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ABSTRACT

Context. Magnetic fields generated in the early Universe undergo turbulent decay during the radiation-dominated era. The decay is
governed by a decay exponent and a decay time. It has been argued that the latter is prolonged by magnetic reconnection, which
depends on the microphysical resistivity and viscosity. Turbulence, on the other hand, is not usually expected to be sensitive to
microphysical dissipation, which affects only very small scales.
Aims. We want to test and quantify the reconnection hypothesis in decaying hydromagnetic turbulence.
Methods. We performed high-resolution numerical simulations with zero net magnetic helicity using the Pencil Code with up to
20483 mesh points and relate the decay time to the Alfvén time for different resistivities and viscosities.
Results. The decay time is found to be longer than the Alfvén time by a factor that increases with increasing Lundquist number
to the 1/4 power. The decay exponent is as expected from the conservation of the Hosking integral, but a timescale dependence on
resistivity is unusual for developed turbulence and not found for hydrodynamic turbulence. In two dimensions, the Lundquist number
dependence is shown to be leveling off above values of ≈25 000, independently of the value of the viscosity.
Conclusions. Our numerical results suggest that resistivity effects have been overestimated in earlier work. Instead of reconnection,
it may be the magnetic helicity density in smaller patches that is responsible for the resistively slow decay. The leveling off at large
Lundquist number cannot currently be confirmed in three dimensions.
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1. Introduction

Decaying turbulence played an important role in the early Uni-
verse during the radiation-dominated era, when the magnetic
field is well coupled to the plasma. While turbulence speeds
up the decay, it can also lead to a significant increase in the
typical length scale, which could then be many times larger
than the comoving horizon scale at the time of magnetic field
generation (Brandenburg et al. 1996; Christensson et al. 2001;
Banerjee & Jedamzik 2004). This is important because magne-
togenesis processes during the electroweak era, when the age
of the Universe was just a few picoseconds (Vachaspati 1991;
Cheng & Olinto 1994; Baym et al. 1996), tend to produce mag-
netic fields of very small length scales of the order of 1 AU or
less (in comoving units).

From the study of decaying hydrodynamic turbulence, it has
been known for a long time that turbulent energy density and
length scale evolve as power laws (Batchelor 1953; Saffman
1967). The exponents depend on the physics of the decay, specif-
ically on the possibility of a conserved quantity that governs the
decay, for example magnetic helicity in the hydromagnetic case

(Hatori 1984; Biskamp & Müller 1999). The endpoints of the
evolution, however, depend on the relevant timescale, which is
traditionally taken to be just the turnover or, in the magnetic case
that we consider here, the Alfvén time (Banerjee & Jedamzik
2004). More recently, Hosking & Schekochihin (2023) argued
that the turnover time should be replaced by the reconnection
time, which could be significantly longer (up to 105.5 times). This
would result in an endpoint where the magnetic field strength
is greater and the turbulent length scale smaller than otherwise,
when the decay time is just the Alfvén time.

One of the hallmarks of turbulence is that its large-scale
properties are nearly independent of viscosity and resistivity,
which act predominantly on the smallest scales of the system.
On the other hand, magnetic reconnection is a process that could
potentially limit the speed of the inverse cascade. This idea
has been invoked by Hosking & Schekochihin (2023) to explain
a premature termination of the decay process by the time of
recombination of the Universe, when its age was about 400 000
years.

The purpose of our paper is to analyze numerical simula-
tions with respect to their decay times at different values of
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resistivity. In Sect. 2 we discuss the decay time and its relation
to other quantities. In Sect. 3 we present our numerical simula-
tion setup and show the results for a resistivity-dependent decay
in Sect. 4. We then make a comparison with a purely hydro-
dynamic decay in Sect. 5 and with the two-dimensional (2D)
hydromagnetic case in Sect. 6, before concluding in Sect. 8. In
Appendix A we provide a historical note on the anastrophy, i.e.,
the mean squared magnetic vector potential, and in Appendix B,
we show detailed convergence tests for some of our 2D results.

2. Decay and turnover times

In the following we focus on the decay of magnetic field. Mag-
netically dominated turbulence is characterized by the turbu-
lent magnetic energy density EM and the magnetic integral scale
ξM. Both EM(t) and ξM(t) can be defined in terms of the mag-
netic energy spectrum EM(k, t), such that EM =

∫
EM dk and

ξM =
∫

k−1EM dk/EM. In decaying turbulence, both quantities
depend algebraically rather than exponentially on time. There-
fore, the decay is primarily characterized by power laws,

EM ∝ t−p and ξM ∝ tq, (1)

rather than by exponential laws of the type EM ∝ e−t/τ. The
algebraic decay is mainly a consequence of nonlinearity. On the
other hand, in decaying hydromagnetic turbulence with signifi-
cant cross-helicity, for example, the nonlinearity in the induction
equation is reduced and then the decay is indeed no longer alge-
braic, but closer to exponential (see Brandenburg & Oughton
2018).

An obvious difference between algebraic and exponential
decays is that in the former EM(t) is characterized by the nondi-
mensional quantity p, while in the latter it is characterized by the
dimensionful quantity τ. Following Hosking & Schekochihin
(2023), a decay time τ can also be defined for an algebraic decay
and is then given by

τ−1 = −d lnEM/dt. (2)

In the present case of a power-law decay, this value of τ = τ(t)
is time-dependent and can be related to the instantaneous decay
exponent

p(t) = −d lnEM/d ln t (3)

through τ = t/p(t) (i.e., no new parameter emerges except for t
itself). However, a useful way of incorporating new information
is by relating τ to the Alfvén time τA = ξM/vA through

τ = CMξM/vA, (4)

where CM is a nondimensional parameter, and vA is the Alfvén
velocity, which is related to the magnetic energy density through
EM = B2

rms/2µ0 = ρv2
A/2, where ρ is the density, µ0 the vacuum

permeability, and Brms the root mean square (rms) magnetic field.
As was noted by Hosking & Schekochihin (2023), Eq. (4)

can be used to define the endpoints of the evolutionary tracks in
a diagram of Brms versus ξM or, equivalently, vA versus ξM (i.e.,
vA = vA(ξ)). They also noted that the location of these endpoints
is sensitive to whether or not CM depends on the resistivity of the
plasma. If it does depend on the resistivity, this could be ascribed
to the effects of magnetic reconnection, which might slow down
the turbulent decay.

Magnetic reconnection refers to a change in magnetic
field line connectivity that is subject to topological con-
straints. A standard example is x-point reconnection (see, e.g.,

Craig & McClymont 1991; Craig et al. 2005), which becomes
slower as the x-point gets degenerated into an extremely elon-
gated structure (Sweet 1958; Parker 1957; see Liu et al. 2022 for
a review). It is usually believed that in the presence of turbu-
lence, such structures break up into progressively smaller ones,
which makes reconnection eventually fast (i.e., independent
of the microphysical resistivity; Galsgaard & Nordlund 1996;
Lazarian & Vishniac 1999; Comisso & Sironi 2019). However,
whether this would also imply that τ becomes indepen-
dent of the resistivity remains an unclear issue. For exam-
ple, Galsgaard & Nordlund (1996) found that resistive heating
becomes independent of the value of the resistivity. Another
question concerns the speed at which magnetic flux can be pro-
cessed through a current sheet (Kowal et al. 2009; Loureiro et al.
2012). Also of interest is the timescale on which the topology of
the magnetic field changes (Lazarian et al. 2020). These differ-
ent timescales may not all address the value of CM that relates
the decay time to the Alfvén time.

In magnetically dominated turbulence, the effect of the resis-
tivity is quantified by the Lundquist number. For decaying tur-
bulence, it is time-dependent and defined as

Lu(t) = vA(t) ξM(t)/η. (5)

This quantity is similar to the magnetic Reynolds number if we
replace vA by the rms velocity, urms. Here, however, the plasma
is driven by the Lorentz force, so the Lundquist number is a
more direct way of quantifying the resistivity than the mag-
netic Reynolds number. The Alfvénic Mach number is defined
as MaA = urms/vA.

In addition to varying η, we also vary ν such that the mag-
netic Prandtl number PrM = ν/η is typically in the range 1 ≤
PrM ≤ 5. It is then also convenient to define the Lundquist num-
ber based on the reconnection outflow,

Luν(t) = Lu(t)/
√

1 + PrM (6)

(see Hosking & Schekochihin 2023 for details).

3. Numerical simulations

We performed simulations of the compressible hydromagnetic
equations for the magnetic vector potential A, the velocity u,
and the logarithmic density ln ρ in the presence of viscosity ν
and magnetic diffusivity η:

∂A
∂t

= u × B + η∇2 A, (7)

Du
Dt

=
1
ρ

[
J × B + ∇ · (2ρνS)

]
− c2

s∇ ln ρ, (8)

D ln ρ
Dt

= −∇ · u. (9)

We used a random magnetic field as the initial condition,
such that EM(k, 0) has a k4 subinertial range for k < kp

(Durrer & Caprini 2003), and a k−2 inertial range for k > kp
(Brandenburg et al. 2015). In all cases we chose kp/k1 = 60,
where k1 = 2π/L is the smallest wavenumber in our cubic
domain of size L3. In Eqs. (7) and (8), B = ∇ × A is the mag-
netic field, J = ∇ × B/µ0 is the current density, and Si j =
(∂iu j + ∂ jui)/2 − δi j∇ · u/3 are the components of the rate-of-
strain tensor S.

There is no magnetic helicity on average, but the fluctuations
in the local magnetic helicity density h = A · B lead to a decay
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Table 1. Summary of magnetohydrodynamic simulations analyzed in this paper.

Run ηk1/cs νk1/cs PrM Lu Luν CM C(1/4)
L Cξ CE τξ τE εK/εM MaA N3

M0 4 × 10−7 4 × 10−6 10 5400 1600 36.0 ± 1.4 4.2 91 0.39 0.82 0.28 0.9 0.20 20483

M1 4 × 10−7 2 × 10−6 5 5830 2600 30.5 ± 0.8 3.5 87 0.35 0.72 0.23 0.9 0.24 20483

M2 1 × 10−6 2 × 10−6 2 2354 1660 26.2 ± 0.3 3.8 81 0.32 0.63 0.20 0.6 0.28 20483

M3 1 × 10−6 5 × 10−6 5 2186 980 25.6 ± 0.6 3.7 80 0.32 0.74 0.22 0.8 0.25 10243

M4 2.5 × 10−6 5 × 10−6 2 823 580 20.1 ± 0.5 3.7 73 0.27 0.61 0.17 0.6 0.31 10243

M5 5 × 10−6 5 × 10−6 1 386 386 14.5 ± 0.7 3.3 64 0.23 0.45 0.12 0.5 0.38 10243

Notes. The time unit of τξ and τE is [t] = (csk1)−1.

Fig. 1. Visualization of Bz on the periphery of the computational domain
for Run M1, where PrM = 5.

behavior where the correlation integral of h, which is also known
as the Hosking integral, is conserved (Hosking & Schekochihin
2021; Schekochihin 2022; Zhou et al. 2022). We use the Pencil
Code (Pencil Code Collaboration 2021), which has also been
used for many earlier simulations of decaying hydromagnetic
turbulence (Zhou et al. 2022; Brandenburg et al. 2023). All our
simulations are in the magnetically dominated regime, because
the velocity is just a consequence of and driven by the magnetic
field.

Because the magnetic field is initially random, the result-
ing velocity is also random and it drives a forward turbu-
lent cascade with kinetic and magnetic energy dissipation rates
εK = 〈2νρS2

〉 and εM = 〈ηµ0 J2〉. Their ratio scales with
Pr1/3

M (Brandenburg 2014; Galishnikova et al. 2022). If kp/k1 is
large (we recall that we use the value 60), there is also an
inverse cascade (Brandenburg et al. 2015). The inverse cascade
was also found in the relativistic regime (Zrake 2014) and is
now understood to be a consequence of the conservation of the
Hosking integral (Hosking & Schekochihin 2021; Schekochihin
2022; Zhou et al. 2022). However, the role played by the Hosk-
ing integral is currently not universally accepted (Armua et al.
2023; Dwivedi et al. 2024). The lack of numerical support could
be related to insufficiently large values of kp/k1.

We define the kinetic energy spectrum EK(k, t) analogously
to EM(k, t), using the normalization

∫
EK(k, t) dk = EK(t) ≡

ρ0u2
rms/2, where ρ0 = 〈ρ〉 = const owing to mass conserva-

tion. In magnetically driven turbulence, EK is about one-tenth

Fig. 2. Visualization of Jz at z = π along with a zoom-in on the lower
left corner for Run M0, where PrM = 10, at t = 644. The value of ξM at
that time is indicated by the length of the short white lines.

of EM = B2
rms/2µ0, which seems to be surprisingly independent

of the physical input parameters (Brandenburg et al. 2017).
In Table 1 we summarize the results of five simulations,

Runs M0–M5, where we vary η and ν and also vary the number
of mesh points, N3. We present some relevant output parameters
that are defined below. They are all obtained from a statistically
steady stretch of our time series data, and the error bars were
calculated as the largest departure from any one-third of the time
series. A visualization of the z components of B on the periph-
ery of the computational domain for Run M1 is shown in Fig. 1.
Figure 2 shows Jz in an xy plane together with a zoom-in on
the lower left corner of the domain. The corresponding magnetic
and kinetic energy spectra are shown in Fig. 3 for different times
in units of [t] = (csk1)−1.

The EM(k, t) ∝ k−2 inertial range can be explained by weak
turbulence scaling (Brandenburg et al. 2015), but it becomes a
bit shallower near the dissipation subrange. This could follow
from some kind of magnetic bottleneck effect associated with
reconnection, analogously to the bottleneck effect in hydrody-
namic turbulence (Falkovich 1994).

It should be noted that at late times, the subinertial
range spectrum of EM(k, t) becomes shallower than the ini-
tial k4 slope. This is an artifact of poor scale separation (see
Brandenburg et al. 2023 for related numerical evidence). On the
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Fig. 3. Magnetic and kinetic energy spectra for Run M1 at different times. For large values of k there is a k−2 inertial range. The ∝k4 and ∝k2 slopes
are indicated for reference. As elsewhere, time is in units of [t] = (csk1)−1.

other hand, a k2 subinertial range for EK(k, t) has been seen for
some time (see Kahniashvili et al. 2013).

In our numerical simulations we use units such that cs =
k1 = ρ0 = µ0 = 1. The resistivity, µ0η, is therefore the same as
the magnetic diffusivity. Nevertheless, most of the results below
are expressed in manifestly nondimensional form.

4. Resistivity-dependent decay

We now analyze a collection of runs similar to those of the recent
works of Zhou et al. (2022) and Brandenburg et al. (2023), who
considered different values of Lu and also included some runs
with hyperviscosity and hyperresistivity, unlike what we present
in the present work. At variance with those earlier papers, where
the focus was always on the decay exponent p(t), here we focus
on the evolution of the decay time, τ(t) = t/p(t).

4.1. Decay time

The goal is to determine the prefactor in the scaling relation τ ∝
ξM/vA. Therefore, we write

t/p ≡ τ = CMξM/vA (10)

and determine

CM(t) = (t/p) vA(t)/ξM(t). (11)

We emphasize here that each of the terms is time-dependent,
including τ(t) = t/p(t), as already noted above. Interestingly,
it turns out that the quantity CM(t) eventually settles around a
plateau:

CM = lim
t→∞

CM(t). (12)

Here and in the following, when time-dependence is not indi-
cated, we usually mean that the value is obtained as a suitable
limit of the corresponding time-dependent function. In numeri-
cal simulations with finite domains, the limit t → ∞ needs to be
evaluated with some care to prevent the final result from being
contaminated by finite size effects. We do this by selecting a suit-
able time interval during which certain data combinations are
approximately statistically stationary. We refer to these results
as late-time limits.

In Fig. 4 we show that CM(t) and Lu(t) approach an approx-
imately constant value toward the end of the run. Time is given
both in units of [t] = (csk1)−1 and in initial Alfvén times,

Fig. 4. Approach of CM(t), Lu(t), and C(1/4)
L (t) to an approximately con-

stant value toward the end of the simulation for Run M1.

(vA0kp)−1, where vA0 =
√

2EM0 is the initial Alfvén velocity and
EM0 the initial magnetic energy density. Allowing for the possi-
bility of power-law scaling, CM = C(n)

L Lun, we also plot the pref-
actor C(n)

L (t) for n = 1/4 in the last panel of Fig. 4 (see details
below). Toward the end of the simulation, however, there is an
increase in the fluctuations, which follows from the decrease in
the magnetic energy.

As discussed below in more detail in connection with 2D
simulations, current sheets are underresolved at early times,
when ξM is small. As we now see from Fig. 4, this underesti-
mates the resulting value of CM. However, for t > 100, CM(t)
approaches a plateau, suggesting that the simulation now begins
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Fig. 5. Dependence of CM on Lu and Luν. An approximate scaling
∝Lu1/4 is found for Lu < 6000 and a piecewise power-law scal-
ing ∝Lu1/2

ν with different prefactors for the runs with higher viscosity
(5 × 10−6 red symbols and 4 × 10−6 for the green symbol) and lower
viscosity (2 × 10−6 blue symbols).

to be sufficiently well resolved, at least for the purpose of deter-
mining CM.

In Fig. 5 we show the dependence of CM on Lu and Luν. We
see an approximate scaling ∝Lun with n = 1/4 for Lu < 6000
and a piecewise power-law scaling ∝Lu1/2

ν , but with different
prefactors for the runs with larger and smaller values of the vis-
cosity. We note that for PrM � 1 we have Luν = vAξM/

√
ην,

which explains why the Lu1/2
ν scaling is found to be compati-

ble with being ∝Lu1/4. We also note, however, that for a higher
viscosity, the line Lu1/2

ν is shifted upward (toward larger values
of CM). Owing to the more complicated combined dependence
on ν and Luν, we continue to employ the simpler Lun scaling
for the following discussion. It is worth noting that the exponent
n = 1/4 is discussed in Uzdensky & Loureiro (2016) in connec-
tion with the fast growing mode of the tearing instability.

If it is really true that CM is proportional to Lun, as found
above, we can write CM = C(n)

L Lun, and then determine C(n)
L as

the late-time limit of

C(n)
L (t) =

t
p

v1−n
A

ξM
1+n η

n. (13)

This is the formula that was used to compute C(n)
L and to plot its

time-dependence C(n)
L (t) for n = 1/4 (see the last panel of Fig. 4).

From Table 1 we find 3.3 ≤ C(1/4)
L ≤ 3.8.

4.2. Evolution of EM(t) and ξM(t)

It is of interest to know whether the resistivity dependence of
CM(t) is equally distributed among ξM and vA (or EM). Figure 6
shows that there are indeed systematic differences in the decay
laws for different values of the resistivity, but the differences are
small and easily overlooked.

To examine the dependence of CM(t) on Lu, we write the
decay laws for ξM(t) and EM(t) in a more detailed form than
Eq. (1):

ξM(t) = ξM0 (1 + t/τξ)q, (14)

EM(t) = EM0 (1 + t/τE)−p. (15)

Fig. 6. Dependence of EM(t) and ξM(t) for three values of PrM.

Here the coefficients ξM0 and EM0 just depend on the initial con-
dition, and are thus not dependent on Lu, which means that the
Lu-dependence can only enter through the coefficients τξ and τE.
We can determine them as the limits of the time-dependent func-
tions τξ(t) and τE(t), which are obtained by inverting Eqs. (14)
and (15), and are given by

τξ(t) =
t[

ξM(t)/ξM0
]1/q
− 1

, (16)

τE(t) =
t

[EM(t)/EM0]−1/p − 1
. (17)

Figure 7 shows the evolution of τξ(t) and τE(t) for Runs M3–M5
with fixed and moderate viscosity.

Using the late-time limits of Eqs. (14) and (15), and those of
Eqs. (16) and (17), the equation for CM can now be decomposed
in the form

CM = CξCE, (18)

such that Eq. (11) is obeyed. Here we can determine Cξ and CE
as the late-time limits of

Cξ(t) = τqξM
−1 and CE(t) = τp/2vA. (19)

In this connection, it it important to remember that for a self-
similar evolution (Brandenburg & Kahniashvili 2017), which is
here approximately satisfied (see Fig. 3), we have

q + p/2 = 1, (20)

so that CM = (t/p) vA/ξM is obeyed. For t � τE, τξ, using again
τ = τ(t) = t/p(t), we have

Cξ ≈ (τξ/p)qξM0
−1 and CE ≈ (τE/p)p/2vA0, (21)

so that CM = (vA0/pξM0) τq
ξτ

p/2
E

. It is then natural to expect
that both τξ and τE scale in the same way with Lu as CM
itself. Equation (21) also allows us to compute the timescales
τξ = p (CξξM0)1/q and τE = p (CE/vA0)2/p.

In Fig. 8 we show the dependence of τξ and τE on Lu. While
the two show a similar dependence, approximately ∝Lu1/4, we
note that there is also possible evidence for a leveling off for
larger values of Lu.
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Fig. 7. Evolution of τE(t) and τξ(t) for three values of PrM with fixed
and moderate viscosity. These times tend to be approximately constant
at late times with values approximately consistent with those in Table 1.

Fig. 8. Dependence of τξ and τE on Lu. The two show a similar depen-
dence on Lu, approximately ∝Lu1/4, but there is possible evidence for a
leveling off for larger values of Lu.

5. Comparison with hydrodynamic decay

Hydrodynamic decay is characterized by the kinetic energy den-
sity EK(t) = ρ0u2

rms/2 and the hydrodynamic integral scale
ξK(t) =

∫
k−1EK dk/EK. We define the instantaneous kinetic

energy decay exponent pK(t) = −d lnEK/d ln t and the decay
time τK(t) = t/pK(t). We relate τK(t) to the turnover time urms/ξK
through τK = CKξK/urms, and thus determine CK as the late-time
limit of CK(t) = [t/pK(t)] urms(t)/ξK(t), which is defined analo-
gously to Eq. (11).

Purely hydrodynamic simulations can be performed by just
ignoring the magnetic field, or putting B = 0. In Table 2 we
summarize such simulations for different values of ν, which is
quantified by the Reynolds number: Re = urmsξK/ν. Figure 9
shows, for Re ≥ 100, that CK does not change much with Re.
This was not expected. It also confirms that the prolonged decay
time found in Sect. 4 is indeed a purely magnetic phenomenon.
Whether or not the resistivity dependence in the magnetic case
must be ascribed to reconnection remains an open question. As

discussed in Sect. 2, magnetic reconnection refers to topolog-
ically constrained changes of magnetic field lines, but in the
present case of a turbulent magnetic field there is no connec-
tion with the standard picture of reconnection. An obvious alter-
native candidate for explaining the resistively prolonged decay
time may be related to magnetic helicity conservation in local
patches, as described by the conservation of the Hosking inte-
gral. While this idea seems more plausible to us, it is not obvious
how to distinguish reconnection from magnetic helicity conser-
vation in patches. It is true that magnetic helicity would van-
ish in two dimensions, but in that case it should be replaced
by the anastrophy (see Appendix A for a historical note on this
word). One aspect that might be different between the concepts
of reconnection and magnetic helicity conservation in patches
could be the dependence on PrM. Our present results have not
yet shown such a dependence, which might support the idea that
the dependence on resistivity is related to magnetic helicity con-
servation in patches.

6. Hydromagnetic decay in two dimensions

We now perform 2D simulations where B = ∇ × ( ẑAz) lies
entirely in the xy plane (see Table 3 for a summary). Equation (7)
then reduces to

DAz

Dt
= η∇2Az, (22)

which obeys conservation of anastrophy, 〈A2
z 〉 = const

(Fyfe & Montgomery 1976; Pouquet 1978, 1993), and the mag-
netic helicity density vanishes pointwise, so the Hosking integral
is then also zero. These simulations are different from the recent
ones by Dwivedi et al. (2024), who performed 2.5D simulations.
In their case, there was a magnetic field component out of the
plane. The anastrophy was then not conserved and the Hosking
integral was finite.

As we stated above, our present measurements of CM as
a function of Lu cannot directly be compared with the recon-
nection rate determined by Loureiro et al. (2012), Comisso et al.
(2015), or Comisso & Bhattacharjee (2016). In addition, it is not
obvious how relevant a 2D simulation is in the present context
because in 2D the anastrophy is conserved, while the Hosking
integral is strictly vanishing.

In our present purely 2D simulations, values of Lu up to
about 3 × 105 have been reached. To allow for a longer nearly
self-similar evolution, we used kp/k1 = 200 instead of 60. The
simulation results give the prefactors in the scaling expected
from anastrophy conservation as

ξM(t) ≈ 0.13 〈A2
z 〉

1/4 t1/2, EM(t) ≈ 15 〈A2
z 〉

1/2 t−1, (23)

where µ0 = ρ0 = 1 is used. We also see from Fig. 10 that
the spectral peaks evolve underneath an envelope EM(k, t) ≤
60 〈A2

z 〉 k.
Figure 11 shows magnetic and kinetic energy spectra for

Run 2m2 with Lu = 1.8 × 105 collapsed on top of each other by
plotting ξM

β(t)EM
(
kξM(t)

)
versus kξM(t) for β = 1. This plot sug-

gests that the subinertial range scalings of EM(k, t) and EK(k, t)
are proportional to k5 and k3, respectively. Thus, they are steeper
than expected in 3D. This behavior is in some ways similar to
the steepening observed for helical decaying magnetic fields (see
Brandenburg & Kahniashvili 2017).

In Table 3 we also give the ratio εK/εM, which is seen to
increase with PrM (see Fig. 12). This was expected based on ear-
lier results (Brandenburg 2014; Galishnikova et al. 2022), but it
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Table 2. Summary of hydrodynamic simulations discussed in Sect. 5.

Run νk1/cs Re CK C(1/4)
L Cξ CE τξ τE N3

H1 1 × 10−7 573 5.5 ± 0.5 1.1 230 0.024 7.5 0.12 10243

H2 2 × 10−7 280 5.8 ± 1.0 1.4 234 0.024 7.8 0.12 10243

H3 5 × 10−7 134 4.9 ± 0.5 1.4 205 0.024 5.8 0.12 10243

H4 1 × 10−6 110 4.4 ± 0.6 1.4 164 0.027 3.5 0.16 10243

H5 2 × 10−6 35 3.7 ± 0.7 1.5 167 0.022 4.9 0.13 5123

Fig. 9. Dependence of CK on Re. The line Re0.1 is shown for compari-
son, but the data are also nearly compatible with being independent of
Re.

was never shown in the decaying case of magnetically domi-
nated turbulence. We see that εK/εM ∝ Pr0.7

M , which is similar
to the previously studied case with large-scale dynamo action
rather than the case with just small-scale action where the slope
was shallower. The ratio εK/εM is also found to increase with Lu,
at least for Lu � 106. As discussed in Brandenburg & Rempel
(2019), an increase in εK/εM with PrM may have implications
for heating the solar corona, where the possible dominance of
kinetic energy dissipation over Joule dissipation is not generally
appreciated (see Rappazzo et al. 2007, 2018 for earlier work dis-
cussing this ratio).

Although 2D and 3D runs are in many ways rather different
from each other, we now determine the same diagnostics as in
the 3D case (see Table 3 and Fig. 13 for a plot of CM versus Lu).
We see that the CM dependence on Lu is qualitatively similar
for 2D and 3D turbulence. Moreover, it becomes shallower for
larger values of Lu. There is now evidence that CM levels off
and becomes independent of Lu. It is possible to fit our data to a
function of the form

CM(Lu) ≈ C(1/4)
L

(
Lu

1 + Lu/Luc

)n

, (24)

where Luc = 2.5 × 104 is a critical Lundquist number charac-
terizing the point where the dependence levels off, n = 1/4,
and C(1/4)

L = 3.7. The value of Luc is larger than that found by
Loureiro et al. (2012), where the asymptotes for small and large
Lundquist numbers cross at a value closer to 5000. However, this
difference could simply be related to different definitions of the
relevant length scales. We note that our definition of ξM does not
include a 2π factor. A comparison with the Sweet–Parker value
of n = 1/2 results in reasonable agreement for small values of

Lu, but there are rather noticeable departures from the data for
intermediate values.

Our 2D and 3D results for CM are seen to be in good agree-
ment with each other, which is similar to the observation made
by Bhat et al. (2021). Obviously, larger simulations should still
be performed to see whether the agreement between 2D and 3D
continues to larger Lundquist numbers.

It should also be noted that some of our data with their nomi-
nal error bars do not lie on the fit given by Eq. (24) with n = 1/4.
Especially for PrM = 100 and smaller values of Lu, we see that
CM lies systematically below the fit. It should be noted, how-
ever, that we would expect an increase with PrM as (1 + PrM)1/2,
which is the opposite trend, if the reconnection phenomenology
were applicable (see Eq. (16) in Hosking & Schekochihin 2023).

To check whether our simulations are sufficiently well
resolved, we show in Fig. 14 a visualization of Jz(x, y) for
Run 2m6 with PrM = 10 and 163842 mesh points at t = 464
for a small part of the domain with sizes 2.8ξM(t) × 0.74ξM(t)
where a large current sheet breaks up into smaller plasmoids. A
comparison between Runs 2m5 and 2m6 with 81922 and 163842

mesh points is shown in Appendix B. Our main conclusions are
that higher resolution suppresses the tendency to produce ringing
(i.e., the formation of oscillations on the grid scale), but that the
results for CM are not very sensitive to the numerical resolutions,
as can be seen by comparing Runs 2m5 and 2m6 in Table 3.

Next, we compare the typical length and thickness of current
sheets in Run 2m6 with the values defined by Uzdensky et al.
(2010) for critical current sheets, Lc = Luc η/vA and δc =

Lc/Lu1/2
c , respectively. These lengths are indicated in Fig. 14.

Here we used Luc = 2.5 × 104 as the critical Lundquist number,
which was found to be representative of all of our cases. We see
that the current sheets in Fig. 14 have a length that is comparable
to ξM ≈ 7 Lc, because Lu ≈ 7 Luc. The thickness of the current
sheets is about 20 δc. They are marginally resolved with about
3∆x, where ∆x = 2π/16384 ≈ 3.8 × 10−4 is the mesh spacing.
Thus, the aspect ratio of thickness to length of the current sheets
is about 20 δc/7 Lc = (20/7) Lu−1/2

c ≈ 0.02. This is about three
times the nominal value estimated by Uzdensky et al. (2010) for
critical current sheets.

By comparison, Hosking & Schekochihin (2023) estimated
for the aspect ratio δc/ξM = Lu1/2

c /Luν. For Run 2m6 with Luν ≈
5 × 104, this yields 0.003, which is about six times smaller than
our value of 0.02. While these discrepancies could perhaps be
explained by the absence of nondimensional prefactors in the
definitions of δc, we must also consider the possibility that this
is simply a consequence of a lack of resolution.

Runs 2m2 and 2m6 have in common that they have the same
resistivity and nearly the same value of Lu of about 1.8×105, but
Run 2m2 has a tenfold larger viscosity than Run 2m6, so PrM is
increased from 10 to 100. We see that CM has deceased by only
about 15%, which is much less than what is expected if CM was
proportional to Pr−1/2

M .
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Table 3. Similar to Table 1, but for the 2D hydromagnetic simulations analyzed in Sect. 6. Here kp/k1 = 200.

Run ηk1/cs νk1/cs PrM Lu CM C(1/4)
L Cξ CE τξ τE εK/εM MaA N2

2m1 5 × 10−9 5 × 10−7 100 75 000 36.7 ± 4.6 2.2 221 0.164 0.34 1.26 13 0.41 16 3842

2m2 2 × 10−9 2 × 10−7 100 182 000 39.5 ± 1.0 1.9 241 0.164 0.41 1.25 21 0.43 16 3842

2m3 1 × 10−9 1 × 10−7 100 358 000 42.7 ± 1.7 1.7 254 0.168 0.46 1.30 33 0.44 16 3842

2m4 1 × 10−9 2 × 10−8 20 356 000 43.8 ± 2.5 1.8 248 0.175 0.50 1.50 11 0.44 81922

2m5 2 × 10−9 2 × 10−8 10 178 000 43.9 ± 3.0 2.1 247 0.177 0.49 1.53 6.0 0.44 81922

2m6 2 × 10−9 2 × 10−8 10 178 000 45.3 ± 1.8 2.2 254 0.178 0.47 1.45 6.0 0.44 16 3842

2M1 4 × 10−9 2 × 10−8 5 90 800 42.5 ± 2.1 2.4 241 0.175 0.47 1.34 3.5 0.45 81922

2M2 2 × 10−8 1 × 10−7 5 19 000 36.8 ± 2.6 3.1 217 0.169 0.37 1.40 2.9 0.45 81922

2M3 1 × 10−7 5 × 10−7 5 3900 30.2 ± 2.0 3.8 191 0.157 0.34 1.36 1.5 0.42 40962

2M4 1 × 10−7 5 × 10−7 5 770 18.9 ± 0.6 3.6 347 0.054 1.30 3.66 0.8 0.42 40962

2M5 1 × 10−9 1 × 10−9 1 365 000 44.1 ± 1.8 1.8 252 0.175 0.52 1.49 0.7 0.44 81922

2M6 5 × 10−9 5 × 10−9 1 72 300 39.9 ± 1.9 2.4 232 0.171 0.43 1.43 0.8 0.46 81922

2M7 2 × 10−8 2 × 10−8 1 18 700 36.8 ± 1.7 3.1 233 0.157 0.44 1.23 0.8 0.46 81922

2M8 1 × 10−7 1 × 10−7 1 3830 31.0 ± 0.7 3.9 213 0.146 0.35 1.07 0.7 0.45 81922

2M9 5 × 10−7 5 × 10−7 1 742 18.7 ± 0.8 3.6 156 0.119 0.22 0.83 0.5 0.51 40962

2M10 5 × 10−7 5 × 10−7 1 125 10.0 ± 0.4 3.0 284 0.035 0.83 1.66 0.5 0.63 40962

Fig. 10. Similar to Fig. 3, but for Run 2M1. The magnetic peaks lie underneath a kβ envelope with β = 1, as expected in the case of anastrophy
conservation.

Fig. 11. Magnetic energy spectra (left) and kinetic energy spectra (right) for Run 2m2 with Lu = 1.8 × 105 and PrM = 100, at times t = 5, 20, 100,
and 400, collapsed on top of each other by plotting both vs kξM(t) and scaling them with ξM. This makes their heights agree, as expected.

In Fig. 15 we show for Runs 2m2 and 2m6 magnetic field
profiles, −Bx(y) and By(y), and velocity profiles, −ux(y) and
uy(y), through a particular current sheet. We see that in Run 2m2
with PrM = 100, the profiles are much smoother, even though
the value of Lu = 1.8 × 105 is the same in both cases. Thus, the
viscosity has a significant effect in smoothing the magnetic field.
Even so, the effect on the value of CM is small.

7. Endpoints in the primordial evolutionary diagram

The evolution of primordial magnetic fields is usually displayed
in an evolutionary diagram showing the comoving values of
Brms versus ξM or, similarly, vA versus ξM. This dependence
corresponds to a power law of the form vA = vA0(ξM/ξM0)κ.
Since ξM(t) ∼ tq, we have vA(t) ∼ t−p/2 ∼ ξM

−p/2q, so
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Fig. 12. Dependence of εK/εM on PrM. The solid line denotes 1.3 Pr0.7
M ,

but many of the data points, predominantly those with smaller Lu, are
beneath that line. The inset shows that for PrM = 100, εK/εM increases
with Lu like Lu0.6.

Fig. 13. Dependence of CM on Lu for the 2D runs. Shallow scaling
∝Lu0.1 is found for 104 < Lu < 105, which is also compatible with a
leveling off at Luc = 2.5 × 104, as described by Eq. (24) with n = 1/4.
The black (red) data points are for PrM = 5 (PrM = 1). The blue data
points denote the 3D results from Sect. 4. The orange symbols are for
the runs with PrM = 10 and 20, listed in Table 3. The thin dotted line
gives Eq. (24) with n = 1/4 for comparison.

κ = p/2q = 5/4 for the Hosking scaling with p = 10/9 and
q = 4/9.

Following Banerjee & Jedamzik (2004), the time t in
Eq. (10) would be replaced by the age of the Uni-
verse at the time of recombination, trec. As emphasized by
Hosking & Schekochihin (2023), this gives an implicit equa-
tion for the magnetic field at recombination with the solution
B(trec) ≈ 10−8.5 G (ξM/1 Mpc) = 10−14.5 G (ξM/1 pc) if CM = 1.
However, B(trec) would be much larger and ξM much smaller
when CM � 1 is taken into account.

Under the hypothesis of fast reconnection owing to plasmoid
instability (Bhattacharjee et al. 2009; Uzdensky et al. 2010),
Hosking & Schekochihin (2023) estimated CM as the square
root of an effective cutoff value of about 104 for the Lundquist
number and an additional factor of Pr1/2

M . Here, they estimated
PrM ≈ 107, so CM = 105.5 and B(trec) ≈ 10−3 G (ξM/1 Mpc) =
10−9 G (ξM/1 pc).

Our new results challenge the reliability of the anticipated
dependence of CM on PrM. With the current results at hand,
Fig. 13 suggests that CM never exceeds the value 3.7 Lu1/4

c ≈

47, even for PrM as large as 100. Particularly important is
the fact that this result is independent of PrM. Given that
Hosking & Schekochihin (2023) used PrM ≈ 107, which yielded
an extra 103.5 factor, and therefore CM = 105.5 in their estimate,
our new findings imply that the resistivity effect is actually inde-
pendent of PrM. Although this has so far only been verified for
values of PrM ≤ 5, we suggest that a more accurate formula for
the endpoints of the evolution with CM = 47 ≈ 101.7 would be
B(trec) ≈ 10−6.8 G (ξM/1 Mpc) = 10−12.8 G (ξM/1 pc). These val-
ues are still above the lower limits inferred from suppressed GeV
photon emission from the halos of blazars (Neronov & Vovk
2010).

8. Conclusions

The present results have shown that, up to the largest Lundquist
numbers accessible to our present direct numerical simulations
with 20483 mesh points, the decay times depend on the resistiv-
ity. Only for our 2D simulations do we see evidence for a cutoff.
The dependence of hydromagnetic turbulence properties on the
value of the resistivity is unusual for fully developed turbulence.
We wonder whether our results reflect just a peculiar property of
decaying turbulence or whether there could also exist aspects of
statistically stationary turbulence that depend on the microphys-
ical resistivity. Possible examples of resistively controlled time
dependences could include the time that is needed to develop the
final saturated magnetic energy spectrum in kinetically forced
turbulence, where the magnetic field emerges due to a dynamo
action (Haugen et al. 2003; Schekochihin et al. 2004). A resis-
tively slow adjustment phase is reminiscent of what occurs for
helical magnetic fields (Brandenburg 2001), where it has also
been possible to measure a weak resistivity dependence of the
turbulent magnetic diffusivity (Brandenburg et al. 2008).

In the present 3D case, the magnetic helicity vanishes on the
average. However, in the spirit of the Hosking phenomenology
of a decay controlled by the conservation of the Hosking inte-
gral, it is very possible, even in decaying turbulence, that the
conservation of magnetic helicity in patches of one sign of mag-
netic helicity plays an important role in causing the resistively
controlled decay speed. Whether or not this is equivalent to talk-
ing about reconnection remains an open question. As discussed
in Sect. 2, the idea of reconnection in terms of current sheets and
plasmoids may not be fully applicable in the context of turbu-
lence, where magnetic structures are more volume filling than in
standard reconnection experiments (see Fig. 2). Additional sup-
port for a possible mismatch between classical reconnection the-
ory and turbulent decay times comes from our numerical finding
that the dependence of CM on Lu seems to be independent of
the value of PrM (see Fig. 13). More extensive numerical studies
with resolutions of 81923 meshpoints, which was the resolution
needed to see a leveling off in 2D, might suffice to verify our 2D
findings in the 3D case.

Our present work motivates possible avenues for future
research. One choice is to do the same for turbulence with a
−αu friction term in the momentum equation. Such calcula-
tions were already performed by Banerjee & Jedamzik (2004)
and the friction term is also incorporated in the phenomenol-
ogy of Hosking & Schekochihin (2023). This is to model the
drag from photons when their mean-free path begins to exceed
the scale ξM. This is the case after the time of recombination,
when it contributes to dissipating kinetic energy and leads to
a decoupling of the magnetic field. The field then becomes
static and remains frozen into the plasma. According to the
work of Hosking & Schekochihin (2023), this results in a certain
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Fig. 14. Visualization of Jz(x, y) of Run 2m6 with PrM = 10, Lu = 1.8 × 105, Luν ≈ 5 × 104, and 163842 mesh points at t = 464 for a small part
of the domain with sizes 2.8ξM(t) × 0.74ξM(t). The lengths of 100 δc, 2Lc, and ξM are indicated by horizontal white solid, dashed, and dotted lines,
respectively. The thickness of the current sheet corresponds to about 3∆x ≈ 21 δc. In its proximity, there are also indications of ringing, indicated
by the black circle.

Fig. 15. Magnetic field profiles [−Bx(y) and By(y) in red] and velocity profiles [−ux(y) and uy(y) in blue] through the current sheet (in black) for
Run 2m2 (through x = 0.372) and Run 2m6 (through x = 0.270).

reduction of CM compared to the resistively limited value. Veri-
fying this with simulations would be particularly important.

Another critical aspect to verify is the absence of a depen-
dence of CM on PrM over a broader range of parameter com-
binations. Given that there are always limitations on the reso-
lution, it may be useful to explore simulations in rectangular
domains to cover a larger range of scales. Other possibilities
include simulations with time-dependent values of η and ν to
obtain a larger separation between ξM and the dissipation scale
near the end of the simulation. However, there is the danger that
artifacts are introduced that need to be carefully examined. Ill-
understood artifacts can also be introduced by using hypervis-
cosity and hyperresistivity, which are used in some simulations.
For the time being, however, the possibility of a PrM dependence
of CM cannot be confirmed from our simulations. Whether or
not this automatically rules out reconnection as the reason for a
resistively limited value of CM, instead of the idea of magnetic
helicity conservation in smaller patches, remains uncertain.

As the value of PrM is increased, we also see a systematic
increase in the kinetic-to-magnetic dissipation ratio, εK/εM. Such
a dependence has previously been seen for kinetically dominated
forced turbulence, but it is shown here, perhaps for the first time,
for magnetically dominated decaying turbulence. While such
results may be of interest to the problem of coronal heating, it
should be remembered that the present simulations have large
plasma betas (i.e., the gas pressure dominates over the magnetic

pressure). It would therefore be of interest to check whether the
obtained PrM-dependence also persists for smaller plasma beta.
The restriction to two dimensions is another computational sim-
plification that allowed significantly larger Lundquist numbers
to be accessed, but it needs to be checked that the results for
εK/εM are not very sensitive to this restriction. Comparing the
3D Runs M1 and M3 of Table 1 with the 2D Run 2M3 of Table 3,
which have PrM = 5 and similar Lundquist numbers, we see that
the 2D results may overestimate the ratio εK/εM by a factor of
about two. Future work will need to show whether this can also
be confirmed for other parameters.
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Appendix A: Historical note on anastrophy

In recent years, the term anastrophy for the mean squared mag-
netic vector potential 〈A2

z 〉 = const has become increasingly pop-
ular (Tronko et al. 2013; Galtier & Meyrand 2015; Zhou et al.
2021; Hosking & Schekochihin 2021; Schekochihin 2022). In
the 1970s, it was referred to as mean square vector potential
(Fyfe & Montgomery 1976) or as the variance of the magnetic
potential (Pouquet 1978). The term anastrophy was first used in
the 1987 Les Houches lecture notes by Pouquet (1993), and it
was also used by Vakoulenko (1993), but neither of them pro-
vided an explanation of its origin.

Annick Pouquet (2024, private communication) informed us
now that the word may have been invented by Uriel Frisch and
Nicolas Papanicolaou during a meeting on a Winter Sunday in
the late 1970s at Saint-Jean-Cap-Ferrat, while she and Jacques
Léorat were also present.

The word has Greek roots, where ‘strophe’ refers to curl or
turning, and ‘ana’ therefore hints at the inverted curl of B. This
is somewhat reminiscent of the word palinstrophy, which is the
mean squared double curl of the velocity, where ‘palin’ means
again. This term was also invented by Frisch and Papanicolaou.
The palinstrophy is proportional to the rate of change of enstro-
phy, i.e., the mean squared vorticity.

Appendix B: Resolving the plasmoid instability

The expected thickness of critical layers (i.e., the minimum
thickness of current sheets when they become unstable to the
plasmoid instability) is expected to be on the order of δc (see
Sect. 6). To compare this with our 2D simulations, we show in
Fig. 10 visualizations of Jz(x, y) in parts of the full domain with
sizes 5ξM × 10ξM at times t = 1, 10, 100, and 464. We note

that ξM(t) increases with time, so the x and y ranges increase
with time too. We see that each panel contains about one pair
of current tubes. Furthermore, the other length scales, Lc and δc,
increase with time by the same factor, as expected for a self-
similar evolution.

At late times, for t = 100 and 464, the current sheets
are seen to break up into plasmoids. They are obviously better
resolved in Run 2m6 with 163842 mesh points than in Run 2m5
with only 81922 mesh points. At lower resolution, there is a
higher tendency for ringing (i.e., the formation of oscillations
on the grid scale), which indicates that the resolution limit has
been reached. Nevertheless, Table 3 and Fig. 13 show that,
within the error bars, the values of CM are similar for the two
resolutions.

It is possible that the critical current sheets are not well
resolved during a significant fraction of the duration of the sim-
ulation. Theoretically, we expect the thinnest sheets to set the
reconnection rate, but this is also the place where the value of
PrM matters because viscosity is unimportant for the larger scales
in the plasmoid hierarchy. Therefore, if we do not resolve that
sheet, it seems reasonable that we would also not see a depen-
dence on PrM. To check this, we now consider a version of
Run 2m2, where the viscosity is ten times larger, which increases
PrM from 10 to 100; see Run 2m6. The result is shown in
Fig. B.1. We see that a lower value of Lu for PrM = 100 changes
the results in an expected fashion, thus rejecting the possibility
that the weak dependence of CM on PrM was an artifact of hav-
ing chosen unreliably large values of Lu; compare Runs 2m1 and
2m2 in Fig. B.2.

In the bottom right panel of Fig. B.1, we see the same current
sheet that was already presented in Sect. 6 as Fig. 14. However,
we also see in Fig. B.1 that there are many other current sheets
that are not yet in the process of breaking up.
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Fig. B.1. Comparisons of visualizations of Jz(x, y) for Runs 2m5 and 2m6 with PrM = 10 and 81922 (left) and 163842 (right) mesh points at times
t = 1, 10, 100, and 464. In each panel the lengths of the dotted, dashed, and solid lines denote the values of ξM, 5 Lc, and 500 δc. The bottom right
panel shows the same current sheet that was presented in Fig. 14 as a blow-up. The thick white line in that panel at (x, y) = (0.27, 0.25) marks the
location of the cross section shown in Fig. 15.
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Fig. B.2. Similar to Fig. B.1, but for Run 2m1 with Lu = 75, 000 (left) and Run 2m2 with Lu = 182, 000 (right) using PrM = 100 and 163842 mesh
points in both cases. The thick white line in the bottom right panel at (x, y) = (0.37, 0.25) marks the location of the cross section shown in Fig. 15.
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