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ABSTRACT

The question of whether a dynamo can be triggered by gravitational collapse is of great interest, es-
pecially for the early Universe. Here, we employ supercomoving coordinates to study the magnetic field

amplification from decaying turbulence during gravitational collapse. We perform three-dimensional

simulations and show that for large magnetic Reynolds numbers, there can be exponential growth

of the comoving magnetic field with conformal time before the decay of turbulence impedes further
amplification. The collapse dynamics only affects the nonlinear feedback from the Lorentz force, which

diminishes more rapidly for shorter collapse times, allowing nearly kinematic continued growth. We

confirm that helical turbulence is more efficient in driving dynamo action than nonhelical turbulence,

but this difference decreases for larger collapse times. We also show that for nearly irrotational flows,

dynamo amplification is still possible, but it is always associated with a growth of vorticity—even if it
still remains very small. In nonmagnetic runs, the growth of vorticity is associated with viscosity and

grows with the Mach number. In the presence of magnetic fields, vorticity emerges from the curl of

the Lorentz force.

Keywords: Magnetic fields (994); Hydrodynamics (1963)

1. INTRODUCTION

The ubiquitousness of dynamo action in various astro-

physical plasmas has been hypothesized since the 1950s,

but faced skepticism due to various anti-dynamo theo-

rems (Cowling 1933; Hide & Palmer 1982). For a long
time, the community focused on large-scale dynamos

in the Sun (Parker 1955; Steenbeck et al. 1966) and

galaxies (Parker 1971; Vainshtein & Ruzmaikin 1971).

With the advance of powerful computers, small-scale
dynamos at the scale of turbulence have received sig-

nificant attention, starting with the early simulations

of Meneguzzi et al. (1981). Kazantsev (1968) provided

the current theoretical understanding of small-scale dy-

namos; see also Kulsrud & Anderson (1992) for an in-
dependent and more detailed derivation. By now, it

is clear that three-dimensional turbulence always leads

to dynamo action when the plasma is sufficiently well

conducting; see Brandenburg & Ntormousi (2023) for a
recent review. This behavior implies that part of the

kinetic energy in turbulence is almost always converted

into magnetic energy.

Characterizing turbulent dynamos is difficult because

of the unsteady nature of the flow. For steady flows, we

can always formulate an eigenvalue problem, provided

the magnetic field is still weak and unaffected by the
feedback from the Lorentz force, which affects the flow

amplitude. It is even possible to prove that there is no

eigenfunction with a non-vanishing eigenvalue when the

magnetic diffusivity is strictly zero (Moffatt & Proctor
1985). Unsteady flows present a significant complication

because, in that situation, the kinematic growth or de-

cay of the magnetic field is no longer exponential. The

problem becomes approachable if the flow is statistically

steady, i.e., the level of turbulence can remain constant
in time. In such cases, it has been shown that the en-

ergy spectrum grows at all wavenumbers at the same

rate (Subramanian & Brandenburg 2014). This behav-

ior is suggestive of the existence of an eigenfunction of
the type discussed by Kazantsev (1968).

Many flows in astrophysics and plasma physics are

not even statistically steady. Dynamo research in

these cases is still in its infancy. One such sit-

uation is gravitational collapse, where the dynamo
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problem has been studied using various numerical

and analytical approaches (e.g. Sur et al. 2010, 2012;

Federrath et al. 2011b; Xu & Lazarian 2020). The com-

mon problem these works face is identifying dynamo
action when other amplification mechanisms like tan-

gling or compression are also active. In this context,

Brandenburg & Ntormousi (2022) emphasized that the

Jeans instability drives predominantly irrotational mo-

tions that are unlikely to account for any dynamo action
seen in the simulation.

Kinetic helicity (a measure of the alignment between

velocity and vorticity) is not necessary for dynamo ac-

tion, but if present, it lowers the critical conductiv-
ity needed to overcome the effects of Joule dissipation

(Gilbert et al. 1988). Otherwise, resistive losses prema-

turely convert magnetic energy into heat before it can

reach sufficient strength.

A collapsing flow can produce vorticity through viscos-
ity (especially in shocks), the baroclinic term, and mag-

netic fields. However, which of these processes is active

during collapse is currently unknown. To isolate effects

related to the collapse dynamics, Irshad P et al. (2025)
employed the supercomoving coordinates of Shandarin

(1980), where the conformal time t is related to the phys-

ical time tph through dt = dtph/a
2, and a(tph) is the

scale factor; see also Martel & Shapiro (1998) for a de-

tailed presentation of the supercomoving coordinates in
magnetohydrodynamics.

Irshad P et al. (2025) found super-exponential growth

of the magnetic field as a result of the increasing

turnover rate and saturation field strengths in excess
of the expectations from flux freezing. They applied a

solenoidal forcing function with and without kinetic he-

licity. The present work aims to study decaying turbu-

lence, allowing not only for cases without initial kinetic

helicity but also cases with or without initial vorticity
(also called acoustic turbulence).

2. OUR MODEL

2.1. Supercomoving coordinates

We employ supercomoving coordinates using the same

definition of the scale factor as Irshad P et al. (2025),
i.e.,

a(t) = (1 + s2t2/4)−1, (1)

where t is the conformal time, s is a free-fall parameter,

which is related to the free-fall time tff = π/2s. The

physical time tph is then given by

tph(t) =

∫ t

0

a2(t′) dt′, (2)

which is defined in the range 0 ≤ tph ≤ tff .

The supercomoving coordinates stretch the finite time

singularity at tff to infinity while also limiting the co-

moving magnetic field strength according to

B = a2Bph, (3)

where Bph is the physical magnetic field.

2.2. Governing equations

We solve the MHD equations with an isothermal equa-
tion of state, where the pressure p and density ρ are

related to each other through p = ρc2s with cs = const

being the isothermal sound speed. We apply an initial

velocity field u, which leads to a turbulent evolution. We
also apply an initial seed magnetic field B. To ensure

that B remains solenoidal, we solve for the magnetic

vector potential A so that B = ∇ ×A. The evolution

equations for A, u, and ρ are given by

∂A

∂t
= u×B + η∇2

A, (4)

Du

Dt
= −c2s∇ ln ρ+ ρ−1 [a(t)J ×B +∇ · (2νρS)] , (5)

D ln ρ

Dt
= −∇ · u, (6)

where J = ∇ × B/µ0 is the current density with µ0

being the vacuum permeability, J × B is the Lorentz

force, S the rate-of-strain tensor with the components
Sij =

1
2
(∂iuj + ∂jui)− 1

3
δij∇ ·u and ν is the kinematic

viscosity.

2.3. Initial conditions and parameters

We consider a cubic domain of size L3 with periodic

boundary conditions. The lowest wavenumber in the
domain is then k1 ≡ 2π/L. Owing to the use of pe-

riodic boundary conditions, the mass in the domain is

conserved, so the mean density is conserved, which de-

fines our reference density ρ0 ≡ ρ. In the numerical
simulations, we set cs = k1 = ρ0 = 1.

We construct our initial velocity in Fourier space (in-

dicated by a tilde) as ũ(k) = M(k)S(k). Here,

Sj(k) = r(k, j)
k
−3/2
0 (k/k0)

1 + (k/k0)17/6
, (7)

where r(k, j) is a Gaussian-distributed random number

with zero mean and a variance of unity for each value

of k and each direction j, k0 is the peak wavenumber of

the initial condition, and M is a matrix that consists of
a superposition of a vortical and an irrotational contri-

butions (Brandenburg & Scannapieco 2025):

Mij(k) = (1− ζ)(δij − k̂ik̂j + σik̂kǫijk) + ζk̂ik̂j , (8)
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where 0 ≤ ζ ≤ 1 quantifies the irrotational fraction and

0 ≤ σ ≤ 1 the helicity fraction. The extreme cases

ζ = 0 and ζ = 1 correspond to vortical and irrota-

tional flows, respectively, while σ = 0 and σ = 1 corre-
spond to nonhelical and helical fields, respectively. The

shell-integrated kinetic energy spectrum, EK(k), which

is normalized such that
∫

EK(k) dk = ρ0〈u2/2〉, is ini-

tially ∝ k4 for k < k0 and ∝ k−5/3 for k > k0. The

magnetic energy spectrum EM(k) is normalized such
that

∫

EM(k) dk = 〈B2/2µ0〉 and initially of the same

shape as EK(k). We also compute the vortical en-

ergy spectrum EV(k), which is normalized such that
∫

k2EV(k) dk = ρ0〈ω2/2〉, where ω = ∇ × u is the
vorticity.

It is often convenient to express our results not in code

units, where cs = k1 = ρ0 = 1, but in units of u0 and

k0. Here, u0 ≡ 〈u2〉1/2 is the initial rms velocity. We

also define a nondimensional magnetic field as

Bi ≡ Bi/(µ0ρ0u
2
0)

1/2, (9)

where i = x, y, z refers to the three components, and

i = rms or i = ini refer to the rms values of the magnetic

field at the actual or the initial time, respectively. We
also define the Mach and magnetic Reynolds numbers

based on the initial velocity, Ma0 = u0/cs and ReM =

u0/ηk0, respectively. The Mach number at the actual

time is denoted by Ma. As a nondimensional measure
of s, we define S = s/u0k0. When S < 1 (S > 1), the

collapse is slower (faster) than the turnover rate of the

turbulence.

In the following, we vary the input parameters S, ζ,
k0/k1, Ma, ReM, and Bini. In all cases presented below,
the magnetic Prandtl number is unity, i.e., ν/η = 1.

In the following, we display the conformal time

in units of the initial turnover time, (u0k0)
−1,

where u0 is the initial rms velocity. As in
Brandenburg & Ntormousi (2022), we monitor the vor-

tical and irrotational contributions to the turbulence,

ωrms = 〈ω2〉1/2 and (∇ ·u)rms =
〈

(∇ · u)2
〉1/2

, in terms

of the quantities that have the dimension of a wavenum-

ber,

k∇·u = (∇ · u)rms/urms, (10)

kω = ωrms/urms. (11)

These two values are expected to scale with k0, which is
why we usually present the ratios k∇·u/k0 and kω/k0.

We use for all simulations the Pencil Code

(Pencil Code Collaboration et al. 2021). The resolution

is either 5123 or 10243, as indicated in Table 1, where we
summarize all runs discussed in this paper. While higher

resolution leads to more accurate results, the lower res-

olution computations produce qualitatively similar re-

sults; compare, for example, Runs 19 and 32, which have

Figure 1. S = 0.1 (black lines), 0.6 (blue lines), 2.8
(green lines), 11 (orange lines), and 56 (red lines). Solid
(dashed) lines refer to cases with (without) initial kinetic
helicity. For the nonhelical runs (dashed lines), the values
of u0 are slightly smaller, so S is correspondingly larger; see
Table 1. Runs 3–7 and Runs 10–14.

the same parameters. Both runs have almost the same
vorticity and magnetic field evolution, but the lower res-

olution run has a slightly deeper minimum of kω/k0,

which results in a larger value of ∆ ln(kω/k0).

3. RESULTS

3.1. Growth vs physical and conformal time

We have performed runs with different values of S us-

ing either helical (σ = 1) or nonhelical (σ = 0) tur-

bulence, sometimes without irrotational contributions
(ζ = 0). Figure 1 shows that the larger the value of S,
the larger the final magnetic field strength. This is be-

cause the effective Lorentz force in Equation (5), aJ×B,

diminishes more rapidly with time when S is larger, al-

lowing the magnetic field to continue growing further.
In supercomoving coordinates, the initial growth rate of

the magnetic field is not affected by the value of S. How-
ever, the growth rate is larger with than without kinetic

helicity. On the other hand, at later times, when the
magnetic field decays, the values are similar regardless

of the presence of kinetic helicity.

In physical time, the magnetic field shows a steep in-

crease just toward the end of the collapse; see Figure 2.

Interestingly, the runs with large values of S, which pro-
duce the strongest comoving magnetic fields, now yield

the weakest physical fields when comparing the runs at

the same fractional collapse time. This is because for the

runs with large values of S, the free-fall time is short, so
the fractional times are larger, which effectively inter-

changes the order of the curves. This is demonstrated

in the inset of Figure 2, where we show the same data,

but now with time in units of the initial turnover time.
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Table 1. Summary of the runs discussed in this paper. Here we list the nondimensional parameter S ; the physical values in
code units are s/csk1 = 0.2, 1, 5, 20, and 100. Column 7 gives ReM (Re) for magnetic (nonmagnetic) runs. Dashes in columns 8–
10 indicate the 8 nonmagnetic runs. For magnetic runs, dashes in columns 9 and 10 indicate decay. Run 39 corresponds to
Run B of Brandenburg & Ntormousi (2022) and is discussed in Section 4.

Run S σ ζ k0/k1 Ma0 ReM (Re) Bini ∆lnB λ/u0k0 ∆ ln(kω/k0) (kω/k0)max resol.

1 0.1 1 0 10 0.18 1840 2.3× 10−8 8.33 0.52 0.39 7.09 5123

2 0.1 1 0 10 0.18 1840 2.3× 10−5 6.62 0.52 0.39 7.09 5123

3 0.1 1 0 10 0.18 1840 2.3× 10−2 1.88 1.00 0.31 6.46 5123

4 0.6 1 0 10 0.18 1840 2.3× 10−2 2.21 1.03 0.22 5.93 5123

5 2.8 1 0 10 0.18 1840 2.3× 10−2 3.56 1.03 0.30 6.43 5123

6 11 1 0 10 0.18 1840 2.3× 10−2 4.77 1.03 0.36 6.82 5123

7 56 1 0 10 0.18 1840 2.3× 10−2 5.96 1.03 0.39 7.04 5123

8 0.2 0 0 10 0.13 1300 3.3× 10−8 4.27 0.37 0.33 6.97 5123

9 0.2 0 0 10 0.13 1300 3.3× 10−5 4.22 0.37 0.33 6.97 5123

10 0.2 0 0 10 0.13 1300 3.3× 10−2 1.49 0.97 0.14 5.70 5123

11 0.8 0 0 10 0.13 1300 3.3× 10−2 1.92 0.97 0.17 5.91 5123

12 3.8 0 0 10 0.13 1300 3.3× 10−2 3.03 0.98 0.29 6.66 5123

13 15 0 0 10 0.13 1300 3.3× 10−2 3.75 0.98 0.33 6.92 5123

14 77 0 0 10 0.13 1300 3.3× 10−2 4.12 0.98 0.33 6.97 5123

15 0.2 0 0.10 10 0.12 1170 3.6× 10−2 1.41 0.34 0.11 5.50 5123

16 0.2 0 0.50 10 0.08 800 5.4× 10−2 1.04 0.25 0.00 4.00 5123

17 0.2 0 0.90 10 0.08 840 5.1× 10−2 0.31 0.04 0.25 0.94 5123

18 0.2 0 0.95 10 0.09 880 4.9× 10−2 0.05 0.003 0.28 0.47 5123

19 0.2 0 0.96 10 0.09 880 4.8× 10−2 0.02 0.001 0.26 0.38 5123

20 0.2 0 0.97 10 0.09 890 4.8× 10−2 — — 0.21 0.29 5123

21 0.2 0 0.98 10 0.09 900 4.7× 10−2 — — 0.13 0.20 5123

22 0.2 0 0.99 10 0.09 910 4.7× 10−2 — — 0.20 0.16 5123

23 0.2 0 1 10 0.09 920 4.6× 10−2 — — 0.30 0.14 5123

24 0.1 0 1 20 0.09 920 — — — 0.01 0.07 10243

25 0.2 0 1 10 0.09 930 — — — 0.03 0.05 10243

26 0.4 0 1 5 0.09 940 — — — 0.38 0.04 10243

27 1.0 0 1 2 0.10 950 — — — 1.27 0.03 10243

28 0.5 0 0.95 10 0.04 220 — — — 0.09 0.23 5123

29 0.1 0 0.95 10 0.18 890 — — — 0.31 0.71 10243

30 0.1 0 0.95 10 0.27 1330 — — — 0.43 1.00 10243

31 0.1 0 0.95 10 0.36 1780 — — — 0.51 1.31 10243

32 0.2 0 0.96 10 0.09 900 4.9× 10−2 0.02 0.001 0.17 0.38 10243

33 0.2 0 0.96 10 0.09 1800 4.9× 10−2 0.12 0.004 0.28 0.53 10243

34 0.2 0 0.96 10 0.09 4500 4.9× 10−2 0.51 0.008 0.53 0.79 10243

35 0.2 0 1 10 0.09 1870 9.4× 10−3 — — 0.03 0.07 10243

36 0.2 0 1 10 0.09 1870 2.4× 10−2 — — 0.17 0.09 10243

37 0.2 0 1 10 0.09 1870 4.7× 10−2 — — 0.34 0.21 10243

38 0.2 0 1 10 0.09 1870 9.4× 10−2 — — 0.25 0.48 10243

39 0.4 1 0 10 0.19 190 2.3× 10−17 8.32 0.42 0.01 4.29 20483
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Figure 2. Same as Figure 1, but in physical units. Time
is here normalized by the free-fall time. The black and blue
dots on the black and blue curves denote the time until which
the growth in Figure 1 was still approximately exponential.
The inset shows the same, but now time is normalized by
the initial turnover time. Runs 3–7 and Runs 10–14.

In Figure 2, we have also indicated the times where
the initial exponential growth of the comoving magnetic

field with conformal time terminates. For S = 0.1 and

0.6, Brms/a
2 has hardly increased by an order of mag-

nitude. In particular, the growth of Brms/a
2 versus

physical time is not super-exponential, as claimed by
Irshad P et al. (2025). Only for larger values of S is the

growth super-exponential in physical coordinates, and

exponential in comoving coordinates. For S ≥ 2.8, the

times when exponential growth in comoving coordinates
terminates are outside the plot range of Figure 2.

Given that the only effect of the collapse is on the

Lorentz force, it is clear that the kinematic phase is com-

pletely independent of the collapse. This is shown quan-

titatively in Figure 3, where we see the magnetic field
growth for different initial field strengths. For weak ini-

tial fields, the comoving magnetic field grows by more

than three orders of magnitude. It could grow more

strongly if the magnetic Reynolds number were larger.
The growth is only limited by the competition between

magnetic field amplification by the flow and the simul-

taneous decay of the flow. Similar results were already

reported in Brandenburg et al. (2019), but without col-

lapse dynamics (a = 1).

3.2. Effect of the Lorentz force

As we have seen from Figure 3, when the initial mag-
netic field strength is large, the early exponential growth

diminishes more rapidly. This is the result of the effec-

tive Lorentz force in Equation (5) becoming compara-

ble with the inertial term, which implies (Irshad P et al.

Figure 3. Same as Figure 1, but for 3 different initial field
strengths. Runs 1–3 and Runs 8–10.

2025)

a1/2Brms
<∼ urms

√
µ0ρ0. (12)

This is demonstrated in Figure 4(a), where we compare

the evolution of a1/2Brms with that of urms/u0 for the

same runs as those of Figures 1 and 2.

We see that Equation (12) is well obeyed for all runs.
The largest values of a1/2Brms are obtained for the runs

with small values of S. The effect of kinetic helicity is

here surprisingly weak and the values of a1/2Brms are

only slightly smaller for the nonhelical runs than for

the helical ones. For larger values of S, on the other
hand, the differences between helical and nonhelical runs

are much larger and we see that the decay of a1/2 is

well overcompensated by the growth of Brms so that the

product a1/2Brms still shows a strong increase later in
the evolution; see Figure 4(b), where we plot separately

the evolutions of a1/2 and Brms.

We also see that for large values of S (short free-fall

times), a1/2Brms decays at early times and only shows

growth after that. This is opposite to the case of small
values of S and simply because at early times, a1/2 de-

cays faster than the exponential growth of Brms. Only

somewhat later, for 2 <∼ tu0k0 <∼ 10, exponential growth

prevails.

3.3. Critical vorticity

Numerical simulations have demonstrated in the
past that vorticity is an important ingredient of dy-

namos (Haugen et al. 2004; Federrath et al. 2011a).

Achikanath Chirakkara et al. (2021) did report dynamo

action for purely irrotational driving, but this could per-
haps still be explained by some residual vorticity in their

simulations.

The apparent necessity of vorticity may be a limita-

tion of current simulations, whose maximum magnetic
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Figure 4. (a) Similar to Figure 1, but now a1/2
Brms

(thicker lines) and the instantaneous rms velocity (thinner
lines) are plotted. The order of the colors is the same as
before, with black being for S = 0.2 and red for S = 56, and
solid (dashed) lines refer to helical (nonhelical) initial flows.
(b) Evolution separately for a1/2 (dashed-dotted lines) and
Brms (solid lines), again with the same colors as before with
black being for S = 0.2 and red for S = 56. Runs 3–7 and
Runs 10–14.

Reynolds number may still not be large enough, because

theoretically, small-scale dynamo action should also

be possible for irrotational turbulence (Kazantsev et al.
1985; Martins Afonso et al. 2019). We can study this

here in more detail by varying the value of ζ. In Fig-

ure 5 we plot the evolution of k∇·u/k0 and Brms for

runs with ReM = 900 and several values of ζ. It is

only when ζ is very close to unity that dynamo action
ceases. This suggests that very small amounts of vortic-

ity can suffice for successful dynamo action. The steady

increase of k∇·u/k0, which was also seen in the work of

Brandenburg & Ntormousi (2022), is just a consequence
of the more rapid decay of (∇ · u)rms compare to urms.

In Figure 6 we focus on several more values close to

unity and find that for ReM = 880, the critical value

of ζ is around 0.96. For larger values of ζ, there is no

growth; see Runs 20–23 and Runs 35–38. However, the
critical value of 1−ζ decreases with increasing magnetic

Reynolds number. For larger values of ReM, smaller

amounts of vorticity suffice for dynamo action. This is

shown in Figure 7, where we compare runs for ζ = 0.96

Figure 5. k∇·u/k0 (upper panel) and Brms (lower panel)
for ζ = 0.1 (red), 0.5 (orange), 0.9 (green), 0.95 (blue), and
1 (black). Runs 15–18 and Run 23.

Figure 6. kω/k0 (upper panel) and Brms (lower panel) for
1 (dotted black), 0.99 (solid black), 0.98 (blue), 0.97 (green),
0.96 (orange), and ζ = 0.95 (red). Runs 18–23.

with different values of ReM = 900, 1800, and 4500,

using 10243 meshpoints. This value of ζ led to a vor-
ticity that was the marginal value for obtaining growing

magnetic fields for ReM = 900. We see that, as we in-

crease ReM, the episode of growth becomes longer and

the maximum magnetic field larger.
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Figure 7. kω/k0 (upper panel) and Brms (lower panel)
for ReM = 900 (black), 1800 (blue), and 4400 (green). The
frequency of the oscillations is ω ≈ 15. The resolution is in
all cases 10243 mesh points. Runs 32–34.

It is of interest to define a Reynolds number based on

the vorticity as (Haugen et al. 2004; Elias-López et al.

2023, 2024)
Reω = ωrms/νk

2
0 , (13)

and to compute the critical value above which dy-

namo action occurs. Looking at Table 1, we see

that the threshold of ζ between 0.96 and 0.97 corre-
sponds to kω/k0 = 0.38 and 0.29, respectively, and

with ReM ≈ 900, the critical value is PrM Reω =

(kω/k0)ReM ≈ 300. This value is rather large, but it

is unclear whether the dynamo onset is indeed deter-
mined predominantly by Reω. If dynamos do indeed

work for purely acoustic turbulence (ζ = 1), as found by

Achikanath Chirakkara et al. (2021), the dynamo onset

could not depend on Reω alone.

3.4. Effect of scale separation

We have seen from Figure 6 that for very small val-

ues of 1 − ζ, the expected approach of kω to zero slows

down in the sense that the values are almost the same

for ζ = 1 and ζ = 0.99, and that for ζ = 0.98 is fur-
ther away. To check whether this is a consequence of

finite scale separation, i.e., the ratio between the lowest

wavenumber of the domain and the value of k0 not being

large enough, we present in Figure 8 runs with different
values of k0. As expected, we see that kω scales with

k0, so the ratio kω/k0 varies only little and lies in the

range 0.01 ≤ kω/k0 ≤ 0.02 after about 10–30 turnover

times. When we decrease the scale separation ratio to

Figure 8. kω/k0 for hydrodynamic runs with ζ = 1, ReM =
900, and different values of k0. For k0/k1 = 10, we also
compare with the magnetic run with ReM = 900. Runs 24–
27.

k0/k1 = 2, the run shows vigorous fluctuations. They

may indicate that the numerical resolution becomes in-
sufficient.

3.5. Growth of vorticity

In Figure 6, we have seen that for ζ = 0.95,

there can be growth of kω by a certain amount.

It is possible that this is caused either by mag-

netic driving (Kahniashvili et al. 2012) or by what is
known as magnetically assisted vorticity production

(Brandenburg & Scannapieco 2025). It is therefore also

useful to compare with the purely hydrodynamic case;

see Table 1.
For an isothermal gas, there is no baroclinic term,

which would be the main agent for producing vortic-

ity in nonisothermal flows. There is also no rotation

nor shear, both of which could lead to vorticity genera-

tion (Del Sordo & Brandenburg 2011; Elias-López et al.
2023, 2024). There remain only three possibilities

for driving or amplifying vorticity: (i) through viscos-

ity via gradients of the velocity divergence being in-

clined against density gradients, (ii) through magnetic
driving or magnetically assisted vorticity production

(Brandenburg & Scannapieco 2025), and (iii) through

nonlinearity.

The growth of vorticity through nonlinearity may be

motivated by the formal analogy with the induction
equation when the magnetic field is replaced by the vor-

ticity ω, i.e.,

∂ω

∂t
= ∇× (u× ω) + ω̇visc + ω̇mag, (14)

where ω̇visc = ν(∇2ω + ∇ × G) is the curl of the
viscous acceleration with Gi = 2Sij∇j ln ρ being a

vector characterizing the driving of vorticity even if

it was vanishing initially (Mee & Brandenburg 2006;

Brandenburg & Scannapieco 2025), and ω̇mag = ∇ ×
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Figure 9. Evolution of kω/k0 for different Mach numbers.
Runs 28–31.

Figure 10. Scaling of kω/k0 with the actual and initial
Mach numbers, Ma and Ma0, respectively. The slopes are
1.6 and 0.84, respectively. Runs 28–31.

(J ×B/ρ) is the vorticity driving from the curl of the
Lorentz force.

The analogy between induction and vorticity equa-

tions is obviously imperfect, because the velocity is

here directly related to the vorticity. This analogy has

been invoked by Batchelor (1950) to explain dynamo ac-
tion, but here we rather use it to motivate the question

whether vorticity can be amplified.

To distinguish between the various possibilities, we

must vary the viscosity, the Mach number, and the
initial magnetic field strength. One important clue is

given by the fact that the occurrence of vorticity de-

pends on the Mach number of the turbulence. This is

demonstrated in Figure 9, where we plot the evolution

of kω/k0 for different Mach numbers. Figure 10 shows
that kω scales with the actual and initial Mach numbers,

Ma and Ma0, respectively. The slopes for both scalings

are different, and somewhat shallower than the nearly

quadratic scaling found by Federrath et al. (2011a).
In all our runs, kω/k0 reaches a maximum at some

point. For runs 15–18, we see that (kω/k0)max increases

with increasing values of Bini; see Figure 11. Figure 12

shows that this increase is linear and not quadratic,

Figure 11. kω/k0 for hydromagnetic runs with ζ =
1, ReM = 1900, and different magnetic field strengths.
Runs 35–38.

Figure 12. Dependence of the maximum of kω/k0 on Bini

for hydromagnetic runs with ζ = 1, ReM = 900, and different
magnetic field strengths. The straight line indicates a linear
relationship. Runs 35–38.

which means that the vorticity is magnetically driven

rather than due to magnetically assisted growth; see

Brandenburg & Scannapieco (2025) for details on this

distinction. As seen from Table 1, the magnetic field

decays for these runs, so there is no dynamo action.

3.6. Spectral evolution

In Figure 13, we show the evolution of EK(k, t),
EV(k, t), and EM(k, t) for Run 34. This is our run with

the largest magnetic Reynolds number (ReM = 4500)

and has only 4% vorticity (ζ = 0.96), but shows clear

dynamo action. Its time trace is shown in Figure 7.

We see that both EK(k, t) and EV(k, t) decay, while
EM(k, t) increases both at large and small wavenumbers.

Overall, EV(k) is almost a hundred times smaller than

EK(k, t), but, similarly to EM(k, t), EV(k) also shows a

small temporal increase at small values of k. This is sug-
gestive of magnetic vorticity production via an inverse

cascade. Also, although EV(k, t) decays in the inertial

range, it bulges at k/k0 ≈ 4, which appears to be a

direct consequence of magnetic driving.
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Figure 13. Evolution of EK(k, t), EV(k, t), and EM(k, t)
for Run 34. The arrows indicate the sense of time. The first
time is shown as dotted lines to distinguish it better from
the next one, for which EM(k) is still very similar.

3.7. Instantaneous growth rate

For the magnetic energy to grow, the induction term
u ×B in Equation (4) has to overcome the dissipation

term. In the evolution equation for the mean magnetic

energy density, EM(t) ≡ 〈B2/2µ0〉, the term

〈J · (u×B)〉 ≡ −WL (15)

has to exceed the Joule dissipation, QM = 〈µ0ηJ
2〉. The

instantaneous growth rate of magnetic energy can then

be written as γ = (−WL − QM)/EM. The first term,
which can also be written as WL = 〈u · (J × B)〉, is

the work done by the Lorentz force. When it is nega-

tive, kinetic energy is used to drive magnetic energy; see

Equation (15).
Brandenburg & Ntormousi (2022) made use of the

fact that in two dimensions (2D), when no action is

possible, Equation (4) can be written as an advection–

diffusion equation, i.e., DA/Dt = η∇2A, where A is

Figure 14. Evolution of the pseudo growth rate γ (black
lines), with contributions from γ2D (blue lines) and the resid-
ual γ − γ2D (red lines), for Runs 23 (a), 32 (b), and 34 (c).

the component of A that is normal to the 2D plane.

This motivated them to decompose WL by expanding

B = ∇×A to get

−〈J ·(u×B)〉 = 〈Jiuj(Ai,j−Aj,i〉 ≡ W 2D
L +W 3D

L . (16)

Here, the first term is related to the advection term. The

second term, W 3D
L = −〈JiujAj,i〉, vanishes in 2D. Thus,

they identified W 3D
L with a contribution that character-

izes the 3D nature of the system and used it as a proxy
for dynamo action when it is large enough. They thus

defined

γ2D = −(W 2D
L +QM)/EM, γ3D = −W 3D

L /EM, (17)

so that γ2D + γ3D = γ.
In Figure 14, we plot the time dependences of γ, γ2D,

and γ3D = γ − γ2D for Runs 23 (no dynamo, because

kω is too small), 32 (weak dynamo), and 34 (strong dy-

namo, ReM is the largest). We see that γ2D is always
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Figure 15. Visualizations of Bz, ωz/u0k0, and ∇ ·u/u0k0 for Run 37 at early and late times. Note that the domain is cubic,
but the images have been stretched in the horizontal direction to take advantage of the full page size.

negative, except during an early phase for Run 34, which

can be associated with strong 2D tangling of the initial
magnetic field. When γ3D is added to γ2D, the resulting

instantaneous growth rate is positive during the early

part of the evolution of Run 32 and during the entire

evolution of Run 34.

3.8. Visualizations

In Figure 15, we present visualizations of Bz, ωz/u0k0,

and ∇·u/u0k0 for Run 37 at early and late times. There
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Figure 16. Physical magnetic field Bph (dashed red lines) and its comoving counterpart a2
Bph (black lines) versus physical

time (a) and conformal time (b) for Run B from Brandenburg & Ntormousi (2022) and Run 39 of the present paper.

is no significance in us having chosen the z component

ofB and ω; all three components are statistically equiv-

alent.

The magnetic field appears to preserve its initial
length scale corresponding to k = k0, and only the field

strength becomes weaker with time. By contrast, the

vorticity quickly develops small-scale patches that then

grow to larger-scale patches at later times. Note also
that the magnitude of ωz/u0k0 (about 0.01) is compa-

rable to that of Bz. This is reminiscent of the findings of

Kahniashvili et al. (2012), who reported a quantitative

agreement between the spectra of vorticity and magnetic

field.
For the velocity divergence, there is a much larger

decrease from the time tu0k0 = 3 to tu0k0 = 30. As

stated above, the compressive part of the velocity field,

which is reflected in the values and the appearance of∇·
u, decreases more strongly with time than the vortical

part, as reflected through the vorticity. We also see that,

although the initial scales are rather small, they still

seem to be sufficiently well resolved.

4. COMPARISON WITH PREVIOUS WORK

In our earlier paper (Brandenburg & Ntormousi

2022), we simulated gravitational collapse using nu-
merical simulations of decaying turbulence in a Jeans-

unstable domain at a resolution of 20482 mesh points.

We only found a weak increase of the magnetic field

with time. Given the knowledge of the collapse time

from the simulations, we can replace the pressure-less
free-fall time by the actual collapse time and express

the evolution of the rms magnetic field in comoving co-

ordinates. This allows us to see whether the growth is

close to exponential during any time interval.
The result is shown in Figure 16, where we computed

the conformal time and scale factor numerically based

on Equation (1). Here we used the empirical value of

tff ≈ 2.016/csk1, which yields s ≈ 0.78 csk0, and thus,

since u0/cs = 0.19 and k0/k1 = 10, we have S ≈ 0.4;

see Table 1, where it is called Run 39. The physical

values of the magnetic field are denoted by Bph. We

also plot the comoving values a2Bph both versus physical
and conformal time. Although there is a steady increase

of Brms, Figure 16(b) shows that the comoving magnetic

field does not follow an exponential growth in conformal

time, except for a very early time in the during 0 <
tu0k0 <∼ 0.4.

To understand why the exponential phase is so short

in this run, we compare its parameters with those of the

other runs presented in this paper; see Table 1. The

closest match is with Run 1. We see immediately that
the main problem with Run 39 is the small value of the

magnetic Reynolds number, which is 10 times smaller

than that of Run 1. In spite of the high resolution of

Run 39, the value of ReM could not have been chosen
larger because of the strong compression and large gradi-

ents suffered by the collapsing regions toward the end of

the run. This highlights the main advantage of choosing

supercomoving coordinates for collapse simulations.

5. CONCLUSIONS

When describing gravitational collapse in superco-

moving coordinates, the governing equations of magne-
tohydrodynamics are similar to the original ones, except

that now the scale factor appears in front of the Lorentz

force. This reduces the effective Lorentz force, because

a(t) becomes progressively smaller with time. Therefore,

in the limit of very short collapse times or large values
of s, the evolution approaches essentially the kinematic

evolution. This, however, does not mean unlimited con-

tinual growth, because the rms value of the turbulent

intensity is declining.
As shown previously (Brandenburg et al. 2019), de-

caying turbulence leads to an episode of exponential

growth if the magnetic Reynolds number is large enough.

The larger it is, the longer is the episode of exponential
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growth. This is essentially the result of a competition

against the decay of turbulence, which lowers the instan-

taneous value of the magnetic Reynolds number as time

goes on. The gravitational collapse changes this picture
only little if we view the decay in supercomoving coor-

dinates, because the collapse only affects the nonlinear

dynamics, and this nonlinearity gets weaker with time.

In the work of Irshad P et al. (2025), forced turbu-

lence was considered. Therefore, the magnetic field
could always be sustained, but the source of such driv-

ing remains unclear. The superexponential growth that

they reported, however, it still recovered in our decay

simulations, unless the free-fall time is longer than the
turnover time of the turbulence. In that case, the growth

is actually subexponential.

Our present work has also shown that even very small

amounts of vorticity can be sufficient to facilitate dy-

namo action. In particular, we find that the vorticity
can grow in concert with the magnetic field.

Earlier work on turbulent collapse and dynamo action

has suggested that gravitational collapse drives turbu-

lence and enhanced it (Sur et al. 2012; Xu & Lazarian
2020; Hennebelle 2021). Our work casts doubt on this

interpretation, because of two aspects. First, the col-

lapse dynamics reduces the effective nonlinearity, result-

ing in stronger apparent field amplification by the tur-

bulence, and second, there can be generation of vorticity
both from viscosity and from the magnetic field itself. It

should therefore be checked, whether these factors could

have contributed to the earlier findings of collapse-driven

turbulence.
As explained in Section 4, the transformation to su-

percomoving coordinates may also help analyzing exist-

ing simulations in physical coordinates. We argue that

for homogeneous collapse simulations that do not utilize

supercomoving coordinates, it is still useful to express
such results in terms of comoving quantities and confor-

mal time, because they might display exponential mag-

netic field growth that would be the perhaps strongest

indication of dynamo action so far.

Our work has applications not just to inter-

stellar clouds and primordial star formation (e.g.,

Schleicher et al. 2009; Hirano & Machida 2022;

Sharda et al. 2020), but also to larger cosmological
scales. Our results show that small amounts of vorticity

might suffice to produce dynamo action even in decaying

turbulence. This consideration is important for under-

standing magnetism in protohalos before the first stars

form and their feedback drives sufficient turbulence for
dynamo action (e.g., Schleicher et al. 2010).

Finally, our findings indicate that earlier simulations,

including our own high-resolution simulations at 20483

meshpoints, may still have had insufficient resolution to
follow the collapse and should be revisited using more

idealized settings that allow the usage of a comoving

frame.
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