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Modelling magnetised accretion discs

A. Brandenburg, C. Campbell

Department of Mathematics, University of Newcastle upon Tyne NE1 7RU, UK

Abstract Some recent results are reviewed that lead us now to believe that ac-
cretion discs are basically always magnetised. The main components are Balbus-
Hawley and Parker instabilities on the one hand and a dynamo process on the
other. A mechanical model for the Balbus-Hawley instability is presented and
analysed quantitatively. Three-dimensional simulations are discussed, especially
the resulting magnetic field structure. Possibilities of reproducing the field by
an af? dynamo are investigated, especially its symmetry with respect to the
midplane.

1 Introduction

Until quite recently the origin of turbulence in accretion discs was considered to
be rather obscure (see, for example, the excellent textbook by Frank et al 1992,
Sect. 4.7). However, this seems to have changed considerably over the past few
years. There is now strong numerical evidence that turbulence may be generated
by the Balbus-Hawley instability (e.g. Hawley et al 1995, Matsumoto & Tajima
1995, Brandenburg et al 1995). Moreover, three-dimensional simulations show
that even in the absence of an external magnetic field there will be self-excited
turbulence, because the flow can regenerate the magnetic field by dynamo action
(Brandenburg et al 1995, Hawley et al 1996, Stone et al 1996). We refer to this
mechanism as dynamo-generated turbulence.

There remain several outstanding problems. Firstly, we need to gain a deeper
understanding of how the dynamo process works. Is it some kind of an af?
dynamo, or is it something completely different? Secondly, what can we learn
from local models of dynamo-generated turbulence if the real accretion disc is
global? We begin by discussing briefly how keplerian shear flows become unstable
in the presence of some coupling. We then consider the structure of large scale
magnetic fields that might be generated in an accretion disc. Finally, we discuss
the problem of global models of magnetised accretion discs.

2 A mechanical model of the instability

In order to understand the nature of the Balbus-Hawley (1991, 1992) instabil-
ity it is useful to consider mechanical models displaying similar behaviour as a
magnetised fluid in keplerian motion. An imposed uniform magnetic field, for
example, holds the fluid particles in place like beads on an elastic string. In both
cases there is a restoring force (with a given spring constant in the mechani-
cal model, and the magnetic tension force in the hydrodynamical model). The
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Fig. 1. Field lines representing a magnetic flux tube (upper panel). The Lorentz
force (V x B) x B has no component in the direction of B. However, the Lorentz
force has two contributions, a magnetic pressure gradient, —%V(Bz), which is
readily balanced by the gas pressure gradient, and the tension force, (B - V)B,
which is plotted in the lower panel. The tension force tends to contract the tube.
(In the thin flux tube approximation this contraction corresponds to a pressure
gradient along the tube.)

analogy works also for nonuniform (turbulent) fields which typically consist of
many flux tubes. Consider now a model with only two beads connected by a
rubber band. This rubber band symbolises the restoring force experienced by a
magnetic flux tube; see figure 1. The main difference is now that we can con-
sider localized flux tubes and do not need to invoke a uniform large scale field.
This seems more appropriate for characterizing turbulent magnetic fields as they
seem to be present in the simulations. However, in this case the analogy is by no
means exact, and yet it seems to capture some typical features of the dynamics
of magnetic flux tubes.

Consider two particles in a keplerian orbit. The story is best conveyed with
two space crafts orbiting round the earth and trying a rendezvous maneuver.
Larry November from Sac Peak Observatory explained to us his memories of
Gemini 8 launched March 23, 1965 with Gus Grissom and John Young. The
mission tried to dock with an Agena spacecraft launched separately and put into
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a stmilar orbit. The astronauts tried maneuvering by “eye” and were unable to
close their gap with Agena because of the oddities of orbital dynamics. They
found that they could not get closer by “speeding up”. Increasing their orbital
velocity only put them in a higher orbit which caused them to lag further beyond
the Agena. The unsuccessful mission demonstrated that maneuvering spacecraft
was unintuitive and could only be successful by use of computers. Subsequent
misstons used onboard computers to estimate crossing orbits given the relative
locations of the spacecrafts. That software solution completely solved the diffi-
cultly and permatted entirely successful docking with the lunar excursion module
with the mother Apollo craft used in all of the lunar landings. Of course soft-
ware solutions could be accurate within millimeters and provide corrections that
minimized expended fuel. It is surprising to hear that the astronauts really fell
into this trap, but Larry also said I do believe that after they realized the effect
they did try breaking. Unfortunately, however, the effect is difficult to gauge and
I do not think they were ever closer than about 100 m, and only managed to
get hopelessly separated as they tried different things. One should notice that
the mission was allocated only 3 orbits, so this was probably not meant to be a
particularly serious attempt!

Anyway, the main lesson is this: in order to go faster in a keplerian orbit one
has to break, and vice versa. However, rubber bands behave more straightfor-
wardly. They exert a restoring force when starting to pull. Therefore, objects
in a keplerian orbit that are connected in some way always go unstable. In a
sense this mechanism is reminiscent of tidal disruption of celestrial bodies pass-
ing nearby a black hole (see Novikov et al 1992). Here the restoring force is the
self-gravity of the passing body. In fact, the criterion for disruption is similar to
the stability criterion of Balbus-Hawley (see below).

In our simple model the positions of two coupled particles, r;(t) and r»(t),
are governed by the equation

1‘1 = ——T — f(’f'i — ’I‘j), (1)

where G is the gravitational constant, M the mass of the central object, and
f(zx) is the restoring force in the direction & = x/|x|. The restoring force is
assumed to be proportional to |z| — dp, where

do = |r2(0) — 1(0)] (2)
is the initial separation between the two particles. Thus, we put

_ Koﬁ!(l:L" - do) when |SD| > dp,
flz) = {O otherwise. (3)

The cutoff for |x| < dp was introduced to account for the fact that no force
should be exerted when the rubber band is not tight, i.e. if the particles are too
close together. The rubber band has a spring constant Ky per unit mass, which
is measured in units of 22 = GM/r, where 2 is the keplerian angular velocity
at the initial radius rg of the particles.
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In figure 2 we plot the positions of a pair of particles at different times for
two different values of Kp. In the first case (Ko = §2?) the spring constant is
weak enough so that the pair of particles becomes (tidally!) disrupted. However,
in the second case (Ko = 1042?) the coupling is strong enough so that the pair
of particles always stays together. In addition to the counterclockwise orbital
motion the two particles rotate about each other also in the counterclockwise
direction.

K, = Q° K, = 10 Q?
2 ' ' " 2 T j '
1 1¢
0 7 0
-1 T —1F ]
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
x T

Fig. 2. The positions of a pair of particles at different times for two different
values of Ky (left panel: Ko = 22, right panel K, = 1042?). Initially the leading
particle (indicated by a star) moves inwards and the following particle (indicated
by a plus) moves outwards.

This result can be understood by means of linear stability analysis. We as-
sume r; = 7o + 07, where 7o describes the motion of the center of mass with

o = —{2%67¢. Linearising the gravitational acceleration yields
GM GM or - ro
P o= or) = 2%ro (1-3 225r. 4
T (o1 6773 (ro + 6r) 9 ( 2 ) + r (4)

The linearised equation of motion is then

or-r
5 = 30210 _ 0% + Kor. (5)
To
To get the dispersion relation we assume ér o< e~** and obtain after taking the
inner product with g

w?=-20*+ K. (6)
The system is unstable when w? < 0, i.e.
K < 20? (instability). (7)
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We verified this also numerically. This dispersion relation is similar to the case
of the Balbus-Hawley instability, where the criterion is:

w? < 2q2? (instability) (8)

(Balbus & Hawley 1992), where w4 = ik- B/(4mp)'/2 is the Alfvén frequency for
modes with wave vector k and ¢ = —dln §2/dlnr = 3/2 for keplerian rotation.
The criteria (7) and (8) are similar to the criterion of tidal disruption of celestrial
bodies passing nearby a black hole

w? < a®N? (instability) (9)

(Novikov et al 1992), where w. = GM,/R2 is approximately the eigenfrequency
of a star of mass M, and radius R. passing nearby the black hole. The coefficient
« is of order unity. [Novikov et al (1992) quote the value 1.69 for an incompress-
ible stellar model, see Kosovichev & Novikov (1991), but « is a little less for a
polytropic stellar model, Luminet & Carter (1986)]. Common to all three cases
is the fact that a harmonic oscillator with eigenfrequency w can become over-
stable when placed in a keplerian orbit (or parabolic orbit in the case of tidal
disruption) provided w? is less than 22 = GM/r3.

3 Dynamo generated turbulence

From the illustrative experiments above we have seen that both weak and strong
coupling can lead to instability. A proper stability analysis of fluid in keplerian
motion threaded by a magnetic field (of arbitrary orientation) confirm that there
is indeed an instability (Balbus & Hawley 1991, 1992). The difference is that in
the stability analysis there is a uniform imposed magnetic field, whereas the
mechanical experiment presented here corresponds to an isolated magnetic flux
tube connecting two points.

There are numerous subsequent investigations that extent the local analysis
to global geometry (e.g. Curry et al 1994, Terquem & Papaloizou 1996, Ogilvie
& Pringle 1996, Kitchatinov & Riidiger 1997). We mentioned in the introduction
that there are now also numerical simulations that show that the flow generated
by the instability leads to turbulence, and that this turbulence in turn is capable
of amplifying and sustaining the magnetic field by dynamo action. We briefly
summarize here some of the basic results of such simulations.

The most significant result of such simulations is simply the fact that tur-
bulence is self-sustained. An important quantitative outcome of the simulations
concerns the strengths of the Maxwell and Reynolds stresses that would lead
to mass accretion and angular momentum transport. Their magnitude is conve-
niently given in terms of the mean angular momentum gradient and a turbulent
viscosity which, in turn, is specified in terms of natural units (sound speed ¢,
and disc scale height H) times a dimensionless factor, ags. Here the subscript SS
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refers to Shakura & Sunyaev (1973), who introduced this concept in the context
of accretion discs. Thus, the stress is expressed as

(m,uy — BBy /4m) = —(p)utr%—f, where vy = asscsH. (10)
where m, = pu, is the mass flux in the radial direction and primes indicate
fluctuations about the mean. The value of ags fluctuates in time, because the
system is turbulent and because the magnetic field varies strongly on long time
scales. In figure 3 we show the evolution of the magnetic and kinetic contributions
to ags. Comparison with the magnetic energy in the system shows that peaks
in agg coincide with peaks in the magnetic energy. On average the value of
asg is of the order of 0.01 (Brandenburg et al 1995, 1996a, Hawley et al 1996,
Stone et al 1996). We should recall that some authors use a slightly different
definition of ass, where ass could be larger by a factor 3/2 times V2; (see the
review by Brandenburg et al 1996b). Magnetohydrodynamic models of accretion
discs (Campbell 1992, Campbell & Caunt 1996) show that such values of ass
are sufficient to lead to dynamically important large scale magnetic fields. The
resulting (B, By) stresses can play a major part in the radial advection of angular
momentum necessary to drive the disc inflow. Note also that, although the field
is oscillatory, (B;.By) is always negative.

The next important result of the simulations is that there could be long
term variability of the dynamo activity, which is associated with a variable large
scale field. In the cartesian models investigated by Brandenburg et al (1996a)
the activity varies approximately cyclically with an average period of about 30
orbits. This varying large scale magnetic field, especially the toroidal component
(Bg), strongly affects the value of ags in a systematic manner which can be
described by a parabolic fit of the form

ass ~ a(sos) + agg)(Bd,)?/ng, (11)
where B = (4mpc2)!/? is the equipartition value with respect to the thermal
energy density, and ¢, = 2H/ V2 is the isothermal sound speed. (Both ¢; and H
depend on the disc temperature, which may change due to heating.) The most
important contribution to (11) comes from the second term. In this second term

the coefficient is a(slg) ~ 0.5.

Another remarkable result concerns the dependence of the value of asg on the
rotation law. Abramowicz et al (1996) used the simulations for different values
of ¢ = —dIn2/dInr. The value ¢ = 3/2 is for keplerian rotation. Although
the main parameter varied was ¢, Abramowicz et al expressed it in coordinate
independent form using the magnitudes of the shear and vorticity tensors, o
and w, respectively. They found that agg varies approximately linearly with the
ratio o /w. Abramowicz et al (1996) suggest that this result could be used in more
general circumstances as well. This would be especially important if one were to
produce a global accretion disc model. By this we mean a model, as opposed to
a full three-dimensional turbulence simulation. The advantage of such a model
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Fig. 3. Evolution of the magnetic and kinetic contributions to ass. Comparison
with the magnetic energy of the mean field shows that peaks in agg coincide
with peaks in the magnetic energy, which is plotted here in the form (B)2/ BZ,
where Beq = (4mpc?)1/? is the equipartition value with respect to the thermal
energy density, and ¢, = f2H/+/2 is the isothermal sound speed. The data are

from Model O of the three-dimensional simulation of Brandenburg et al (1996a).

would be that it is easier to produce, and that it can be more easily applied to
different circumstances. Before we consider this in more detail we need to discuss
another complication that is related to the parameterization (10).

When we estimated the value of ass from eq. (10) we assumed that (p)
was the volume averaged density. This seemed sensible, because the stresses
do not strongly vary with height. However, it appears questionable whether a
vertically averaged density would be a sensible description under more general
circumstances, where the disc could be thick, for example. In that case it would
seem natural to adopt an average that depends on height. However, this is not
consistent with the numerical models, because then eq. (10) no longer represents
a good description of the simulation’s results, unless we relax the assumption
that asg is independent of height.

We now allow ass to be height dependent. However, instead of assuming
some unknown profile function we assume that this dependence is already cap-
tured by the dependence (11). Originally eq. (11) was obtained by considering
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Fig. 4. Spatio-temporal pattern of the radial and toroidal components of the
large scale field, (B;) and (B,), respectively, as a function of height and time.
The data are from Model O of the three-dimensional simulation of Brandenburg
et al (1996a).

volume averaged values of the stress and the density at different times during
the magnetic cycle. We now assume that this relation is also valid at each height.
Putting (11) into (10), and neglecting the a(sos) term, we find that the stress varies
like
(B) 2

ags (Bg) 02 _ V24 _(B) 2
'TC‘E‘—CSHT-(‘)T = —?ass <B¢) y (12)
which is now independent of (p). However, we have to know how (Bg) varies
with height. So, if eq. (12) were to be used in an accretion disc model one would
need a sensible prediction of the variation of the mean magnetic energy density

with height. Unlike the local cartesian simulations, where the magnetic energy

stress = —
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density varied only little with height, in a truly global model the energy density
ought to decrease as one goes sufficiently far away from the disc midplane. Thus,
one is then seriously forced to consider accretion disc models that included the
magnetic field evolution in a self-consistent manner. Let us now discuss how one
can actually model the evolution of the mean magnetic field without invoking a
full-blown numerical turbulence simulation. In order to appreciate the systematic
behaviour of the large scale magnetic field we plot in figure 4 the spatio-temporal
pattern of the radial and toroidal components of the large scale field, (B,) and
(Bg), respectively.

The large scale field, especially the toroidal magnetic field component, shows
remarkable spatio-temporal coherence. The field varies not only cyclically, but
it also migrates away from the midplane. The traditional approach to under-
stand such organised behaviour is to adopt the mean-field approach, where the
original induction equation is averaged and turbulent transport coefficients are
introduced that describe the evolution of the nonlinear term, £ = (u' x B') in
terms of the mean field itself. In principle such parameterizations can be fairly
complicated, but more importantly, they are typically extremely uncertain. We
may therefore use the simulations to estimate the “transport coefficients” as-
suming a relation £ = £((B)). Such a relation should contain terms that are
capable of yielding dynamo action. So, in its crudest approximation it should
take the form

(u' x B'Y = a(B) — .V x (B), (13)
where a is the traditional dynamo a-effect (not to be confused with ags) and
M 18 a turbulent magnetic diffusivity. The simulations are consistent with the
following estimates: a ~ —0.001§2H and 7, = 0.0082H?2, where the sign of «
is negative in the upper disc plane, but positive in the lower disc plane; see
Brandenburg et al (1995), Brandenburg & Donner (1996). This is quite peculiar.
The opposite result is expected from conventional mean-field theory, where the
a-effect is related the helicity of the turbulence. Whilst the helicity of the tur-
bulence in our simulations does have the expected sign, the simulations indicate
that it has not much to do with a.

The sign of a can be explained as a direct consequence of the Balbus-Hawley
instability. Figure 2 illustrates this. Initially this instability turns a toroidal mag-
netic flux tube in the counterclockwise direction. This is because the following
particle accelerates, so it moves outwards, whilst the leading particle brakes and
moves inwards, corresponding to counterclockwise rotation. This alone would
not lead to an a-effect, or to a component of (u’ x B’) in the direction of (B),
because we also need a systematic orientation of the velocity. This bit is easy,
however, because strong magnetic flux tubes are always susceptible to magnetic
buoyancy, which will lift them vertically away from the midplane. So, motion in
the direction of z together with a twist of the magnetic flux tube in the counter-
clockwise direction does lead to a systematic sign of the a-effect, and this sign
is negative.

A negative a-effect has various implications. First of all, if the generated
magnetic field is oscillatory, as in fact it is in the simulations, there will be a
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magnetic field migration associated with its cyclic variation. This is indeed what
is observed in the simulations. The direction of this field migration is indeed
consistent with the implied negative sign of a. Furthermore, a negative a could
affect parity selection of the magnetic field. While for positive a the preferred
parity of the magnetic field is always even, this does not need to be the case
when the sign of « is reversed. We address this in the following section.

To test the hypothesis that the magnetic field evolution seen in figure 4 can
be explained by a mean-field dynamo we now solve the horizontally averaged
induction equation using eq. (13),

oB;) 0O 0%(By)
ot - "50‘(31/) + 922 (14)
2
8(§y> = —qf2(B;) + nta—%, (15)

where ¢ = 3/2. Here and below z corresponds to radius and y to longitude.)
Since a < 2H we have neglected the a-effect in the second equation (15). On
the boundaries we assume

a(@ix) = 3(81?,) =0 on z2=0; (Bg)=(By)=0 on z=1L,. (16)
This boundary condition was also used in the three-dimensional simulations
(except in those cases where no symmetry was prescribed; see figure 6). The
calculations of Brandenburg et al (1995) confirmed that o changes sign about the
equator. The simplest functional form for « is therefore a = ao(z/H). For ag =
—0.0012H we reproduce the right cycle frequency, f2cyc/f2 = 0.03. In fact, one
can show that {2cyc/? = O(|a/ 2 H |1/2). In figure 5 we plot the resulting spatio-
temporal pattern of (B;) and (By). The qualitative agreement with figure 4 is
quite striking.

4 The parity of large scale magnetic fields

A large number of different dynamo models has been studied over the years.
However, the case of a negative a-effect has not received much attention, because
it was thought to be unphysical. In the case of galactic dynamos the result is
typically that for ap < 0 oscillatory modes of dipole-type parity are most easily
excited (Parker 1971, Stix 1975, see also Brandenburg et al 1990). This result is
interesting in various respects. Firstly, a dipole-like magnetic field seems to be
more favourable when modelling magnetically driven jets from accretion discs
(eg Yoshizawa & Yokoi 1993 and references therein). However, if a dipole-like
magnetic field is indeed easier to excite than a quadrupole-like magnetic field
the question arises why the field found in the local simulations was actually
still quadrupole-like. Also, although galactic dynamos are similar in geometry to
accretion disc dynamos, there are marked differences concerning especially the
form of the rotation curve. So we are encouraged to look now more systematically
at the different field parities under those different conditions.
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Fig. 5. Spatio-temporal pattern of (B,) and (B,) as a function of height and
time, obtained by solving (14)-(16).
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Flg 6. Spatio-temporal pattern of (B,) as a function of height and time for the
three-dimensional simulation of Brandenburg et al (1995). No restriction to the
parity is made. Note that the field is mostly symmetric about the midplane.
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First we consider the magnetic field generated by a mean-field dynamo in
a local box with the same boundary conditions as those used in the numerical
simulations. The field structure of (B,) and (B,) is given in figure 7. The critical
values of the dynamo number

ol H? Qo M -2
—g— = 17

where the dynamo is just marginally supercritically, are given in table 4. Here,
q = 3/2 for keplerian rotation. Note that even for negative a the quadrupole-type
geometry (even parity) is the most preferred one. This is a bit surprising, but it
is at least not in conflict with the results of the three-dimensional simulations,
which also give quadrupole-type symmetry when no symmetry restriction is
imposed; see figure 6. Continuous inflow through the disc requires a quadrupole-
type field structure. Unless the surroundings are very highly conducting, a dipole-
type field does not lead to a magnetic torque on rings of disc material and
hence cannot contribute to the radial advection of angular momentum (Campbell
1997).

However, we now need to check whether the occurrence of a quadrupole mode
for negative values of a could be an artefact of the local geometry used in our
model. Therefore we now consider briefly a global af? dynamo model with a
disc-like distribution of a and 7;. In this model we used the following profiles for

a and 2 . . 2
a—aoﬁexp{E[l—(E) ]} (18)

1
n

1+ (%) %n] : (19)

with n = 10. Again, the result is surprising. The critical solutions are plotted
in figure 7 and the critical values of the dynamo number D are given in table 4,
where we also compare with results obtained by other authors.

The table shows that there is not a unique result regarding the parity of the
easiest excited mode for negative values of a. The disks of Stepinski & Levy
(1988, SL88) are relatively thick and represent only this innermost parts of the
disc. The general behaviour of those models is similar to dynamos in spherical
geometry. The models of Stepinski & Levy (1990, SL90) are thinner, and here
the parity depends on whether the fields are confined to the disc (SL90-1) or
whether the disc is surrounded by a vacuum (SL90-2), permitting the field to
extend into the corona. In Torkelsson & Brandenburg (1994a, TB94) the parity
depends on whether or not there is a cavity in the middle of the disc. In those
models a cavity was introduced to model an inner boundary of the disc at the
innermost stable orbit around black holes. If such a cavity is present (TB94-4c,
ie Model c in their Table 4), then A0 parity is more preferred.

To shed some light on the occurrence of the different modes we now compute
the full spectrum of growth rates shown as a function of dynamo number D =

Q:QO
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Fig. 7. Poloidal magnetic field (dotted lines indicate opposite field orientation)
for an af? dynamo in disc-like geometry using the profiles given by (18) and
(19).

gao {20 H? /17 by solving an eigenvalue problem; see figure 8. Again we use o =
ao(z/H). Note that for either sign of D the growth rates of quadrupole-like
(symmetric or SO) solutions are largest. Those modes are oscillatory, except for
a certain interval 0 < D S 400 (positive alpha, but negative shear), where this
branch splits into two non-oscillatory branches. Similar behavior is seen for the
next easily excited mode of A0 type (antisymmetric), but here the two non-
oscillatory solutions have merged into a single oscillatory one before its growth
rate becomes positive. This illustrates where the sensitivity of either oscillatory
or non-oscillatory behaviour comes from.

In conclusion, we must regard the parity of the dynamo as uncertain: it
depends on geometrical aspects which could decide upon whether or not two non-
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Table 1. Critical values of the dynamo number for different models (see text for
explanations). Numbers in bold face indicate the most easily excited mode. A0 and SO
refer to antisymmetric (dipole-type) and symmetric (quadrupole-type) modes.

neg alpha pos alpha
A0 S0 A0 S0
cartesian| —1130 osc —400 osc|+630 osc +13 st
Figure 7| —130 osc —80 osc|+160 osc +35 osc
TB94-40| —576 osc —512 osc|+352 osc  +40 st
TB94-4c |—1080 osc —1120 osc|+792 osc  +77 st
SL.88-3 | —138 osc —169 osc|+201 osc +187 osc
SL90-1 —9 st —45 osc| +40 osc  +60 st
SL90-2 —68 osc —45 st | +48 osc +9 st
0.02 T T
[ S0 osc /SO st ]
0.00 e — / e
" AQ osc v ~>< AO oscH
-0.02 "~\ E 7
c e b
> —-0.04 F SO os¢ [ _
—-0.06 -
o AO osc 1
0.08 e _f 7
T N S |K' , ol ]
—1500 —1000 -500 0 500
D

Fig. 8. Growth rates A (in units of {2) as a function of the dynamo number D for
a dynamo in cartesian geometry using equations (14) and (15) and a = agz/H

mio<z< H.

oscillatory branches have merged into a single oscillatory one. Also, in the highly
nonlinear regime things can change again, as was demonstrated by Torkelsson
& Brandenburg (1994b), who presented a survey of models for both signs of
a, different nonlinearities (buoyancy and a-quenching), and a large range of
different dynamo numbers.
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5 Towards a magnetised standard disc model

In the forthcoming years it will be important to design a new standard ac-
cretion disc model that includes those new effects turbulence simulations have
revealed recently. Ideally, one would like to have a magnetic version of the famous
Shakura-Sunyaev solution. The model by Campbell (1992) is such an example.
In this section we briefly address a few issues where some adjustments to this
theory could be made and where conceptual differences should need some further
clarification.

An important property of the dynamo is the value of the magnetic field at
which the dynamo saturates. This value is determined by the dominant feedback
magnetism. In the model of Campbell (1992) it was assumed that magnetic
buoyancy limits the magnetic field strength. Another possibility is a-quenching,
which seems to be important in the three-dimensional simulations (Brandenburg
& Donner 1996). A more urgent concern is related to the sign of the dynamo a.
The simulations suggest that « is negative. This is rather surprising and could
not have been predicted. This appears to be directly related to the dynamics
of the Balbus-Hawley instability. So we do have some understanding of this
surprising result and are tempted to include it into actual models of magnetised

~accretion discs. One immediate consequence would be that the magnetic field

can no longer assumed to be steady. A variable level of the magnetic field could
lead to variability of the temperature in the disc, which could be of interest in
connection with the outbursts of cataclysmic variables (CVs). Current models
describing outbursts of CVs invoke a dependence of ags on H/R (e.g. Cannizzo
et al 1988), which does not seem to be supported by the simulations (Vishniac
& Brandenburg 1997). Furthermore, standard outburst models require ass to
be around 0.1 during outbursts. Such a large value could only be achieved in
the presence of a sufficiently strong magnetic field. This seems unsatisfactory,
because the origin of such a field needs to be explained. More importantly, it
would then be difficult to explain the absence of strong fields during quiescent
phases. Therefore a self-consistent model for CV outbursts seems to be highly
desirable.

6 Conclusions

Significant progress has been made in understanding the origin of viscosity and
the nature of turbulence in accretion discs. Three-dimensional simulations in
local geometry can be used to address those questions. Nevertheless, it is impor-
tant to consider those simulations as preliminary. Global simulations using more
realistic, open, boundary conditions and including the effects of curvature are
necessary. Finally, proper account of radiative transfer should be made before
we can begin to address questions of observational significance, such as the CV
outbursts.
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