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We characterize magnetic fields produced during electroweak symmetry breaking by nondynamical
numerical simulations based on the Kibble mechanism. The generated magnetic fields were thought to have
an energy spectrum ∝ k3 for small wave numbers k, but here we show that it is actually a spectrum ∝ k4

along with characteristic fluctuations in the magnetic helicity. Using scaling results from magnetohydro-
dynamics simulations for the evolution and assuming that the initial magnetic field is coherent on the
electroweak Hubble scale, we estimate the magnetic field strength to be ∼10−13 G on kpc scales at the
present epoch for nonhelical fields. For maximally helical fields we obtain ∼10−10 G on Mpc scales. We
also give scalings of these estimates for partially helical fields.
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I. INTRODUCTION

The standard model of particle physics implies that
electroweak symmetry breaking in the universe occurred
at a temperature ∼100 GeV and at a cosmic time ∼10−10 s
when the horizon size was ∼1 cm. It is not clear if the
dynamics of electroweak symmetry breaking occurs as a
first- or second-order phase transition or as a crossover, as
this is sensitive to new ingredients present in particle physics
(dark matter, generation scheme for neutrino masses, etc.).
What is certain, however, is that the Higgs field responsible
for electroweak symmetry breaking acquires a nonvanishing
vacuum expectation value (VEV). It has been argued that the
very process of the Higgs acquiring a VEV generates a
primordial magnetic field [1], and simulations of electro-
weak symmetry breaking by a few different groups [2–4]
show that a few percent of the cosmic energy density at the
electroweak epoch is in the form of magnetic fields (see the
reviews [5–9]).
Once electroweak symmetry has been broken in the

universe, further evolution of the magnetic field obeys
Maxwell’s equations in the presence of the cosmic plasma.
We expect the evolution to be well described by the
equations of magnetohydrodynamics (MHD). However,
the initial conditions for MHD evolution have to be derived
from electroweak physics. Key features of the initial
conditions are the energy and helicity spectra of the
magnetic fields. One approach to obtaining such initial
conditions is to evolve the electroweak equations through
the process of electroweak symmetry breaking [2–4]. These
field theory simulations are computationally expensive, and

their limited dynamical range cannot resolve the spectral
slope at small wave numbers with a sufficient degree of
certainty.
In this paper we take a different approach to determine

the spectra of magnetic fields generated during electroweak
symmetry breaking. The key idea is the “Kibble mecha-
nism,” also employed in studying the formation of topo-
logical defects [10,11]. The germ of the idea is that the
Higgs VEV will be spatially (and temporally) varying
during electroweak symmetry breaking. Then, topological
considerations, as discussed below, necessarily imply the
presence of magnetic charges and, hence, magnetic fields.
After electroweak symmetry breaking has completed, the
magnetic charges will have annihilated but the magnetic
field will survive. It is this magnetic field that we wish to
characterize. An advantage of using the Kibble mechanism
is that it is not limited by dynamical range; a disadvantage
is that it does not take into account any dynamics except for
those dictated by symmetry considerations.
The calculation of magnetic fields resulting from the

Kibble mechanism is subtle because the algorithm neces-
sarily produces magnetic monopoles connected by Z-strings,
also known as “Nambu dumbbells” [12,13]. A straightfor-
ward calculation of the magnetic field, B, will not satisfy
divB ¼ 0 and MHD evolution, as it assumes the absence
of magnetic charges would not apply. Instead we want to
construct the divergence-free magnetic field that results after
the magnetic monopoles have annihilated and the Nambu
dumbbells have dissipated. We devise a novel algorithm to
construct the magnetic field, essentially by mimicking the
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eventual conversion of the Z-string to the electromagnetic
magnetic field, as seen in Ref. [14].
We start in Sec. II by defining the electromagnetic field

strength in terms of electroweak variables. The topological
aspects of the standard model are outlined, together with
the reason for the existence of magnetic monopoles. In
Sec. III we discuss the electroweak magnetic monopole
explicitly. This explicit monopole configuration is useful
for testing the numerical algorithm described in Sec. IV. An
important feature of our numerical algorithm is that it takes
into account the Z-strings that, when converted into electro-
magnetic fields, are necessary to ensure the divergence-
free condition. The results of our numerical analysis are
described in Sec. V. In this section we also use current
results on MHD evolution to estimate the cosmological
magnetic field at the present epoch. We conclude in
Sec. VI. In Appendix A we outline an alternate algorithm
to evaluate the magnetic field, one which accurately
reproduces the monopole configuration but is somewhat
less convenient to implement in the Pencil Code [15] that we
use. In Appendix B we revisit and correct the analytical
estimate in Ref. [9] to obtain the k4 energy spectrum. In
Appendix C we relate some of our scaling exponents to the
symbols used earlier in the literature.

II. ELECTROWEAK SYMMETRY BREAKING
AND ELECTROMAGNETISM

In the standard electroweak model, the electromagnetic
(as opposed to the Z-magnetic) magnetic field is given by [1]

B ¼ ∇ ×A − i
2 sin θw
gη2

∇Φ† ×∇Φ; ð1Þ

where A is the electromagnetic gauge field, Φ is the
vacuum expectation value (VEV) of the Higgs field,
jΦj ¼ η ¼ 246 GeV, and sin2 θw ¼ 0.23 and g ¼ 0.65
are coupling constants in the model. The last term in (1)
requires that the electromagnetic field strength should be
gauge invariant under electroweak symmetry transforma-
tions and should reduce to the usual Maxwellian definition
in “unitary gauge,” in which Φ is constant.
The Higgs field is a complex doublet

Φ ¼ η

�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
ð2Þ

and the Higgs potential is

VðΦÞ ¼ λ

4
ðjΦj2 − η2Þ2: ð3Þ

The vacuum manifold—the minimum of the potential—is
given by

jΦj2 ¼ ϕ2
1 þ ϕ2

2 þ ϕ2
3 þ ϕ2

4 ¼ η2 ð4Þ

and this describes a three sphere, S3. Symmetry dictates
that the VEVof the Higgs can take on any value on this S3

with equal probability [10]. The VEVs in distant spatial
regions will be independent of each other, implying that
∇Φ must be nonzero during electroweak symmetry break-
ing and, from (1), magnetic fields must be created [1].
A more in-depth analysis reveals the topology in

electroweak symmetry breaking [13,16]. Random orienta-
tions of Φ imply that the unit vector

n̂a ¼ Φ†σaΦ
η2

ð5Þ

will also be distributed randomly. The distribution of a
three-vector field can be topologically nontrivial, implying
the existence of Higgs zeros and magnetic charges [17,18].
(The “magnetic charge” will be referred to as a “magnetic
monopole,” though it should be noted that there is no
static magnetic monopole solution of the electroweak
equations.) Further analysis shows that the electroweak
magnetic monopole is connected by a Z-string to an anti-
monopole and the Higgs field vanishes along the string (see
Fig. 1) [12,19]. The dynamics of a monopole-antimonopole
pair shows that the system is unstable to decay and that
the Z-string converts into an electromagnetic magnetic
field [14]. The final magnetic field, after all the monopoles
have annihilated, is divergenceless. We would like to
determine the spectral properties of the final magnetic
field on large length scales.

III. MAGNETIC MONOPOLES

The magnetic field in (1) has two pieces: the first term is
divergence-free, while the last term can have nonvanishing
divergence and represents the magnetic monopole

FIG. 1. Distribution of monopoles and antimonopoles and the
strings connecting them (from Ref. [13]).
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contribution. We will be interested in the spectral properties
of the latter contribution to the final magnetic field, as it is
insensitive to the detailed dynamics of electroweak sym-
metry breaking. Then the magnetic field is given by

B ¼ −i
2 sin θw
gη2

∇Φ† ×∇Φ ð6Þ

and the corresponding gauge field using B ¼ ∇ ×A is1

A ¼ −i
2 sin θw
gη2

Φ†∇Φ; ð7Þ

where we have used ∇ ×∇Φ ¼ 0. As we shall see below,
the gauge field defined in (7) may be multivalued at certain
points, and it will be important to handle these singular
points carefully.
It is helpful to consider a specific configuration that

corresponds to an electroweak magnetic monopole. The
Higgs field for the monopole can be written in spherical
coordinates as

Φm ¼ η

�
cosðθ=2Þ

sinðθ=2Þeiϕ
�
; ð8Þ

for which the vector in (5) is

n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ ¼ r̂: ð9Þ

Then the magnetic field derived from (6) is

B ¼ sin θw
g

r̂
r2

; ð10Þ

which is the magnetic field of a magnetic monopole. The
corresponding gauge field is

A ¼ sin θw
g

ð1 − cos θÞ
r sin θ

ϕ̂; ð11Þ

where ϕ̂ is the unit vector in the azimuthal direction. This is
the gauge field of a magnetic monopole with a Dirac string
at θ ¼ π, where A is multivalued. In the full electroweak
model, jΦj vanishes along the Dirac string, which gets
replaced by a regular field configuration called a Z-string.
The Z-string carries Z-magnetic flux but no electro-
magnetic magnetic flux. However, the Z-string is unstable
and rapidly decays by conversion into electromagnetic
flux [14]. During this process the magnetic monopoles
annihilate and the magnetic field becomes divergenceless.
One way to study magnetic field production during

electroweak symmetry breaking is to numerically evolve
the dynamical electroweak equations, keeping track of the

magnetic field [2–4]. However, such field theory simula-
tions are computationally expensive and their dynamical
range is limited. Recognizing that the monopole contribu-
tion to the magnetic field arises simply due to variations of
the Higgs field, it is more efficient to perform a non-
dynamical evaluation of the magnetic field, though taking
care to account for both the magnetic field of the magnetic
monopoles and also the Z-strings that will eventually
convert to electromagnetic magnetic fields. We describe
the algorithm for the nondynamical evaluation in the next
section.

IV. ALGORITHM

The magnitude of the Higgs field is fixed on the vacuum
manifold: jΦj ¼ η. The direction of the Higgs field varies
on a certain length scale that is determined by the dynamics
of electroweak symmetry breaking, as in a first- or second-
order phase transition, or a crossover. Then we imagine
spatial domains within which the direction of the Higgs is
approximately constant, while the Higgs directions in
different domains are completely uncorrelated. More con-
cretely, we consider the Hopf parametrization of the Higgs
field on its vacuum manifold,

Φ ¼
�
cos αeiβ

sin αeiγ

�
; ð12Þ

where α∈ ½0; π=2� and β; γ ∈ ½0; 2π� are Hopf angles on
the three sphere given by (4). Electroweak symmetry
implies that the probability for α, β, and γ to take on
any value is given by the volume element dudβdγ, where
u ¼ cosð2αÞ=2. Therefore, u∈ ½−1=2; 1=2�, β∈ ½0; 2π�,
and γ ∈ ½0; 2π� are uniformly distributed in their respective
domains.
We simulate the distribution of the Higgs field on a cubic

lattice, where each cell of the lattice is considered to be a
domain of constant Higgs—the lattice spacing corresponds
to the domain size. Equivalently, we assign a value of the
Hopf angles to each vertex of a cubic lattice by randomly
selecting values from their probability distributions.
The angles at any vertex define the Higgs field Φ at that
vertex by (12).
In our numerical implementation, the zeros of the Higgs

field—that are also the locations of the monopoles and
Z-strings—fall between lattice points, and hence A is well
defined everywhere on the lattice. From A we find B, not
by taking the curl of A, say by using finite differences, but
by calculating fluxes through plaquettes of the simulation
lattice,

Bδx2 ¼ p̂
I
∂P
dl ·A; ð13Þ

where ∂P denotes the perimeter of the plaquette, and we
have assumed that B is spread uniformly over the area δx21A should not be confused with A that occurs in (1).
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of the plaquette and is oriented along the areal vector p̂
of the plaquette (defined by the direction—clockwise or
counterclockwise—in which we perform the line integral).
The advantage of using (13) is that it automatically includes
the contributions of the magnetic monopoles and the
strings. (In the electroweak model the strings are Z-strings
that decay into electromagnetic magnetic fields; in electro-
magnetism, the strings are Dirac strings.) The magnetic
field that we obtain in this way will be divergenceless
because the magnetic monopole contribution to the mag-
netic field is compensated exactly by the string contribu-
tion. We have tested our algorithm to make sure that the
string flux is −2π so as to exactly cancel theþ2π flux of the
magnetic monopole.
A simple procedure to evaluate Eq. (13) is given by

summing the components of A, defined by (7), along the
links of each plaquette between its four vertices, I, II, III,
and IV. Starting at the lower left corner and going in the
clockwise direction, the contribution between vertices I
and II yields

Axja ¼ −i
2 sin θw
gη2

Φ†
∂xΦja

≈ −i
sin θw
gη2δx

ðΦ†
II þΦ†

I ÞðΦII −ΦIÞ; ð14Þ

where δx is the lattice spacing. Given that Φ†
IIΦII ¼ η2 and

Φ†
IΦI ¼ η2, we are left with

Axja ≈ −i
sin θw
gη2δx

�
Φ†

IΦII −Φ†
IIΦI

�
¼ 2 sin θw

gη2δx
ImΦ†

IΦII: ð15Þ

In this way, we obtain from all four contributionsI
∂P

dl ·A ≈
2 sin θw
gη2

Im
�
Φ†

IΦII þΦ†
IIΦIII

þΦ†
IIIΦIV þΦ†

IVΦI

�
: ð16Þ

We have checked that this algorithm gives the string flux of
−2π so that it exactly cancels the þ2π flux of the magnetic
monopole at sufficiently high resolution. It also agrees
with an alternate algorithm presented in Appendix A. For
convenience, we will work in units such that 2 sin θw=g ¼ 1
and η ¼ 1.
The above procedure evaluates the magnetic field

flux through each plaquette of the lattice, namely
Bxði; jþ 1=2; kþ 1=2Þ, Byðiþ 1=2; j; kþ 1=2Þ, and
Bzðiþ 1=2; jþ 1=2; kÞ for all vertices ði; j; kÞ. Each com-
ponent can be Fourier transformed using

bðkÞ ¼
Z

d3 xBðxÞeþik·x: ð17Þ

A translation of the coordinate system only introduces an
overall phase factor that does not enter the energy spec-
trum. For example, for the z-component of the magnetic
field we can shift the coordinate system by ð1=2; 1=2; 0Þ,
resulting in a magnetic field defined on a regular grid,
which can be Fourier transformed using a fast Fourier
transform routine. The shift introduces an overall phase
factor expðik · aÞ in the Fourier transform, where a is the
shift vector, but this factor does not affect the energy
spectrum, which only depends on jbðkÞj2. Further, the
different components of the magnetic field enter the power
spectrum independently and can be evaluated using differ-
ent suitable shifts.
The magnetic field generated by the random distribu-

tion of Φ will be isotropic, homogeneous, and divergence-
less, and the two-point correlation function will take the
standard form, hbiðkÞb�jðk0Þi ¼ ð2πÞ6δð3Þðk − k0ÞMijðkÞ,
given by just two functions of the wave number k,

MijðkÞ ¼
EMðkÞ
4πk2

pij þ iϵijkkl
HMðkÞ
8πk2

; ð18Þ

where pij ¼ δij − k̂ik̂j is the projection operator that
ensures the divergenceless condition. The function EMðkÞ
is called the energy spectrum, and HMðkÞ is the helicity
spectrum. The energy spectrum is evaluated using

EMðkÞð2πÞ3δð3Þð0Þ ¼
k2

ð2πÞ2 hjbiðkÞj
2i: ð19Þ

On the discrete lattice, the ð2πÞ3δð3Þð0Þ on the left-hand
side is replaced by V, the lattice volume. Note that the form
of the correlation function in (18) only applies to diver-
genceless magnetic fields, that is after the magnetic
monopoles and connecting Z-strings have annihilated.
The scheme described above to find the magnetic field is

inadequate to evaluate the magnetic helicity A ·B, as it
only provides the gauge field component along the link at
the link midpoint, and only the magnetic field component
orthogonal to the plaquette and at the center of the
plaquette. We would like to obtain all components of the
magnetic field at a point, say the vertices of the lattice.
To do so, we interpolate the magnetic field from four
adjoining plaquettes, as illustrated in Fig. 2. Once we have
the magnetic field on the vertices of the lattice, we Fourier
transform to get b̃ðkÞ, where the tilde denotes that this is
the interpolated magnetic field. Then the gauge field
Fourier coefficients are found using

ãðkÞ ¼ −i
k
k2

× b̃ðkÞ ð20Þ

up to additive terms proportional to k that are omitted by
our gauge choice.
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The helicity spectrum is now evaluated using

HMðkÞð2πÞ3δð3Þð0Þ ¼
k2

ð2πÞ2 hãðkÞ · b̃
�ðkÞi: ð21Þ

Since there is no parity violation present in the Higgs
sector of the standard electroweak model,2 we will have
HMðkÞ ¼ 0 and only helicity fluctuations will be present.
Hence, we will also evaluate the shell-integrated helicity
variance spectrum,

SpðhÞ ¼ k2

8π3V

I
dΩkjh̃j2; ð22Þ

where h ¼ A · B, h̃ is its Fourier transform, and the
integration is over solid angles in k-space. The “Hosking
integral,” defined as

IH ¼ 2π2

k2
SpðhÞjk→0; ð23Þ

is a conserved quantity in MHD evolution [20,21].
Its gauge invariance has been proven in Ref. [20] and
demonstrated numerically in Ref. [22]. As shown in those
earlier papers, the decay of nonhelical MHD turbulence is
governed by the conservation of IH, while the decay of
helical MHD turbulence is governed by the conservation of
the mean magnetic helicity density IM ≡ hhi.

V. RESULTS

A. Spectral scaling at large scales

We compute spectra from a three-dimensional mesh of
size L3, so the smallest wave number in the domain is
k1 ¼ 2π=L. We use N3 meshpoints, so the mesh spacing
is δx ¼ L=N, and the largest wave number in the domain
is the Nyquist wave number kNy ¼ 2=δx ¼ k1N=2.

Our results for the energy spectrum are derived using
(19) and shown in Fig. 3, compensated by k−4 to show that,
at large length scales, it gives the scaling

EMðkÞ ∝ k4: ð24Þ

The exponent disagrees with the analytic argument in [9]
where the scaling was estimated to be k3. In Appendix B we
clarify and correct that argument to also show consistency
with the numerical scaling of k4. In Fig. 3, the turnover at
large k is due to the discretization error associated with the
estimate of the derivative in Eq. (14) for finite mesh spacing
and shifts to higher k when N is increased.
To obtain an estimate for the energy spectrum and not

just the scaling, we need some input from dynamical
simulations [2–4]. The first input is that the energy density
in magnetic fields after symmetry breaking is roughly 10%
of the total energy density. The second input is that the
spectrum in dynamical simulations is highly peaked at the
largest coherence scales in the simulations and suggests
that the initial coherence scale should be comparable to
the cosmological horizon size at the electroweak scale.
Even if the coherence scale is initially subhorizon, it will
grow on the eddy turnover timescale, which is given by the
coherence scale divided by the Alfvén speed, and will be
short compared to the Hubble time. This can lead to
significant growth of the initial coherence scale, as dis-
cussed in [23]. Using the connection between energy
density and the energy spectrum,

ρB ¼
Z

dkEMðkÞ; ð25Þ

we get an estimate for the magnetic energy spectrum
immediately after electroweak symmetry breaking,

FIG. 2. The z-component of the magnetic field at vertex V is
determined by averaging the magnetic field components on the
adjoining plaquettes: BzðVÞ ¼ ðBzðP1Þ þ BzðP2Þ þ BzðP3Þ þ
BzðP4ÞÞ=4, where the four plaquettes P1;…; P4 are in the
xy-plane.

FIG. 3. Compensated magnetic energy spectra, k−4EMðkÞ, for
2563 (dotted line), 5123 (dashed line), and 10243 meshpoints
(solid line), obtained by using Eq. (16). All curves have been
normalized by the value of

R
k−5EMðkÞdk for the highest-

resolution case.

2Parity violation in the electroweak fermionic sector may play
a role in producing magnetic helicity but that is not accounted for
in the present model.
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EMðk; tEWÞ ∼
ρEW
kEW

�
k

kEW

�
4

; k < kEW; ð26Þ

where ρEW ∼ ð100 GeVÞ4 ∼ ð1024 GÞ2 is the energy den-
sity at the electroweak scale, and 2π=kEW ∼ 1 cm is the
physical horizon size at the electroweak epoch.
We do not expect any net magnetic helicity in our

simulations, as there is no source of parity violation and
HMðkÞ ¼ 0. In Fig. 4 we plot the k−2 compensated shell-
integrated helicity variance spectrum and find it to be
approximately constant on all scales. Similarly to the
normalization employed in the compensated spectrum in
Fig. 3, we have normalized the compensated spectrum
k−2SpðhÞ by R

k−3SpðhÞdk.

B. Inverse cascade scaling

To estimate the magnetic field predicted from electro-
weak symmetry breaking at the present epoch we shall
assume that the initial coherence scale is given by the
cosmological horizon size and has a ks spectrum for small
k. We will give estimates for general s. Our numerical
estimates for the location and amplitude of the peak of the
spectrum will turn out to be independent of the initial slope
of the subinertial (k < kpeak) range, though other predic-
tions can be sensitive to the actual value of s.
As time evolves, for the nonhelical case the peak of the

energy spectrum moves to lower k, as given by the kϵ

(ϵ ¼ 3=2) envelope in Fig. 5, and the spectrum grows as τγ ,
where τ is conformal time, with [24,25]

γ ¼ 2ðs − ϵÞ
ϵþ 3

ð27Þ

for small k, as follows from the scaling arguments of
Ref. [24] and confirmed by the inset of Fig. 5 for s ¼ 4
when γ ¼ 10=9 (see Appendix C for a conversion of the
symbols used here to those used in earlier literature—the
symbol γ used above is not to be confused with the Hopf
angle that is denoted by the same symbol). We wish to

relate the peak of the spectrum at the present epoch τ0
(labeled as point B in Fig. 5) to the peak of the spectrum at
the electroweak epoch τEW (labeled as point A). From the
kϵ envelope we find

EMðkB; τ0Þ ¼ EMðkA; τEWÞ
�
kB
kA

�
ϵ

; ð28Þ

and using the ks spectrum and the τγ growth we also find

EMðkB; τ0Þ ¼ EMðkA; τEWÞ
�
kB
kA

�
s
�

τ0
τEW

�
γ

: ð29Þ

Note that the evolution is in terms of comoving quantities,
for example, k ¼ akphys and B ¼ a2Bphys, where a is the
cosmic scale factor. Also note that the scaling laws used
above are only valid at late times, which we assume is given
by τ ≫ τEW, when transients have died out (see Sec. V D).
Dividing (28) by (29) and using (27) we get

kB ¼ kA

�
τEW
τ0

�
2=ðϵþ3Þ

: ð30Þ

Inserting this relation into (28) gives,

EMðkB; τ0Þ ¼ EMðkA; τEWÞ
�
τEW
τ0

�
2ϵ=ðϵþ3Þ

: ð31Þ

The spectral slope s does not appear in these relations,
except for the constraint that s > ϵ.
The conformal magnetic field on scale λ ¼ 2π=k is given

by BλðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kEMðk; τÞ

p
, and the physical magnetic field

is the conformal magnetic field multiplied by T2, where
T is the cosmic temperature. Therefore, the physical peak
magnetic field today is

FIG. 4. Compensated shell-integrated helicity variance spec-
trum, k−2SpðhÞ, using N ¼ 256 meshpoints, normalized by the
value of

R
k−3SpðhÞdk.

FIG. 5. EMðk; tÞ vs k for different times from MHD evolution
of an initial k4 spectrum with vanishing helicity. Point A is the
peak location at the initial time and point B is the peak location at
the final time. The decay of the peak from A to B follows a k3=2

envelope. The vertical arrow and the inset show growth of the
power ∝ t10=9 on small k.
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Bphys
B ðt0Þ ¼ Bphys

A ðτEWÞ
�
τEW
τ0

�
p
�

T0

TEW

�
2

; ð32Þ

where p ¼ ðϵþ 1Þ=ðϵþ 3Þ, and the “phys” superscript
denotes physical, not comoving, quantities. The peak
magnetic field strength at the electroweak epoch is
Bphys
A ðτEWÞ ∼ 1024 G.
The conformal time is given by τ ∝ 1=T in the radiation

dominated universe (for T ≳ Teq ∼ 1 eV) and τ ∝ 1=
ffiffiffiffi
T

p
in

the matter dominated universe. (We ignore the changes in
the number of degrees of freedom and other cosmological
events for these simple estimates.) The electroweak temper-
ature is TEW ∼ 100 GeV and the temperature at the present
epoch is T0 ∼ 10−4 eV. These numbers give

τ0
τEW

¼ TEW

Teq

ffiffiffiffiffiffiffi
Teq

T0

s
≈ 1013: ð33Þ

For nonhelical fields, when IH ¼ const, we have
ϵ ¼ 3=2, and (30) and (32), with p ¼ 5=9, give [26]

kphysB ∼ ð1 kpcÞ−1; Bphys
kpc ðt0Þ ∼ 10−13 G: ð34Þ

These estimates are independent of the slope of the
spectrum s, which will only enter the estimate of the field
strength on length scales other than the peak length scale by
factors of ðk=kBÞs.
Our formulae in (30) and (32) can also be applied

to the case of maximally helical magnetic fields, when
IM ¼ const. Then ϵ ¼ 0 because EM at the peak stays
constant for maximally helical fields. These numerical
values give p ¼ 1=3 [see below (32)], and the estimates are

kphysB ∼ ð1 MpcÞ−1; Bphys
Mpcðt0Þ ∼ 10−10 G; ð35Þ

independent of the spectral slope s.

C. Partially helical decay

The magnetic fields generated during EWSB are
expected to be partially helical [23,27,28]. How does
partial helicity affect the evolution of the magnetic field
and our estimates? With partial helicity, the evolution in the
early stages is as if there was no helicity. Then EM follows
Fig. 5 and ϵ ¼ 3=2. However, kHM is conserved and the
field evolves toward maximal helicity, which is defined by
jHMjmax ¼ 2EM=k. Once the field is maximally helical, it
evolves with ϵ ¼ 0.
Let us denote the conformal time at which the field

becomes maximally helical by τ�. Then applying (30) and
(31) from τEW to τ� with ϵ ¼ 3=2, and then from τ� to τ0
with ϵ ¼ 0, gives

kB ¼ kA

�
τEW
τ�

�
4=9

�
τ�
τ0

�
2=3

; ð36Þ

EMðkB; τ0Þ ¼ EMðkA; τEWÞ
�
τEW
τ�

�
2=3

: ð37Þ

To estimate τ�, we first define the relative helicity,

rhðk; τÞ ¼
kjHMj
2EM

: ð38Þ

While rh is a function of k and τ in general, the most
relevant value of rh is at the peak of the spectrum, and we
will only consider the relative helicity at the peak scale
k ¼ kpeak. Then τ� is defined by rhðτ�Þ ¼ 1. Using (37) and
the conservation of magnetic helicity gives

τ� ¼ τEWr
−3=2
h;EW; ð39Þ

where rh;EW is the helicity fraction at the electro-
weak epoch.
The magnetic field becomes maximally helical prior

to the present epoch if τ� < τ0, that is, if rh;EW >
ðτEW=τ0Þ2=3 ∼ 10−9. If, on the other hand, rh;EW < 10−9,
then there is not enough time for the field to become
maximally helical and the evolution is just as in the case of
nonhelical fields, as in (34). If rh;EW > 10−9, Eqs. (36) and
(37) with (39) give

kB ¼ kAr
−1=3
h;EW

�
τEW
τ0

�
2=3

; ð40Þ

EMðkB; τ0Þ ¼ EMðkA; τEWÞrh;EW; ð41Þ

which give the numerical estimates

kphysB ∼ ð1 MpcÞ−1r−1=3h;EW; Bphys
B ðt0Þ ∼ 10−10r1=3h;EW G:

ð42Þ

D. Relation to earlier decay laws

The scalings (30) and (32) are equivalent to earlier ones in
terms of length scales ξMðτÞ≡ k−1B and mean magnetic
energy densities EMðτÞ≡ B2

BðτÞ=2 (see, e.g., Refs. [25,29]).
Such relations were typically written in the form

ξðτÞ ¼ ξðτiÞ½1þ ðτ − τiÞ=τeddy�2=ðϵþ3Þ; ð43Þ

EðτÞ ¼ EðτiÞ½1þ ðτ − τiÞ=τeddy�−2p; ð44Þ

where τeddy is some relevant eddy turnover time. Different
variations of these expressions have in common that the
late-time behavior (τ → ∞) can be written as
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ξðτÞ ¼
h
ξðτiÞ=τ2=ðϵþ3Þ

eddy

i
τ2=ðϵþ3Þ; ð45Þ

EðτÞ ¼ �
EðτiÞτ2peddy

�
τ−2p: ð46Þ

In the case when IH is conserved with 2=ðϵþ 3Þ ¼ 4=9 and
2p ¼ 10=9, this can also be written as

ξðτÞ ¼ CH
ξ I

1=9
H τ2=ðϵþ3Þ; ð47Þ

EðτÞ ¼ CH
E I

2=9
H τ−2p: ð48Þ

Conversely, when IM is conserved with 2=ðϵþ 3Þ ¼ 2=3 ¼
2p ¼ 2=3, these relations can also be written as

ξðτÞ ¼ CM
ξ I

1=3
M τ2=ðϵþ3Þ; ð49Þ

EðτÞ ¼ CM
E I

2=3
M τ−2p: ð50Þ

This may look like a useless introduction of new parameters,
but the important point here is that IH and IM are conserved
quantities and the coefficientsCj

i for i ¼ ξ or E and j ¼ H or
M are believed to be universal ones. The coefficients are
known from earlier work and are independent of the initial
conditions, while IH and IM depend on the initial conditions
but do not change during the subsequent evolution. Thus, in
reality, there are no free adjustable parameters in this
expression anymore.

E. Relevance of the prefactors

Although the scalings (30) and (32) strictly apply to late
times, they can be extended to arbitrary times, but we must
ensure that the starting values, kA and BA, are physically
meaningful. This requires that the time since the beginning
of the decay is at all times a certain fractionCM of the Alfvén
time, τA ¼ ξ=vA, where vA ¼ ð2E=ρÞ1=2 is the Alfvén
speed [30]. One may, therefore, expect τA ¼ CMðτ − τiÞ.
However, as discussed in Ref. [21], the correct counting of
time is uncertain, particularly at early times, and becomes
more certain only at late times. Furthermore, the factor CM
depends on the Lundquist number, but is expected to reach
an asymptotic value of about 50 [29]. The correct prefactors
in the scaling relations (30) and (32) depend on which
conserved quantity governs the decay. When the decay is
governed by IH ¼ const, we have

ki ¼ CH
k I

−1=9
H τ−4=9i ; Bi ¼ CH

B I
1=9
H τ−5=9i ; ð51Þ

while when the decay is governed by IM ¼ const, we have

ki ¼ CM
k I

−1=3
M τ−2=3i ; Bi ¼ CM

B I
1=3
M τ−1=3i : ð52Þ

Here, the subscript i refers to the points A or B, or to any
other moment in time. The values of the prefactors CH

k , C
H
B ,

CM
k , andC

M
B are still somewhat uncertain, but it is suspected

that they are universal. Furthermore, they were given in
terms of length scales and energy densities. See Table I for a
comparison showing that different measurements resulted
in similar values.
The quantities IH and IM can be approximated in terms

of their dimensions, as has been done previously [22,32].
Here, the magnetic field is always understood as being
expressed as an Alfvén velocity. It is then possible to cast
Eqs. (51) and (52) in terms of kAðτEWÞ and BAðτEWÞ.
However, given that the original expressions are based on
potentially universal prefactors and on conserved quantities
that can, in principle, be accurately determined, it is clear
that the expressions (30) and (32) cannot be applied to
arbitrarily chosen starting values.

VI. CONCLUSIONS

We have shown that arguments based on symmetries of
the electroweak vacuum manifold imply the production of
magnetic fields that are largely independent of the details
of the symmetry breaking process. We have used these
arguments to evaluate the energy spectrum of the magnetic
field and find EM ∝ k4 on large length scales (small k).
Without CP violation in the model, the average magnetic
helicity vanished, but there were helicity fluctuations on all
scales. Together with earlier results from field theory simu-
lations of electroweak symmetry breaking and MHD simu-
lations of cosmological magnetic field evolution, we have
estimated the magnetic field strength and coherence scale
at the present epoch. For nonhelical fields, we found
kpc coherence scales and 10−13 G field strength, while for
maximally helical fields, we found Mpc coherence scales
and 10−10 G field strength. For fractional helicity, the
estimates were between these extreme values. Such esti-
mates are consistent with current upper and lower bounds
on cosmological magnetic fields [7,9].
An important assumption in these estimates is that the

initial coherence scale of the magnetic field is given by
the horizon size at the electroweak epoch. There is some
supporting numerical evidence from field theory simula-
tions that show that the spectrum is peaked at the largest
length scales in the simulations [2–4]. It would be reassur-
ing to see the result hold up in bigger simulation volumes.

TABLE I. Comparison of the prefactors CH
k , C

M
k , C

H
B , and CM

B
found in earlier work.

Prefactor [31] [25] [32]

CH
k ¼ 1=CH

ξ 1=0.15 1=0.12 1=0.14 ≈7.1
CM
k ¼ 1=CM

ξ � � � � � � 1=0.12 ≈8.3

CH
B ¼

ffiffiffiffiffiffiffiffiffi
2CH

E

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × 3.8

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × 3.7

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × 4.0

p
≈2.8

CM
B ¼

ffiffiffiffiffiffiffiffiffi
2CM

E

q � � � � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 × 4.0

p
≈2.8
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If the initial coherence scale is subhorizon, the subhorizon
dynamics should be taken into account and the estimates
should be rescaled accordingly.
The limitations of our analysis should be pointed out.

The nondynamical algorithm of Sec. IV is suitable for
determining properties of the magnetic field that are
insensitive to the symmetry breaking dynamics. For exam-
ple, the method can give us the spectrum k4 but it cannot
give us the coherence scale of the magnetic field, which
depends on the evolution during the symmetry breaking
process. The coherence scale may also evolve with time,
while the present algorithm is static and can at best provide
a snapshot of the evolution. Lastly, we have ignored the
contribution of the A term in (1), whereas the full dyna-
mics of electroweak symmetry breaking will include all
contributions.
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APPENDIX A: ANOTHER ALGORITHM

Once we have the Higgs distribution, we can calculate
the gauge field using (7). The gauge fields are defined on
the links of the lattice, and we will only need the
component of the gauge field along the link. From (7)
and (12) it follows that

A ¼ 2 sin θw
gη2

½cos2 α∇β þ sin2 α∇γ�: ðA1Þ

Then A on a link is related to the Hopf angles at the end
points of the link. As an example, consider the link from
point ði; j; kÞ on the lattice to the point ðiþ 1; j; kÞ. We first
need to evaluate α at the central point ðiþ 1=2; j; kÞ. This is
done using

Φðiþ 1=2; j; kÞ ¼ Φði; j; kÞ þΦðiþ 1; j; kÞ
jΦði; j; kÞ þΦðiþ 1; j; kÞj ðA2Þ

and then

cosα ¼ jΦ1ðiþ 1=2; j; kÞj; sinα ¼ jΦ2ðiþ 1=2; j; kÞj;
ðA3Þ

where the subscripts 1 and 2 on Φ denote its upper and
lower components. Calculating the gradients of β and γ in
(A1) requires some care since the angles are defined on a
circle. For example,

∇xβðiþ1=2;j;kÞ¼ ½½βðiþ1;j;kÞ−βði;j;kÞ��=δx; ðA4Þ

where ½½·�� means that the difference is taken to lie in
the interval ½−π; π�. Operationally, if the difference
βðiþ 1; j; kÞ − βði; j; kÞ is larger than π, then we subtract
2π, and if it is smaller than −π, we add 2π. We have tested
this algorithm for Φm given by (8) and found excellent
agreement with the analytical result in (11), even for
relatively coarse lattices. However, we observe no signifi-
cant difference in the spectral properties of the magnetic
field by using this method.

APPENDIX B: ANALYTICAL REASONING

In Ref. [9], an analytical argument was used to derive
the energy spectrum of the magnetic field resulting from
electroweak symmetry breaking. The conclusion was a k3

spectrum. In this appendix we revisit the argument, identify
an error, and correct it to obtain a spectrum consistent with
our numerical results.
We consider the volume-averaged magnetic field vector,

defined as

BV;i ¼
1

V

Z
V
d3 xBiðxÞ; ðB1Þ

where V is the averaging volume. On average, BV;i

vanishes owing to isotropy. However, the variance of
BV;i does not vanish,

BV ≡ hB2
Vi1=2 ¼

*�
1

V

Z
V
d3xBðxÞ

�
2
+

1=2

; ðB2Þ

where h·i denotes ensemble averaging.
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To estimate BV , we use Eq. (6),

1

V

Z
V
d3xBiðxÞ ¼ −i

2 sin θw
gη2V

Z
V
d3xϵijk∂jΦ†

∂kΦ

¼ −i
2 sin θw
gη2V

Z
∂V

dSjϵijkΦ†
∂kΦ; ðB3Þ

where ∂V is the boundary of the volume V. The Higgs field
magnitude is fixed to be the VEV, denoted by η, and so the
gradients of Φ are of order η=d, where d is the domain size
over which Φ is approximately constant. Then the integral
is a sum of terms of magnitude ∼η2=d but with random
signs. If V ¼ λ3, the number of independent terms in the
integral is λ2=d2 and, as for a random walk, the integral
grows with λ as

ffiffiffiffiffiffiffiffiffiffiffi
λ2=d2

p
∝ λ. The prefactor scales as

1=V ¼ 1=λ3, implying that BV scales as 1=λ2, and hence

BV ∝
1

λ2
∝ k2: ðB4Þ

This scaling is confirmed by our numerical analysis and is
shown in Fig. 6.
The next step is to connect BV to the energy spectrum

EMðkÞ. The connection is [9]

B2
V ¼ 2

Z
dkEMðkÞW2

VðkÞ; ðB5Þ

where the window function WVðkÞ is defined as

WVðkÞ ¼ 3j1ðkλÞ=ðkλÞ; ðB6Þ

where j1ðxÞ ¼ ðsin x − x cos xÞ=x2 is the spherical Bessel
function.
In Ref. [9] it was estimated that B2

V ∼ kEMðkÞ, but this is
not correct, as we now see. Let us consider power law forms
of EMðkÞ with a cutoff at k�,

EMðkÞ ¼
	
Akn; k ≤ k�
0; k > k�

: ðB7Þ

Then (B5) can be written as

B2
V ¼ 2A

λnþ1

Z
K�

0

dqqn


3

q3
ðsin q − q cos qÞ

�
2

; ðB8Þ

where K� ≡ k�λ ≫ 1 because we are interested in the
magnetic field on large length scales. For n ≥ 3, the integral
is dominated by the upper limit, where q ≫ 1. Then we can
estimate

B2
V ∼

9A
λnþ1

Z
K�

dq qn−4 ∝
	
λ−4 ln λ; n ¼ 3

λ−4; n ≥ 4
: ðB9Þ

Since (B4) tells us that B2
V ∼ k4 ∼ λ−4, we must have

EMðkÞ ∝ kn for n ≥ 4. In particular, EMðkÞ ∝ k3 does
not follow.
Note that EM ∝ k4 is consistent with the claim in

Ref. [34] even though our reasoning is nondynamical
and causality considerations are not relevant.

APPENDIX C: RELATION TO EARLIER USED
EXPONENTS

To facilitate the comparison between the scaling expo-
nents used here and those used in earlier papers, we list in
Table II the most important ones. We also list their values
that are relevant when the MHD decay is governed either
by IH ¼ const or by IM ¼ const.
The scaling exponent 2=ðϵþ 3Þ in Eq. (28) characterizes

the growth of the characteristic length scale with time and
was denoted in Ref. [26] by q. The scaling of the magnetic
field with the characteristic length scale was denoted
in Ref. [29] by κ and is related to the exponent p ¼
ðϵþ 1Þ=ðϵþ 3Þ introduced in Eq. (32), such that p ¼ κq.
The exponent γ ¼ 2ðs − ϵÞ=ðϵþ 3Þ in Eq. (27) agrees with
the expression ðα − βÞq in Eq. (2.9) of Ref. [25].
The observation that the exponents p and 2=ðϵþ 3Þ add

up to unity reflects the fact that the Alfvén time is
proportional to the actual (conformal) time τ. This is true
regardless of whether the MHD decay is governed by
IH ¼ const or by IM ¼ const.

FIG. 6. Log-log plot of volume-averaged magnetic field, BV ,
versus size of volume, shown as black dots. The error bars have
been computed based on averaging over the three coordinate
directions of the magnetic field. The red line has a slope of −2
and the blue dotted line shows ðλ−4 ln λÞ1=2.

TABLE II. Relation between the scaling exponents used
here and those used in earlier literature, along with their values
when the MHD decay is governed either by IH ¼ const or by
IM ¼ const.

Present work Earlier work IH ¼ const IM ¼ const

s α [26,35] Arbitrary
ϵ β [26] 3=2 0
2=ðϵþ 3Þ q [26] 4=9 2=3
p qκ [29] 5=9 1=3
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