presence of shear
and/or convection have given us new clues as to how the solar dynamo might
work. Simulations suggest that there is significant large-scale magnetic field
generation at the bottom of the convection zone, where the radial shear is largest.
The nature of the dynamo in the simulations seems to be qualitatively similar
to an af)-dynamo. However, the origin of the effective « in the simulations is
not thermal convection, but magnetobuoyancy and magnetic shear instabilities.
This results in a negative a-effect. The efficiency of the a-effect on the one
hand, and losses on the other, should increase as the field strength increases. It
is argued that this could lead to an increasing ratio between cycle and rotation
frequency with increasing field strength, as is indicated by the stellar cycle data
of Baliunas and collaborators. Furthermore, to explain the cycle data for active
stars one has to invoke another, as yet unknown, type of magnetic instability
for which both a and the flux loss are abruptly reduced above a certain field
strength. However, details of this speculation are still unclear.

1. Introduction

Solar and stellar activity is usually explained as the result of some kind of an
afl-dynamo. Problems arise, however, both on observational and theoretical
grounds. In other words, not only does a model need to reproduce the observa-
tions, but it also has to be consistent and theoretically sound. In fact, at present
there is no good model of the solar dynamo. Solutions have been offered to solve
some of the problems. For example, the correct solar butterfly diagram has been
reproduced by assuming a negative sign of « in the northern hemisphere. Qual-
itatively, a negative a could arise at the bottom of the convection zone, because
there the downward moving fluid must overturn and therefore expand. This
changes the sign of the helicity locally, and this could also change the sign of
a. However, in the bulk of the convection zone the sign of a should still be
positive and this would yield the wrong direction of field migration. Thus, one
has to assume ad hoc that « vanishes in the bulk of the convection zone; see
Ridiger & Brandenburg (1995) for a recent paper on this approach. Even then
there remain a number of things to be “adjusted”, for which there is not much
theoretical justification.

On the theoretical side there are a variety of problems. Sophisticated
three-dimensional simulations of convective dynamo action in spherical shells by
Gilman (1983) and Glatzmaier (1985) did produce dynamo action, but there the
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field migrated in the wrong direction and the resulting differential rotation was
approximately constant on cylinders, which is not consistent with helioseismol-
ogy. Such simulations leave little room for maneuvering, because of the absence
of suitable free parameters. On the other hand, in mean-field dynamo theory
(e.g., Moffatt 1978) one is used to manipulate quite freely various coefficients to
make things work. We return to this further below.

In the present paper we use local three-dimensional simulations in a box
in order to understand the nature of large-scale magnetic field generation. We
argue that large-scale dynamo action of dynamically strong magnetic field is
based on magnetic instabilities. One important consequence is that the effective
« increases with increasing field strength. This behavior can possibly be verified
observationally. The idea of an a-effect that increases with the magnetic field
is related to previous studies suggesting that the a-effect might not be caused
simply by cyclonic events, as originally suggested by Parker (1955), but instead
by magnetically buoyant flux tubes (Leighton 1969; Schiissler 1980). We elabo-
rate further on this approach, which comprises a whole new class of mechanisms,
where the a-effect is not caused by a pre-existing flow field, but instead by the
dynamics of the generated magnetic field itself. For more information about sev-
eral related topics see my home page under http://antares.ncl.ac.uk/~brandenb.

2. A Dynamically Generated a-Effect

In this section we try to avoid any explicit reference to a flux tube model, except
for interpretation purposes and for examining numerical results in a cartoon
picture-like fashion. Instead, we focus on presenting recent simulations, where
the magnetic field is crucial for driving the motions. This is in stark contrast to
the traditional belief that the magnetic field would quench the motions, which
generate the magnetic field. This possibility has been discussed in the past.
However, it has never been shown that this can actually work. In view of Lenz’
rule it seems counterintuitive to have a dynamo based on the velocity that is
generated by the resulting magnetic field itself.

In his thesis, Dieter Schmitt (1985) proposed a dynamo effect based on
destabilized magnetostrophic waves. He found an a-effect that was negative
in lower latitudes just north of the equator, but positive in higher latitudes.
Schmitt (1987) himself, and later with others (Schmitt, Schiissler & Ferriz-Mas
et al. 1996), presented dynamo models based on this effect. However, in view of
Lenz’ rule one would really like to see evidence from simulations showing that
this mechanism works and that it leads to dynamo action.

There is a related approach based on the Parker and other magnetic in-
stabilities of flux tubes by Ferriz-Mas, Schmitt, & Schiissler (1994), where the
authors find an a-effect whose sign depends on the magnetic field strength and
the wave number. More recently, similar investigations have been carried out in
connection with the dynamo effect in galaxies (Hanasz & Lesch 1997).

The various investigations mentioned above appear to have something in
common with the simulations of accretion disk turbulence by Brandenburg et
al. (1995, 1996a), where a dynamo generated magnetic field drives the turbulence
owing to Balbus-Hawley and Parker instabilities. In those simulations a strong
large-scale magnetic field is found. This component of the field is cyclic with a
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period of 30 orbits and it shows migration away from the midplane. This field
can be described by an af2-dynamo in a slab geometry, where « is negative above
the midplane (and negative below), and its magnitude is roughly 1/30? = 103
times the sound speed. Before we go into these issues in more detail, let us first
discuss the significance of this result.

Over the past few years various related arguments against mean-field dy-
namo theory have been put forward. One of the arguments was that strong
fluctuations of the magnetic field would be generated from the large-scale field.
Such fluctuations would limit further growth of the large-scale field (Kulsrud &

Anderson 1992) to values that are smaller by a factor Rm'/? ~ 107 than the
equipartition value, Beq = (4mpu?)1/2 (Vainshtein & Cattaneo 1992). Here, Ry,
is the magnetic Reynolds number, measuring the relative importance of field
advection to magnetic diffusion. Although some of the arguments that have
been presented may not be very convincing, there remains the possibility that
the dynamo works in ways quite different from what has been anticipated so far.
More specifically, the dynamo may not only be strongly influenced by nonkine-
matic effects, but it may survive into the nonlinear regime just because of those
nonkinematic effects!

3. An Example of a Dynamically Generated a-Effect

We make a little excursion to accretion disks, not because they resemble stars in
any obvious way, but because they provide at the moment probably one of the
best examples of a numerical turbulence simulation that shows cyclic magnetic
activity. The recent simulations by Brandenburg et al. (1995) were originally in-
tended to explain the origin of self-excited turbulence in accretion disks. [Disks
are linearly stable in the absence of magnetic fields, so there would be no tur-
bulence, which is, of course, crucial for angular momentum transport. In the
presence of a weak magnetic field, however, there is the linear Balbus-Hawley
(1991) instability, which drives three-dimensional turbulence (Hawley, Gammie,
& Balbus 1995), and which is able to reinforce the magnetic field by dynamo
action (Brandenburg et al. 1995; Hawley, Gammie, & Balbus 1996; Stone et al.
1996).] The discovery of large-scale magnetic field generation in the simulations
of Brandenburg et al. (1995) triggered a series of work trying to explain this in
terms of mean field-type dynamo theory (Vishniac & Brandenburg 1997; Bran-
denburg & Donner 1997). One of the main problems is simply the sign of a: it
was found to be negative in the northern hemisphere, even though the helicity of
the flow has the expected (negative) sign. This then led to the realisation that
the effective « in those simulations could really be due to magnetic instabilities,
and not due to thermal convection (Brandenburg 1997).

In the simulations of Brandenburg et al. (1995) the large-scale field, espe-
cially the toroidal magnetic field component, shows remarkable spatio-temporal
coherence. The field varies not only cyclically (Figure 1), but it also migrates
away from the midplane (Figure 2). The traditional approach to understand
such organized behavior is to adopt the mean-field approach, where the original
induction equation is averaged and turbulent transport coefficients are intro-
duced that describe the evolution of the nonlinear term, £ = (u’ x B') in terms
of the mean field itself. In principle such parameterizations can be fairly com-
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Figure 1. The square of the mean toroidal magnetic field, (By)?,
normalized by the squared equipartition field strength, BZq. Note that
cycle length and amplitude vary from cycle to cycle, similar to the solar
cycle. The data are from Model O of the three-dimensional simulation
of Brandenburg et al. (1996a).

plicated, but more importantly, they are typically extremely uncertain. We may
therefore use the simulations to estimate the “transport coefficients” assuming
a relation € = £((B)). Such a relation should contain terms that are capable of
producing dynamo action. So, in its crudest approximation it should take the
form

(u' x B') = a(B) — 7V x (B), (1)

where « is the traditional dynamo a-effect and 7, is a turbulent magnetic dif-
fusivity. The simulations are consistent with the following estimates: a =~
—0.001QH and n; =~ 0.008QH?2, where Q is the angular velocity and H the
disk scale height. The sign of « is negative in the upper disk plane, but positive
in the lower (southern) disk plane; see Brandenburg et al. (1995), Brandenburg
& Donner (1997). This is quite peculiar: the opposite result is expected from
conventional mean-field theory, where the a-effect is related the helicity of the
turbulence. While the helicity of the turbulence in our simulations does have
the expected sign, the simulations indicate that it has not much to do with a.

A negative a-effect has various implications. First of all, if the generated
magnetic field is oscillatory, as in fact it is in the simulations, there will be a
magnetic field migration associated with its cyclic variation. This is indeed what
is observed in the simulations. The direction of this field migration is consistent
with the implied negative sign of a.

In order to get an idea of why our « has the opposite sign we now present
a rough calculation, assuming that the fluid motion is governed by magnetic
buoyancy, so

Ouy, _ p’g _(BY _(ByB,

ot 8mp 4d7p

9 (2)
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Figure 2.  Spatio-temporal pattern of the toroidal component of the
large-scale field, (By), as a function of height above the midplane of the
disk and time in units of rotation periods. The data are from Model O
of the three-dimensional turbulence simulation of Brandenburg et al.
(1996a).

where p is density, p gas pressure, g gravity, and primes indicate fluctuations. As
above, we have adopted a local cartesian coordinate system, where y corresponds
to the azimuthal direction and z to the radial direction in cylindrical polar
coordinates. The resulting electromotive force is then

(BzBy)
4mp

&y = (u, B, —u,B}) ~ (u,B;) = +(By) gr, (3)

where 7 is some relevant time scale. Now, because of shear (Qu,/dz < 0) we
have (B;B,) < 0. Since
Ey = oyy(By) + ..., (4)

we have (ignoring higher order terms)

(B;By)

Qyy = +(By) dnp

gr. (5)

In accretion disk theory the negative ratio of the horizontal Maxwell stress and
the gas pressure is basically the Shakura-Sunyaev viscosity parameter agg, which
we know is about 0.01 (Brandenburg et al. 1995; Stone et al. 1996), so we can
write

Qyy =~ —0.01g7. (6)

The effects of rotation and shear are now hidden in the fact that the stress
(BBy) is negative, which is due to the negative shear (Q decreasing radially
outwards). This estimate also assumes that the thermal expansion of buoyant
tubes is small compared with the magnetic contraction due to the B- VB term.
Otherwise the sign may be the conventional one.
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Figure 3. Turbulent viscosity as a function of the mean magnetic
field. The dots refer to data obtained at different times during the
simulation. The solid line gives the approximate fit formula Eq. (7).

Below we will argue that both a and 7; should increase with magnetic field
strength. However, it is difficult to estimate the magnetic field dependence of
those two parameters. What we can do is to calculate instead the turbulent
viscosity 14 as a function of the mean magnetic field. We find that v; does
depend on the mean magnetic field approximately like

vy = 0.2ule (1+ (B)2/BZ,), (7)

see Figure 3. Here, u; is the turbulent root-mean-square velocity and I. is
the effective correlation length, which Brandenburg & Donner estimated to be
0.03H for that calculation. Since both 7 and ¢ describe turbulent mixing, it is
possible that 7, and v are related to each other simply by a constant numerical
parameter (the magnetic Prandtl number). Of course, we are not sure about
this, but we emphasize at this point that at least 4, does increase with increasing
field strength.

4. Convection with Shear

What makes the simulations discussed above so distinctively non-solar is the
driving of the turbulence by shear, rather than by convection. Traditional be-
lief is that the solar dynamo is driven by convective turbulence either in the
convection zone or just below it, where overshooting plumes drive the flow. In
this overshoot layer shear is important for converting radial magnetic field into
toroidal. There is no compelling evidence that shear contributes directly to driv-
ing the flow that is responsible for dynamo action although future simulations,
where shear is included, should clarify this issue.

At the moment we only have preliminary simulations that aim at under-
standing the influence of shear on convective dynamo action (Brandenburg,
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Figure 4. Idealized profiles of solar differential rotation. Left panel:

contours of Q(r,#) for the sun. Right panel: contours of ugﬂ) (x, z) using
(8). Note that near 30° latitude the contours of ug(,o) resemble those of
2, except for some asymmetry that is absent in the cartesian model

(right panel).

Nordlund & Stein 1997). Convective dynamos in local box geometry typi-
cally produce small-scale magnetic fields (Nordlund et al. 1992; Brandenburg
1996b). Owing to rotation and stratification the convective flow becomes highly
anisotropic and this should drive differential rotation (Ridiger 1989). While
this can be seen in such simulations (Pulkkinen et al. 1993), the effect is smaller
than it would be under more realistic circumstances, where the computational
domain is not confined and where effects of spherical geometry could play a role.
Thus, it seems that local models would not be appropriate for studying
differential rotation. On the other hand, since the (local) accretion disk simu-
lations discussed above proved quite successful in producing large-scale dynamo
action, it seems possible to study at least the dynamo aspect in a local model
of the solar dynamo. In order to do this we have to impose however some solar-
like differential rotation profile in the simulations. This can be done in a way
similar to the accretion disk simulations, the difference being that the shear has
to depend on height. In the deeper radiative interior of the sun there is hardly
any shear, whereas in the bulk of the convection zone there is strong latitudinal
shear. Thus, we use the following profile for the imposed toroidal velocity

ug(/o) (.’I},Z) = l‘f(Z), (8)

where f(z) is a profile function (zero below the overshoot layer, constant and
different from zero in the convection zone). The restriction to only linear lat-
itudinal shear is essential and cannot be avoided in our particular approach
(Brandenburg et al. 1995), where the shearing box approximation is made, i.e.,
pseudo-periodic boundary conditions are used.

In Figure 4 we compare an idealized profile of solar differential rotation with

(8). In the plot of ugo) (z, 2) where we have used f(z) = (1 —tanh 28, 20 = 1,
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Figure 5.  Upper panel: Evolution of kinetic and magnetic energies
(solid and dotted lines). Lower panel: Evolution of mean radial and
toroidal fields (dotted and solid lines).

do = 0.1. The (preliminary!) simulations indicate an evolution of the mean
magnetic field components in the horizontal directions, (B;) and (By). Figure
5 seems to show the beginning of a solar cycle. It is remarkable that (B,) and
(By) seem to show a 37 /4 phase shift in a similar manner as the accretion disk
simulation (Brandenburg et al. 1996a).

5. Observations

Let us now look at observed stellar cycle data. Although stellar cycle data have
been looked at many times in the past (Noyes, Weiss, & Vaughan 1984; Baliunas
& Vaughan 1985; Baliunas, Sokoloff, & Soon 1996; Baliunas et al. 1996), we feel
that a fresh look at things could be helpful, especially if we have to ask new
questions, for example: can we learn anything about the dependence of a on
field strengh? Using now the stellar cycle periods, Peyc, published by Baliunas et
al. (1995), the rotation periods, P, and the normalized chromospheric activity
measure, (Ryg), from Donahue, Saar, & Baliunas (1996) we have plotted all
possible correlations between

e the ratio of cycle and rotation frequencies, w/{2,

e the inverse Rossby number, Ro™!,
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e the mean activity level, (Ryk), and
e the spectral type, measured by color index B — V.

Here, w = 27/ Peye, Q = 27/ Prot, and Ro™! = 2Qr., where 7. is the turnover
time. We have adopted the ‘empirical’ turnover time of Noyes et al. (1984). The
result is shown in Figure 6. In this plot we have taken only those stars for which
the ‘false alarm probability’ is large enough (with grades good and excellent).
Furthermore, in those cases where two periods have been reported, we always
take the longer one of the two. A full account of this work is in preparation
together with Steve Saar and Chris Turpin.

There are three plots that show systematic behavior. There is first of all the
plot of Ry ) against Ro~!, which shows an approximately linear behavior in the
parameter range covered by all the cyclic stars with well-defined cycles. This plot
is basically consistent with a similar plot by Noyes et al. (1984). Secondly, the
plot of the ratio w/Q against (Ryy) shows two separate branches, an upper one
for small values of (R ) (corresponding to inactive stars) and a lower one for
large values of (Ryg) (corresponding to active stars). Soon, Baliunas, & Zhang
(1993) have discussed a similar plot, where (R, ) was used as an age indicator.
The segregation of cycle periods was first discussed by Saar & Baliunas (1992).
From the two correlation plots in panels ¢ and d it follows that w/Q versus Ro™1
must also show a correlation, which is does. However, the scatter in that third
plot is somewhat larger than in the previous two plots. The dashed slope in that
plot is not a least square fit to the data, but it is the correlation inferred from
the previous two plots.The remaining three plots in Figure 6 involving B — V
show no correlation. From panels b-d we obtain approximate powerlaw fits

w/Q =cRo™ (Figure 6b), (9)
w/Q = ca(Ryx)” (Fig. 6c), (10)
(Ruk) = csRo™# (Fig. 6d). (11)

Note that Eq. 9 can be derived from equations (10) and (11), with
c1 = CaCy, O = . (12)

The scaling exponents o, v and p are given in Table 1 separately for active and
inactive stars.

Table 1. List of scaling exponents found from the fit shown in panels
Figure 6¢c and Figure 6d. Note that o is calculated from x4 and v using
Eq. (12).

inactive active
o 0.81 0.57
v 0.83 0.58
7 0.98 0.98
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square fits separately for active and inactive stars. The dashed lines
in panel (b) give the dependence implied by the fits for panels (c¢) and
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6. Comparison with a Simple Nonlinear Dynamo Model

We now consider a very simple model, which has the advantage that we can
derive exact relations between the type of nonlinear terms in the equations and
the behavior of the solutions. Using the standard af2 dynamo equations (Parker
1979) one can show that there is a wave-like solution. In a local approximation
this so-called Parker dynamo wave is governed by the equation

A=aB —nk®A, (13)
B =ikLY' A — nk’B, (14)

where €' is the vertical gradient of the angular velocity, k is the wave vector
in the latitudinal direction, the parameter « describes the a-effect, and L is
a typical length scale for the star. Following Durney & Robinson (1983), we
assume k to be fixed and introduce the diffusion time 7 = (nk?)~!, so we have

A=aB-71714, (15)
B=ikLOYA—7r7'B. (16)

In the linear case, when a and 7 are independent of A and B, the solution is of
the form B ~ exp(At — iwt), where

A= +|oVkL/2]V? — 771, (17)

w = +|akL/2|/?, (18)

i.e., the frequency ratio is proportional to the square root of . In what follows
the normalized cycle frequency, w/€2, will be of some interest. It is given by

VLKLY
il e (19)
Q QL Q 2
Assuming that Q'L/Q and kL/2 are of order unity we have
w/Q &~ + |a/QL|V? (20)

We are interested in solutions that are saturated by some nonlinear process. It
is often assumed that a decreases with increasing field strength. However, from
this it follows directly that the normalized cycle frequency w/ decreases with
increasing field strength. In fact, we have seen in Figure 6¢ that, except for a
jump at log(Ryk) ~ —4.7, the opposite is actually observed. Therefore we allow
for the possibility that « increases with increasing field strength; see Figure 7.
This possibility is supported by the recent realisation that the « effect could be
due to the magnetic field itself (Ferriz-Mas et al. 1994; Brandenburg & Donner
1997), rather than due to convection (Parker 1955; Krause & Réadler 1980). No
other mechanism is currently known that would lead to an increase of w/Q with
Ro~!; see also Riidiger & Arlt (1996).
We assume now that o and 7! depend on the field strength in the following
way
a = oy + a1|B/By|", (21)
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Figure 7.  Comparison of the new a(B) dependence inferred from the
observations (left hand panel) with the old a-quenching curves of the
form ~ 1/(1+ (B)?), which is here shown in a double-logarithmic plot.
As stars get older, the magnitude of (B) decreases, and so they evolve
in this plot to the left. At some field strength, which depends on the
spectral type, i.e., on B — V, the star jumps onto the upper branch,
which is governed by a different type of magnetic instability causing
the a-effect. This is quite different from the conventional concept of
a-quenching.

7 =11+ |B/Bo™. (22)

For negative exponents o and 7! go singular near B — 0, but we shall not be
concerned with this limit. The asymptotic behavior for large values of B (or
in the limit op = 75 1 = 0) is governed by a balance between generating terms,
(a1 VkL/2)Y/2|B/By|™/? and dissipating terms, 7 }|B/Bg|™. It is convenient to
define the dimensionless quantity

o kL ~

The functional dependence of a; and €' is unclear, but it is likely that they
depend on the geometry and in particular on the depth of the convection zone,
i.e., on the spectral type. The dependence of S on 2 is possibly weak, so as a
first approximation we may assume S to be independent of 2. We also define
the Rossby number,

Ro = (2Q7)7 %, (24)

where 7 is now approximated by 7;. In terms of those two dimensionless numbers
the balance between generation and dissipation in Eq. (17) can we written as
0 = SY/2)B/By|™/? — 2Ro|B/Bo|™, or

1
2m —n’

(B/By)Y/? = 27FSH?2Ro™#, where p=

(25)
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Here we consider the square root of the magnetic field, because Schrijver et al.
(1989) have shown that the chromospheric emission parameter (Ry) is roughly
proportional to the square root of the magnetic field.

The normalized cycle frequency is w/Q = (a1 VkL/2)/?|B/By|™?, or

w/Q = SY%(B/By)”, where v=n/2. (26)

From Eqgs. (25) and (26) we can eliminate B/Bj and obtain

w/Q =2°SCTV/2Ro™7  where o =pun= -

(27)

om—n

In Table 2 we give the results for u, o and v for different (plausible?) combina-
tions of n and m.

Table 2.  Results for u, ¢ and v for different combinations of n and m.

n m W o v
=2 0 12 -1 -1)2
0 2 1/4 0 0
1 1 1 1 1/2
1 2 1/3 1/3 1/2
1 3 1/5 1/5 1/2
2 2 1/2 1 1
2 4 1/6 1/3 1

The parameters u, v and ¢ are in principle the same parameters as the
observable scaling exponents introduced earlier and listed in Table 1. Thus, the
measured values of u, v and o could be used to determine the exponents n and
m via

n=2, m=v+ (2u) L. (28)

In all cases the dependence on B has to be identified with a dependence on
(Rpk) (Schrijver et al. 1989). The result is shown in Table 3.

Table 3.  Summary of the theoretically inferred parameters n and m.

inactive active
n 1.66 1.16
m 1.34 1.09

At this point we do not know whether those values are consistent with the-
ory. The simulations suggest a quadratic increase in 14, and if 1, = n; this would
mean m = 2, instead of 1.34 and 1.09 for inactive and active stars, respectively.
On the other hand, the model is too simple, and preliminary calculations of two-
dimensional dynamo models suggest that the assumption of a single mode does
not hold; see also Tobias (1997) and the comments made during the discussion.
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7. Conclusions

The observations point toward the possibility that the field generating effect
increases with increasing field strength. The early semi-empirical model by
Leighton (1969) had already the property of an a-effect that increased with
increasing field strength. However, in his model he used a step function, so o
was zero below some critical field strength, but nonzero and constant above.
In order to have field saturation the dissipative effects must also increase with
increasing field strength. MHD simulations point in a similar direction. Those
results are in line with previous attempts to explain the solar dynamo in terms
of buoyant magnetic flux tubes (Schiissler 1980). More recent work in that
direction has been carried out by Ferriz-Mas et al. (1996), but in that work only
modes of low azimuthal order (with azimuthal wave numbers m = 1 and m = 2)
are the dominant contributors, which seems rather low and one would not really
call that turbulence.

The instabilities identified in the present work include magnetic shearing
and buoyancy instabilities. However, there are other candidates that may be
more appropriate for the sun. There are first of all the magnetostrophic waves
studied by Schmitt (1985). In that case the waves were destabilized by having
B/p decrease with height, which makes the system Rayleigh-Taylor unstable.
Another magnetic instability studied recently in connection with the sun has
been discovered by Gilman & Fox (1997). Again only a low order azimuthal
mode (m = 1) leads to instability, which is not exactly what we have in mind
when we talk about an a-effect that increases with increasing field strength.
Nevertheless, the simulations indicate that a dynamo works. It is not clear that
the generating effect increases really with increasing field strength, but we know
that at least the dissipative effects do increase with increasing field strength. In
any case, it seems that we are now somewhat at a turning point where we have to
develop a new basis for the old mean field-type dynamo approach. Simulations
prove a valuable tool, and their results can often be parameterized in terms of
an a-effect. The nature of the a-effect is possibly quite different from what it
used to be. In particular, it is probably not quenched, but it may instead be
enhanced by the magnetic field.

Acknowledgments. Iam grateful to Steve Saar and Chris Turpin for their
contributions to-the work presented in §5., and for the interesting discussions
we had.

Discussion

Mark Giampapa: You have interpreted observed correlations with Ry as cor-
relations with field strength. However, observational work suggests that surface
field strengths in active and inactive stars are quite similar but differ mainly
in filling factor, i.e., the magnetic surface fluz. How does this influence your
scalings of o with B?

Azel Brandenburg: You are right; I should have been more careful about this.
I think what matters for the dynamo is in fact the magnetic flux, f B, and not
the magnetic field strength, B. At least at the surface B is always comparable
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to \/8mp, where p is the gas pressure, so gas and magnetic pressures balance
each other. The thing which changes with changing activity level is therefore
fB, which is more like the mean field used in the mean-field dynamo. So, in
what I presented B should therefore be replaced by fB. The anticipated scaling
results do not change therefore. Just recently Steve Saar reminded me that the
relation by Schrijver et al. (1989), used in Eq. (25), is actual one between Car
surface flux and magnetic flux, and is thus of the form Fyk o (fB)%5 (for stars
below the saturation limit). However, he told me that a very similar relation
also exists for the normalized Ca11 and magnetic fluxes. Using the best currently
available data for G and K dwarfs (Saar 1996) and /87p from Kurucz (1991)
models (see Blinte & Saar 1993), Saar (1997, private communication) finds the
relation Rig o (fB/Beq)**", which is basically the relation needed in Eq. (25).

Carole Jordan: Since you seem have a theoretical prediction which fits obser-
vational results, am I correct in assuming that your theory explains the early
empirical relation between Fyjx and Ro found by Noyes et al. (1984)? Or have
you found values of parameters in theory using the observational results?

Azel Brandenburg: It is the latter; I have used the observational scaling results to
infer the scaling properties of the a-effect and magnetic buoyancy. Theoretically
we expect a to go up with increasing field strength, but we don’t know how fast
(i.e., does « increase proportionally with B2, or only with |B|, for example).
Apart from the relation between the normalized magnetic field (or rather the
flux), (Ryk), and inverse Rossby number (Noyes et al. 1984), we also used
a relation between (Rpyy) and the ratio between cycle to rotation frequencies,
which hasn’t received much attention in the past. The latter shows two branches,
separately for active and inactive stars. The cycle data studied for example by
Noyes, Weiss, & Vaughan (1984) were only for inactive stars. To my knowledge,
Saar & Baliunas (1992) were the first to draw attention to the two branches for
the cycle periods.

Steven Tobias: 1 have a comment and a question. The comment: this joint
instability is very interesting and it indicates that if only spherical simulations
could reproduce the differential rotation profiles then we would have every hope
of simulating the dynamo. The question: you use a 1 mode travelling wave model
to relate your ideas to observations. However, recent simulations (Tobias 1997,
preprint) show that the inclusion of latitudinal boundaries introduces higher
modes and can lead to different conclusions about the behavior of cycle periods
and rotation rate. Can you comment on the robustness of your results to the
inclusion of higher modes?

Agxel Brandenburg: You are right, the simple one-mode model produces a differ-
ent scaling than a two-dimensional dynamo model. Unfortunately, two-dimen-
sional calculations with an a-effect that increases with increasing field strength
haven’t been carried out yet. The main motivation for using the one-mode model
was to illustrate a possible solution of how to explain an w/Q-ratio that increases
with B. More realistic models need to be considered now. Maybe one can still
use the one-mode model, but then S, which is proportional to the wave number
k, could become a function of Ro™!. So, for example, if we assume S = SyRo ™9,
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then the new relations between n, m, u, v and o are

_1+4gq/2 yontgm  ntqm
2m—n’ 2m —n’ T 24¢

bl

where g has to be determined by fitting the one-mode model to the results of a
two-dimensional numerical dynamo calculation.

Dieter Schmatt: If the dynamo « increases with magnetic strength, what do you
think limits the growth of the magnetic field?

Azel Brandenburg: Everything but a-quenching would probably do. In the
present work I have considered the effect of buoyancy, as described by a flux
loss term of the form —B/7 in the induction equation. Another possible mecha-
nism could be feedback from the large-scale motions, that are generated by the
magnetic field (cf. Brandenburg et al. 1992).

llkka Tuominen: What are the Reynolds numbers and other characteristic pa-
rameters in the simulations you presented, and how does this compare with the
sun?

Azel Brandenburg: The Reynolds number Re is a few hundred (up to one thou-
sand in some cases), the Rayleigh number Ra is between 10% and 107, and the
magnetic Prandtl number Pry; = v/n is between 0.5 and 4. In the sun, typical
values are Re = 102, Ra = 10?4, and Pry; = 1077, In that sense we are thus
far off from the sun. However, as far as the large scale dynamics is concerned,
we hope that the results are not very sensitive to the values of the viscosity and
the magnetic diffusivity, which are expressed by Re and Pry in nondimensional
ways. Basically, a larger Reynolds number means that smaller scale motions are
present and that the power spectrum extends to higher wave numbers. How-
ever, the large scales remain unaffected by this. To some extent we have been
able to verify this in our simulations as well. The quantity that matters most
is probably the resulting inverse Rossby number. In the sun we have Ro™! ~ 5,
and this is similar to the value used in the simulations.

Gibor Basri: Can you comment on what will happen when you go to fully
convective stars? Should there be a change in behavior?

Azel Brandenburg: I could only speculate on that. Observations tell us already
that the activity does not go down as stars become fully convective, although the
type of magnetic field configuration might change. Theoretically, the absence of
an overshoot layer may not be crucial. Simulations have shown us that convec-
tion has a tendency to pump magnetic fields downward (‘turbulent pumping’).
In a fully convective star, fields will thus be pumped toward the center, where
they will accumulate. It is not quite clear how the differential rotation will look
like in those stars. Theory points towards surface differential rotation similar
to that of the sun. If the (2-contours were to continue inward in a spoke-like
fashion, there must be some sort of a tachocline very near the center. So, ba-
sically I would expect that in a fully convective star the center region will play
a role similar to the overshoot layer in other late-type stars. I don’t think that
flux ‘storage’ is a problem, because very near the center gravity is very weak, so
there won’t be much buoyancy.
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Ed DeLuca: Flux emergence calculations suggest that the field strength near
the base up to the overshoot region is as large as, or much larger than, the
equipartition field strength. Are your simulations consistent with these results?

Azel Brandenburg: The magnetic field in flux tubes has to be considered as part
of the fluctuating (small-scale) component of the magnetic field. The simulations
show that the magnetic field fluctuations can well exceed the equipartition field
strength by a factor of ten. I think the flux emergence calculations suggest field
strength of around 60 — 160kG for the sun, which is 10-20 times the equipar-
tion field strength. So I think that is maybe not a big problem, although the
simulations don’t reach those values at the moment. However, it is important
to realize that, if the magnetic field is really caused by a dynamically generated
a-effect, the equipartition value does not really matter at all. For example, in
the accretion disk calculations there would be no turbulence in the absence of a
field. Therefore one has a zero equipartion value in that sense, and yet, strong
large-scale magnetic fields can be generated.

Andrew Collier Cameron: The relation for w/Q derived from your simple nonlin-
ear dynamo model incorporates a quantity Q' representing differential rotation.
What assumption have you made about the relation between Q' and 7

Azel Brandenburg: 1 have assumed that the ratio €//Q is constant. In fact,

it is possible to include a dependence of the form Q'/Q Ro™?, for example.
This would lead to a dependence S = SyRo™ 9, which would change the relations
between n, m, u, v and o, as described above. Donahue, Saar, & Baliunas
(1996) find observational evidence for A ~ —0.3.
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