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Abstract

Kinetic helicity is a fundamental characteristic of astrophysical turbulent flows. It is not only responsible for the
generation of large-scale magnetic fields in the Sun, stars, and spiral galaxies, but it also affects turbulent diffusion,
resulting in the dissipation of large-scale magnetic fields. Using the path integral approach for random helical
velocity fields with a finite correlation time and large Reynolds numbers, we show that turbulent magnetic
diffusion is reduced by the kinetic helicity, while the turbulent diffusivity of a passive scalar is enhanced by the
helicity. The latter can explain the results of recent numerical simulations for forced helical turbulence. One of the
crucial reasons for the difference between the kinetic helicity effect on magnetic and scalar fields is related to the
helicity dependence of the correlation time of a turbulent velocity field.

Unified Astronomy Thesaurus concepts: Cosmic magnetic fields theory (321)

1. Introduction

The evolution of solar and Galactic large-scale magnetic fields
can be understood in terms of mean-field dynamo theory, applying
various analytical methods (see, e.g., H. K. Moffatt 1978;
E. N. Parker 1979; F. Krause & K.-H. Rädler 1980; Y. B. Zeldovich
et al. 1983; A. Ruzmaikin et al. 1988; G. Rüdiger et al. 2013;
H. K. Moffatt & E. Dormy 2019; I. Rogachevskii 2021;
A. Shukurov & K. Subramanian 2022). Helical motions emerge
in inhomogeneous or density-stratified turbulence, give rise to an
α effect, and produce large-scale dynamo action in combination
with a nonuniform (differential) rotation, while turbulent magnetic
diffusion limits the growth rate of the field.

It has recently been shown using direct numerical simula-
tions (DNS; A. Brandenburg et al. 2017; A. Brandenburg et al.
2025) that helical turbulent motions of the plasma affect not
only the α effect, but also the turbulent magnetic diffusion. In
particular, the kinetic helicity HK = 〈u · ω〉 was found to lower
the turbulent magnetic diffusion coefficient h

t
, where u and ω

are fluctuations of velocity and vorticity, and angular brackets
denote ensemble averaging. On the other hand, DNS showed
that the kinetic helicity increases the turbulent diffusion
coefficient for passive scalars (A. Brandenburg et al. 2025).

Using the renormalization group approach in the limit of low
magnetic Reynolds numbers, it has been recently shown by
K. A. Mizerski (2023) that the decrease of the turbulent
magnetic diffusion coefficient in comparison with that for a
nonhelical random flow is of the order of ( ) /t á ñuHRm2

K c
2 2 ,

where Rm = τc 〈u
2〉/η is the magnetic Reynolds number, η is

the magnetic diffusion caused by an electrical conductivity of
the plasma, and τc is the turbulent correlation time. Early
theoretical predictions by B. Nicklaus & M. Stix (1988) based

on the cumulant expansion method demonstrated the opposite
effect, where the turbulent magnetic diffusion coefficient
increases with kinetic helicity, in contradiction to the
subsequent numerical results of A. Brandenburg et al. (2017).
By means of the Feynman diagram technique, it has been

found that kinetic helicity increases the turbulent diffusion of a
passive scalar (A. Z. Dolginov & N. A. Silant’ev 1987). Later,
the increase of passive scalar diffusion of up to 50% by kinetic
helicity has been confirmed by O. G. Chkhetiani et al. (2006)
when applying the renormalization group approach. On the
other hand, applying the renormalization group theory, it has
been demonstrated that there is no effect of helicity on the
effective eddy viscosity (Y. Zhou 1990). Various helicity
effects on different characteristics of turbulence are discussed
in the recent review by A. Pouquet & N. Yokoi (2022).
In the present study, we apply the path-integral approach

(see, e.g., P. Dittrich et al. 1984; T. Elperin et al. 2000, 2001;
N. Kleeorin et al. 2002) for a random helical velocity field with
a finite correlation time for large fluid and magnetic Reynolds
numbers. We derive equations for the mean magnetic field and
the mean scalar field (e.g., the mean particle number density).
We have shown that the turbulent magnetic diffusion
coefficient decreases because of the kinetic helicity. On the
other hand, the kinetic helicity increases the turbulent diffusion
coefficient of the scalar field. Both effects are of the order
of ( ) /t á ñuHK c

2 2 .
To derive the mean-field equations for the magnetic and

scalar fields, we use an exact solution of the governing
equations (i.e., the induction equation for the magnetic field
and the convection–diffusion equation for the scalar field) in
the form of a functional integral for an arbitrary velocity field.
The microscopic diffusion can be described by a Wiener
random process, and the functional integral implies an
averaging over the Wiener random process. The used form of
the exact solution of the governing equations allows us to
separate the averaging over the Wiener random process and a
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random velocity field. The derived mean-field equations for the
magnetic and scalar fields are generally integro-differential
equations. However, when the characteristic scale of variation
of the mean fields is much larger than the correlation length
of a random velocity field, second-order equations (in spatial
variables) are recovered for the mean fields.

For the derivation of the mean-field equations, we consider a
random helical velocity field with a small yet finite constant
renewal time. Thus, we apply a model with two random
processes: the Wiener random process, which describes the
microscopic diffusion and the random velocity field between
the renewals. This model reproduces important features of
some real turbulent flows. For instance, the interstellar
turbulence, which is driven by supernovae explosions, loses
memory in the instants of explosions (see, e.g., Y. B. Zeldovich
et al. 1990; V. G. Lamburt et al. 2000). Between the renewals,
the velocity field can be random with its intrinsic statistics. To
obtain a statistically stationary random velocity field, we
assume that the velocity fields between renewals have the same
statistics.

This paper is organized as follows. In Section 2, we outline
the governing equations and the procedure of the derivation of
the equation for the mean magnetic field. In Section 3, we
derive the equation for the turbulent magnetic diffusion
coefficient. For comparison with the magnetic case, we derive
the mean-field equation for the particle number density in
Section 4 and obtain an expression for the turbulent diffusion
coefficient. In Section 5, we compare the theoretical predictions
with the results of the DNS. Finally, we draw conclusions in
Section 6.

2. Governing Equations

The magnetic field B(t, r) is determined by the induction
equation

( · ) ( · ) ( )  h
¶
¶

+ = + D
B

u B B u B
t

, 1

where u is a random velocity field. For simplicity, we consider
an incompressible velocity field. Below, we derive the equation
for the mean magnetic field in a random helical velocity field
with a finite correlation time for large fluid and magnetic
Reynolds numbers.

Following a previously developed method (P. Dittrich et al.
1984; N. Kleeorin et al. 2002), we use an exact solution of
Equation (1) with an initial condition B(t = s, x) = B(s, x) in
the form of the Feynman–Kac formula:

( ) ( ( )) ( ( )) ( )x x= á ñxxB t G t s t s B s t s, , , , , , , 2i ij j

where the function Gij(t, s, ξ) is determined by

( )
( ) ( )

x
x=

dG t s

ds
N G t s

, ,
, , , 3

ij
ik kj

Nij = ∇jui is the velocity gradient matrix, x̃ x= - x, and
〈. . . 〉ξ denotes averaging over the Wiener paths

( ) [ ( )] ( )

( )
òx xm m m h= - - + -

-
x u wt s t t d t s, , , 2 .

4

t s

0

Here w(t) is a Wiener random process defined by the properties
( )á ñ =w t 0w , and ( ) ( )t tdá + ñ =w t w t wi j ij, and á¼ ñw denotes

averaging over the statistics of the Wiener process. We use the

Fourier transform defined as

( ) ( · ) ( ) ( )òx x=B q B q qt i s d, exp , . 5

Substituting Equation (5) into Equation (2), we obtain

( ) ( ( )) [ ˜ · ] ( )

( · ) ( )
ò x x= á ñ

´

xx q q

q x q

B s G t s t s i B s

i d

, , , , exp ,

exp . 6

i ij j

In Equation (6) we expand the function [ ˜ · ]x qiexp in a Taylor
series at q = 0, i.e., [ ˜ · ] ( !)( ˜ · )/x x= å =

¥q qi k iexp 1k
k

0 . Using
the identity ( ) [ · ] [ · ]=q x q x qi i iexp expk k and Equation (6),
we arrive at the expression

( ) ( ) ( ˜ · )
!

( ) ( · ) ( )ò

åx x 
=

´

x=

¥

x

q q x q

B t G t s
k

B s i d

, , ,

, exp . 7

i ij
k

k

j

0

⎡
⎣⎢

⎤
⎦⎥

The inverse Fourier transform implies that ( ) =xB s,j

( ) ( · )ò q q x qB s i d, expj , so that Equation (7) can be rewritten as

( ) ( ) ( ˜ · ) ( ) ( )x x = á ñxx xB t G t B s, , exp , . 8i ij j

Equation (5) can be formally regarded as an inverse Fourier
transform of the function Bi(t, ξ). However, ξ is the Wiener
path, which is not a standard spatial variable. On the other
hand, Equation (8) was also derived in Appendix A of
N. Kleeorin et al. (2002) applying a more rigorous method; see
also P. Dittrich et al. (1984). In this derivation, the Cameron–
Martin–Girsanov theorem was used.

3. Mean-field Equations for the Magnetic Field

In this section, we derive the mean-field equation for a
magnetic field using a random helical velocity field with a small
yet finite constant renewal time. These results can also be
generalized for a random renewal time (see, e.g., V. G. Lamburt
et al. 2000; T. Elperin et al. 2001; N. Kleeorin et al. 2002).
Assume that in the intervals K(−τ, 0]; (0, τ]; (τ, 2τ]; K the
velocity fields are statistically independent and have the same
statistics. This implies that the velocity field loses memory at
the prescribed instants t = kτ, where k = 0, ± 1, ± 2, K. This
velocity field cannot be considered as a stationary (in a statistical
sense) field for small times ∼τ; however, it behaves like a
stationary field for t ? τ.
The velocity fields before and after renewal are assumed to

be statistically independent. We use this assumption to
decouple averaging into averaging over two time intervals. In
particular, the function Gij(t, ξ) in Equation (8) is determined
by the velocity field after the renewal, while the magnetic field
Bj(s, x) is determined by the velocity field before renewal.
In Equation (8) we specify instants t = (m + 1)τ and s = mτ,

and average it over random velocity field, which yield the
equation for the mean magnetic field B as

[( ) ] ( ) ( ) ( )t t t+ =x x xB m P i B m1 , , , , , 9i ij j

where [( ) ] (( ) )t t+ = á + ñx xB m B m1 , 1 , ui i , ( )t =xB m ,j

( )tá ñxB m , uj , and

( ) ( ) [ ˜ · ] ( ) x x t t= áá ñ ñxxP i G, , , exp . 10uij ij

2
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Here the time s = mτ is the last renewal time before t =
(m + 1)τ and t − s = τ. Averaging of the functions

( ) [˜ ( ) · ]x x t tG , expij and Bj(mτ, x) over a random velocity
field 〈. . . 〉u can be decoupled into the product of averages since
Bj(mτ, x) and ( ) [˜ ( ) · ]x x t tG , expij are statistically indepen-
dent. Indeed, the field Bj(mτ, x) is determined in the time interval
(−∞, mτ], whereas the function ( ) [˜ ( ) · ]x x t tG , expij is
defined on the interval (mτ, (m + 1)τ]. Due to a renewal, the
velocity field as well as its functionals Bj(mτ, x) and

( ) [˜ ( ) · ]x x t tG , expij in these two time intervals are
statistically independent (see P. Dittrich et al. 1984; N. Kleeorin
et al. 2002 for details).

Considering a very small renewal time and expanding into
Taylor series the functions Gij(μ, ξ) and [˜ ( ) · ]x mexp
entering in Pij(μ, x, i∇) (see Equation (10)), we obtain

( )

˜ ˜ ˜ ( )

m d m
m

x x x

 = + + +

´ +  +   +
x

xP i N N N, ,
4

...

1
1

2
... . 11

u

ij ij ij ik kj

m m m n m n

2
⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Here we take into account that the solution of Equation (3) can
be written as

( ) ( )

( ) ( ) ( )

ò

ò ò

m d m m

m m m m

= +

+   +

m

m m

¢ ¢

¢ ¢
¢

G N d

N d N d
1

2
... 12

ij ij ij

ik kj

0

0 0

We consider a random incompressible velocity field with a
Gaussian statistics. We also consider a homogeneous turbu-
lence with the large fluid and magnetic Reynolds numbers.
Therefore, the operator Pij(μ, x, i∇) is given by

( ) ˜

˜ ˜ [ ˜ ˜

˜ ˜ ]} ( )

m d m x

d x x
m

x x

x x

 = + áá ñ ñ 

+ áá ñ ñ + áá ñ ñ áá ñ ñ

+ áá ñ ñ áá ñ ñ   +

x

x x x

x x

xP i N

N N

N N

, ,

1

2 8

..., 13

u

u u u

u u

ij ij m ij m

ij m n m ik n kj

m kj n ik m n

2
⎧
⎨⎩

where we keep only nonzero correlation functions. Now we
determine the correlation function ˜ ˜x xáá ñ ñx um n for small μ as

( )

˜ ˜ [

( ) ( ) ]

x x m
m

h

áá ñ ñ = á ñ + á  ñ á  ñ

+ á ñ á   ñ + á ñ

x

14

u u u u u u

u u u u w w
4

2 ,

um n m n s p n p s m

s p p n s m m n

2
4

w

where we neglected terms ∼O(μ5), and hereafter we denote 〈. . . 〉
as the averaging over statistics of the random velocity field.

To determine the correlation function 〈ui∇puj〉, we use a
model for the second moment 〈ui(k)uj(−k)〉 of homogeneous
incompressible and helical turbulence in Fourier space in the
following form:

( ) ( ) ( )

· ( )w

p
d

e

á - ñ= - á ñ

- á ñ

k k u

u

u u
E k

k

k k

k

k
k

8

i
, 15

i j
u

ij
i j

ijp p

2 2
2

2

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦

where ω = ∇ × u is the vorticity, δij is the Kronecker fully
symmetric unit tensor, εijp is the Levy-Civita fully antisymmetric

unit tensor, 〈u · ω〉 is the kinetic helicity density, the energy
spectrum function is ( ) ( ) ( )/ / /= - -E k k k k2 3u 0

1
0

5 3 in the
inertial range of turbulence k0� k� kν, the wavenumber
k0 = 1/ℓ0, the length ℓ0 is the integral scale of turbulence,
the wavenumber =n n

-k ℓ 1, the length /=n
-ℓ ℓ Re0

3 4 is the
Kolmogorov (viscous) scale. After integration in the Fourier
space, we obtain that the correlation function 〈uiuj〉 in the physical
space is 〈uiuj〉 = 〈u2〉 δij/3. Using Equation (15), after integration
in the Fourier space, we arrive at the following expression:

· ( )weá  ñ = - á ñuu u
1

6
. 16i p j ijp

Using Equations (14) and (16), we obtain that the correlation
function ˜ ˜x xáá ñ ñx um n is given by

˜ ˜ · ( )wx x md h
m m

áá ñ ñ = + á ñ - á ñx u u2
3 24

. 17um n mn
2

2
2⎧

⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

Here we have neglected a small contribution (∼μ4) caused by
the nonhelical part of turbulence. In a similar way, we obtain
that the correlation function x̃áá ñ ñxN ui jp is given by

˜ · ( )wx m
m
eáá ñ ñ = - á  ñ = á ñx uN u u

6
. 18ui jp i p j ijp

Since [ (( ) ) ( )]/ /m m m¶ ¶ = + -
m

B x xt B m B mlim 1 , ,i i
0

, Equa-

tions (13)–(14) and (16)–(18) yield the mean-field equation:

( ) ( ) ( )a h h
¶

¶
= ´ + + D

B x
B B

t

t

,
, 19t

where the turbulent magnetic diffusion coefficient is given by

· ( )wh
t t

= á ñ - á ñu u
3 3

, 20t
c 2 c

2
2⎡

⎣⎢
⎤
⎦⎥

and the α effect is α = −τc〈u · ω〉/3. In the derivation of
Equations (19)–(20), we take into account that ( · )wmá ñ =

m
ulim

0

· wt á ñu2 c and ( )m tá ñ = á ñ
m

u ulim 2
0

2
c

2 . Here we also use that

=Bdiv 0 and εijp εmnp = δimδjn − δinδjm.
It has been demonstrated by DNS (A. Brandenburg et al.

2025) that the correlation time of the turbulent velocity field
depends on the kinetic helicity. It follows from Equation (20)
that

( )
( )

( ) ( ) ( )
h
h

t
t

t
= -

á ñu

H H H H

0
1

3
, 21t K

t

c K

0

c
2

K K
2

2
⎡
⎣⎢

⎤
⎦⎥

where HK = 〈u · ω〉 is the kinetic helicity density, ηt(0) =
ηt(HK = 0) is the turbulent magnetic diffusivity at zero kinetic
helicity, and τ0 = τc(HK = 0) is the correlation time.
We assume that

( ) ( ) ( )t t= + t
zH C1 , 22c K 0 f

where òf = 〈u · ω〉ℓ0/〈u
2〉 is the normalized kinetic helicity.

Equation (22) has recently been supported by the DNS of forced
turbulence (A. Brandenburg et al. 2025), where ζ = 4 and
Cτ = 0.5 for Re ≈ 14. This numerical result has been obtained
using two independent methods based on the noninstan-
taneous correlation functions and the rate of energy dissipation.
Equation (22) has also been confirmed for Re= 120; see Figure 1,

3
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where we show the dependence of τc on òf. Here, the simulations
had a forcing wavenumber kf = 5.1 k1, where k1 is the lowest
wavenumber in the domain. In this case, the results are well
approximated by ζ = 4 and Cτ = 0.37, where we have assumed
ℓ0 = 1/kf.

Therefore, the turbulent magnetic diffusion coefficient is

( ) ( ) ( )h h= + - +t t  C C0 1
1

3
1 . 23t t f

4
f
4 3

f
2⎡

⎣
⎤
⎦

It follows from Equation (23) that the turbulent magnetic diffusion
coefficient is reduced by the kinetic helicity (see Section 5).

4. Mean-field Equation for Particle Number Density

The evolution of the number density n(t, r) of small particles
advected by a random incompressible fluid flow is determined
by the following convection–diffusion equation,

· ( )k¶
¶

+ = Du
n

t
n n, 24

where u is a random velocity field of the particles which they
acquire in a random fluid velocity field and κ is the coefficient
of molecular (Brownian) diffusion. Following the method
described in Sections 2–3 (see also T. Elperin et al. 2000,
2001), we derive the mean-field equation for the particle
number density. We use an exact solution of Equation (24)
with an initial condition n(t = s, x) = n(s, x) in the form of the

Feynman–Kac formula:

( ) ( ( )) ( )x= á ñxxn t n s t s, , , , 25

where 〈. . . 〉ξ implies the averaging over the Wiener paths:

( ) [ ( )] ( )

( )
òx xm m m k= - - + -

-
x u wt s t t d t s, , , 2 .

26

t s

0

We assume that

( ) ( · ) ( ) ( )òx x= q q qn t i n s d, exp , . 27

Substituting Equation (27) into Equation (25), we obtain

( ) [ ˜ · ] ( ) ( · ) ( )ò x= á ñxx q q q x qn s i n s i d, exp , exp . 28

In Equation (28) we expand the function [ ˜ · ]x qiexp in Taylor
series at q = 0 and use the identity ( ) [ · ] =q x qi iexpk

[ · ] x qiexpk , which yields

( ) ( ˜ · )
!

( ) ( · ) ( )òå x 
=

x=

¥

x q q x qn t
k

n s i d, , exp . 29
k

k

0

⎡
⎣⎢

⎤
⎦⎥

Applying the inverse Fourier transform ( ) =xn s,
( ) ( · )ò q q x qn s i d, exp , we obtain

( ) ( ˜ · ) ( ) ( )x = á ñxx xn t n s, exp , . 30

Equation (30) has been also derived applying a more rigorous
method in Appendix A of T. Elperin et al. (2000). In this
derivation the Cameron–Martin–Girsanov theorem is applied.
To derive the mean-field equation for a particle number

density, we consider a random velocity field with a finite
constant renewal time. In Equation (30), we specify instants
t = (m + 1)τ and s = mτ, and average this equation over a
random velocity field. This yields the mean-field equation for
the particle number density as

[( ) ] ( ) ( ) ( )t t t+ =x x xn m P i n m1 , , , , , 31

where [( ) ] (( ) )t t+ = á + ñx xn m n m1 , 1 , u, ( ) ( )t t= á ñx xn m n m, , u,
and

( ) [ ˜ · ] ( )xt  = áá ñ ñxxP i, , exp . 32u

We consider a random velocity field with a Gaussian
statistics and with large fluid Reynolds numbers and large
Péclet numbers. For a small renewal time, expanding the
function [˜ ( ) · ]x t exp into Taylor series, we obtain

( ) ˜ ˜ ( )m x x = + áá ñ ñ   +xxP i, , 1
1

2
..., 33um n m n

where

˜ ˜ · ( )wx x md k
m m

áá ñ ñ = + á ñ - á ñx u u2
3 24

. 34um n mn
2

2
2⎧

⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

Since [ (( ) ) ( )]/ /m m m¶ ¶ = + -
m

x xn t n m n mlim 1 , ,
0

, Equations (31),

(33), and (34) yield the mean-field equation for the particle
number density ( )xn t, as

( ) ( ) ( )k k
¶

¶
= + D

xn t

t
n

,
, 35t

Figure 1. Dependence of τc on òf and Re ≈ 120. The solid line gives the fit
with ζ = 4 and Cτ = 0.37. In the second panel, we used τ0urmskf = 9.6.

4
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where the turbulent diffusion coefficient is given by

· ( )wk
t t

= á ñ - á ñu u
3 6

. 36t
c 2 c

2
2⎡

⎣⎢
⎤
⎦⎥

It follows from Equation (36) that

( )
( )

( ) ( ) ( )k
k

t
t

t
= -

á ñu
H H H H

0
1

6
, 37t u

t

c K

0

c
2

K K
2

2
⎡
⎣⎢

⎤
⎦⎥

where κt(0) = κt(HK = 0) and τ0 = τc(HK = 0). Since
( )/t t = + t H C1c K 0 f

4 (see Equation (22)), the turbulent
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Using Equation (38), we will show in Section 5 that the
turbulent diffusion coefficient for the scalar field is enhanced
by the kinetic helicity.

5. Comparisons with Numerical Results

As in A. Brandenburg et al. (2025), we compute a turbulent
velocity field by solving the fully compressible momentum
equation with an isothermal equation of state. In A. Branden-
burg et al. (2017), only fully helical cases were compared with
nonhelical ones. A. Brandenburg et al. (2025) did consider runs
with intermediate helicity of the forcing, but only for Re ≈ 14.
Here, we also compute such cases with Re ≈ 120. This is
accomplished by adding a fraction σikpòijpfj to the nonhelical
forcing function fi.

We compute the turbulent transport coefficient α, ηt, and κt in
Equations (19) and (35) from the turbulent velocity field discussed
above. We use the test-field method (A. Brandenburg 2005;
M. Schrinner et al. 2005, 2007; A. Brandenburg et al. 2008),
where we solve numerically the equations for the fluctuating
magnetic and passive scalar fields. These are nonlinear inhomo-
geneous equations, in which the product of the mean magnetic
and passive scalar fields acts as an inhomogeneous source term.
Thus, the test-field equations are different from the original
evolution equations, which are homogeneous. Moreover, the
mean magnetic and passive scalar fields are not solutions to these
equations, but consist of a set of mutually orthogonal fields that
are called test fields. They are constructed such that we can

compute the desired transport coefficient exactly and not as a fit or
by some regression method (A. Brandenburg & D. Sokoloff 2002;
C. Simard et al. 2016; A. B. Bendre et al. 2024).
The resulting turbulent transport coefficients depend on

time and one or two space coordinates (here only on z, in
addition to t). We are usually interested in their averaged
values. To determine error bars, we also compute averages for
any one-third of the full time series. The results for Re ≈ 14
and ≈120 are given in Table 1 for different values of σ. For
σ < 0.7, òf = 〈u · ω〉ℓ0/〈u

2〉 is well approximated by
2σ/(1 + σ2). For larger values, òf stays somewhat below this
estimate. This departure contributes to the steep power-law
scaling with ζ = 4.
The values α, ηt, and κt for Re = 120 are plotted in Figure 2.

As in A. Brandenburg et al. (2025), we present them in
normalized form and divide α by A0 = urms/3 and ηt and κt by
D0 = urms/3kf. Note that ηt(0) = κt(0) = D0. We see that α
increases approximately linearly with òf. For ηt and κt, it is
convenient to plot the differences from the nonhelical values,
ηt(0) and κt(0), respectively. We see that for both functions, the
differences are small when òf  0.4, and then depart from zero in
opposite directions. This is also predicted by the theory. For
òf  0.8, however, there are major departures between our theory
and the simulations. Note that the simulations (A. Brandenburg
et al. 2025) predict similar results both for passive scalars using
the test-field method and for active scalars based on the decay of
an initial entropy perturbation.
The strong dependence of the theoretical results from

Equations (23) and (38) involving high powers of òf is related
to the following reasons. The main contributions to the
difference in turbulent diffusion coefficients for helical and
nonhelical turbulence come from the fourth-order moments of a
random velocity field. The second reason for the high powers
of òf in turbulent diffusion coefficients is related to the strong
dependence of the correlation time of a random velocity field
on òf found in simulations.
The difference between the theoretical predictions and the

simulations for 0.8 < òf� 1 is related to the theory being based
on the following assumptions: (i) the contributions of higher
than fourth-order moments of a random velocity field are
neglected; (ii) it is assumed that the velocity field has Gaussian
statistics; and (iii) we use a model of a random velocity field
with renovations.

Table 1
Values of κt and ηt Normalized by D0 ≡ urms/3kf, as well as α Normalized by A0 ≡ urms/3 for Re ≈ 14 and ≈120 for Different Values of σ

Run Re σ 2σ/(1 + σ2) òf κt/D0 ηt/D0 α/A0 Ma ωrms/urmskf τcurmskf

A 13.8 0.10 0.20 0.20 2.40 ± 0.00 2.00 ± 0.00 −0.99 ± 0.01 0.099 6.1 0.107
B 14.0 0.20 0.38 0.38 2.42 ± 0.00 1.94 ± 0.01 −1.92 ± 0.00 0.100 6.0 0.104
C 14.2 0.30 0.55 0.54 2.48 ± 0.00 1.86 ± 0.00 −2.74 ± 0.01 0.101 5.9 0.099
D 14.5 0.40 0.69 0.67 2.53 ± 0.00 1.73 ± 0.01 −3.39 ± 0.00 0.103 5.8 0.093
E 14.8 0.50 0.80 0.76 2.59 ± 0.00 1.61 ± 0.01 −3.82 ± 0.02 0.106 5.7 0.087
F 15.4 0.70 0.94 0.87 2.81 ± 0.01 1.44 ± 0.00 −4.28 ± 0.04 0.110 5.5 0.076
G 15.8 1.00 1.00 0.91 2.88 ± 0.01 1.37 ± 0.02 −4.44 ± 0.05 0.113 5.3 0.071

H 120.6 0.00 0.00 0.01 2.27 ± 0.01 1.73 ± 0.05 0.05 ± 0.09 0.123 13.0 0.054
I 121.1 0.05 0.10 0.08 2.27 ± 0.01 1.75 ± 0.05 −0.35 ± 0.07 0.124 12.9 0.053
J 121.5 0.20 0.38 0.33 2.30 ± 0.01 1.75 ± 0.03 −1.35 ± 0.06 0.124 12.8 0.052
K 121.5 0.30 0.55 0.45 2.33 ± 0.02 1.67 ± 0.03 −1.90 ± 0.08 0.124 12.7 0.051
L 124.0 0.50 0.80 0.66 2.42 ± 0.02 1.49 ± 0.05 −2.81 ± 0.11 0.126 12.5 0.049
M 127.6 1.00 1.00 0.81 2.48 ± 0.06 1.32 ± 0.02 −3.45 ± 0.07 0.130 12.2 0.045

Note. The values of Ma, ωrms/urmskf, and τcurmskf are also given.
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A recent theoretical study by G. Kishore & N. K. Singh
(2025), where a method based on the Furutsu–Novikov
theorem (K. Furutsu 1963; E. A. Novikov 1965) has been
applied, shows that the turbulent diffusivities of both the mean
magnetic and passive scalar fields are suppressed by kinetic
helicity. In that paper, however, the kinetic helicity dependence
of the correlation time has not been taken into account
(G. Kishore & N. K. Singh 2025). This may explain the
discrepancy with the numerical results related to the helicity
effect on turbulent diffusion of the scalar field (A. Brandenburg
et al. 2025).

6. Discussion

One of the main effects of astrophysical turbulent flows is a
strong increase in the diffusion of the large-scale magnetic and
scalar fields, which can be characterized in terms of the
effective (turbulent) diffusion coefficients. The latter effect
decreases the growth rates of the mean-field dynamo instability
and various clustering instabilities related to scalar fields.

In the present study, we have developed a theory that
qualitatively explains the nontrivial behavior of turbulent
diffusion coefficients of the large-scale magnetic and scalar
fields as functions of the kinetic helicity. These effects have
been recently discovered by DNS (A. Brandenburg et al. 2017;
A. Brandenburg et al. 2025), which show that turbulent
magnetic diffusion decreases with increasing kinetic helicity
while turbulent diffusion of passive scalars increases with the
helicity.

The main contribution to these effects comes from the
fourth-order correlation function of the turbulent velocity field.
This is the reason why widely used methods like the quasi-
linear approach (the first-order smoothing approximation or the

second-order correlation approximation), as well as the various
τ approaches and the direct interaction approximation, cannot
describe these effects. For instance, A. Gruzinov & P. Diamond
(1995) use the quasi-linear approach to determine the turbulent
transport coefficients (the α effect and turbulent magnetic
diffusivity). The main assumption of the quasi-linear approach
is that fluctuations are much smaller than the mean fields, so the
fourth-order moments have been neglected by A. Gruzinov &
P. Diamond (1995). All studies of the kinetic helicity effect on
turbulent diffusivity discussed here apply various perturbation
approaches that take into account the fourth-order moments of
random Gaussian velocity fields with small yet finite correla-
tion times.
The main goal of the present paper is to explain the results of

the numerical simulations by A. Brandenburg et al. (2017) and
A. Brandenburg et al. (2025), where we also take into account
the kinetic helicity dependence of the correlation time of the
random velocity field that has been found in DNS. We have
applied the path-integral approach for random flows with a finite
correlation time and for large Reynolds and Péclet numbers. We
have assumed that the velocity field has Gaussian statistics,
which allows us to represent the fourth-order moments of the
turbulent velocity field as a product of second-order moments. A
crucial role in the understanding of these effects is played by the
kinetic helicity effect on the turbulent correlation time, which
increases with increasing helicity. The results of the theory
developed here are in qualitative agreement with the numerical
results of A. Brandenburg et al. (2017 and 2025).
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