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I. MAGNETIC FIELD BOUNDS

The bound on extra relativistic degrees of freedom at
big bang nucleosynthesis (BBN) can be expressed as

ρB(TBBN)

ργ(TBBN)
= f, (1)

where we have assumed that all the extra relativistic en-
ergy density is entirely due to the magnetic energy den-
sity ρB , ργ is the energy density in photons, TBBN is the

temperature of helium synthesis and f ≡ 7
8
( 4
11
)4/3∆Neff .

The photon energy density as a function of tempera-
ture is ργ = (π2/15)T 4

γ . The magnetic energy density is

related to the magnetic field strength B as ρB = B2/8π
(in Gaussian units). The magnetic field strength dilutes
with the expansion of the universe as B ∼ a−2 where a
is the cosmological scale factor. The comoving magnetic
field strength is given by Bco = (a/a0)

2B(a), where a0 is
the scale factor today. Substituting these values into the
equation 1, the BBN limit on the field strength today is
given by

Bco
∗ ≤

(

aBBN

a0

)2√

8πfργ(TBBN). (2)

Obtaining the ratio of the scale factors via entropy
conservation, normalizing such that a0 = 1, the bound is
given by

Bco
∗

Gauss
≤

(

8.06× 10−6
)

f1/2 g
−2/3
BBN (3)

where gBBN is the relativistic degrees of freedom at TBBN.
There is no explicit dependence on temperature, how-
ever, the total number of relativistic degrees of freedom
gBBN does depend on the temperature. At TBBN =
0.1 MeV, the temperature at which deuterium synthe-
sis starts, neutrinos have already decoupled, electrons
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and positrons have already become nonrelativistic, and
gBBN(T = 0.1MeV) ≃ 3.4. For ∆Neff = 0.122, we find
f = 0.028 and the maximum comoving field strength at
BBN is Bmax

BBN = 6.2× 10−7 G.

II. NUMERICAL SET-UP/GRAVITATIONAL
WAVES

We consider the radiation-dominated epoch at elec-
troweak (EW) and quantum chromodynamic (QCD) en-
ergy scales and compute the strains h+ and h× for the
two linear polarization modes by solving the linearized
equation for gravitational waves (GWs),

∂2

∂t2
h̃+/× + k

2h̃+/× =
6

a
T̃+/×, (4)

where T̃+/× are the + and × polarizations of the Fourier
transform of the total stress Tij = uiuj −BiBj , normal-
ized by the radiation energy density, with t and k the
time and wave vector normalized by the Hubble parame-
ter at the time of generation, and B = ∇×A and u are
obtained by solving the equation for the magnetic vector
potential

∂A

∂t
= u×B + η∇2

A, (5)

together with [1]

∂u

∂t
= −u ·∇u−

1

4
∇ ln ρ+

3

4ρ
J ×B +Fν +F , (6)

∂ ln ρ

∂t
= −

4

3
(∇ · u+ u ·∇ ln ρ) +H, (7)

whereF = (∇·u+u·∇ ln ρ)u/3−[u·(J×B)+J2/σ]u/ρ,
and H = [u · (J × B) + J2/σ]ρ are higher order terms
in the Lorentz factor that are retained in the calcula-
tion, and Fν = 2∇ · (ρνS)/ρ is the viscous force, where
Sij = 1

2
(ui,j + uj,i) −

1
3
δij∇ · u are the components of

the rate-of-strain tensor with commas denoting partial
derivatives, and ν is the kinematic viscosity. In all cases
considered below, we assume a magnetic Prandtl num-
ber of unity, i.e., ν/η = 1. In Table I, we summarize



2

the parameters for runs a–d and A–D for the QCD and
EW energy scales, respectively. Here, hsat

rms refers to the

value of 〈h2
+ + h2

×〉
1/2

evaluated during the final station-
ary regime.

As in Ref. [2], hereafter K+21, we compute GW gener-
ation from magnetically driven turbulence. The driving
is applied during the time interval 1 ≤ t ≤ 2, where t is
the conformal time. As in K+21, we then decrease the
driving linearly in time until t = 3, when the driving is
turned off completely. We perform series of runs where
we vary the strength of the forcing f0 and keep the vis-
cosity ν unchanged. However, it is not possible to explore
the regime of strong magnetic energy at the same small
values of ν that we were able to use for smaller magnetic
energies. This is because for strong magnetic fields, the
turbulence becomes more intense and more viscosity is
needed to dissipate all this energy at the finite numerical
resolution available.

FIG. 1: Dependence of Esat

GW on E
max

M for magnetically driven
turbulence at different forcing strengths and viscosities for
kf = 6 (upper red and blue lines) and kf = 600 (lower red,
orange, blue, and black lines). The red dashed line for kf =
600 denotes runs where the driving is turned off abruptly at
t = 2.

In Fig. 1, we show the resulting dependence of the
GW energy EGW on the magnetic energy EM for six sets
of runs with fixed viscosity, different forcing strengths,
and different forcing wavenumbers, corresponding to the
runs denoted with labels a–d, A–D, and O. In all cases,
we take the magnetic Prandtl number to be unity, i.e.,
the magnetic diffusivity is set equal to the value of ν.
We also compare with several other sets of runs where
we change the forcing.

In Table I, we summarize the parameters for four runs
(A–D), which correspond to the less viscous ones for each
of the four pairs shown in Fig. 1. One exception is Run D,
which has the same viscosity as Run C and is denoted in
Fig. 1 by a red line. Run D is the same one as Run M1
of K+21. The values of EM and EGW agree with those
of K+21 for this run, but those of hrms are here a bit

FIG. 2: Dependence of Esat

GW on E
max

M /kf for the same runs as
in Fig. 1.

smaller. In fact, a closer inspection of the time series of
hrms(t) revealed that it reaches a steady state much later
than EGW(t). Therefore, averaging can begin only later
than for EGW. Since hrms is found to decrease somewhat
after having reached a maximum, the new value in Table I
is now about 20% smaller than that given in K+21.

The data for EGW follow a power law scaling, ∝ En
M,

where n = 2.7 for the points with the smallest viscosity.
This is steeper than the quadratic scaling found in the
work of [3], where the driving was applied for a much
shorter time interval, 1 ≤ t ≤ 1.1. Furthermore, for fixed
values of ν, we find smaller local values of n, at least for
the larger magnetic energies shown in Fig. 1. We also
checked that these scalings are not significantly affected
if the driving was turned off abruptly after t = 2. This
is shown as the dotted line in Fig. 1 for ν = 5× 10−5.

Comparing the lines for ν = 5× 10−5 and ν = 10−4 in
Figs. 1 and 2, we see that the decline of EM is stronger
than that of EGW. This suggests that EM suffers more
strongly from the increase of viscosity and magnetic dif-
fusivity, and that EGW is less sensitive to the change of ν.
However, one has to remember that GWs are solely the
result of the magnetic and hydrodynamic stresses. One
sees that the runs with smaller values of ν all have a faster
rise of EM(t) early on, which also translates into a rapid
increase of EGW(t). It is unclear, however, whether this
aspect of the model with applied magnetic driving is real-
istic and whether this would also be borne out by a more
physical implementation of a magnetogenesis model.

Next, we show in Fig. 3 the evolution of EM(t) and
EGW(t) with time. We see that for Runs C and D, EM
has reached a plateau well before t = 2, while for Run A,
a maximum is reached only at t = 2, i.e., the time when
the driving is decreased. Moreover, for Run A, there is a
strong temporal decline of magnetic energy due to strong
viscous damping. Nevertheless, similar GW energies are
obtained in this case. The value of EGW = 3×10−5 given
in Table I corresponds to h2

0ΩGW = 4.93× 10−10, which
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TABLE I: Summary of the runs.

Run f0 ν E
max

M E
sat

GW hsat
rms Brms [µG] h2

0ΩGW hc

Fa 5× 10−1 2× 10−2 1.40× 10−0 2.6× 10−1 2.7× 10−1 4.7 8.04× 10−6 2.69× 10−13

a2 3× 10−1 2× 10−2 5.08× 10−1 3.0× 10−2 9.2× 10−2 2.9 9.19× 10−7 9.19× 10−14

b 3× 10−1 5× 10−3 9.40× 10−1 5.4× 10−2 1.4× 10−1 3.9 1.66× 10−6 1.36× 10−13

c 2× 10−1 5× 10−3 4.26× 10−1 9.4× 10−3 5.7× 10−2 2.6 2.90× 10−7 5.73× 10−14

d 1× 10−1 5× 10−3 1.09× 10−1 5.5× 10−4 1.4× 10−2 1.3 1.71× 10−8 1.38× 10−14

A 7× 10−3 5× 10−5 4.05× 10−1 3.0× 10−5 3.1× 10−5 2.5 4.93× 10−10 2.46× 10−20

A’ 7× 10−3 5× 10−5 3.94× 10−1 2.4× 10−5 2.7× 10−5 2.5 3.91× 10−10 2.19× 10−20

A2 7× 10−3 1× 10−4 1.91× 10−1 9.5× 10−6 2.0× 10−5 1.8 1.56× 10−10 1.61× 10−20

O1 5× 10−3 5× 10−5 1.82× 10−1 5.4× 10−6 1.4× 10−5 1.7 8.86× 10−11 1.12× 10−20

O1’ 5× 10−3 5× 10−5 1.74× 10−1 4.3× 10−6 1.2× 10−5 1.7 7.07× 10−11 9.65× 10−21

O2 5× 10−3 1× 10−4 7.50× 10−2 1.7× 10−6 8.4× 10−6 1.1 2.84× 10−11 6.67× 10−21

B 2× 10−3 2× 10−6 9.67× 10−2 5.6× 10−7 5.2× 10−6 1.2 9.24× 10−12 4.17× 10−21

C2 1× 10−3 2× 10−6 2.74× 10−2 3.1× 10−8 1.3× 10−6 0.66 5.03× 10−13 1.03× 10−21

C 1× 10−3 2× 10−7 3.35× 10−2 3.5× 10−8 1.3× 10−6 0.73 5.80× 10−13 1.07× 10−21

D 6× 10−4 2× 10−7 1.68× 10−2 5.3× 10−9 7.1× 10−7 0.52 8.73× 10−14 5.64× 10−22

FIG. 3: Evolution of (a) EM(t) and (b) EGW(t) for Runs A–D of Table I. Note the rapid decay for Run A with the largest
viscosity.

is four orders of magnitude larger than for Run D.
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