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Abstract

We analyze direct numerical simulations of large-scale dynamos in inhomogeneous nonhelically driven rotating
turbulence with and without shear. The forcing is modulated so that the turbulent intensity peaks in the middle of
the computational domain and drops to nearly zero at the two ends above and below the midplane. A large-scale
dynamo is driven by an α effect of opposite signs in the two hemispheres. In the presence of shear, the hemispheric
magnetic helicity flux from small-scale fields becomes important and can even overcompensate for the magnetic
helicity transferred by the α effect between large and small scales. This effect has not previously been observed in
nonshearing simulations. Our numerical simulations show that the hemispheric magnetic helicity fluxes are nearly
independent of the magnetic Reynolds number, but those between large and small scales, and the consequent
dynamo effect, are still found to decrease with increasing Reynolds number—just like in nonshearing dynamos.
However, in contrast to nonshearing dynamos, where the generated mean magnetic field declines with increasing
magnetic Reynolds number, it is now found to remain independent of it. This suggests that catastrophic dynamo
quenching is alleviated by the shear-induced hemispheric small-scale magnetic helicity fluxes that can even
overcompensate the fluxes between large and small scales and thereby cause resistive contributions.

Unified Astronomy Thesaurus concepts: Astrophysical magnetism (102)

1. Introduction

Many astrophysical bodies harbor large-scale magnetic fields.
Late-type stars and galaxies are the main examples where a
dynamo converts kinetic energy into large-scale magnetic energy
(P. Charbonneau 2014; A. Brandenburg & E. Ntormousi 2023).
Disks around young stars and compact objects are additional
examples, where the existence of large-scale magnetic fields has
so far only been inferred from simulations (P. J. Armitage 2011;
Y.-F. Jiang et al. 2014; S. W. Davis & A. Tchekhovskoy 2020).
In all these cases there is turbulence, the bodies rotate, and they
are stratified in the sense that the density and/or the turbulent
velocity vary in space. This, together with the overall rotation,
causes the turbulence to become helical, which leads to an α

effect (E. N. Parker 1955; M. Steenbeck et al. 1966), where the
coefficient α relates the mean electromotive force to the mean
magnetic field. Also, the magnetic field attains helicity, which
affects the α effect (A. Pouquet et al. 1976). The underlying
theory has been the subject of textbooks (H. K. Moffatt 1978;
E. N. Parker 1979; F. Krause & K.-H. Rädler 1980;
Y. B. Zeldovich et al. 1983), but later it became clear that
magnetic helicity conservation causes such dynamos to saturate
at progressively lower values as the microphysical resistivity
decreases or the conductivity increases (A. V. Gruzinov &
P. H. Diamond 1996; H. Ji 1999; N. Kleeorin et al. 2000;
A. Brandenburg 2001; E. T. Vishniac & J. Cho 2001;
E. G. Blackman & A. Brandenburg 2002; G. B. Field &
E. G. Blackman 2002). The resulting mean magnetic field would
then be very weak for astrophysically relevant resistivities.

E. G. Blackman & G. B. Field (2000) coined the term
catastrophic quenching, which in its original form refers to the
actual value of α becoming very small at low resistivities. In
particular, numerical simulations by F. Cattaneo &
D. W. Hughes (1996) have shown that for mean fields defined
as volume averages, the value of α diminishes to zero as the
conductivity increases. It was therefore thought to be difficult
to explain the generation of the large-scale magnetic fields
observed in many astrophysical bodies with an α effect. It
quickly became clear that the problem of catastrophic
quenching is connected with the homogeneity of the turbulence
in such simple numerical setups. In those cases, there can be no
magnetic helicity flux and magnetic helicity is then well
conserved in the limit of large conductivity. To avoid this
difficulty, E. T. Vishniac & J. Cho (2001) envisaged an α effect
that is computed from a specifically designed magnetic helicity
flux such that the magnetic helicity is conserved exactly.
However, the anticipated magnetic helicity fluxes have not yet
been found in numerical simulations (A. Hubbard &
A. Brandenburg 2012). With just inhomogeneous turbulence,
many numerical simulations show that the amplitude of the
resulting mean magnetic field decreases with increasing
conductivity (F. Del Sordo et al. 2013; F. Rincon 2021;
G. Bermudez & A. Alexakis 2022). This phenomenon is then
generally also still referred to as the catastrophic quenching
problem, even though α itself may no longer be catastrophi-
cally small. On the other hand, corresponding analytic
calculations of the mean magnetic helicity fluxes by
N. Kleeorin & I. Rogachevskii (2022) have not shown a
dependence of the magnetic helicity flux on the microphysical
conductivity. The reason for catastrophic quenching remains
therefore obscure.
Many previous numerical simulations have employed helical

forcing. The purpose of the present work is to avoid this by
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adopting a more natural setup in which a nonhelical flow is
being driven. Kinetic helicity of the flow can then emerge self-
consistently as a result of stratification and rotation. We also
consider the effect of shear and how it contributes to the α
effect (G. Rüdiger & A. Brandenburg 2014). Shear may also be
responsible for driving magnetic helicity fluxes (E. T. Vishniac
& J. Cho 2001).

In Section 2, we describe our numerical simulations and the
test-field method that is used to compute the turbulent transfer
coefficient. We also discuss the decomposition of magnetic
helicity fluxes into contributions between hemispheres and
between large and small scales. In Section 3, we describe the
results without and with shear. We conclude in Section 4.

2. Description of the Model

2.1. Setup of Our Model

In this paper, we focus on the analysis of the magnetic
helicity fluxes resulting from a simulation in slab geometry
with horizontal xy averages depending on time and disk height
z. In the middle of the domain at z = 0, the averaged turbulent
intensity has a maximum. The angular velocity vector points in
the positive z-direction, which allows us to associate the
regions above and below the midplane with north and south.
This geometry can also be applied to the two sides around the
equator of a sphere, where the z-coordinate corresponds to
latitude.

For our numerical simulations, we employ the PENCIL CODE
(Pencil Code Collaboration et al. 2021). Since it advances the
magnetic vector potential, the magnetic field is always solenoid
and the code is well suited for the task of analyzing magnetic
helicity and its flux. Other codes that instead evolve the magnetic
field and use divergence cleaning to keep the magnetic field
solenoidal can spontaneously produce or destroy small-scale
magnetic helicity (A. Brandenburg & E. Scannapieco 2020),
although schemes have been devised to conserve magnetic
helicity at the expense of modifying the magnetic field in
neighboring places (Y. Zenati & E. T. Vishniac 2023). The
PENCIL CODE has also been used successfully in various
earlier studies of magnetic helicity fluxes (A. Hubbard &
A. Brandenburg 2010, 2011; F. Del Sordo et al. 2013;
A. Brandenburg 2018a).

2.2. Governing Equations

We consider nonhelically driven inhomogeneous turbulence
of an isothermal gas with constant sound speed cs in the
presence of rotation with the angular velocity vector
Ω≡ (0, 0,Ω). In some cases, we include an additional shear
flow, V= (0, Sx, 0), where S=−qΩ is a constant and q is the
shear parameter. Shear flows with q< 2 are Rayleigh stable,
but unstable to the magnetorotational instability for q> 0; see
S. A. Balbus & J. F. Hawley (1998) for a review. Keplerian
shear corresponds to q= 3/2, while shear in galactic disks
corresponds to q= 1 (R. Beck et al. 1996). The turbulence is
stochastically driven with a forcing function f(x, t), whose
intensity is modulated in the z-direction with a profile function

( ) ( )= +f z k z1 cosprof
1

2 1 , where k1= 2π/L is the lowest
wavenumber in a cube of size L3. To assess the sensitivity of
the results upon this choice, we also consider a case with a top-
hat profile by using ( ) [ ( )]= +f z k z1 tanh 5 cosprof

1

2 1 , which
has steep flanks at z=±π, as quantified by the factor 5 in front
of the cosine function. The forcing is applied on the right-hand

side of the evolution equation for the velocity U, which then
reads (A. Brandenburg et al. 1995, 2008a)
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where / / = ¶ ¶ + ⋅  Vt t is the advective derivative with
respect to the shear flow, ρ is the density, B is the magnetic
field, J=∇×B/μ0 is the current density, μ0 is the vacuum
permeability, ν is the viscosity, and S is the traceless rate-of-
strain tensor with the components ( )/= ¶ + ¶ -U U 2ij i j j iS

/d  ⋅ U 3ij . The tensor S is not to be confused with the
constant scalar S, which denotes the uniform background shear
when q≠ 0. The logarithmic density obeys the continuity
equation in the form

( )r
r = - ⋅ - ⋅




U U
t

ln
ln . 2

The magnetic field B=∇× A is solved in terms of the
magnetic vector potential A,

( )= - - - F



^A
E

t
SA x , 3y

where E= ημ0J−U× B is the electric field, with ˆ º ESA xy S

being the contribution from the shear, η the magnetic
diffusivity, and Φ the electrostatic potential. In Equation (3),
we have adopted the advecto-resistive gauge, in which
Φ=−VyAy− η∇ ·A (S. Candelaresi et al. 2011). As shown
in A. Brandenburg et al. (1995), the inclusion of the advective
term VyAy is necessary for being able to adopt shearing–
periodic boundary conditions. This means that the magnetic
diffusion operator reduces to η∇2A; see S. Candelaresi et al.
(2011) for further details. In some cases, we also compute the
vector potential in the Coulomb gauge, ACou= A−∇Λ, by
solving ∇2Λ=∇ ·A with appropriate boundary conditions.
The nonhelical forcing function f (x, t) is given by

(N. E. Haugen et al. 2004)

( ) ( )
| |

( )( ) ( )/ /d=
´
´

j⋅ +x
e k
e k

f t f c c k t e, , 4k xi t i t
0 s s

1 2

where e is a random vector that is not aligned with k, j(t) is a
random phase (|j|� π), and f0 is the amplitude. At each time
step, a new forcing vector k(t) is chosen randomly from a set of
wavevectors k whose lengths |k| lie in a narrow band kf− δk/
2�k< kf+ δk/2, where kf= 8 and δk= 1 is used for all the
runs discussed in this paper.
To analyze the possibility of large-scale dynamo action, it is

useful to compute planar averages. Owing to the inhomogene-
ity in the z-direction, we adopt xy averages, which are denoted
by an overbar, e.g., ¯ ( ) ( ) /ò=U u xz t t dx dy L, , 2. Fluctuations
about the average are then denoted by lowercase symbols, e.g.,
= -u U U , = -b B B , and = -j J J .

2.3. Control Parameters and Initial Conditions

The value of the overall rms velocity, urms, is characterized
by the Mach number, Ma= urms/cs. When there is shear, the
value of urms does not include this shear flow. Since we are here
not interested in studying compressibility effects, we adopt
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subsonic Mach numbers and take Ma 0.1 for all runs. The
values of ν and η are characterized by the fluid and magnetic
Reynolds numbers,

( )/ /n h= =u k u kRe and Re , 5rms f M rms f

respectively. The ratio PrM= ν/η is the magnetic Prandtl
number. In the following, we vary PrM by keeping the value of
Re fixed. Another control parameter is the relative forcing
wavenumber, kf/k1. The amount of rotation and shear are
quantified by the Coriolis and shear numbers,

( )/ /= W =u k S u kCo 2 and Sh , 6rms f rms f

respectively. As an initial condition, we use /r r= =U ln 00 ,
so the initial density is equal to some reference density ρ0.

The initial magnetic vector potential is calculated from a
weak Gaussian-distributed field with an rms value Brms such
that the rms Alfvén speed / m r=v BA rms 0 0 is a small fraction
of cs. When ReM exceeds a certain critical value, there is
dynamo action, i.e., vA/cs grows exponentially and saturates
eventually at a value around 0.1. Instead of quantifying vA/cs,
it is useful to quantify the ratio vA/urms, or, equivalently, the
value of Brms in units of the equipartition field strength,

m r=B ueq 0 0 rms. The rms value of the large-scale field is
denoted by Brms.

Owing to the presence of rotation and stratification of the
turbulent intensity, we expect the generation of kinetic helicity,

·w u, where ω=∇× u is the vorticity of the fluctuating
velocity. Following S. Jabbari et al. (2014), we determine the
resulting kinetic helicity in terms of the nondimensional ratio

( ) · ( )/w= uz u k , 7f rms
2

f

which is characterized primarily by the amplitude of its
variation, defined here as

( ) ( )= á ñ  z k z2 sin . 8f0 f 1

As in S. Jabbari et al. (2014), we expect òf0 to increase linearly
with increasing rotation rate and with increasing stratification
of turbulent intensity, provided these values are not too large.

The simulations are performed with the PENCIL CODE
(Pencil Code Collaboration et al. 2021). Numerical results are
usually presented as averages over a statistically steady stretch
in time. Error margins are estimated as the largest departure
over any one third of the full time series.

2.4. Quasi-kinematic Test-field Method

To characterize the nature of large-scale dynamo action, we
need to obtain the mean-field dynamo coefficients that
characterize the dependence of the mean electromotive force
 on B and J . The most accurate choice is the test-field
method (A. Brandenburg 2005; M. Schrinner et al. 2005, 2007;
A. Brandenburg et al. 2008c).

In the test-field method, we solve the equations for the
fluctuations bT that result from a certain test field BT. We
represent it by bT=∇× aT and solve for the vector potential
aT, which, in the Weyl (or temporal) gauge with zero
electrostatic potential, obeys

( )h

¶
¶

= ´ + ´

+ ´ - ´ + 

a
u B U b

u b u b a
t

. 9

T
T T

T T
2

T

This allows us to compute = ´ u bT
T . We adopt the

parameterization a h m= - B Ji ij j ij j
T T

0
T. Since only the x- and

y-components are significant, we have eight unknowns for the
four components of αij and the four components of ηij. To
obtain all unknowns, we use the four vectorial test fields

( )=B c, 0, 0T , (s, 0, 0), (0, c, 0), and (0, s, 0), where
=c k zcos T and =s k zsin T . Since only the x- and y-

components are significant, we have exactly eight independent
equations for the eight unknowns. We choose kT= k1, and refer
to A. Brandenburg et al. (2008c) regarding the significance of
also studying kT> k1 to obtain full integral kernels in a
parameterization involving integral kernels.
When u in Equation (9) is a solution of the nonlinear

Equation (1) with the Lorentz force included, we talk about the
quasi-kinematic test-field method. This method is nonlinear in
the sense that it describes correctly the modifications of the
velocity field in response to the actual magnetic field in the
simulations (A. Brandenburg et al. 2008b; B. B. Karak et al.
2014). However, it is not fully nonlinear in the sense that it
does not include the fluctuating magnetic field from a small-
scale dynamo (M. Rheinhardt & A. Brandenburg 2010;
M. J. Käpylä et al. 2022). On the other hand, there are so far
no clear cases of practical interest where the quasi-kinematic
method is known to fail; see A. Brandenburg (2018b) for a
review. The only exception is the case where magnetic
fluctuations are produced by applying externally maintained
currents to drive the system. Those cases are mainly of
academic interest and not relevant to our problem at hand. The
success of the quasi-kinematic method lies probably in the fact
that the small-scale dynamo-generated magnetic fields are not
well correlated with the large-scale field.
In the present case, the time-averaged turbulent transport

coefficients depend on z. In addition to plotting the individual
components of αij and ηij, we also compute the traces
α≡ (αxx+ αyy)/2 and ηt≡ (ηxx+ ηyy)/2, as well as the
antisymmetric parts, γ≡ (αyx− αxy)/2 and δ≡ (ηxy− ηyx)/2.
In the following, we fit ηt to Legendre polynomials of k zcos 1 .
Since these are orthogonal polynomials, a decline of the
coefficients with increasing order can be interpreted as
convergence. Another quantity of interest is the z-dependent
dynamo number, Cα= α/ηtk1. In the present case, it turns out
that, to a good approximation, it has a linear profile. The values
and slopes are given in tabular form below.

2.5. Mean-field Evolution

To assess the importance of the aforementioned turbulent
transport coefficients α, ηt, γ, and δ, we consider numerical
mean-field models, where we can rescale the coefficients to
learn about their relative importance. In that case, we solve the
one-dimensional mean-field equation, again in the Weyl gauge,

¯ ¯

¯ ¯ ¯ ( )

¯

g d

a h m

m

= -

+ ´ + ´ -

¶
¶

^

B J

B J SA x, 10

A
t

y

T 0

0

where γ= (0, 0, γ) and δ= (0, 0, δ) are vectors that only have
a z-component and ηT= ηt+ η is the total magnetic diffusivity.
It should be remembered, however, that the values and profiles
of the turbulent transport coefficients have been computed
under the assumption of steady mean fields. This is obviously
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not the case; see A. Hubbard & A. Brandenburg (2009) for the
treatment of time-dependent mean fields.

2.6. Magnetic Helicity Fluxes

The saturation level of the resulting mean magnetic field is
known to be severely limited by the ability to shed magnetic
helicity from the dynamo through magnetic helicity fluxes; see
H. Zhou & E. G. Blackman (2024) for a recent assessment. It is
therefore of interest to consider the evolution equation for the
magnetic helicity balance separately for the large-scale and
small-scale contributions by splitting the total mean magnetic
density, ·A B, into two parts: ·A B and ·a b. The evolution
equation for ·A B is obtained by dotting Equation (3) with B
and adding its curl dotted with A, which yields

· · · ( )¶
¶

= - - A B E B
t

2 , 11

where = ´ + F E A B is the total magnetic helicity flux.
Note also that · ·hn=E B J B0 , i.e., the induction term does
not contribute. The evolution equation for ·A B is obtained
from the evolution equation for the mean field ¯ /¶ ¶ =A t

¯ ¯- - FE , where

( )hm= - ´ - E J U B 120

is the averaged electric field, and = ´ u b is the mean
electromotive force from the fluctuating fields. This yields

¯ ¯ ¯ ¯ ¯ ¯ ¯ ( )hm ¶
¶

⋅ = ⋅ - ⋅ - ⋅ A B B J B
t

2 2 , 130 m

where = ´ + F E A Bm is the magnetic helicity flux from
the mean field. Note, however, that in our cases =B 0z at all
times owing to the fact that ¯ ⋅ =B 0, the use of planar
averages, and the fact that =B 0z initially. Therefore,
F =B 0. Furthermore, the mean-field shear contribution, ES,
to the mean electric field only leads to a lateral magnetic
helicity flux and is therefore irrelevant.

Finally, the evolution equation for ·a b is obtained from the
difference · ·-A B A B , which yields

¯ ¯ ¯ ¯ ¯ ( )hm ¶
¶

⋅ = - ⋅ - ⋅ - ⋅ a b B j b
t

2 2 , 140 f

where f= ´ + a bef is the magnetic helicity flux of the
fluctuating field, ¯= -e E E is the fluctuating electric field,
and f= Vyay− η∇ · a. Contrary to A. Brandenburg (2018a),
we use here the more natural and more compact notation where
 is included in the definition of E; see Equation (12).

In the statistically steady state, we can drop the time
derivative. Instead of considering volume-integrated quantities
separately for the northern and southern hemispheres, it is
convenient to plot them as fluxes in terms of undetermined
integrals,

¯ ¯ ¯ ¯ ¯ ( )ò òhm ⋅ = + ⋅ -
- -

 J B Bdz dz2 2 , 15
z

z

z

z

z0 m

¯ ¯ ¯ ¯ ( )ò òhm ⋅ = - ⋅ -
- -

 j b Bdz dz2 2 , 16
z

z

z

z

z0 f

in the range z−� z� z+, where z±=±π/k1 are the upper and
lower boundaries of the cube. In the following, we refer to
these as “integrated terms.”

Note that in both Equations (15) and (16) there are three terms
of which two are manifestly gauge invariant. Therefore, the third
term also,  zm and  zm in each equation, respectively, must be
gauge invariant. This argument was already applied by
A. Hubbard & A. Brandenburg (2010) in their work on magnetic
helicity fluxes from a dynamo embedded in a conducting halo.
It is convenient to present the magnetic helicity fluxes in

normalized form. For the following, we define the reference
flux as

( ) ( )

 d d d¶ =- ⋅  - ⋅ 

-  +
r

r

  z z z z z

p b . 17

t 0
1

th 2
2

This is analogous to the work of A. Brandenburg (2018a),
except that there k1

2 instead of k1 was written by mistake.
To compare the current helicity with the kinetic helicity,

we define ( ) · /= j bz u kf
M

rms
2

f and its amplitude as = f0
M

( )á ñ z k z2 sinf
M

1 . Finally, the ratio between the small-scale
current and magnetic helicity densities is characterized by the
ratio · ·/= j b a bkeff

2 , where the two terms have been
computed from a sinusoidal fit, analogously to  f0

M. These
quantities are discussed in Section 3. It should be noted,
however, that the departure of keff from the value of kf is mainly
a measure of the departure of the magnetic vector potential
from the Coulomb gauge, because the term ∇ ·A in the
expression for J=−∇2A+∇∇ ·A can be important. By
contrast, the ratio ( ) · ·/- a b a b2 is typically found to be
close to the actual value of kf= 8 k1, even when the Coulomb
gauge is not used.

2.7. Magnetic Helicity Cycle

In this section, we explain that there is a continuous flux of
magnetic helicity both between hemispheres and between
scales. This is illustrated in Figure 1.
Owing to the presence of rotation and a finite gradient in the

turbulent intensity, an α effect is expected based on the formula
by M. Steenbeck et al. (1966):

( ) ( )a rW » - ⋅ℓ uln , 182
rms

where ℓ is a suitable length scale. We refer here to G. Rüdiger
& L. L. Kichatinov (1993) for analytical calculations based on

Figure 1. Sketch of the magnetic helicity fluxes between north and south
(upper and lower boxes), and between large scales (LS, left) and small scales
(SS, right). In the steady state, the four magnetic helicity reservoirs can still
have sinks or sources because of the microphysical resistivity. This can still be
important, especially at small scales, and therefore the small-scale magnetic
helicity fluxes,  zf , may not balance the · B2 term, which is therefore
indicated by the dashed arrow.
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the consideration of homogeneous background turbulence that
is being affected by stratification and rotation, and
A. Brandenburg et al. (2013) for simulation results over a
broad range of astrophysical settings. Equation (18) predicts a
positive (negative) value of α in the upper (lower) disk plane.
This, in turn, implies negative (positive) kinetic helicities of the
small-scale velocity and magnetic fields in the upper (lower)
disk plane. It is known that, at least in the absence of shear, the
magnetic helicity of the small-scale field is then also negative
(positive) in the upper (lower) disk plane (F. Del Sordo et al.
2013; F. Rincon 2021). Assuming that small-scale magnetic
helicity is transported down the gradient of the magnetic
helicity density and/or magnetic energy density (N. Kleeorin &
I. Rogachevskii 2022), we expect a small-scale magnetic
helicity flux from south to north; see the dashed line in
Figure 1. It is shown here as a dashed line, because in our
simulations without shear this flux appears to be too weak,
while in our runs with shear it appears to be too large to balance
the corresponding fluxes at large scales.

There is also a magnetic helicity flux from small to large
scales, which is given by the integral of · B2 . This term has a
contribution aB 2, which is positive in the north, but since it
enters with a minus sign, the associated flux points from small
to large scales, and in the opposite direction in the south where
α is negative; see Figure 1.

3. Results

We have performed a series of runs with different
parameters; see Table 1 for a summary. In all cases without
shear, we use 2563 mesh points and keep the viscosity fixed
(νk1/cs= 5× 10−4), so the level of turbulence stays unchanged

but ReM is increased by decreasing the value of η. This makes
the dynamo stronger, so Brms/Beq increases. This quenches the
velocity field, and therefore the values of Re decrease with
increasing values of PrM. We notice, however, that as PrM and
Brms/Beq increase, the normalized rms value of the mean field,
/B Brms eq, decreases. As already emphasized above, this is at

the core of the problem of catastrophic quenching.
For Runs A–E, we also have obtained test-field results, while

for Runs F–H, we have focused on the analysis of the
contributions to the magnetic helicity balance. In some of those
runs, we also increased the resolution. Those runs have uniform
shear with q= 0.5. This choice is motivated by demanding that
|V|/cs does not exceed unity. Given that the value q= 3/2 is of
particular interest for accretion disks, we also consider one such
case using then, however, a correspondingly larger sound speed
of cs= 3 so that |V|/cs is unchanged. The values of Re and
ReM are given for the saturated state.

3.1. Dynamos without Shear

For all the cases in Table 1, there is dynamo action. The
resulting magnetic field has spatiotemporal coherence with a
systematic large-scale magnetic field oscillation on a timescale
long compared with the turnover time of the turbulence. As
noted above, however, although Brms is seen to increase with
increasing magnetic Reynolds number, =Re Pr ReM M , the rms
magnetic field contained in the mean field, Brms, is seen to
decrease.
In Figure 2, we show zt diagrams, also known as butterfly

diagrams, for the two relevant components of B for Run D
with PrM= 10. We see migration of the magnetic field away
from the boundaries at k1z±=± π. This is expected for α2

dynamos with a nonuniform distribution of α (F. Stefani &
G. Gerbeth 2003; E. Cole et al. 2016), or even for a uniform α

Figure 2. Butterfly diagrams for Bx (left) and By (right) for Run D with PrM = 10, η = 5 × 10−5, and ν = 5 × 10−4.

Table 1
Summary of the Results for Our Test-field Runs

h ´-
t0

1 ´-Beq
1

Run Sh Re ReM PrM ηk1/cs
( )ht
0 ( )ht

1 ( )ht
2 ( )ht

3 Cα(z) − òf0  f0
M keff Co Brms Brms

A 0 17.5 3.5 0.2 2.5 × 10−3 0.80 0.89 0.17 0.01 2.81 z 0.48 −0.06 8.8 1.78 0.52 0.43
B 0 16.9 16.9 1 5 × 10−4 0.71 0.87 0.24 0.06 2.52 z 0.47 −0.12 11 1.84 0.57 0.34
C 0 16.4 82 5 10−4 0.71 0.87 0.24 0.06 2.30 z 0.48 −0.14 14 1.91 0.58 0.22
D 0 15.8 158 10 5 × 10−5 0.64 0.76 0.18 0.04 2.22 z 0.47 −0.14 17 1.98 0.59 0.19

E 0.63 12.3 123 10 5 × 10−5 0.49 0.45 0.01 0.04 1.37 z 0.22 0.007 3.0 2.50 1.39 0.34

Note. Run E has uniform shear with q = 0.5.
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but with different boundary conditions on two opposite ends;
see A. Brandenburg (2017).

3.2. Turbulent Transport Coefficients

To identify the nature of the large-scale dynamo seen above,
it is useful to compute the turbulent transport coefficients for
the horizontal averages applied in this study. All our test-field
runs have ν= 5× 10−4cs/k1. We adopt the expansion

( )( )h h= å = P k zcosℓ
ℓ

ℓt 0
3

t 1 . In the range k1|z|� 2.5, we deter-
mine a linear fit to Cα(z)≈ α/ηtk1. For larger values of |z|, Cα

varies no longer linearly, so this part is ignored in the fit.
In Figure 3, we show time-averaged profiles of α(z), γ(z),

ηt(z), and δ(z) for Run D with PrM= 10. For normalization
purposes, we adopt the following estimates for the α effect and
the turbulent magnetic diffusivity:

( )/ /a h= - = u u k3, 3 . 190 f0 rms t0 rms f

Note that in all our simulations (both with and without shear)
α0 is negative. In Figure 3, the ratio α/ηtk1 shows local
extrema at k1z=±2 of about ± 5, but has here a more linear
profile as a function of z than for Run A. The profile γ(z)
quantifies turbulent pumping. It is negative in the southern
hemisphere and positive in the northern hemisphere. Since γ

plays the role of an advection vector (albeit without any
material motion), this corresponds to magnetic field pumping
away from the midplane; see A. Shukurov & K. Subramanian
(2022) for a review. The profile δ(z) describes the ¯W ´ J or
Rädler effect (K. H. Rädler 1969), which is known to
contribute to dynamo action, although this term alone cannot
contribute to a change in B 2. The sign of δ is here as expected
from theory, and it also agrees with earlier test-field results
(A. Brandenburg et al. 2008a).

For the corresponding results for Run A with PrM= 0.2, the
ratio α/ηtk1 again shows local extrema at k1z=± 2 of
about ±5.

3.3. Importance of Mean-field Effects

To assess the relative importance of the turbulent transport
coefficients, we have solved the relevant mean-field
model with Equation (10) using the coefficient from Run D.
We find that the model with all the mean-field transport
coefficients included yields a slow growth with the growth
rate λ/csk1= 0.0021. The fact that this number is different
from zero, even though the original direct numerical
simulation has reached a steady state, remains unexplained.
To reach a marginally excited state, we would need to scale
down the α tensor by a factor of about 4 to reach a marginally
excited state. Similar departures from the expected vanishing
growth rate have been seen before; see J. Warnecke et al.
(2021) for simulations in spherical geometry, where the α
tensor needed to be scaled up to reach a marginally excited
state.
We now study the relative importance of the off-diagonal

terms of both the αij and ηij tensors. In Table 2, we give the
values of λ after having rescaled the off-diagonal components

Figure 3. The black lines denote the time-averaged normalized profiles of α, γ, ηt, and δ for Run D with PrM = 10, η = 5 × 10−5, and ν = 5 × 10−4. In the four
panels, the red (blue) lines denote αxx (αyy), αyx (−αxy), ηxx (ηyy), and ηxy (−ηyx). The ratio, α/ηtk1, shows local extrema at k1z = ±2 of about 5, but has here a nearly
linear profile as a function of z.

Table 2
Growth Rates λ for Mean-field Models for Different Combinations of cγ and cδ
Using the Test-field Results for Run D, Run D with Shear, and Run E with

Shear

λ/csk1

cα cγ cδ Run D Run D+Sh Run E+Sh

1 1 1 0.0021 0.023 0.0051
1 0 1 0.0017 0.021 0.0046
1 1 0 0.0022 0.021 0.0054
1 0 0 0.0020 0.020 0.0050
0.25 0 0 0 L L

Note. In the last row, the factor cα by which α needs to be scaled to reach a
marginally excited state, is given for Run D.
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of the two tensors by scaling coefficients

( )a a h h  ¹g dc c i j, , . 20ij ij ij ij

Thus, when cγ= 0 (1), the γ effect is ignored (included), and
when cδ= 0 (1), the δ effect is ignored (included). For Run D,
we also have shown the factor cα= 0.25 by which α needs to
be scaled to reach a marginally excited state. We also studied
models in which we included spatiotemporal nonlocality by
solving a differential equation for  (M. Rheinhardt &
A. Brandenburg 2012; A. Brandenburg & P. Chatterjee 2018;
V. V. Pipin 2023), but this did not change the value of cα
significantly.

From the results presented in Table 2, we see that ignoring the
γ effect for the profiles from Run D (Figure 3) decreases the
growth rate slightly. Thus, the inclusion of the γ effect supports
dynamo action in our case. On the other hand, ignoring the δ
effect increases the growth rate slightly. Therefore, the inclusion
of the δ effect suppresses dynamo action slightly. On the other
hand, the changes in the growth rate are surprisingly small, so it
is probably reasonable to say that the importance of the off-
diagonal components in the model is small and that the dynamo
is well described by an isotropic α2 dynamo.

Next, we add shear of the same strength as for Run E
(Table 2), but we continue using the mean-field transport
profiles of Run D (Figure 3). This is obviously inconsistent, but
it allows us to isolate the effect of shear in the mean-field model
from that of the profiles for αij and ηij. The overall growth rate
is about 10 times larger than without shear, but the differences
in the growth rates for different combinations of cγ and cδ are
small. In summary, we find that both the γ effect and the δ
effect contribute slightly to dynamo action, and that excluding
them decreases the growth rate slightly.

On the other hand, when one uses the actual profiles for Run
E together with shear, we find not only larger differences for
different combinations of cγ and cδ, but the overall growth rates
are also decreased by a factor of about 4 and are now only
about 2.5 times larger than for the profiles of Run D and no
shear. In particular, the inclusion of the δ and shear–current
effects supports dynamo action, while the inclusion of the γ
effect diminishes dynamo action. In units of urmskf, the value
λ/csk1 corresponds to λ/urmskf= 0.01.

3.4. Interpretation of Magnetic Helicity Fluxes

We are interested in the magnetic helicity flux between the
northern and southern hemispheres. It is convenient to plot the

magnetic helicity flux through any xy plane as a function of z.
In Figure 4, we see that for Run D most of the total magnetic
helicity flux is contained in the large-scale contribution,

´E A . The small-scale magnetic helicity flux is nearly
negligible. The large-scale component is nearly balanced by

the fluxes ¯ ¯ò ⋅
p-
 B dz2

0
and ¯ ¯ò ⋅

p
 B dz2

0
between different

scales in the southern and northern hemispheres. At small
scales, however, almost the entire flux is absorbed by the ohmic
diffusion term ·hm j b2 0 , which was also found for most of the
earlier work (F. Del Sordo et al. 2013; F. Rincon 2021), when
ReM was not yet very large.

For the much more diffusive Run A with PrM= 0.2, the
situation is a bit different; see Figure 5. Here, the integrated

· B2 term is still balanced by the integrated ·hm- j b2 0 term,
but now there is also a significant contribution from the
integrated ·hm J B2 0 term, which balances ´E A . Looking
at Figure 1, this means that the microphysical magnetic
diffusivity is important not only at small scales, when the
integrated · B2 term is entirely supplied by the integrated

·hm- j b2 0 term and not much by the ´ ae or integrated fb
terms, but also at large scales, when the integrated · B2 term
is supplied to 50% by the integrated ·hn J B0 term and to
another 50% by ´E A.

3.5. The Effect of Shear

We now consider models with finite shear using q = 0.5
(so Vy=−qΩx). This value is less than what is used to
model Keplerian shear, where q= 3/2. Nevertheless, one
such case will be considered in Section 3.7. As emphasized
above, this is because we want to avoid supersonic speeds on
the shearing boundaries at x=±π. In the present case
with Ω/csk1= 0.5 and q= 0.5, we have Vy(±π)=m0.8cs.
Run E is an example of a model with shear. The fluxes for this
and a few other runs with shear are summarized in Table 3.
The last two cases of Runs Q and R are designed to explore
the possible sensitivity of the results upon the choice of the
shear profile and its magnitude, and are discussed in
Section 3.7.
In Figure 6, we show butterfly diagrams for Bx and By for

Run E with shear and PrM= 10. They are consistent with
earlier results by T. F. Stepinski & E. H. Levy (1990), where
the field is confined to the disk, which is here accomplished by
the use of perfect conductor boundary conditions; see
A. Brandenburg & C. Campbell (1997) for further detail and
references. Similarly to the cases without shear, as we increase

Figure 4. Magnetic helicity fluxes for Run D with PrM = 10, η = 5 × 10−5, and ν = 5 × 10−4. The blue (red) lines denote the small-scale (large-scale) contributions,
where applicable, and the black dotted lines denote their sum. The black dashed–dotted line is the zero line. Note that the ·j b and ·J B terms have been plotted with
a minus sign, so òhm ⋅j b dz2 0 is here positive.
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the value of PrM further and ReM increases, the ratio Brms/Beq

increases, but now the level of the mean field, /B Brms eq, stays
approximately the same. This might suggest that catastrophic
quenching is now alleviated.

In Figure 7, we show time-averaged profiles of α, γ, ηt, and δ
for Run E. We see that, while ηxx≈ ηyy, we find that αxx? αyy.
This agrees with earlier simulations of A. Brandenburg (2005),
but is opposite to the results of O. Gressel et al. (2008).
Furthermore, we find that αyx? αxy, i.e., the pumping of Bx is

stronger than that of By; see M. Ossendrijver et al. (2002) for
earlier work on directionally dependent pumpings of the
magnetic field in a sphere.
The contribution from ηxy is rather small and, as already

emphasized before, that from ηyx fluctuates around zero. It is
this component that is relevant for the shear–current effect
(I. Rogachevskii & N. Kleeorin 2003, 2004). Its magnetic
contribution to the shear–current effect was thought to be an
important driver (J. Squire & A. Bhattacharjee 2015), but even

Figure 5. Similar to Figure 4, but for Run A with PrM = 0.2, η = 2.5 × 10−3, and ν = 5 × 10−4. Note that the integrated · B2 term is balanced by the integrated
·hm- j b2 0 term, but there is also a significant contribution from the integrated ·hm J B2 0 term, which balances ´E A .

Figure 6. Butterfly diagrams for Bx (left) and By (right) for Run E with shear and PrM = 10.

Table 3
The Contributions from ( ¯ )´- e aF zm0

1 , ¯ ¯ò ⋅-  BF dz2 m0
1 , and ¯òhm- ⋅- j bF dz2 0 m0

1 to the Magnetic Helicity Flux Balance, along with Other Properties, for Runs with
Shear

´-Fm0
1 - ´-F2 m0

1 hm- ´-F2 0 m0
1 ´-Beq

1

Run Re ReM PrM ηk1/cs ( ¯ )´e a z
¯ ¯ò ⋅ B dz ¯ò ⋅j b dz −òf0  f0

M keff Brms Brms N3

E 12.3 123 10 5 × 10−5 0.035 0.035 0.005 0.22 0.007 3.0 1.39 0.34 2563

F 12.9 258 20 2.5 × 10−5 0.045 0.015 0.030 0.22 0.05 15 1.58 0.31 5123

G 13.2 660 50 10−5 0.025 0.005 0.020 0.15 0.10 24 2.62 0.37 10243

H 160 160 1 5 × 10−5 0.075 0.160 −0.085 0.33 −0.02 14i 0.94 0.22 5123

I 340 340 1 2 × 10−5 0.060 0.040 0.020 0.26 0.04 16 1.10 0.28 5123

J 540 540 1 10−5 0.075 0.020 0.055 0.16 0.10 16 1.24 0.24 5123

K 850 850 1 5 × 10−6 0.060 0.015 0.045 0.08 0.07 17 1.24 0.21 5123

L 410 164 0.4 5 × 10−5 0.050 0.130 −0.080 0.33 −0.03 9i 0.94 0.22 5123

M 830 166 0.2 5 × 10−5 0.075 0.075 −0.000 0.33 −0.00 3 0.91 0.20 5123

N 1650 165 0.1 5 × 10−5 0.060 0.140 −0.080 0.33 −0.03 13i 0.92 0.25 5123

O 690 345 0.5 2 × 10−5 0.120 0.020 0.100 0.26 +0.07 12 1.05 0.18 5123

P 1700 340 0.2 2 × 10−5 0.070 0.050 0.020 0.25 +0.04 13 1.08 0.26 5123

Q 13.3 133 10 5 × 10−5 0.030 0.020 0.010 0.22 0.015 5.6 1.33 0.40 2563

R 31.0 310 10 5 × 10−5 0.040 0.020 0.010 0.00 0.007 6.9 1.03 0.28 2563
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the fully nonlinear test-field method did not show such a
contribution (M. J. Käpylä et al. 2020).

In Figure 8, we show magnetic helicity fluxes for Run E. The
large-scale and small-scale magnetic helicity fluxes nearly cancel
and are nearly equally important. It is striking to note that the
small-scale magnetic helicity flux, arising from the correlated
action of the turbulent eddies, roughly scales as the turbulent
energy density and has the same sign throughout the
computational volume. In the third panel of Figure 8, we see
the integrated small-scale current helicity, which oscillates from
zero to a negative maximum back to zero twice. This implies that
the current helicity, and the associated magnetic helicity,
oscillates through two full cycles within the computational
volume. The small-scale magnetic helicity flux seen in the first
panel shows a negligible contribution from the turbulent diffusion

term of the form −κt∇zh, where κt is a turbulent diffusivity and
·= a bh is the small-scale magnetic helicity density.

In Equation (13) for the large-scale helicity equation, the
integrated · B2 term balances ´E A , and in Equation (14),
also ¯́e a balances ¯ ¯ò ⋅ B dz2 , so, contrary to the cases

without shear, the integrated ·hm j b2 0 term is small, and the
integrated ·hm J B2 0 term is smaller still. This was not the case
in much of the earlier work without shear (F. Del Sordo et al.
2013; F. Rincon 2021).
For Run F, ´E A stays unchanged, but ¯ ¯ò ⋅ B z2 d now

decreases and ¯òhm ⋅j b dz2 0 increases and is of opposite sign
compared to before; see Figure 9. This trend persists even for
Run G, although here the statistical significance is more
questionable; see Figure 10.

Figure 7. Time-averaged profiles of α, γ, ηt, and δ for Run E with shear and PrM = 10. The ratio, α/ηtk1, shows local extrema at k1z = ± 2 of about 5, but has here a
more linear profile as a function of z. The red lines refer to αxx(z), αyx(z), ηxx(z), and ηyx(z), and the blue lines to αyy(z), αxy(z), ηyy(z), and ηxy(z). Note that, while
ηxx ≈ ηyy, we find that αxx ? αyy. Also, αyx ? αxy, i.e., the pumping of Bx is stronger than that of By.

Figure 8. Similar to Figure 4, but for Run E with shear and PrM = 10. The large-scale and small-scale magnetic helicity fluxes nearly cancel. In the small-scale

magnetic helicity equation, the integrated · B2 term balances
¯
´e a, and the integrated ·h- j b2 term is small. We recall that the ·j b and ·J B terms have been

plotted with a minus sign, so
¯

òhm ⋅j b dz2 0 is now negative.
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The ReM dependence of the magnetic helicity fluxes in
Table 3 is unexpected. This dependence is shown more clearly
for Runs E–G and Runs H–K in Figure 11, where

¯ ¯ò- ⋅ B dz2 displays a monotonic decrease proportional to
-ReM

1. The small-scale magnetic helicity flux divergence, on the
other hand, is nearly constant in all cases and strongly exceeds

¯ ¯ò- ⋅ B dz2 for large values of ReM. As a consequence, to
obey the steady-state condition of Equation (14), the magnetic
helicity dissipation must become important at large ReM. A
similar behavior has not previously been seen in the absence of
shear; see the corresponding plots of F. Del Sordo et al. (2013)
and F. Rincon (2021) and the inset to Figure 11. Looking again

at Table 3, we see, however, that the integrated ·j b terms do
still obey Equation (16), i.e.,

¯ ( ¯ ¯ ¯ ) ( )ò hm´ = - ⋅ + ⋅
-

e a B j b dz2 . 21
z

z

0

We have seen that for larger values of PrM and ReM, the
small-scale magnetic helicity flux, ¯́e a, stays approximately
unchanged, although the integrated ·-  B2 term still declines
with larger values of ReM. Thus, there is now an excess of
small-scale magnetic flux from south to north. This excess must
be dissipated by the integrated ohmic term ·hm j b2 0 . Such a
behavior is rather unexpected and seems to be a general

Figure 9. Similar to Figure 8, but for Run F with PrM = 20.

Figure 10. Similar to Figure 9, but for Run G with PrM = 50.

Figure 11. Summary of the small-scale magnetic helicity fluxes (blue line) and the typical values of
¯ ¯

ò- ⋅ B dz2 (black lines) and
¯

òhm- ⋅j b dz2 0 (red lines) for
the runs with shear in semi-logarithmic (a) and double-logarithmic (b) representations. The latter also shows the -ReM

1 scaling as the dashed–dotted line. The dashed
lines connecting each three data points are for Runs E–G (with PrM ≠ 1) and the solid lines for Runs H–K (with PrM = 1). The lines for Runs E–G have been upscaled
by a factor 3 to make them coincide with those for Runs H and I. The inset shows the fluxes for Runs A–D without shear in the same color coding.
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consequence of dynamos with shear and large values of ReM,
and is not just a specific consequence of large values of PrM.

3.6. Superequipartition with Shear

The reason why our runs with shear show strong small-scale
magnetic helicity fluxes is probably connected with the fact
that, in those runs, the magnetic field reaches superequipartition
strengths. This is seen in Table 3, where Brms/Beq> 1, and in
Figure 12, where we plot for Run E the temporal evolution of
〈B2〉, m r=B ueq

2
0 0 rms

2 , á ñBy
2 , and á ñBx

2 . We see that the total
(small-scale and large-scale) magnetic field reaches super-
equipartition field strengths at t≈ 300/csk1, which is clearly
before the large-scale magnetic field saturates at t≈ 1000/csk1,
which is when á ñBy

2 has reached a statistically steady state.
Interestingly, the large-scale magnetic field displays an
approximately exponential growth at a rate 10−2 urmskf for
the squared mean-field strength. The growth rate of the mean
field is then half that value, which is comparable to the growth
rates found in Table 2, where λ/csk1≈ 0.005, corresponding to
λ/urmskf≈ 0.01.

The slow exponential growth of the mean field may hint at a
new type of instability that is responsible for the emergence of
the large-scale magnetic field in a regime in which the total
magnetic field reaches superequipartition strengths. Analogous
evidence for exponential growth of a secondary mean-field
instability has previously been seen in other circumstances; see
A. Brandenburg et al. (2011) for an example in the context of
density-stratified turbulence in which large-scale structures
were found to form.

In the shear-induced superequipartition regime, the rms
values of the resulting large-scale magnetic field are found to
be independent of ReM. In the absence of shear, Brms clearly
declined with ReM, albeit only like ReM

0.3; see Figure 13(a).
With shear, however, Brms is nearly independent of ReM; see
Figure 13(b). The fact that resistive contributions through the
integrated ·hm j b2 0 term become increasingly important can
be regarded as a consequence of the shear-induced hemispheric
magnetic helicity fluxes that become extremely efficient at
exchanging small-scale magnetic helicity between hemi-
spheres. We can therefore say that they overcome catastrophic
quenching so as to guarantee an ReM-independent large-scale
magnetic field.

The strong contribution of the small-scale current helicity
term might raise concerns whether the simulation is sufficiently

well resolved. To check this, we plot in Figure 14 an xy slice of
Jx through k1z= 1, but no signs of ringing, i.e., no oscillations
on the grid scale are seen. Instead, it shows the typical inclined
patterns associated with the shear flow, ( ) = - WU x q xy .
In Figure 15, we present kinetic and magnetic energy spectra

for Runs G and K. Both runs have shear but different values of
PrM. The spectra are similar, except that the magnetic and
velocity spectra for Run K still have more energy at the largest
wavenumber of the mesh, i.e., at the Nyquist wavenumber
k1N/2.
It is important to emphasize that only the total magnetic field

and not the large-scale field reaches superequipartition field
strengths. Such strong magnetic fields appear to be crucial for
achieving the new type of magnetic helicity fluxes explored in
this paper. Such fluxes are the result of anisotropies in the
turbulence, and many forms have been explored in earlier
papers (E. T. Vishniac & J. Cho 2001; K. Subramanian &
A. Brandenburg 2004, 2006; A. Hubbard & A. Brandenburg
2011; D. S. Shapovalov & E. T. Vishniac 2011; F. Del Sordo
et al. 2013; F. Ebrahimi & A. Bhattacharjee 2014;
E. T. Vishniac & D. Shapovalov 2014; H. Zhou &
E. G. Blackman 2017; N. Kleeorin & I. Rogachevskii 2022;
K. Gopalakrishnan & K. Subramanian 2023). However, more
analytical work is needed to make meaningful statements about
the physical nature of the fluxes discussed in the present work.

3.7. Sensitivity to a Steeper Profile and Larger Shear

As alluded to in Section 2.2, we adopted a sinusoidal
modulation for the turbulent intensity. To get an idea about the
sensitivity of our results upon this choice, we now consider the
top-hat profile defined in Section 2.2. The result for Run Q is
shown in Figure 16. The differences to Run E in Figure 8 are
relatively minor, except that the flanks of ¯́e a at z=± π/2
show a sharper onset at z=±π/2. Also, the profile of the
integrated ·hm j b2 0 term shows marked humps at these
positions.
Another particular choice was that of the value of q, which

corresponds to the local double-logarithmic shear derivative in
other astrophysical contexts. In astrophysical bodies such as
stars, the value of q can have either sign in different regions.
Values in the range from ±0.1 to ±1 are not uncommon. In
galactic disks with a constant linear velocity, we have q= 1,
whereas in Keplerian disks, we have q= 3/2. As discussed in
Section 2.2, with our choice of angular velocity and domain

Figure 12. (a) z-profiles of á ñB xyt
2 (solid black), Beq

2 (dashed blue), á ñBy t
2 (solid red), and á ñBx t

2 (dotted red). (b) t-profiles of á ñB xyz
2 (solid black), Beq

2 (dashed blue),
á ñBy z

2 (solid red), and á ñBx z
2 (dotted red) for Run E, here plotted in code units, [ ] m r=B c0 0 s

2. The dashed–dotted line indicates a slow but exponential growth, with a
growth rate 10−2 urmskf, for the squared mean-field strength.
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size, our compressible simulations yield transonic velocities for
q> 0.5. To assess the sensitivity of our results upon the choice
q= 0.5, we now consider a simulation similar to Run E but
with q= 3/2 and a larger sound speed of cs= 3. The result is
listed in Table 3 as Run R. The values of Re and ReM are larger
than for Run E, because we left the viscosity and magnetic
diffusivity unchanged. The kinetic helicity parameter is now
nearly vanishing, but the current helicity parameter remains
unchanged compared to that for Run E. All the other
parameters describing the mean magnetic field and magnetic
helicity fluxes are also nearly unchanged. We therefore

conclude that our particular choice of the value of q had no
decisive effect on the results.

4. Conclusions

In this paper, we have considered a volume containing a
modulated level of turbulence, which drops to zero at the
vertical boundaries, so that the internal transport coefficients of
the medium go to zero smoothly at those boundaries.
Consequently, the results of the simulations should be
insensitive to the vertical boundary conditions. The properties
of the medium, including rotation and shear, are otherwise
uniform within the volume.
The existence of a systematic flux of small-scale helicity, as

seen in Figure 8, is consistent with a simple dimensional
estimate. A magnetic helicity flux arising from turbulence
should scale with tu B2 2 , where τ is a correlation time
(N. Kleeorin & I. Rogachevskii 2022). However, the magnetic
helicity flux is a pseudo-vector, with a direction that requires a
scaling with either the rotation or the shear (or more
particularly with the local vorticity), which implies an extra

Figure 13. Dependence of Brms (black) and Brms (red) on ReM (a) without shear and (b) with shear. Dashed lines indicate that ReM is varied by changing PrM (Runs A–
D in (a) and Runs E–G in (b)), while solid lines indicate that Re has been changed (Runs H–K in (b)). In (b), the open and closed circles are for Runs L–N and O and
P, respectively.

Figure 14. Slice of Jx(x, y, z*) for Run G at k1z* = 1, showing a systematic tilt
from the upper left to the lower right, with all structures being well resolved.

Figure 15. Three-dimensional kinetic (blue) and magnetic (red) energy spectra
for Runs G (solid lines) and K (dashed lines).

Figure 16. Magnetic helicity fluxes for Run Q with a top-hat velocity profile.
As in Figure 4, the blue (red) lines denote the small-scale (large-scale)
contributions and the black dotted lines denote their sum. The black dashed–

dotted line is the zero line. Note the sharp flanks of
¯
´e a at z = ± π/2.
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factor of Ωτ or Sτ. For a uniform driving scale of the
turbulence, and a uniform shear and rotation, we expect a
magnetic helicity flux proportional to B2, which is consistent
with the evidence in case E. Our results suggest that this flux is
significantly more sensitive to shear than to rotation.

We have shown that in a large-scale dynamo, the magnetic
helicity fluxes between large and small scales can even become
overcompensated by those between the two hemispheres when
microphysical resistive effects are small. In the absence of
shear and at small magnetic Reynolds numbers (Run A,

=Re 3.5M ), these fluxes are comparable to the reference flux
defined in Equation (17). For Run D, with =Re 160M , the
magnetic helicity fluxes are about 30% of the reference flux.
However, while the magnetic helicity flux at large scales is
large, that at small scales is virtually absent; see Figures 4 and
5. In the presence of shear and for similar values of ReM (Run
E), the flux drops to 1–5% of the reference flux, but now the
fluxes are approximately the same at large and small scales.

The correspondence between the magnetic helicity flux
between hemispheres and between scales is not a coincidence.
The small-scale flux between hemispheres depends on the total
magnetic field strength, although the small- and large-scale
magnetic fields contribute to the flux with different coefficients.
The flow of magnetic helicity between scales is proportional to
the square of the large-scale field. Consequently, the saturation
strength of the large-scale field may be set by the magnetic
helicity flux between hemispheres.

While the large fraction of small-scale magnetic helicity
fluxes in the presence of shear is indicative of alleviating
catastrophic quenching, we do not find that the resistive term
becomes unimportant at large magnetic Reynolds numbers.
This does not a priori mean that such dynamos are not viable in
the large-ReM regime. The fact that ¯ ¯ò ⋅  B dz2 0 in the
large magnetic Reynolds number limit was thought to reflect
the basic catastrophic quenching problem of large-scale
dynamos with helicity. However, while the hemispheric
small-scale magnetic helicity flux stays constant as ReM

increases, it is not being used to balance the integrated
· B2 term, but it either drives or is driven by the integrated

·hm j b2 0 term.
Our models have demonstrated that interesting flux

dynamics can occur entirely without boundaries. The magnetic
helicity fluxes occur within the volume due to gradients of the
turbulent intensity and turbulent kinetic and magnetic helicities,
as was also found by N. Kleeorin & I. Rogachevskii (2022).

Our work has also shown that the dynamos in the present
setups are of α2 or αΩ type, i.e., they are driven by an α effect
and supported by shear, if shear is present. The ratio of the
local value of α to the product of the local turbulent magnetic
diffusivity and the lowest wavenumber of the domain, i.e., the
z-dependent dynamo number, which is found to be an
approximately linear function with a coefficient of 2.8 and
2.2 for Runs A and D, respectively. This suggests that the
dynamo number decreases with increasing conductivity. For
Run E with shear, the ratio is 1.4. Turbulent pumping points in
the direction away from the midplane. There is also a Rädler
effect with the theoretically expected sign, i.e.,  has a
contribution proportional to ¯W ´ J with a positive coefficient.
In the presence of shear, the effect becomes anisotropic and the
component that is relevant for the shear–current effect, namely
the ηyx component for shear of the present form ¯ /=S dU dxy , is

essentially zero, which is consistent with earlier findings
(A. Brandenburg et al. 2008a; M. J. Käpylä et al. 2022).
Our results have applications to stellar and galactic dynamos,

where gradients of kinetic and magnetic helicity fluxes are
expected to occur through the equator. Even the boundary
between convecting and nonconvecting regions both in late-
type stars and in massive stars is an example where magnetic
helicity fluxes can be expected to encounter dynamical
boundaries of the type idealized here.
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