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Abstract

Dynamo-generated turbulence seems to be a universal mechanism
for angular momentum transport in accretion disks. We discuss
the resulting value of the viscosity parameter alpha and empha-
size that this value is in general not constant. Alpha varies with
the magnetic field strength which, in turn, can vary in an approx-
imately cyclic manner. We also show that the stress does not
vary significantly with depth, even though the density drops by a
factor of about 30.

1. Introduction

Oort A-value,

Differentially rotating disks with angular velocity decreasing outwards are
susceptible to a magnetic shear (or Balbus-Hawley) instability (Velikhov
1959; Chandrasekhar 1960, 1961; Balbus & Hawley 1991). This occurs not
only in accretion disks, but also in major parts of galactic disks. Balbus &

Hawley (1992) suggested that the growth rate of the instability is given by the
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—299/3Inr ~ Q. The magnetic field grows until the energy
density becomes a tenth (or more) of the thermal energy density. In this way
a weak magnetic field produces turbulent fluid motions (Hawley et al. 1995,
Matsumoto & Tajima 1995). These motions are practically always strong
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enough (i.e. the magnetic Reynolds number is large enough) that dynamo
action becomes possible so that an initial seed magnetic field is amplified
further (Brandenburg et al. 1995a, Hawley et al. 1996, Stone et al. 1996).
It is difficult to imagine how this process can be avoided (except maybe in
protoplanetary disks where there is a lack of charge carriers). In other words,
non-magnetic disks are probably rare.

The standard accretion disk model is nonmagnetic, but Shakura & Sun-
vaev (1973) did anticipate the importance of magnetic fields for transporting
angular momentum in disks. Campbell (1992) produced a thin disk model
that is inherently magnetic, with field strengths comparable to the thermal
equipartion value. However, the value of « is not constant, but depends on
the magnetic field strength. Now, such information can be extracted from
three-dimensional simulations of dynamo-generated turbulence.

2. The model

The Balbus-Hawley instability is local and can be simulated in the framework

of the shearing box approximation (Lynden-Bell & Ostriker 1967), where the

radial boundary conditions are periodic in a Lagrangian system following the

azimuthal shear flow. The radial dependence of gravity is expanded around
GM  GM [

r=R~R,
1 2x+3<$)2 (1)
iz R RTO\R) T

where x = r — R. Normally only the linear term is retained. In a local frame
of reference rotating with angular velocity Qo = (GM/R*)'/? the centrifugal
force and the radial components of gravity and Coriolis force balance,

GM 5T 2 x 5.,(0 ‘
~Te (meg) r R (e ) raln=0 @
which means that uz(/o) = —%QOSL’. In practice we solve the basic hydromag-

netic equations for the deviations from the linear shear flow 'uéo).

The shearing box approximation is now frequently being used in local
disk simulations. The disadvantage is that curvature terms such as B}/r and
B, B, /r are ignored. These terms can be important not only for the stability
of the flow (Knobloch 1992), but also for breaking the symmetry between
inflow and outflow. Brandenburg et al (1996) restored such curvature terms
and included also the quadratic terms in Eq. (1). They found that the mean
accretion rate M is consistent with the standard formula (Frank et al 1992)

M =3rac,HY, where ¥ = /pdz. (3)

Furthermore, it turns out that both M and « vary cyclically over a timescale
of about 30 orbits (for further details see Brandenburg et al 1996). In the
following we discuss the average of a and its variations.
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3. The average value of the viscosity parameter «

The horizontal components of the Reynolds and Maxwell stress, that are
crucial in accretion disk theory, are parametrized in terms of a turbulent
viscosity vy,

onN

Tey = (puzuy — BBy /o) = _Vt</0>r§- (4)

When v, is expressed in terms of the natural units for disks, the sound speed
¢s and the vertical disk scale height H, the proportionality constant is the
viscosity parameter «, that is, nu; = ac,H. Since ¢, = QH/v/2 we have
ve = oQQH? [\/2.

There are certain properties of local simulations that may affect the value
of a: stratification, field strength, and distance from the central object. First,
in the absence of stratification, the vertical scale height is formally infinite
and a = /2u,;/(QH?) goes to zero, even though the stress remains finite.
The reason is that the Balbus-Hawley instability operates on scales smaller
than Agy = va/Q, where v, is the Alfvén speed. In real disks, A\gy < H,
but in a simulation with no (or very weak) stratification Agy is limited by
the size of the box. In that case, a better parametrization of the stress
would be to normalize by the height of the box L,, i.e. af = \/ﬁyt/(QLg).
In Fig. 1 we compare two runs of Torkelsson et al (1996) with stratification
(L,/H =~ 2) and with almost no stratification (L.,/H = 0.2). The average
viscosity parameters are a /&~ 0.005 and a7 = 0.017, so ar =~ 3.2a. In other
words, given the “conversion factor” ay/a, one could (in principle) estimate
a even if there is no stratification in the simulation.
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Fig. 1. Evolution of @ and ar. The dotted (dashed) line refers to the contri-
bution of the Reynolds (Maxwell) stress.

Obviously, the value of a depends on the definition of H. For isothermal
stratification, the density in the equilibrium state goes like p = po exp(—2?/H?),
but it is not uncommon to define a scale height by writing p = pg exp(—2%/2H?),
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where H = H/\?2 (e.g. Frank et al 1992). Note that now ¢, = QH and there-
fore & = I/t/(QgQ). With this definition, the two values &y, and & are closer
together (& = 0.008 and & = 0.012), suggesting perhaps some advantage in
using the second definition, because then H is closer to the “effective” disk
height than H. However, in order to be consistent with previous work, we
continue to use the old definition.

Note that with the new definition & would be larger than « by a factor of
V2. However, there is yet another definition of alpha: the ratio of stress to
pressure, which yields a value that is again 3/2 times larger, so altogether 2.1
times larger than our definition. Thus, it is important to keep this in mind
when comparing work of different authors. We also note that the values
obtained by Hawley et al (1996) and Stone et al (1996) agree with those of
Brandenburg et al (1995a, 1996) within a factor of two or less.

4. Variability of «

It is important to realize that « is not constant. Variability of « is caused
not only by turbulent motions which are inherently time-dependent, but es-
pecially by the slow changes of the large-scale magnetic field. In our model a
large scale magnetic field is generated by some kind of (large scale) dynamo
process. In Fig. 2 we compare contours of the total stress and the azimuthal
field (B,) in a z — t diagram.

The long-term evolution of the magnetic field on a time scale of 30 orbits
is perhaps somewhat reminiscent of the solar cycle. In the case of an accretion
disk around a compact object of 1My and at a distance of 10°km (typical of
dwarf novae systems) 30 orbits would correspond to about 20 min. However,
the cyclic variations are the result of a local simulation. Applied at different
radii, we would have interference of different frequencies from different radii.
In the absence of simulations in global geometry we cannot say what kind
of variability (if any) can be expected in reality. What is important, how-
ever, is that o and (B) are closely connected. Torkelsson et al (1996) and
Brandenburg et al (1996) proposed the following fit formula

o((B)) = o'V + a®/(B)?/ B, (5)
where By = (uopc?)'/? is the equipartition field strength based on the thermal
energy, and o!P) is around 0.5, which is much larger than the quiescent value
a® which is around 0.001.

It is conceivable that an improved a-disk model would yield a self-consistent
description of the disk structure and the large scale magnetic field (B).
Eq. (5) could be an important ingredient of such a model.
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Fig. 2. Comparison of the azimuthal field (B, ) and the horizontal components
of the total magnetic stress in a z — ¢t diagram. Dotted contours refer to

negative values. Note that maxima of « coincide with those of (B,).
5. The vertical dependence of «

Originally the concept of a-viscosity was employed within the framework
of vertically integrated models. However, a has also been used to model
the “subgrid-scale” viscosity of models that resolve the vertical dependence
explicitly (e.g. Kley et al 1993). If one assumes a constant «, and if ¢, is
approximately constant (isothermal disk), then Eq. (4) might suggest that
the stress 1, is proportional to the density and would fall off towards the
surface. This is however not confirmed by the simulations; see Fig. 3. We find
that 7., is not proportional to p(z) or ¢s(z). Indeed, a better approximation
might be to use the vertically averaged stress

Tpy ~ OCg2, (6)

This new description is likely to affect the vertical disk structure of a-disks
and in that way some conclusions regarding instabilities associated with the
ionization state of the disk, like dwarf nova instabilities.

The models presented here lack radiation transport and are therefore
nearly isothermal. Preliminary steps toward models with surface cooling have
been presented by Brandenburg et al (1995b). Their models show narrow
convection zones right beneath the cooled surface.
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Fig. 3. Dependence of 7,,(z), normalized by (p)c; H (left). Note that 75, is
not proportional to p(z) or ¢s(z) (right).
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