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Abstract

Primordial magnetic fields (PMFs) are possible candidates for explaining the observed magnetic fields in galaxy
clusters. Two competing scenarios of primordial magnetogenesis have been discussed in the literature: inflationary
and phase-transitional. We study the amplification of both large- and small-scale correlated magnetic fields,
corresponding to inflation- and phase transition–generated PMFs, in a massive galaxy cluster. We employ high-
resolution magnetohydrodynamic cosmological zoom-in simulations to resolve the turbulent motions in the
intracluster medium. We find that the turbulent amplification is more efficient for the large-scale inflationary
models, while the phase transition–generated seed fields show moderate growth. The differences between the
models are imprinted on the spectral characteristics of the field (such as the amplitude and the shape of the
magnetic power spectrum) and therefore also on the final correlation length. We find a one order of magnitude
difference between the final strengths of the inflation- and phase transition–generated magnetic fields, and a factor
of 1.5 difference between their final coherence scales. Thus, the final configuration of the magnetic field retains
information about the PMF generation scenarios. Our findings have implications for future extragalactic Faraday
rotation surveys with the possibility of distinguishing between different magnetogenesis scenarios.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamical simulations (1966); Galaxy clusters (584);
Primordial magnetic fields (1294); Intracluster medium (858)

1. Introduction

Galaxy clusters, the largest virialized structures of the
universe, reveal the existence of large-scale correlated magnetic
fields in the dilute plasma between galaxies that is known as the
intracluster medium (ICM). Studies of Faraday rotation
measures, as well as diffuse radio emissions in the form of
radio halos and radio relics, have probed the strength and
morphology of the ICM magnetic field (see, e.g., Govoni &
Feretti 2004; Brüggen et al. 2012; van Weeren et al. 2019, for
reviews). These different observational methods infer a field
strength of the order of microGauss and coherence scales
reaching a few tens of kiloparsecs in galaxy clusters (see, e.g.,
Govoni & Feretti 2004; van Weeren et al. 2019).

Despite their ubiquity, the origins of cluster magnetic fields
remain elusive. A commonly accepted hypothesis is that weak
seed magnetic fields, generated from an initially zero magnetic
field (Rees 1987), are amplified during structure formation, via
the combined effects of adiabatic compression and a small-
scale dynamo (see, e.g., the recent review by Donnert et al.
2018). It is debatable whether these seed magnetic fields are
produced in the early universe by primordial magnetogenesis or
whether they are produced at a later epoch, during structure
formation, by astrophysical mechanisms (e.g., the Biermann

battery mechanism and the Weibel instability—Biermann 1950;
Lazar et al. 2009). In the primordial scenario, magnetic fields
originating in the early universe, i.e., primordial magnetic fields
(PMFs), have volume-filling fractions that are close to unity,
making them good candidates for explaining the magnetization
of cosmic voids. This scenario is favored by observations of
blazar spectra that rule out the possibility of a zero magnetic
field in the intergalactic medium (IGM; see Ackermann et al.
2018, and references therein). On the other hand, the
astrophysical scenario requires efficient transport mechanisms
of magnetic energy toward larger scales, to explain the possible
magnetization of cosmic voids. Galactic winds (Kronberg et al.
1999; Bertone et al. 2006) as well as jets and lobes from radio
galaxies (Daly & Loeb 1990) have been proposed as such
efficient transport processes. However, the significance of the
volume-filling factor of such a locally generated and trans-
ported magnetic field remains unclear (see, e.g., Dolag et al.
2011; Bondarenko et al. 2022).
PMFs could result from different magnetogenesis scenarios.

Their post-recombination magnetic structure and the field
coherence scale depend on: (1) the details of the particular
magnetogenesis model; and (2) evolutionary trends in the
pre-recombination universe. A primordial seed field could
be generated during inflation or phase transitions (see
Subramanian 2016; Vachaspati 2021, for recent reviews). In
inflationary magnetogenesis, the coherence scale of the
quantum-mechanically produced seed magnetic field can be
stretched on superhorizon scales. However, the conformal
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invariance of the electromagnetic action must be broken (see,
e.g., Dolgov 1993) in order to achieve sufficiently strong seed
fields for their subsequent growth at later epochs. This is
usually ensured by the coupling of the electromagnetic action
with scalar fields, such as the inflaton (Turner & Widrow 1988;
Ratra 1992), or by nonminimal coupling with the scalar-tensor
gravity, as has been proposed by Mukohyama (2016). Contrary
to the inflationary scenario, the coherence scale of the phase
transition–generated field is limited by the Hubble horizon
scale, and it is a sizeable fraction of the Hubble scale. The
electroweak or quantum-chromodynamical (QCD) phase
transitions produce seed fields through nonequilibrium pro-
cesses, e.g., during the collision (Ahonen & Enqvist 1998;
Copeland et al. 2000) and nucleation (Cheng & Olinto 1994;
Sigl et al. 1997) of bubbles of different phases (see Kandus
et al. 2011, for a review). Both inflation- and phase transition–
generated seed fields are assumed to have a stochastic
distribution. In addition, in the inflationary scenario, the
constant, spatially uniform magnetic field is predicted by the
Mukohyama model (Mukohyama 2016; Brandenburg et al.
2020).

The evolution of PMFs proceeds as “freely decaying
turbulence” in the radiation-dominated epoch (see, e.g.,
Brandenburg et al. 1996; Christensson et al. 2001; Banerjee
& Jedamzik 2004; Kahniashvili et al. 2016; Brandenburg et al.
2018). The correlation length of the small-scale (phase-
transitional) as well as the large-scale (inflationary) correlated
primordial field increases, although much more efficiently in
the former case, due to an inverse cascade (Kahniashvili et al.
2010; Brandenburg et al. 2018). The field is expected to freeze
and retain its characteristic spectral profile, from the moment of
recombination until reionization. The formation of massive
structures, such as galaxy clusters, and the subsequent
amplification of PMFs on corresponding scales (see Donnert
et al. 2018, for a review), can be studied with cosmological
magnetohydrodynamic (MHD) simulations (see, e.g., Dolag
et al. 1999a; Dubois & Teyssier 2008; Xu et al. 2009; Vazza
et al. 2014; Marinacci et al. 2018). In the present paper, we
study the amplification of the two types of PMFs in a massive
galaxy cluster with the Enzo code (Bryan et al. 2014), using
the adaptive mesh refinement (AMR) technique. For the first
time, we compare the evolution of small- and large-scale
correlated PMFs, consistent with different inflationary and
phase-transitional primordial magnetogenesis scenarios.

The structure of this paper is as follows. In Section 2, we
discuss our physical model and our motivation for studying
different PMFs. In Section 3, we describe our numerical setup,
the initial conditions, and the details of the simulated galaxy
cluster. In Section 4, we present our results. Finally, we discuss
possible numerical caveats in Section 5, and we summarize our
main results in Section 6.

2. Physical Model

In this section, we describe the spectral characteristics of the
inflation- and phase transition–generated PMFs that are used as
the initial conditions in our simulations. Regardless of the
magnetogenesis scenario, it is generally expected that after
generation, the primordial seed magnetic field is frozen in, and
the amplitude of the (physical) magnetic field decreases with
the expansion of the universe, Bphys∝ 1/a2; equivalently,
magnetic field lines are adiabatically stretched, with a phys

2 3rµ
scaling, where ρphys is the gas density. This treatment of the

magnetic field may be justified in a highly conducting fluid,
such as the hot plasma in the early universe, if there is no
turbulence. However, the concept of simple adiabatic dilution
has to be abandoned, when the effects of turbulence can
become important. Turbulent magnetic fields could be
generated either at the end of inflation, through the inflaton
decay to standard model fields, or during phase transitions,
through collisions between the expanding bubbles of the new
phase (see Subramanian 2016; Vachaspati 2021, for reviews),
and they could alter the evolution of different primordial seed
magnetic fields. Random magnetic fields could also be
generated when the phase transition only involves a smooth
crossover to the new phase, without bubbles. In the following,
we discuss how the statistical properties of the inflation- and
phase transition–generated magnetic fields are modified when
taking into account their turbulent (pre-recombination) evol-
ution after their generation.
In the statistical framework, the description of PMFs relies

on the definition of the magnetic energy power spectra and
their characteristic length scales (also see the discussion in
Section 3 of Mtchedlidze et al. 2022; hereafter, Paper I). The
magnetic energy power spectrum EB(k) is often conveniently
split into its large-scale, EB

LS, and small-scale, EB
SS, parts. The

transition from large-scale to small-scale spectra occurs at the
scale corresponding to the wavenumber kpeak. In the case of
phase transition–generated PMFs, this scale corresponds to the
phase transition bubble size and cannot exceed the Hubble
horizon size at the moment of field generation (see, e.g.,
Kahniashvili et al. 2010). After their generation, the decaying
turbulence leads to a magnetic energy spectrum, which can
either be E kB

LS 2µ , commonly known as the “Saffman
spectrum” (Hogan 1983), or E kB

LS 4µ , known as the
“Batchelor spectrum” (Davidson 2004). As Kahniashvili
et al. (2010) have shown, the realization of these spectra
depends on the driving nature of the turbulent magnetic field. If
the turbulence is driven through kinetic energy injection, the
magnetic field develops a spectrum close to the E kB

LS 4µ
(Batchelor) spectrum; if the initial driver is a magnetic field,
then the spectrum is shallower than E kB

LS 3µ . In addition, the
recent work of Brandenburg et al. (2023b) has shown that in
the former scenario (weak magnetic fields), the Batchelor and
Saffman spectra result from small-scale dynamo action, in its
kinematic and saturated states, respectively. The Batchelor
spectrum is also expected from the causality condition being
combined with the divergence-free field condition (Durrer &
Caprini 2003). Finally, on smaller scales, a turbulent magnetic
cascade with E kB

SS 5 3µ - is expected for both the Saffman and
Batchelor spectra.
The inflationary scenario, in turn, predicts a magnetic energy

spectrum that can be nearly scale-invariant at the moment of
generation, i.e., EB(k)∝ k−1. This scaling is further modified,
due to turbulent decay during the pre-recombination epoch, and
results in a Kolmogorov k−5/3 spectrum by the end of
recombination (Kahniashvili et al. 2017). It should be noted
that a transition to the k4 spectrum (IR cutoff) could also be a
possible outcome of inflation, although on much larger scales
than the characteristic scale for phase-transitional scenarios,
that is, k kpeak

infl
peak
PT (see, e.g., Brandenburg et al. 2018). In

this case, Brandenburg et al. (2018) found that for a certain
wavenumber range (close to the peak of the spectrum,
k kpeak

infl> ), the power spectrum will still be characterized by
the scale-invariant spectrum.
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In the present work, we explore two phase transition–
generated PMFs that are characterized by a Saffman spectrum
and a Batchelor spectrum, respectively, and two inflationary-
generated PMFs that are characterized by a turbulent spectrum
and by a Dirac delta function (in Fourier space, corresponding
to a uniform magnetic field), respectively. The latter model
serves as a comparison to our simulations with other
cosmological simulations, where a uniform seed magnetic field
is commonly assumed as an initial condition (see, e.g., Dolag
et al. 1999b; Marinacci et al. 2015; Vazza et al. 2018).
Nevertheless, the physical generation of a uniform seed
magnetic field in the early universe has been predicted to be
plausible under specific conditions by Mukohyama (2016).
Hereafter, we refer to this model as the Mukohyama model, and
we also refer the reader to Brandenburg et al. (2020), and the
references therein, for more details.

We adopt these models as our initial magnetic conditions,
despite our relatively low initial resolution of 312.5 h−1ckpc,
where the “c” is commonly used to emphasize comoving units.
We note that this initial resolution may not be enough to
resolve the magnetic field coherence scales that are expected
from theory or the small scales that are dominated by the
turbulent spectra. For example, in the phase-transitional
scenario, an optimistic assumption of the largest magnetic
eddy size would lead to magnetic field coherence scales of the
order of 10 kpc (comoving) at the end of recombination (see,
e.g., the constraint plot, Figure 7, in Roper Pol et al. 2022).
However, Kahniashvili et al. (2022) have recently proposed
that QCD phase transition–generated PMFs could even reach
∼300 ckpc coherence scales (if the field is fully helical), by
accounting for the decaying nature of the turbulent sources
between the time of generation and Big Bang nucleosynthesis
(BBN). The hypothesis behind this finding is that the magnetic
correlation length could be larger if one applies the BBN limits
not to the time of generation of the seed field, but to the later
time of the BBN. While the predicted magnetic field coherence
scale may vary from theory to theory, we emphasize that our
initial resolution prevents us from having a one-to-one match
with any of the various theoretical expectations. It is therefore
important to stress that, similar to Paper I, our initial stochastic
spectra are only intended to emulate the shapes that are
theoretically expected.

3. Simulations

We simulate the formation of a galaxy cluster with the
cosmological Eulerian MHD code Enzo (Bryan et al. 2014).
We assume a Lambda cold dark matter cosmology (h = 0.674,
Ωm= 0.315, Ωb= 0.0493, ΩΛ= 0.685, and σ8= 0.807, as in
the Planck Collaboration et al. 2020). As in our previous work
(Paper I),10 we use the Dedner formulation of the MHD
equations, to obey the divergence-free condition of the
magnetic field (Dedner et al. 2002). In the present paper, we
additionally employ AMR to reach a higher resolution within
our simulated galaxy cluster (Brummel-Smith et al. 2019).

We follow two steps to solve the galaxy cluster: (1) a global
AMR simulation, where we identify a list of fairly resolved
halos; and (2) a local AMR, or “zoom-in” simulation, where we
apply several levels of AMR in a selected region in which the
cluster forms. In both setups, the refinement is triggered

according to the baryon, fb, and dark matter (DM), fDM,
overdensity thresholds. These parameters ensure refinement
when the gas (DM) mass in a cell reaches a factor of fb ( fDM)
times the mean baryonic (DM) mass expected in a cell at the
root grid level (Bryan et al. 2014). In this study, we use a
nominal refinement factor of 2 between the parent grid and its
subgrid, which is the commonly used value for cosmological
simulations (see Bryan et al. 2014 for more details). In the
global AMR simulations, we set fb= fDM= 4, and we use four
levels of refinement that are activated in the whole
( )h80 cMpc1 3- simulation box. We use a root grid of 2563

cells and 2563 DM particles, each of mass mDM=
3.34× 109Me. The initial and final spatial resolutions are
312.5 h−1ckpc and 19.5 h−1ckpc, respectively. Based on this
simulation, we produce a halo catalog using the yt halo finder
(Skory et al. 2011). The halo finder identifies groups of linked
DM particles, based on the Eisenstein & Hut (1998) algorithm.
The galaxy cluster selected for the present work is among the
most massive clusters from our halo catalog (see Section 3.2
for a detail description of the cluster). Next, we re-simulate the
selected galaxy cluster in the ( )h80 cMpc1 3- simulation box,
by centering our simulation box where the galaxy cluster
forms. We select a volume of ( )h20 cMpc1 3- and use seven
levels of refinement. In this case, the refinement is triggered on
the fb= 0.1 and fDM= 4 refinement factors, giving us a final
maximum spatial resolution of 2.44 h−1ckpc.
The selection of the overdensity factors, fi (where “i”

indicates baryons or DM), is important, and it depends on the
problem being addressed. In this work, the grid refinement
thresholds are chosen in order to solve the turbulent motions in
the ICM that are crucial for seed magnetic field amplification.
Mergers and accretion events that are driven by gravitational
dynamics are the main agents of turbulence in the ICM.
Therefore, low overdensity thresholds for both gas and DM
ensure resolving low-mass gas substructures and DM halos (as
discussed in O’Shea et al. 2005), and, thus, the maintenance of
turbulence in the ICM (Iapichino & Niemeyer 2008). Note that
lower refinement factors significantly increase the number of
refined grids, so one has to compromise between the final
resolution and the computational cost. For this purpose, we use
a higher value of fDM compared to the fb factor. This selection
closely follows Vazza et al. (2018), where the authors have
proven that the impact of an increased DM resolution on the
final magnetic field distribution is only minor (see Figure 17 of
Vazza et al. 2018). Indeed, we will show in Section 3.2 that the
chosen refinement thresholds result in large turbulence-filling
factors in our simulated ICM.
Finally, our simulations do not include gas cooling, chemical

evolution, star formation, or feedback from active galactic
nuclei. As in Paper I, we focus solely on the magnetic field
amplification that is due to the structure formation and
turbulent flows in the ICM.

3.1. Initial Conditions

We study four different realizations of the simulated galaxy
cluster. Our simulations differ in the initial magnetic field
configurations. We assume only nonhelical magnetic fields at
the initial redshift, z= 50. Similar to Paper I, we choose to
normalize our initial magnetic conditions, so that they have the
same total magnetic energy (see Table 1). The four models are:

10 We refer the reader to this paper for a detailed description of the adopted
temporal and spatial reconstruction schemes.
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1. Uniform (spatially homogeneous) field: a seed magnetic
field with a constant strength across the whole computa-
tional domain, directed along the diagonal. This case
corresponds to a particular inflationary magnetogenesis
scenario—namely, the Mukohyama model (Mukohyama
2016).

2. Scale-invariant field: this is a setup for a stochastic,
statistically homogeneous PMF, corresponding to an
inflationary scenario.11

3. Saffman model: a stochastic, phase transition–generated
PMF, which has a Saffman spectrum, i.e., with a power-
law index of 2.

4. Batchelor model: the same stochastic setup as in (3), but
with a Batchelor spectrum, i.e., with a power-law index
of 4.

The initial conditions (2)–(4) were produced with the PENCIL
CODE (Pencil Code Collaboration et al. 2021). The initial
magnetic power spectra for these stochastic setups are shown in
Figure 1. We follow the same method as in Paper I to generate
our initial conditions. This initial simulation allows us to
evolve an initially Gaussian random field, with the desired
spectral properties, until the phases of the magnetic field in
Fourier space become correlated, and their distribution is no
longer one of white noise. This is then used as the actual initial
condition for the Enzo simulations. The reader may refer to
Appendix A of Paper I for further details concerning the
generation and normalization of the initial magnetic conditions
(2)–(4).

We use an initial matter power spectrum, resulting from a
primordial, scale-invariant spectrum, by taking into account the
evolution of post-inflationary linear perturbations, i.e., we use
the transfer function of Eisenstein & Hu (1998). It should be
noted that the adopted matter power spectrum neglects any
contribution from PMFs. PMFs are expected to affect the
clustering of matter on intermediate and small scales, i.e.,
smaller than galaxy cluster scales (Sethi & Subramanian 2005;
Yamazaki et al. 2006; Fedeli & Moscardini 2012; Kahniashvili
et al. 2013; Sanati et al. 2020; and see also the discussion in
Paper I). Therefore, we do not expect the presence of PMF-
induced density perturbations in the early universe to have a
significant impact on our results.

3.2. Selected Cluster

The selected cluster from our two-step simulations can be
seen in Figure 2. The total mass of our cluster, 2.39 · 1014Me, is
comparable to the masses of some observed galaxy clusters,
such as A3527 (see, e.g., de Gasperin et al. 2017) or the
recently studied Ant cluster (Botteon et al. 2021). We
summarize the most important parameters of our simulated
cluster in Table 2.
The formation history of a galaxy cluster fully determines

the amount of amplification of the seed magnetic field. Our
selected cluster undergoes a series of mergers, and its evolution
can be characterized by three phases: (1) at the early stage of
formation, z 0.7, it continuously grows, by accreting several
minor merger events; (2) in the redshift range 0.7–0.3, a major
merger takes place, with a mass ratio of 1.2 between the main
and secondary clusters (within the R500 radius); and (3) at late
redshifts, i.e., z< 0.3, it enters into a relaxing state. In Figure 3,
we show the mass accretion history of the cluster in the redshift
range 1.5> z> 0. The mass of the cluster is computed within
Rvir, and we show its evolution for the uniform model. We
indicate the major merger phase with the shaded gray area
(∼2 Gyr timescale) in Figure 3. During this phase, we observe
the steep growth of the total mass, which increases by a factor
of ∼2.
Mergers of clusters play a key role in shaping the properties

of the ICM, by injecting turbulence. To characterize the

Table 1
Initial Conditions for the Magnetic Field

Scenario Model Simulation ID B0
2á ñ 〈B0〉 B1Mpc λB

((nG)2) (nG) (nG) (h−1 cMpc)

Inflationary (i) Uniform u 0.99 0.99 — —

(ii) Scale-invariant km1 0.99 0.92 0.92 33.04

Phase-transitional (iii) Saffman k2 0.99 0.92 0.92 1.07
(iv) Batchelor k4 0.99 0.92 0.92 0.85

Notes. The correlation length and the mean value of the smoothed (on a 1 h−1 cMpc scale) magnetic field are denoted by λB and B1Mpc, respectively, while B0
2á ñ and

〈B0〉 are the means of the initial magnetic field energy and the initial magnetic field strength, respectively.a
a We use comoving quantities everywhere, unless otherwise stated.

Figure 1. The initial magnetic power spectra for the stochastic setups, with the
velocity (dotted purple line) and density (dashed purple line) spectra being
shown for the run with the uniform model. The main and secondary axes
shown on the right correspond to the density and velocity spectra, in
( ) h10 g cm cMpc63 3 2 1- - and 108 cm2 s−2 h−1 cMpc units, respectively. The
initial power spectra of the baryon and DM perturbations are nearly
indistinguishable at the scales resolved by our resolution. The only difference
between these two spectra is in their amplitudes.

11 Note that we call this model “scale-invariant,” even though it has a turbulent
spectrum with a k−5/3 scaling. This is because of the presence of turbulence,
which quickly changes a k−1 spectrum to a k−5/3 spectrum, which is the
expected outcome after recombination (see Kahniashvili et al. 2017;
Brandenburg et al. 2018, for details).
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turbulence in our simulated galaxy cluster, we follow the recipe
proposed by Iapichino et al. (2017). In that work, the authors
used the vorticity modulus as an indicator of the velocity
fluctuations and its volume-filling factor fω as a proxy for the
turbulent states of galaxy clusters. In detail, the procedure
consists of flagging a cell as “turbulent” if it satisfies the
criterion (see Kang et al. 2007; Iapichino et al. 2017, and
references therein)

( )N t , 1i agew >

where ωi is the vorticity in the ith cell, tage is the age of the
universe at redshift z, and N is the number of eddy turnovers,
respectively. Following Iapichino et al. (2017), we set N= 10.
Finally, the volume-filling factor fω is the volume fraction
satisfying Equation (1). The authors find that fω is substantial,
both in the core and at the outskirts of their simulated galaxy
cluster, reaching fω> 90% and fω> 60%, respectively. In the
bottom panel of Figure 3, we show the evolution of the

volume-filling factors, computed for the core and outskirt
regions of our simulated galaxy cluster. The volume-filling
factors are also shown to be substantial, with percentages larger
than 90% in the core region and 60% in the outskirts. We note
that we obtain similar results to Iapichino et al. (2017), even
though our numerical setups differ. For example, their

Figure 2. Projected maps of the gas density (top panel) and the magnetic field from a ( )h3 cMpc1 3- box for different seeding scenarios (bottom panel), at different
stages of the cluster evolution. The left, middle, and right panels show the projected fields at the merging (z = 0.48), post-merger (z = 0.3), and relaxing (z = 0.01)
states, respectively. The magnetic field projections for the Batchelor and Saffman models are normalized by a factor of 10.

Table 2
Characteristics: The Mass and Energy Ratio Ekin/Etot of the Cluster at z = 0,

Where Etot = Ekin + Eth

Radius Mass Ekin/Etot

( h−1 cMpc) (1014Me)

R500 = 0.50 1.14 0.15
R100 = 1.01 1.86 0.16
Rvir = 1.54 2.39 0.16

Figure 3. Time evolution of the total virial (r = Rvir) mass (solid black line)
and the vorticity volume-filling factor for the cluster core (solid lines) and
outskirts, which enclose spherical shells in the ranges 0.5 Rvir < r < Rvir

(dashed lines) and 0.5 Rvir < r < 2 Rvir (dotted lines).
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simulations use eight AMR levels, triggered by spatial
derivatives of the velocity field, to reach a final maximal
resolution of 7.8 h−1 cMpc. Additionally, they make use of a
subgrid-scale model, which is based on the Germano (1992)
formalism, to account for unresolved turbulent motions in the
ICM; see also Schmidt et al. (2006). Thus, our volume-filling
factors, along with the high final resolution of 2.44 h−1ckpc,
show that our numerical setup is adequate for capturing
turbulent motions in the simulated galaxy cluster.

4. Results

4.1. General Properties

We start our analysis by giving a qualitative view of the
density and magnetic field distribution in the simulated galaxy
cluster. In Figure 2, we show the projected density and
corresponding magnetic field distribution for different seeding
scenarios. The projections are extracted from a ( )h3 cMpc1 3-

simulation box, for three different epochs: the merging
(z = 0.48), post-merging (z = 0.3), and relaxing (z = 0.01)
phases. As we further discuss below, a different initial
magnetic structure leads to a different final strength in the
simulated galaxy cluster. In order to better visualize the spatial
differences between our models in the projected magnetic field
distribution, we normalize in Figure 2 the distributions for the
Batchelor and Saffman models by a factor of 10. These two
models, being initially correlated on smaller scales, already
reach the lowest magnetic field strengths at early redshifts,
z∼ 10 (before the cluster forms), and, later on, at all stages of
cluster evolution.

In Figure 4, we compare the mean magnetic energy density
evolution to the evolution of the thermal, kinetic, and small-
scale (turbulent) kinetic energy densities of the cluster, within a
comoving box of side length 1.5 h−1 cMpc. We compute the

turbulent energy by filtering out motions at large scales. At
each component of the 3D velocity, we subtract the mean
velocity, smoothed on two different scales of our selection.
Here, we select 25 h−1ckpc and 100 h−1ckpc as the fiducial
smoothing scales (for a more elaborate multifiltering technique,
see, e.g., Vazza et al. 2012). The magnetic energy density
growth in the uniform and scale-invariant cases is correlated
with the growth rates of the thermal and kinetic energy
densities. For example, the approximate power-law growths of
the thermal, kinetic, and magnetic energies in the redshift range
z= 3–0.65 are found to be ∼t2.6, t3.29, and t2.77, respectively.
By contrast, the magnetic energy density evolutions of the
Batchelor and Saffman models show less pronounced growth
than the aforementioned trends. These models evolve as ∼t0.38

and ∼t0.1, respectively. In addition, we see that the magnetic
energy of the cluster reaches similar levels to the turbulent
energy, at all times, only in the uniform and scale-invariant
models. Overall, we observe the total growth of the turbulent,
kinetic, and thermal energy densities with respect to z= 3 as
being ∼700, 270, and 100, respectively. On the other hand, the
magnetic energy densities of the uniform, scale-invariant,
Saffman, and Batchelor models grow over the same ∼12 Gyr
time span, by factors of 160, 130, 5, and 3, respectively.

4.2. Radial Profiles

The radial profiles of our cluster are shown in Figure 5. In
the top panel, we show the magnetic field profiles, along with
the expected trend from adiabatic flux freezing (∝r−4/3) and
the slope profiles. As previously mentioned, we observe that

Figure 4. Evolutions of the thermal, kinetic, turbulent kinetic, and magnetic
energy densities, obtained from a comoving box with a side length of
1.5 h−1 cMpc. The solid, dotted, dashed, and dashed–dotted lines correspond
to the uniform, scale-invariant, Saffman, and Batchelor models, respectively.
The gray shaded area covers the turbulent energies with smoothing scales
between 25 and 100 h−1ckpc, as indicated by the lower and upper gray lines,
respectively. The solid gray line corresponds to the uniform case, while the
dashed line corresponds to the Saffman model.

Figure 5. Radial profiles of the magnetic field (top), with the corresponding
linear fits (dotted lines) for each magnetic seeding model, and density and
temperature fields (bottom). All profiles are calculated in a sphere with r = Rvir

radius. In the outskirts, the magnetic field scales as r−1.19, r−1.39, r−1.5, r−1.34

for the uniform, scale-invariant, Saffman, and Batchelor models, respectively.
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those initial conditions with more magnetic power at large
scales, such as the uniform and scale-invariant models, show
the largest field strengths. Conversely, as shown in the bottom
panel of Figure 5, neither in the trends of the slope nor in the
radial temperature and density profiles do we observe any
significant differences.

A commonly used proxy for relating the magnetic field and
density distributions is combining their radial dependencies. In
the outskirts (r> 150 h−1ckpc), this leads to Buni∝ ρ0.43,
Binv∝ ρ0.50, BSaff∝ ρ0.54, and BBatch∝ ρ0.49 for the studied
models. These trends are similar to those inferred from the
radio observations of the massive M200∼ 1.8× 1015Me (Kubo
et al. 2007) Coma cluster (Bonafede et al. 2010), but are
smoother than the slopes that have been found, e.g., in the
observations of the less massive M200∼×1014Me (Girardi
et al. 1998) cluster A194 (Govoni et al. 2017). It should also be
noted that the strength of the magnetic field in the core of the
Coma cluster has been found to be higher (4.7 μG; Bonafede
et al. 2010) than the obtained values from our simulations. This
can be explained by the fact that the simulated galaxy cluster in
our work is still dynamically young (see, e.g., Xu et al. 2011,
who find that dynamically older relaxed clusters have larger
magnetic field strengths in the ICM). In general, we find these
trends to be in good agreement with the results of Vazza et al.
(2018) and Domínguez-Fernández et al. (2019), the authors
having studied the dynamo amplification in the simulated
galaxy clusters, also using AMR.

4.3. Probability Distribution Function and Curvature

The distribution of the magnetic fields has been the subject
of several works. It follows from the induction equation that in
the diffusion-free regime and at the kinematic stage of the
dynamo (the weak-field limit), the magnetic field is character-
ized by a lognormal probability distribution function (PDF; see,
e.g., Cho et al. 2002; Schekochihin et al. 2002, 2004;
Brandenburg & Subramanian 2005). The lognormality of the
magnetic PDFs is qualitatively understood in terms of the
central limit theorem, which is applied to the induction
equation (without the diffusion term). A more rigorous
derivation of this result involves the Kazantsev–Kraichnan
dynamo model (Kazantsev 1968; Kraichnan & Nagara-
jan 1967). Following this model, it is possible to predict the
evolution of the mean and the dispersion (see, e.g., Equations
(5) and (6) in Schekochihin et al. 2002) of the lognormal
distribution of the magnetic field. The spread of the PDF of

Blog at both the low and high tails of the distribution is an
important characteristic of a lognormal distribution, meaning
that a fluctuating magnetic field possesses a high degree of
intermittency, i.e., the fluctuations tend to become more sparse
in time and space and on smaller scales (see, e.g., Beresnyak &
Lazarian 2019). In the saturated state of the dynamo, this
intermittency is partially suppressed, and the PDF develops an
exponential tail (see, e.g., Schekochihin et al. 2004 and the
recent simulations of Seta & Federrath 2020).

In the following, we check whether dynamo action is present
in our simulations. A comprehensive criterion for dynamo
action in the presence of gravity is still missing; see
Brandenburg & Ntormousi (2022) for some attempts.12 We

follow the diagnostics presented in Schekochihin et al. (2004),
which have also been used in Vazza et al. (2018) and
Steinwandel et al. (2022).
In Figure 6, we show the evolution of the normalized

magnetic field (B/Brms) PDF for all four models. In the
kinematic stage of the dynamo, Schekochihin et al. (2004) find
that the magnetic PDF converges onto a single stationary
profile, which is referred to as the self-similarity of the field
strength. In our simulations, we find that the PDFs of the
Saffman and Batchelor models resemble the stationary profile,
while the large-scale models (uniform and scale-invariant) do
not show the same behavior toward the low end tail of the PDF.
The dispersions of the PDFs in the latter two cases decrease
(although not significantly), while the dispersions of the phase
transition–generated models remain mostly constant. At the
final redshift, we overplot a lognormal fit in Figure 6, and show
that the low- and high-end tails of the distribution are
reasonably well fitted by a lognormal distribution for all
PMF models. Finally, we compute the kurtosis at z= 0 and
obtain the values 12, 13, 31, and 68 for the uniform, scale-
invariant, Saffman, and Batchelor models, respectively. These
values confirm that all our models exhibit super-Gaussian
profiles.
The geometry of the magnetic field lines can be studied in

terms of the curvature K, defined as (e.g., Schekochihin et al.
2001):

( · )
∣ ∣
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In Figure 7, we show the dependence of the magnetic field on
the absolute curvature, K= |K| (top panel) and the curvature
distribution (bottom panel), at z= 0. In small-scale dynamo
theory, the turbulent amplification of the field proceeds by the
stretching and bending of field lines by turbulent eddies,
resulting in folded structures (see, e.g., Figures 1 and 2 of
Schekochihin et al. 2002). Due to flux conservation arguments,
it is expected that the magnetic field strength will be larger in
the stretched segments of field lines, while the strength will
remain small in the bends—i.e., the field strength and its
curvature are expected to be anticorrelated. This is similar to an
earlier finding that stronger flux tubes are also straighter
(Brandenburg et al. 1995). The top panel of Figure 7 presents a
good illustration of this hypothesis. We observe a declining
profile of the magnetic field strength with the increasing
curvature of the field. This anticorrelation is confirmed by
calculating the correlation coefficient between the curvature
and the magnetic field CK,B (see Equation (26) in Schekochihin
et al. 2004). For all our models at z= 0, we obtain
CK,B∼− 0.999, which is practically its minimum possible
value. We also note that this anticorrelation has already been
observed from earlier redshifts in our simulations. At z= 0, we
obtain the slopes −0.32 (−0.46), −0.42 (−0.39), −0.35
(−0.47), and −0.25 (−0.34) for the ( )h1.5 cMpc1 3- region
(( )h3 cMpc1 3- region), corresponding to the uniform, scale-
invariant, Saffman, and Batchelor models, respectively.
Another interesting feature that we see in the top panel of
Figure 7 is the flattening of the magnetic field profile toward
extremely low curvatures. From the bottom panel of Figure 7,
we see that this happens for K 7× 10−3 h ckpc−1, where we

12 We refer here to the earlier papers by Sur et al. (2010, 2012), Schober et al.
(2012), McKee et al. (2020), and Xu & Lazarian (2020), who study the
turbulent dynamo in the context of the formation of the first stars.
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observe a steep decrease (∼K2.5) in the curvature PDFs. The
bulk of the curvature distribution is concentrated at peak values
corresponding to the 192, 175, 140, and 143 h−1ckpc scales13

(henceforth referred to as the curvature scales, λK) for the
uniform, scale-invariant, Saffman, and Batchelor models,
respectively. These scales reflect the typical bending scale of

the field lines. As we shall see in Section 4.4.1, λK is
comparable to the scale containing the largest magnetic energy.
We find that the peaks of the curvature PDFs shift to the right,
for all our models, during the major merging phase, i.e., λK
decreases. This shows that mergers tend to further compress the
existing folded structure, rather than elongating it. Finally, we
also observe a distinctive difference between the uniform and
stochastic models, with the former exhibiting the largest
curvatures.
In summary, all of the PMF scenarios attain intermittent

structures (the lognormality of the PDFs) during their
evolutions, even though the growth of the magnetic energy is
relatively lower for the Saffman and Batchelor models (see
Figure 4). There is an anticorrelation between the field strength
and the curvature for all models; however, the curvature scales
are different for the large- and small-scale correlated fields. As
a result, the different growth rates of the PMFs—i.e., the
possible suppression or excitation of the dynamo—may leave
imprints on the scale, where the further stretching and bending
of the field lines is counteracted by the stronger fields.

4.4. Spectral Evolution

In observations, previous knowledge of the magnetic energy
spectrum is required, in order to obtain more information about
the general characteristics of the magnetic fields in the ICM
(see, e.g., Murgia et al. 2004; Govoni et al. 2006, 2017; Stuardi
et al. 2021). The power spectrum of the magnetic field is
defined as the Fourier transform of the magnetic field’s two-
point correlation function, 〈Bi(x)Bj(x+ r)〉, where the angle
brackets denote the ensemble average and ˆ ∣ ∣rr ri= (see
Monin & I’Aglom 1971 or Brandenburg et al. 2018, and
references therein). In practice, we define the magnetic energy
power spectrum EB(k) through:

( ) ˆ · ˆ ( )B BE k dk
V

k dk
1

2
4 , 3B

2ò ò p= *

where B̂ denotes the Fourier transform of the magnetic field,
with B̂* being its complex conjugate, k= |k| is the norm of the
wavevector, and V is the volume that normalizes the spectrum.
In Figure 8, we show the evolutions of the magnetic energy

spectra of our four models, with a specific kinetic energy
spectrum for the uniform model being shown in the inset of the
first panel. The magnetic spectrum is computed using
Equation (3) for different time snapshots, in a ( )h3 cMpc1 3-

simulation box, which follows the cluster center as it evolves.

Figure 6. Redshift evolution of the PDFs. From left to right: the uniform, scale-invariant, helical, and nonhelical seedings. The PDFs are obtained within a sphere
having Rvir radius. The dashed red lines show the lognormal fits for each model.

Figure 7. Profile of the magnetic field vs. curvature (|K|) and the curvature
PDFs calculated from a ( )h3.0 cMpc1 3- box at z = 0. The dotted and dashed
lines indicate the scalings that are expected from theoretical estimations (from
Schekochihin et al. 2004). The shaded regions for each model cover the
distribution points between the 16th and 84th percentiles.

13 We note that our definition of the curvature scale is different from the
definition adopted in Cho & Ryu (2009).
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From the figure, one can see that differences between the
spectra of the inflation- and phase transition–generated seed
fields arise in both the amplitudes and the shapes of the
magnetic power spectra. The differences observed in the
shapes are more pronounced toward the largest scales
(0.5 h−1 cMpc) of the simulated galaxy cluster. In particular,
at these scales, the spectra corresponding to the uniform and
scale-invariant models are flatter than the spectra corresponding
to the Saffman and Batchelor models. A similar result has also
been found in Paper I. We will further discuss the shape of the
magnetic energy spectrum in Section 4.4.2, where we
parameterize our four cases. On the other hand, we note that
the kinetic energy spectra (the inset in the left panel of
Figure 8) of our simulations do not show differences between
the different PMF models. The spectra follow a k δ profile,
where δ changes between ∼−2.3 and −2.8 at small scales
(0.5 h−1 cMpc) over the 9.5 Gyr time span.

In order to understand the differences in the magnetic field
amplitudes between the different models, we recall that at early
times (10 z 50), before the cluster forms, only the uniform
field model shows amplification homogeneously on all scales
(see Figure 6 of Paper I):14 i.e., in the absence of gravitational
accretion and induced turbulent motions, the stochastic models
mostly stay frozen in or show an insignificant decay. At late
times, as the cluster forms, the large-scale stochastic (i.e., the
scale-invariant) model shows a similar trend as the uniform
model, and the amplitude of the power spectrum grows on all
scales. This happens because the magnetic power is concen-
trated on the largest scales, similar to the power corresponding
to the density and velocity fields (this can be seen in Figure 1,
in which we show our selected initial density and velocity
power spectra, as well as in the inset in the first panel of
Figure 8). In addition, when turbulence develops, it first
produces large-scale eddies that stretch and bend the field lines
of those models where the large-scale magnetic component is
present. In the stochastic small-scale models, magnetic
amplification happens after turbulence cascades down to scales

comparable to the corresponding magnetic coherence scales.
Therefore, the magnetic energy of these models (Saffman and
Batchelor) is prone to less efficient and slower growth.
Furthermore, as Schekochihin et al. (2001) have pointed out,
a chaotically tangled field will decay toward a folding state at a
rate comparable to the rate of the magnetic energy growth.
Thus, the initial slower growth in the Saffman and Batchelor
models will further suppress the folding of the field lines,
leading overall to a lesser amplification degree in these models.
We note that the different growth rates (see also Figure 4) for

large- and smaller-scale magnetic fields obtained in our
simulations are at odds with the results of driven-turbulence
simulations; see e.g., Cho et al. (2009) and Seta & Federrath
(2020), who compare the evolutions of uniform (imposed) and
random (stochastic) fields in incompressible and compressible
MHD turbulence settings, respectively. Nonetheless, these
authors also find a delay in the onset of the linear growth for
low initial field strengths (the uniform field case; Cho et al.
2009) or a decay during the initial transient phase (the random
field case; Seta & Federrath 2020). In the latter work, the
uniform model does not decay, and it shows rapid growth
during this phase; this trend is similar to the results presented in
our work. Contrary to the results of driven-turbulence MHD
simulations (see, e.g., Schekochihin et al. 2004; Brandenburg
et al. 2015), our study does not clearly indicate forward or
inverse cascading either. However, we must bear in mind that
the ICM is a complex system, in which mergers might alter the
aforementioned trends that we have discussed above.

4.4.1. Characteristic Scales

A clearly visible characteristic of the magnetic energy
spectrum is the peak scale ( )LE kB , corresponding to 1200 and
400 h−1ckpc for the uniform and scale-invariant models,
respectively, and to 316 h−1ckpc scales for the Saffman and
Batchelor models. To determine the largest energy-containing
scale of the magnetic field (see the definition in Cho &
Ryu 2009), we also calculated the peak scale of kEB(k), i.e., the
peak scale of the spectral energy per mode. We find similar
values of ( )LkE kB for all our models: 222 h−1ckpc for the
uniform and scale-invariant models and 171 and 154 h−1ckpc
for the Saffman and Batchelor models. We also find that the
peak scales of the density, ( )LkP kr , and velocity, ( )LkE kv , spectral
energy per mode are the same: ∼857 h−1ckpc. In the

Figure 8. Redshift evolutions of the magnetic and the kinetic (inset in the left panel) energy spectra. From left to right: the uniform, scale-invariant, Saffman, and
Batchelor models. The energy spectra are calculated from the ( )h3.0 cMpc1 3- box at the seventh level of AMR, using the yt interpolation method (Turk et al. 2011).
For additional effects on the shapes and amplitudes of the magnetic energy spectra, we refer the reader to Appendix A. The axis units in the inset are
cm2 s−2 h−1 cMpc and h cMpc−1, for the specific kinetic energy and wavenumbers, respectively.

14 A similar result has also been shown by Seta & Federrath (2020), as the
authors found that even in the case of a nonactive small-scale dynamo, a
uniform seed magnetic field is still linearly amplified, due to the tangling of the
large-scale field (see also the discussion in the Appendix of Seta et al. 2018 as
well as Paper I). We remind the reader that in this latter work, and generally in
small-scale dynamo studies, contrary to cosmological simulations, the magnetic
and velocity spectra are concentrated at the same scales.
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inflationary and phase-transitional models, ( )LkE kB is ∼one-
fourth and ∼one-fifth of ( )LkE kr and ( )LkE kv , respectively. A
similar result has been found in the MHD simulations of Cho &
Ryu (2009), where the authors find a ∼1/5 ratio at the
saturation between ( )LkE kB and the driving (injection) scale of
the turbulence.15 Therefore, our results suggest that most of the
magnetic energy resides on scales that are smaller than the
gravity-induced scale or the peak scale of the density and
velocity power spectra.

The correlation length, which is also referred to as the
coherence or integral scale, of the magnetic field is defined as:

( )

( )
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The evolutions of the magnetic correlation lengths for the
different PMF models are shown in the top panel of Figure 9.
We computed the correlation length throughout the 12 Gyr
period, focusing on a ( )h1.5 cMpc1 3- region (as in Figure 4).
We also conducted the same analysis in a ( )h3.0 cMpc1 3-

region, since the correlation length can depend on the box size

under consideration. During merger events (shown as the
vertical shaded areas in Figure 9), the magnetic correlation
length decreases for all four models. This happens mainly
because compression becomes dominant as the infalling gas
clump crosses the cluster center.16 The same effect has also
been observed in other cosmological MHD simulations, e.g., in
Domínguez-Fernández et al. (2019), where the authors find that
major merger events shift the magnetic power toward smaller
scales. It is after each merger event that the magnetic
correlation length increases again for all four models.
Finally, as the cluster enters its relaxing phase at z 0.135,

the correlation lengths for all models converge to 260–410,
240–330, 180–230, and 170–240 h−1ckpc for the uniform,
scale-invariant, Saffman, and Batchelor models, respectively.
These values are one order of magnitude larger than those that
are obtained and typically referred to as the coherence scale (a
few tens of kiloparsecs) from radio observations (see, e.g.,
Murgia et al. 2004; Vogt & Enßlin 2005; van Weeren et al.
2019). The strongest differences in the magnetic correlation
lengths between the models are better seen at earlier redshifts,
where the scale-invariant model shows a coherence length that
is larger than those of the Saffman and Batchelor models by a
factor of ∼2. We note that while the differences between the
uniform and scale-invariant models and those between the
Batchelor and Saffman models decrease after the merger
events, we still observe larger correlation lengths in the
inflationary cases than in the phase-transitional scenarios
throughout the evolution of the galaxy cluster over this
12 Gyr period.
Following Schekochihin et al. (2004), one can also define the

characteristic wavenumbers,
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corresponding to the magnetic field variation along (k∥) and
across (kB×J) itself, with J being the current density. In small-
scale dynamo theory, it has been argued that generally
kB×J> k∥, since the shear flows can more rapidly stretch and
reverse the field lines in the plane transverse of the field line
itself (see Schekochihin et al. 2001 and references therein). In
other words, the growth of the typical fluctuation wavenumber

k k kB J
2 2= +´ should mostly be due to the increase of kB×J.

It has been shown that in both the MHD dynamo (Schekochi-
hin et al. 2004) and the plasma dynamo (St-Onge &
Kunz 2018), the kB×J> k∥ ordering is satisfied in the initial,
rapid growth phase and that it persists in the kinematic and
nonlinear regime of a dynamo (during saturation).
In the bottom panel of Figure 9, we show the evolution of the

λ∥, λB×J, scales corresponding to the inverse k∥, kB×J,
characteristic wavenumbers, respectively. The condition
kB×J> k∥ is satisfied for z< 3 in the simulated cluster for all
four magnetic cases. We find a maximum ratio of
kB×J/k∥∼ 2–3 over the 12 Gyr period. The ordering of these
characteristic scales seems to be consistent with the arrange-
ment of a magnetic field in folded structures; see also Figure
23(a) of Schekochihin et al. (2004). This result, along with the

Figure 9. Evolutions of magnetic correlation lengths (top panel) and
characteristic parallel and perpendicular scales (bottom panel) for the simulated
galaxy cluster. The vertical shaded regions show merging phases during the
evolution of the galaxy cluster. The horizontal shaded areas in the top panel are
delimited according to the analyzed region; the lower (upper) lines correspond
to a ( )h1.5 cMpc1 3- (( )h3.0 cMpc1 3- ) region.

15 See also Kriel et al. (2022) and Brandenburg et al. (2023a), who studied the
dependence of different characteristic scales on the magnetic Prandtl number.

16 We note that merger events add additional power as they enter the analyzing
box; therefore, this can also contribute to the decrease of the magnetic
correlation length.
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lognormality of the PDFs and curvature results, would be
compatible with the kinematic stage of a dynamo in our
simulations.

4.4.2. Parameterization of Magnetic Energy Spectra

In order to discriminate among the magnetic field models,
we characterize the magnetic energy spectra in the
( )h3 cMpc1 3- box. We consider two different fitting functions.
First, we use the equation

( ) ( )⎧
⎨⎩

⎡
⎣

⎛
⎝

⎞
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⎤
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⎫
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E k Ak B
k

C
1 erf ln , 6B = -b

where A gives the normalization, B is related to the width of the
spectra, C is a characteristic wavenumber of the magnetic field,
and β is the slope of the spectrum at small wavenumbers. This
fitting function has been used in Domínguez-Fernández et al.
(2019) to study the evolutions of the magnetic energy spectra
for a set of highly resolved galaxy clusters, assuming a uniform
magnetic field seeding. The large-scale slope used by the
authors satisfies the Kazantsev (Kazantsev 1968; Kulsrud &
Anderson 1992) scaling, β= 3/2. We use a similar approach,
by fitting Equation (6) to the magnetic energy spectra of our
simulated cluster and obtaining the best-fit parameters A, B, and
C. In our case, we fix the initial β at each time step separately.
That is, as a first step, we determine the large-scale slope of the
spectra, β, and, as a second step, we fix this value in the fitting
equation.

The second fitting function is motivated by the MHD
simulations in Brandenburg et al. (2017), where a phase
transition–generated magnetic field has a pronounced peak on
the scale of the field generation. We adopt the following
spectral shape (Brandenburg et al. 2017; Roper Pol et al. 2022):
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where D controls the peak scale, Em is the normalization, k* is
the peak wavenumber, and β and γ are the slopes at large
(k< k*) and small (k> k*) scales, respectively. The value of α
is chosen to be 0.25, to ensure a smooth transition between the
spectra on large and small scales. In this case, D, Em, and γ are
the best-fit parameters obtained. Figure 10 summarizes the
results of our fitting procedure, using Equations (6) and (7). We
show only the most important best-fit parameters for each
model in Figure 10, while we provide all the parameters at
z= 0 in Table 3. In the upper panel, we show the C− β

parameter space (see Equation (6)), and in the lower panel we
show the γ− β parameter space (see Equation (7)). We show
the evolutions of the fitting parameters over a time span of
6.1 Gyr in the redshift range of 0.63� z� 0. As can be seen
from Figure 9, this period encompasses a major merger event at
z∼ 0.48 and the relaxing phase of the cluster.

The C–β and γ–β parameter spaces highlight how the
spectral characteristics of the inflationary cases differ from
those of the phase-transitional cases. In the following, we
discuss the main points.

1. The evolution of the C parameter varies between
2–4.5 h cMpc−1 for the inflationary models and between
1–2.8 h cMpc−1 for the phase-transitional models. The

ratio between the magnetic correlation length and 1/C is
∼1.4 for the inflationary models and ∼0.5 for the phase-
transitional seedings. That is, λB 1/C for the former
scenarios and λB 1/C for the latter models. This shows
that this fitting equation is a good proxy for obtaining a

Figure 10. Parameter spaces for the best-fit parameters of our different PMF
models, considering a ( )h3.0 cMpc1 3- region. The smaller markers and the
lower-opacity colors show the parameters at early times. The top and bottom
panels show the results from the fits according to Equations (6) and (7),
respectively.

Table 3
Parameters of the Power Spectra for Different Models and for Different Fitting

Functions at z = 0

Model Equation A (G2 h−1 cMpc) B C ( h cMpc−1)
Em (G2 h−1 cMpc) D γ

u (6) 8.92 × 10−16 2.16 3.29
(7) 1.63 × 10−15 0.03 5.10

km1 (6) 2.54 × 10−16 2.56 4.25
(7) 6.44 × 10−16 0.095 5.92

k2 (6) 8.66 × 10−19 2.27 2.29
(7) 3.57 × 10−18 0.403 3.68

k4 (6) 4.91 × 10−19 2.17 2.16
(7) 1.62 × 10−18 0.427 3.57

Note. The power spectra are fitted with Equations (6) and (7). The fixed-β
parameters are: 0.37, 0.54, 1.61, and 1.46 for the uniform, scale-invariant,
Saffman, and Batchelor models, respectively, with α = 0.25.
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characteristic scale of the magnetic field that can be
comparable to or of the same order as λB.

2. The large-scale slopes of the magnetic power spectra
characterized by β deviate from a Kazantsev slope in the
inflationary models where β 1. In contrast, the phase-
transitional models are approximately characterized by a
Kazantsev slope at late redshifts. These models show a
scatter in the range 1.2 β 2.5, where the slope tends
to flatten progressively toward ∼3/2, as the cluster
virializes.

3. The small-scale slopes of the magnetic power spectra
characterized by γ vary between 3.9 and 6.5 in the
inflationary models and between 2 and 4.1 in the phase-
transitional models. As seen from Figure 8, the magnetic
energy growth at scales larger than the characteristic scale
is more pronounced in the two inflationary cases,
therefore explaining the larger values of γ compared to
those from the phase-transitional models.

Finally, we note that we refrain from claiming that the phase-
transitional models can corroborate the 3/2 large-scale slope
predicted by the Kazantsev model, since, as can be seen from
Figures 8 and 10, this slope can vary throughout the complex
evolutions of galaxy clusters. Indeed, the multiple merger
events that lead to the final formation of a cluster already break
down one of the most basic assumptions of Kazantsev theory—
i.e., a delta-correlated (in time) velocity field.

5. Numerical Aspects

The numerical resolution is an important caveat to the
analysis conducted in this work. Similar simulations presented
by Vazza et al. (2014, 2018) have shown that magnetic fields
tend to be more strongly affected by resolution effects than the
velocity field, for example. Therefore, the growth rates of the
seed magnetic fields in galaxy clusters are also resolution-
dependent. Within our numerical setup, we assess the
convergence of our results by performing extra simulations
with different AMR levels. In Appendices A and B, we show
how the power spectra, the PDFs, and the radial profiles of the
magnetic field have already converged at six AMR levels (on
scales 50 h−1ckpc).

As in Paper I, we rely on the Dedner cleaning algorithm
(Dedner et al. 2002) to impose the ∇ ·B= 0 condition. While
the Dedner formalism has been found to be robust and accurate,
as well as to converge quickly on the right solution for most
idealized test problems (Wang & Abel 2009; Wang et al. 2010;
Bryan et al. 2014), and for other more realistic astrophysical
applications (Hopkins & Raives 2016; Tricco et al. 2016;
Barnes et al. 2018), this method may be limited compared to
the constrained transport (CT) schemes (Kritsuk et al. 2011).
The intrinsic dissipation of the Dedner scheme, via cleaning
waves, can affect the final magnetic growth of our PMF
models. Divergence cleaning has also been associated with
spurious magnetic helicity production (Brandenburg & Scan-
napieco 2020). Consequently, we cannot entirely rule out the
possibility that numerics (see also Appendix C of Paper I) can
also contribute to the obtained differences between the growth
rates of the inflationary and phase-transitional models. In
Figure 12 of Appendix A, we show the radial profile of the
magnetic field divergence in our simulated cluster. The densest
central region of the cluster exhibits similar normalized
divergences for our four PMF models, while some differences

between the inflationary and phase-transitional cases can only
be observed at large radii, 1.2 h−1 cMpc, with the former case
showing the lowest values. Nevertheless, the Dedner cleaning
method keeps the numerical magnetic field divergence below
∼5% (∼8%) of the local magnetic field within the cluster
volume having r= R500 (r= R100) radius. This shows that the
divergence remains reasonably low in the largest fraction of the
simulated cluster volume. We leave a numerical comparison
between the Dedner and CT schemes within the Enzo code in
the context of PMFs in galaxy clusters for future work.
As mentioned in Section 3, we have only focused on the

amplification of PMFs, due to the structure formation and
turbulent motions in the ICM. However, the inclusion of
additional physics, such as feedback and radiative cooling
physics, could lead to larger amplification levels of our PMF
models, and may therefore affect the final magnetic fields (see,
e.g., Marinacci et al. 2015; Vazza et al. 2017). The effects of
these processes on distinguishing between different magneto-
genesis scenarios will also be studied in our future work.

6. Conclusions

In this work, we have investigated the evolution of PMFs
during the formation of a massive galaxy cluster. We have
studied seed magnetic fields resembling inflation- and phase
transition–generated nonhelical fields. In the former case, we
have assumed either (1) a constant uniform magnetic field or
(2) a stochastic field. The stochastic model is motivated by the
pre-recombination evolution of an inflationary seed field
(initially having a scale-invariant spectrum), while the uniform
case corresponds to the Mukohyama model. In the case of the
phase transition–generated seed magnetic fields, we studied
have stochastic models with initial (3) Batchelor and (4)
Saffman spectra. These magnetic spectra are motivated by the
causal generation and evolution of phase-transitional fields
until recombination.
The main results of our work can be summarized as follows.

1. Final amplification. The amplification of a primordial
seed magnetic field in the ICM strongly depends on the
initial structure of the magnetic field. In our simulated
galaxy cluster, the inflation-generated uniform and scale-
invariant models show more efficient amplification
compared to the phase transition–generated Saffman
and Batchelor models. We see that in the former cases,
the magnetic energy density is of the same order of
magnitude as the turbulent energy budget of the cluster.
In such cases, the magnetic power is concentrated on the
largest scales, similar to the power corresponding to the
density and velocity fields. This leads to the more
efficient turbulent amplification of these large-scale
models compared to the small-scale phase-transitional
seed magnetic fields.

2. Radial profiles. The radial magnetic field profiles at the
final redshift (z = 0) reflect the aforementioned
differences in the magnetic energy growth. The amplitude
of the uniform and scale-invariant models is one order of
magnitude larger (∼0.8–1 μG; cluster center) than the
amplitude attained by the phase transition–generated
magnetic fields (∼0.1 μG). The declining magnetic field
profile toward the outskirts reveals the largest differences
between the uniform (r−1.19) and Saffman (r−1.5) models.
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3. Small-scale dynamo. All of our models exhibit a degree of
small-scale dynamo amplification, as hinted at by the
lognormality of the magnetic field PDFs and the folded
structures of the field lines (i.e., the anticorrelation between
the field strength and curvature and the ordering of
the characteristic wavenumbers). Consistent with
previous works (Vazza et al. 2018; Domínguez-Fernández
et al. 2019; Steinwandel et al. 2022), we find that
cosmological MHD simulations do not exhibit a small-
scale dynamo that can be compared one-to-one to the
Kazantsev theory.

4. Coherence lengths. We find that, throughout the evol-
ution, the magnetic correlation length of the cluster
depends on both the initial structure of the seed field and
the merger history. We find that the inflationary models
(initially large-scale correlated PMFs) will inherently
attain larger coherence lengths than the phase-transitional
models, throughout the evolutions of galaxy clusters.
This trend is even persistent during merger events, where
the correlation length decreases for all models. At the
final redshifts, we observe a factor of ∼1.5 difference in
the coherence scales of the uniform and scale-invariant
models versus the Batchelor and Saffman models. The
correlation lengths calculated from a [(1.5–3) h−1 cMpc]3

analyzing box span the ranges 260–410, 240–330,
180–230, and 170–240 h−1ckpc for the uniform, scale-
invariant, Saffman, and Batchelor models, respectively.

5. Spectral characteristics. We provide two possible fits for
the magnetic energy spectra. The parameterization of the
magnetic energy spectra shows how phase-transitional
and inflationary models can be differentiated. The large-
scale slopes (the β parameter; see Section 4.4.2) are
smaller (1) for the inflationary PMFs, but larger
(1.2 β 2.5) for the phase-transitional PMFs, over a
time span of 6.1 Gyr (0.63� z� 0). The Batchelor and
Saffman models have Kazantsev scaling (β= 3/2) at the
final redshifts, even though these fields are amplified to a
lesser degree. On the contrary, the small-scale slopes (the
γ parameter; see Section 4.4.2) are larger for the
inflationary models (γ∼ 3.9–6.5) than for the phase-
transitional seedings (γ∼ 3.9–6.5). The 1/C scales at
final redshift are 300 h−1ckpc, 240 h−1ckpc, 440 h−1

ckpc, and 460 h−1ckpc for the uniform, scale-invariant,
Saffman, and Batchelor models, respectively.

In summary, we conclude that the two competing scenarios
of primordial magnetogenesis, inflationary and phase-transi-
tional, can indeed be distinguished on galaxy cluster scales.
The initial structure of the seed magnetic field affects the
efficiency of the dynamo. Thus, PMFs do not only leave unique
imprints on scales larger than those of galaxy clusters (Paper I),
but it can also influence small-scale dynamo action in the ICM.
These signatures are reflected in the magnetic energy power
spectrum and the coherence scale of different models. An
analytical power spectrum of the magnetic field is required for
synthetic RM studies (see the method description in, e.g.,
Stuardi et al. 2021), giving us the possibility to constrain the
structure of observed galaxy cluster magnetic fields. We
provide two analytical models that can readily be used in
observational works (see, e.g., Murgia et al. 2004; Bonafede
et al. 2013; Govoni et al. 2017, for such examples).

Finally, since the inflationary models show larger field
strengths (both in the centers as well as on the outskirts of the

simulated clusters) and coherence scales, these may make them
better candidates for producing, e.g., the central cluster radio-
diffuse emission, in the form of the “megahalos” that have been
recently detected with LOFAR (Cuciti et al. 2022). Megahalos
fill a volume 30 times larger than do common radio halos. This
makes them interesting objects for unveiling the natures of
relativistic electrons and magnetic fields on the outskirts of
galaxy clusters. On the other hand, inflationary magnetogenesis
scenarios would be also favored for obtaining the fast magnetic
field amplification that is needed to explain the observed
diffuse radio emission in high-redshift galaxy clusters (Di
Gennaro et al. 2021). Deeper observations of megahalos,
together with the detailed RM images that will be obtained by
future observations with the Square Kilometre Array and the
upgraded LOFAR 2.0, will have the potential to unravel the
origins of large-scale magnetic fields.
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Appendix A
Resolution Tests and Divergence

In this appendix, we discuss the dependence of our results on
the adopted spatial resolution. We use the same initial
conditions and perform different simulations, increasing the
levels of AMR. We show the results corresponding to maxima
of five, six, and seven levels of AMR in Figure 11. The
dependence on spatial resolution of the magnetic power spectra

and the PDFs of the magnetic field are shown by the different
colors. Even though we see greater variation for the Batchelor
model (the middle panel and the dashed lines of the bottom
panel), we already observe the convergence of both the uniform
and Batchelor models at the sixth level of AMR, and we see no
significant changes in the shapes of the magnetic energy
spectra.
Spectral analysis based on Fourier transforms is a common

approach to studying the scale dependence of the magnetic
energy. Nevertheless, some caveats to this approach result from
the effects of a limited box size and the nonperiodicity of the
data. In Figure 11, we show the outcomes of these effects on
the magnetic energy spectra for the simulated uniform and
Batchelor models. First, we see that for k 50 h cMpc−1,
corresponding to scales 20 h−1ckpc, the spectra are well
converged in the uniform model. The shape of the magnetic
spectra for both the uniform and Batchelor models are also
mostly consistent with the spectra calculated in smaller/larger
boxes. As expected, the amplitudes of the spectra are more
strongly affected by the size of the analyzed regions. In
particular, we see a ∼one order of magnitude variation on
scales of ∼140 h−1ckpc for the uniform as well as Batchelor
models.
We also note that the nonperiodic boundary conditions of the

selected box may distort the spectrum. In order to check this,
we calculate the power spectra from the zero-padded array,
extracted for the ( )h3 cMpc1 3- volume from the five-level
AMR simulation (see the black dashed–dotted lines in
Figure 11). As seen in the figure, the power spectra calculated
using the standard method and zero padding lead to similar
results, revealing that our results as presented in the main text
are not significantly affected by the nonperiodicity of the data.
Finally, in Figure 12, we show the radial profiles of the

magnetic field divergence in our simulated cluster. The largest
differences between the models arise at r 1 h−1 cMpc, with
the stochastic models having the largest values of divergence.
Nevertheless, as mentioned in Section 5, ∇ ·B remains
reasonably low in our four models, in the largest fraction of
the simulated cluster volume. Quantitatively, we find that the
normalized divergence remains below 10%.

Figure 11. Upper panels: magnetic energy power spectra calculated for
different AMR levels and different box sizes at z = 0. We show the uniform
(top) and Batchelor (middle) cases. The black dashed–dotted lines in each
panel show the power spectra calculated from a zero-padded array. Lower
panel: magnetic field PDFs of the uniform (solid lines) and Batchelor (dashed
lines) models at z = 0, at different AMR levels.

Figure 12. Normalized divergences of the magnetic fields from the simulation
with a maximum of seven levels of AMR (where Δ is the mesh spacing in the
x-direction).
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Appendix B
Distribution of AMR Levels

Similar to Vazza et al. (2018), we show the radial profiles
of the AMR levels along with the magnetic field profiles in
Figure 13, for the uniform and Batchelor cases. In the top
panel of Figure 13, we see that our simulated cluster is
resolved with a maximum of five AMR levels (with
9.77 h−1ckpc resolution) in the ( )h1.5 cMpc1 3- central
region, while the mean AMR level decreases toward the
outskirts. On the other hand, the magnetic field profiles (the
bottom panel of Figure 13) only show larger strengths in the
cluster core when the maximum levels of AMR are increased
from five to seven. Our AMR scheme is different from the
one used in Vazza et al. (2018), where the cluster is refined
up to at least a sixth AMR level, even on the cluster outskirts.
An important difference, however, between the simulated
clusters used in this work and those used in Vazza et al.
(2018) is the mass of the cluster, which is one order of
magnitude larger in the latter work.

In addition, we check the convergence of our AMR scheme
by running an extra simulation with a maximum of eight levels
of AMR (for the Batchelor model, not shown). We do not see
an important improvement in the AMR coverage of the cluster
region when using higher levels of AMR. Therefore, given our
selected refinement parameters, our AMR scheme already
converges six AMR levels.
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