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ABSTRACT

In many astrophysical environments, self-gravity can generate kinetic energy, which, in principle, is available for driving dynamo
action. Using direct numerical simulations, we show that in unstirred self-gravitating subsonic turbulence with helicity and a
magnetic Prandtl number of unity, there is a critical magnetic Reynolds number of about 25 above which the work done against
the Lorentz force exceeds the Ohmic dissipation. The collapse itself drives predominantly irrotational motions that cannot be
responsible for dynamo action. We find that, with a weak magnetic field, one-third of the work done by the gravitational force
goes into compressional heating and the remaining two-thirds go first into kinetic energy of the turbulence before a fraction of it
is converted further into magnetic and finally thermal energies. Close to the collapse, however, these fractions change toward 1/4
and 3/4 for compressional heating and kinetic energy, respectively. When the magnetic field is strong, the compressional heating
fraction is unchanged. Out of the remaining kinetic energy, one quarter goes directly into magnetic energy via work against
the Lorentz force. The fraction of vortical motions diminishes in favour of compressive motions that are almost exclusively
driven by the Jeans instability. For an initially uniform magnetic field, field amplification at scales larger than those of the initial

turbulence are driven by tangling.
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1 INTRODUCTION

Dynamo action describes the conversion of kinetic energy into
magnetic (Moffatt 1978). This can also happen under non-stationary
conditions, for example in decaying turbulence, where the kinetic
energy tends to decay in power-law fashion, so the growth of the
magnetic field is no longer exponential in time, as it would be in
stationary turbulence (Brandenburg et al. 2019; Sur 2019). This type
of unsteady energy conversion is expected to play a role in many
astrophysical settings where the magnetic Reynolds number is high
enough.

In the interstellar medium (ISM), as well as on cosmological
scales, self-gravity can be the dominant driver of turbulence (Field,
Blackman & Keto 2008; Klessen & Hennebelle 2010). In the context
of galaxy growth, the gas accretion flows typically predicted by
numerical simulations around galactic discs (for some examples
Dekel et al. 2009; Nelson et al. 2015) convert gravitational potential
energy into kinetic energy. In the ISM of galaxies, the gravitational
instability of the disc itself has been proposed as the main source
of turbulence (e.g. Bournaud et al. 2010; Krumholz & Burkhart
2016), with a contribution that can be as strong as that of supernova
feedback (Krumbholz et al. 2018). Finally, gravitational accretion is
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believed to be the main driver of turbulence within molecular clouds
(Ibanez-Mejia et al. 2017).

While the exact fraction of potential energy that goes into
turbulence is unknown — and probably depends strongly on the
environment — it is clear that, in general, self-gravity can be an
important source of kinetic energy. This kinetic energy can, in turn,
be converted into magnetic energy through dynamo action. Earlier
work has shown that in gravitationally unstable flows, the magnetic
energy increases during the linear phase of the collapse, and that the
magnetic energy declines during the non-linear phase of the dynamo
(Sur et al. 2010, 2012; Xu & Lazarian 2020).

The kinematic phase of a turbulent dynamo within a collapsing
cloud was considered by Federrath et al. (2011b), who reported
exponential growth of the magnetic field with a Kazantsev spectrum,
as was previously found for forced turbulence. Their dynamo
growth rate exceeded the collapse rate, provided their resolution
criterion of 30 grid cells per Jeans length is obeyed at any position
in space and any point in time. As they demonstrated, at lower
resolution, the magnetic field is only amplified because of flux
freezing.

Magnetic fields can also be produced by tangling of a large-
scale seed. This type of growth can still occur in two dimensions,
where true dynamo action is impossible according to the Cowling
antidynamo theorem; see Hide & Palmer (1982) for a generalized
antidynamo theorem relevant to compressible flows.
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An important goal of this work is to characterize dynamo action
in unstirred decaying turbulence, where gravity provides an energy
source that can eventually revert the decay of the turbulence.
We approach the question with direct numerical simulations of
systems with different turbulent initial conditions, and in various
degrees of gravitational instability. Our turbulent initial conditions
are almost exclusively subsonic with a Mach number of 0.2.
One motivation behind this choice is that the critical magnetic
Reynolds number for dynamo action increases by about a factor
of two when the flow is supersonic (Haugen, Brandenburg &
Mee 2004b). The low initial Mach number also allows us to
focus on any dynamo action triggered by the collapse-produced
turbulence, rather than by the decaying turbulence from the initial
conditions. In fact, we will show that, as the models evolve,
the collapse itself produces turbulence that eventually dominates
the initial flow. However, since turbulence in many astrophysical
environments, such as molecular clouds, is supersonic (Schnei-
der et al. 2013), we will also present one run with an initial
Mach number of two. Furthermore, given that the sonic Mach
number is scale-dependent (Federrath et al. 2021); our early sub-
sonic phase might still be applicable to correspondingly small
scales.

In driven turbulence, dynamo action can be adequately charac-
terized by the growth rate, evaluated as the time derivative of the
root-mean-square (rms) magnetic field. In stationary conditions, this
quantity stays reasonably constant with time. However, in the non-
stationary conditions that we study here, namely decaying turbulence
and turbulence generated by gravitational collapse, the magnetic field
no longer grows exponentially, and the growth rate cannot be used
as a dynamo criterion. Therefore, in this study we explore new, more
general dynamo criteria that allow for non-stationary turbulence
conditions. We decided to base our dynamo criterion on the work
against the Lorentz force, where the magnetic curvature force plays
the dominant role. When this work exceeds the Joule dissipation,
it might be a dynamo. This definition of a possible dynamo agrees
with the standard definition of a positive growth rate when the flow
is steady, but, unlike any dynamo criterion proposed so far, it can
easily be applied to unsteady flows. It does not, however, distinguish
dynamos in three dimensions from just temporary amplification
through tangling and compression, as can be seen, for example, in
two dimensions. To exclude the effects of two-dimensional (2D)
compression or tangling, we propose splitting the Lorentz work
term into two contributions, of which one is absent in 2D. This
leads to an additional criterion that must be satisfied for dynamo
action.

We use high-resolution numerical simulations with fixed kine-
matic viscosity and magnetic diffusivity to be able to de-
fine the threshold for dynamo action. Note also that, un-
like codes with adaptive mesh refinement, where the accuracy
of the solution varies in space (see, for example, Federrath
et al. 2010), we resolve all regions in space equally well.
There should therefore be no doubt that our velocity spectra
and other diagnostics are representative of the domain as a
whole.

In this paper, we first define our model (Section 2). We then
present the results for the energy spectra and the energy conversion
rates, as well as characteristic wavenumbers and dynamo excitation
conditions for weak initial magnetic fields (Section 3). We then
compare our results with those for strong initial magnetic fields
(Section 4), and conclude in Section 5.
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2 THE MODEL

2.1 Governing equations

We consider an isothermal gas with sound speed ¢, in a cubic periodic
domain of size L?, so the smallest wavenumber is k; = 27/L. The
pressure is given by p = pc2, where p is the density. The governing
equations are (Passot, Vazquez-Semadeni & Pouquet 1995)

V20 =47G (p — po). (D)
Du 2 1
E:-V(cslnp+d>)+—(1xB+V-2puS), )
1%
DI
" _v.u (3)
Dt
A
EZHXB—W/«OJ, 4)

where @ is the gravitational potential, G is Newton’s constant,
po is the spatially averaged density, which is constant in time
because of mass conservation, u is the velocity, J =V x B/ug
is the current density, i is the vacuum permeability, B = V x A
is the magnetic field in terms of the magnetic vector potential,
S = %(ui,j +uji) — %BijV - u are the components of the rate-of-
strain tensor with commas denoting partial derivatives, and v is the
kinematic viscosity.

The occurrence of the constant py in equation (1) comes from
a change of coordinates to a comoving reference frame that is
following the global expansion of the background medium (see
Alecian & Leorat 1988). This is a consequence of working with
an infinite (unbounded) medium. Such a medium can be stationary,
but not static. This was also explained by Falco et al. (2013), who
clarified why the famous Jeans swindle (Binney & Tremaine 2008)
actually works. In this accelerated frame, equations (1)—(4) describe
the departure of collapsing structures from the background flow.

Linearizing equations (1)-(3) around p = py and u =0, and
assuming the perturbations to be proportional to e***" yields
the dispersion relation 0% = o} — c2k?, where o} = 4w Gpy with
oj being the gravitational or Jeans growth rate (Jeans 1902). The
pressureless free-fall time is t = /3/8 /0y ~ 1.92/07 (Shu 1992).
The Jeans wavenumber is k; = oj/cg, and the Jeans length is then
Ay = 2m/k;y (see e.g. Bonazzola et al. 1987; Truelove et al. 1997).
According to the classical Jeans criterion for gravitational instability,
an interstellar gas cloud will collapse if its free-fall time is shorter
than the sound crossing time in its interior, or, more specifically,
lffcskl < 1.92.

2.2 Diagnostic quantities
2.2.1 Energetics

Throughout this paper, we use periodic boundary conditions, so all
surface integrals vanish and no mass is lost. In the following, volume
averages are denoted by angle brackets. It is instructive to inspect
the evolution equations of mean potential, kinetic, and magnetic
energy densities, &p = —((V®)?)/87 G, E = (pu?)/2, and &y =
(B?) /20, respectively (Banerjee & Kritsuk 2018). They are given by

dép
7:—W, 5
o i (5)
dé
TfZWP+WJ+WL_QK7 (6)
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where Wp = —(u-Vp)=(pV - -u) is the work done by the
pressure force, Wy = —(pu - V®) is the work done by the gravity
term, Wi = (u - (J x B)) is the work done by the Lorentz force,
and Qg = (2pvS?) and Qy = (uonJ?) are the viscous and Joule
dissipation terms. The thermal energy density is sourced by the terms
—Wp + Ok + Owm, but with the employed isothermal equation of
state, the thermal energy density is not evolved.

The work done by the gravity term (W) > 0) leads to a decrease of
the potential energy density and to an increase in the kinetic energy
density. During the collapse, the virial parameter o, = 2E/|Ep| is
expected to be around unity, but this expectation can be different
at large Mach numbers (Ntormousi & Hennebelle 2019) and for
strong magnetic fields; see Federrath & Klessen (2012), who also
emphasize the difference between periodic setups, such as ours, and
isolated spheres.

We have defined all work terms such that they enter with a plus
sign in equation (6), i.e. they lead to an increase in the kinetic
energy density if they are positive, and thus to a loss in some
other energy reservoir. As noted above, a positive W; term leads
to a loss of potential energy. Likewise, a positive Wp term leads to
a loss in thermal energy. Gravitational collapse however, leads to
compressional heating and Wp is therefore negative. Furthermore,
dynamo action leads to a growth in magnetic energy if Wi is
negative.

The W; term can be split into three constituents: W =
—(u - VB2 /2u), Wﬂ =(u-(B-VB/uo)), and Wt = (u-(B -
VB/u).). Here, =V B? /2 is the magnetic pressure contribution
of J x B,and (B - VB/u); and (B - VB/u), are the stretching
terms along and perpendicular to the magnetic field. The last two
forces are also referred to as tension and curvature forces; see
Nordlund et al. (1992) for their contributions to a convective dynamo.

In the following, we also decompose W by writing it as W =
—(J - (u x B)) and expanding the curl to get

—(J - (ux B)) = (Jiuj(A;; — Aj ;) = WP + WP, (8)

Here, we make use of the fact that the Weyl gauge has been used in
equation (4). In two dimensions, the magnetic field can be represented
as B =V x A,z, with its x and y components lying in the xy plane.
Then the term WP = —(JiujA; ;) vanishes in 2D. Thus, we can
identify WP with a contribution that characterizes the 3D nature of
the system and can therefore be a proxy for dynamo action, provided
WP is large enough.

To characterize the flow of energy, it is convenient to define
the fractions ef = —Wp/W;, €k = —Wr /Wy, 6™ = & /W), and
e;K = Qk/Wj. Likewise, we define the fractions ef M= éu /(—Wp),
and €; M — Ou/(—Wy). To characterize the growth or decay of the
magnetic field, we define the non-dimensional ratio efy = (— Wy, —
Owm)/Owm. A related quantity is the pseudo (or instantaneous) growth
rate of magnetic energy, y = (—Wr — Om)/Em, which can be
divided into the contributions y. + y + y. = y from compression
and stretching parallel and perpendicular to the magnetic field,
where y, = (—WLl — Owm)/Ewm will play the most important role,
and y, = —WJ/EM and y; = — W[ /Ey contribute either later or in
the presence of strong initial magnetic fields. Likewise, we define
yap = —(WZ° + Om)/Enm and ysp = —WiP/Ey;, so that yop +
ViD=V
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2.2.2 Characteristic wavenumbers

To characterize the compressive and solenoidal flow components, it
is convenient to compute the rms velocity divergence, (V - ) =
((v- u)2>1/2, and the rms vorticity, o = (®©°)'/%, where @ = V x
u, and to define

kyy,= (V- u)rms/urmw ©)

kt.) = wrms/”rmw (]O)

which have the dimension of a wavenumber. Since the flow is helical,
we can also define the wavenumber

kouw = (@ - )| /ul, (€5))

which characterizes the typical wavenumber where helicity plays a
role. Large values of kv ., ks, and k., imply strong flow divergences
or compressions, strong vortices, and strong swirls, respectively. To
characterize the flow compression from the gravitational collapse,
we also define

kpyvu = —(pV -u)/pottrms (When kv, > 0), (12)

where py = poc? has been introduced for brevity. The relevance of
k,v.. to the collapse phenomenon is motivated by the fact that a
strong flow compression or flow convergence (V - u < 0) correlates
with pressure (defined in the beginning of Section 2.1). Indeed, it
turns out that kv, is very small prior to collapse, but it approaches
kv .. close to the collapse.

2.2.3 Spectra

We define the kinetic and magnetic energy spectra, Ex (k, 1) and Ey (&,
1), respectively. They are normalized such that f Ex(k,t)dk = &k
and [ Em(k, 1)dk = Ey. It can be advantageous to express them
as wavenumber-dependent Reynolds and Lundquist numbers by
defining a velocity and a magnetic field,

up(t) = \/2kEx(k, 1)/ po,  Bi(t) = \/2pok Em(k, 1), 13)

respectively. We then define
Re(t) = u(t)/vk and  Lu(t) = Bu(1)/(/1ropo nk). 14

A Kolmogorov-type spectrum with Ex (k) o< k= corresponds then
to ur o k= and Re; o« k~*3. In the following, we also quote
these values at k = k¢, where the initial kinetic energy spectrum
peaks. We also define the Reynolds number Re, based on the actual
rms velocity, with Re,, denoting the value at the time #,, when the
exponentially growing gas motions from the Jeans instability begin to
dominate over the initial turbulence. In the present normalization, the
values of Rey; and Re; are close to the Taylor microscale Reynolds
number (Tennekes & Lumley 1972), which is universally defined
as Re, = v’)»Tay/v. Here, v = urms/\@ is the 1D rms velocity and
Atay = +/15vp9/ Qk V' is the Taylor microscale.!

Kinetic and magnetic helicity spectra, Hk (k, 1) and Hy(k, 1), are
normalized such that [ Hyx(k, 1)dk = (@ - u) and [ Hu(k, t)dk =
(A - B) are the mean kinetic and magnetic helicities. They obey the
realizability conditions |Hg (k)| < 2kEx (k) and |[Hy (k)| < (2/k)En(k)
(Moffatt 1978). It is then convenient to plot the relative helicities
given by the corresponding ratios Hx (k)/2kEx (k) and kHy;(k)/2Ep(k),
respectively.

I'We correct herewith a typo in Haugen et al. (2022), where the v’ factor in
ATay Was omitted in their definition, but it was included in their calculations.
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We also plot the enstrophy and logarithmic density spectra,
E,(k) and E,,(k), respectively. They are normalized such that
J E,(k)dk = (@?)/2 and [ E,(k)dk = ((Inp)?). Here, E,(k)/k*
corresponds to the kinetic energy spectrum of the vortical part of the
velocity, and E, (k) reflects its irrotational part. Finally, the potential
energy spectrum is normalized such that [ Ep(k) dk = Ep.

2.3 Units and parameters

In the plots shown in this paper, we express velocities in units of
s, lengths in units of kl_l (defined in the beginning of Section 2.1),
density in units of pg, and the magnetic field in units of ,/zopocs. In
practice, we do this by choosing in our simulations ¢ = k; = pg =
o = 1. In the following, to remind the readers, we often include
relevant combinations of ¢ and k; when specifying the numerical
values, but in other cases, especially in the table entries, we simply
omit them to avoid lengthy notation.

Since we do not invoke cooling or any other processes that depend
on dimensions, our simulations can be scaled to any arbitrary system
by choosing physical values for cg, ki, and po. To illustrate the
normalization used in the simulations, let us consider, as an example,
the case ¢, = 1kms™' and k; = 1 pc*'. Then, our time unit is
(csk1)™! = 0.98 Myr, so we can think of our normalized time as
1 Myr. Considering a typical density of py = 1072' gcm™> for the
dense regions of the ISM, we have afl = 1.1 Myr, or t = 2.1 Myr.
Then, the corresponding Jeans wavenumber is k; = 0.9 pc™!, so the
Jeans lengthis A; = 7 pc. Fork; = 1 pc™!, the side length of the com-
putational domain is 6.28 pc &~ 0.91;. The corresponding normalized
(non-dimensional) quantities are then aJ_lcskl = 1.1 and o;)/csk; =
ki/ky = 0.9. All work terms are given in units of pocgkl, which
corresponds to 1 gem™>(kms™")%/pc = 10" ergem™ Myr~! or
0.0024 L, pc*3. In this work, we choose two values for oj/csk;,
2 and 5, which means that our computational domain is two or five
Jeans lengths long, and our mesh of 20483 cells resolves the Jeans
length initially with 1024 or 410 points, respectively. As the collapse
proceeds, the maximum density increases and the nominal Jeans
length decreases. To stay within the resolution criterion of Federrath
et al. (2011b) of 30 mesh points per Jeans length, we can only trust
the time before the maximum density has exceeded the initial value
by a factor of (1024/30) ~ 1200 and (410/30)? = 200 for the cases
with oj/csk; = 2 and 5, respectively.

As mentioned earlier, we focus on subsonic turbulence, where
dynamo action is most easily obtained (Haugen et al. 2004b;
Federrath et al. 201 1a). In the context of molecular cloud contraction,
this choice puts them in the regime of low-mass prestellar cores.
While molecular clouds are supersonically turbulent on large scales,
low-mass prestellar cores are subsonic (Larson 1981; Myers, Ladd &
Fuller 1991; André et al. 2007). Such weak motions could originate
from the decay of larger scale turbulence (e.g. Hennebelle &
Falgarone 2012).

We choose the amplitude of the initial velocity field such that the
initial Mach number Ma = u,,/cs is around 0.1. The turnover time
is given by T = (umsks)~!. We are interested in the cases where
the turnover time is comparable to or less than the free-fall time
scale UJ_I, where oj must be larger than unity (in units of cik;)
for the Jeans instability to be excited. Given that Ma =~ 0.1, this
automatically implies that ki/k; > 10, provided that oy is not much
larger than unity. We focus on the case with oy = 5¢,k;, but we have
also experimented with smaller values of two and even 1.1. However,
when o7 is that small, it takes a long time for the instability to develop
and by that time the initial turbulence would have decayed too much.

Dynamo effect in self-gravitating turbulence
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The magnetic field strength can also be specified in terms of vi™ =

Bims/ /10 po- In the second part of the paper, we consider values of
VA" /cs in the range 0.04—0.4. In the first part of the paper, however,
we are interested in the kinematic regime and therefore consider
values of around 10!, In all cases, we adopt a magnetic Prandtl
number of unity, i.e. v/ = 1, so the Reynolds number is always
equal to the magnetic Reynolds number.

2.4 Initial conditions

As initial conditions, we assume p = po, so there is no density
perturbation. However, we assume that the velocity and magnetic
fields have a random distribution with a k* spectrum below a given
wavenumber k; and a k=3 spectrum above k;. We assume the initial
velocity to be maximally helical at all wavenumbers, but take the
magnetic field to be non-helical. This then leads to perturbations
in the system that trigger the Jeans instability. Again, with a few
exceptions, we deliberately choose a very weak initial magnetic field
S0 as to see the possibility of a kinematic dynamo at early times. A
dynamo effect in decaying turbulence has been found in an earlier
study (Brandenburg etal. 2019), where one saw a significant temporal
increase of the magnetic field over several orders of magnitude when
the initial field is sufficiently weak, but no significant increase was
found for fields that start off in near-equipartition with the turbulence.

2.5 Numerical simulations

We use the PENCIL CODE (Pencil Code Collaboration 2021), which
employs sixth-order accurate derivatives in space and a third-order
accurate time stepping scheme. Self-gravity was implemented by
Johansen et al. (2007) for modelling planetesimal formation and
employs Fourier transformation. That same module is also being
used for studying dust formation in the ISM (Mattsson & Hedvall
2022).

Many of the diagnostic quantities are calculated during run time,
including spectra and slices. Most of the secondary data that are used
for the plots are publicly available; see the code and data availability
statement at the end of the paper.

3 RESULTS FOR WEAK MAGNETIC FIELDS

3.1 Visualizations and spectra

In Fig. 1 we show the evolution of the Mach number and the rms
Alfvén speed normalized to the sound speed for oy = 2¢sk; (Run O1)
and Scik; (Runs A-E), so fgesk; = 0.96 and 0.38, respectively. In
both cases, an exponential growth of Ma commences at some time.
For Run O1, the growth rate agrees with that expected from the
dispersion relation, i.e. o/csk; = /3, but for Run B, the actual
value is 10 percent smaller than the theoretically expected value,
o/csky = /24, which could be related to the finite viscosity. We
define the moment when the rms velocity has recovered to its initial
value (denoted by the horizontal line for u;m(0)/cs = 0.2) as ..
Those characteristic times (t,csk; ~ 1.5 and 4.9 for oj/csk; = 5
and 2, respectively) are denoted by vertical dash—dotted lines in the
corresponding colours. Those times correspond approximately to the
moment when the negative potential energy density begins to exceed
the kinetic energy density, i.e. when the virial parameter «; drops
below two; see Appendix A for a demonstration. In the supersonic
case of Run S, the collapse is found to occur earlier. This is mainly
a consequence of the stronger initial perturbations (see e.g. Mac
Low & Klessen 2004, for a review).
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Figure 1. Mach numbers for (a) the rms velocity and (b) the rms Alfvén
speed. The red and black dashed lines in (b) have been scaled up by 10'° to
make them visible. The vertical dash—dotted lines denote the times 7, when
the Mach number has recovered to the original value of about 0.2. (For Run S,
the initial value of 2 was not recovered before the collapse.) The dotted lines
correspond to exp (of) with o = 0.9+/24 and /3, respectively. The upper
abscissa gives time as tcgk; for the cases with oj/csk; = 5.

The growth of the magnetic field is quantified by the ratio va/cy;
see Appendix B for a comparison with other measures such as By
and the ratio | B|/p*?. Given that the velocity is decaying during the
first part of the evolution, we cannot expect an exponential growth
of the magnetic field. During the second part, when the velocity
is exponentially increasing, the magnetic field does not show a
corresponding increase. In the following, we tentatively associate
the slow growth of the magnetic field during the decay phase of the
velocity field with a dynamo, and the second part, which is dominated
by the Jeans instability, with just compressional amplification. With
these observations in mind, we continue using the term dynamo, but
leave it for further analysis to establish more rigorous and convincing
criteria.

For the rest of the paper, we focus on the case o = Sck;, so
we expect growth for k < k; = 5k;. We summarize our runs in
Table 1. In Fig. 2, we show a visualization of the z components
of the vorticity and magnetic field for Run B, as well as its flow
divergence and the logarithmic density near the end of the run at
tegky = 2.02 = 5.24 t, shortly before further compression can no
longer be resolved. The fact that this time is much longer than unity
is due to the periodicity of the solution to the Poisson equation
(Federrath & Klessen 2012; Lane et al. 2022). We see that w, and
B, show strong concentrations toward regions where the density also
increases. Note that the regions of negative flow divergence are more
strongly concentrated that those of positive flow divergence, but
both V - u and In p are dominated by a spatially smooth component
that, unlike w, and B,, lack small scales. Very weak small-scale
perturbations can be seen in the visualizations of V - u, but not in
those of In p. Gradients of In p do, however, show marked small-scale
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structure. In our runs, the density contours are more often aligned
with the magnetic field vector than being perpendicular to it. This is
demonstrated in Appendix B for Runs M1 and I1, where we see that
B is mostly perpendicular to V In p.

To see whether at any scale, the Reynolds number is large enough
for dynamo action, we employ the k-dependent Reynolds numbers.
In Fig. 3, we show spectra of Re(k) and Lu(k) at different times. We
clearly see that the spectra display instability for k < k; = 5k,
and only at late times (tcsk; > 1.7), somewhat smaller scales begin
to grow as well. However, the effect on the rest of the spectrum
is surprisingly weak. There is a small increase of Lu(k) at all
wavenumbers, but there is no visible effect from the Jeans instability
itself, except for the time close to the end of the simulation where one
sees an increase of both Re(k) and Lu(k) at the highest wavenumbers,
indicating that more energy is now being channelled through the
turbulent cascade. We also see that the value of Re(k) near the
wavenumber k¢, where the initial kinetic energy spectrum peaks,
is around Rey, = 100. According to previous studies, this value is
high enough for dynamo action. Our more detailed studies below
confirm that this is indeed the case. When changing v and n, the peak
values of Re(k) and Lu(k) change correspondingly. In Appendix C,
we show that Re; is about half the value of Rey,, but during the
collapse phase, the Taylor microscale grows nearly exponentially,
causing Re; to grow faster than the other Reynolds numbers.

3.2 Work terms

Next, we consider the evolution of the various work terms; see Fig. 4.
The work done by the gravity force, —(pu - V&) = W; > 0, leads
to flow compression, (pV -u) = Wp < 0, and an increase of the
kinetic energy density, so
dé&

—(pu-V®)=—(pV -u) + d—f (15)
where the ellipsis denotes the sum of two additional, subdominant
terms: Qg and —W. The dominant balance in the kinetic energy
evolution is given by the Jeans work, which is found to be balanced
to 1/3 by the pressure work and to 2/3 by the growth in kinetic energy,
ie.

—Wp = lWJ, Ek ~ %W] (16)
3 3

The latter can be integrated to give & ~ (2/3) [ W; dr. Likewise,
integrating equation (5) gives —&p ~ f Wy dt, which implies oy, =
28k /|Ep| & 4/3.Tts value would be unity, if only half of W; went into
the growth of kinetic energy, but this is not the case. It is important to
realize that the energy flux ratios in equation (16) apply to the time
t = t,. They change at later times toward 1/4 and 3/4 for the pressure
work and growth in kinetic energy; see Appendix A, which implies
yir A 3/2.

These ratios of the work terms imply that about one-third of the
gravitational energy goes into compressional heating and two-thirds
go into kinetic energy before eventually also being thermalized.
At the reference time 7, = 1.5/(csk;), however, viscous dissipation
contributes only about 3 per cent; see Runs A-E in Table 1.

In the kinematic regime of the dynamo, the work done by the
Lorentz force is very small; see Fig. 4b. Nevertheless, this term
exceeds the Joule dissipation when Re is large enough. Here, the
work done against the Lorentz force, —Wy, leads to Joule heating
and an increase in the magnetic energy density, i.e.

dév

—(u-(JxB))=<MonJ2>+F. an
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Table 1. Energy flux ratios and Reynolds numbers for the runs discussed in the paper. Here, ky and k¢ are in units of k.

Run ky ke Rey, Rey, Lu,, e}) 6;— K € K 6}“ eﬂ' M €5 M eﬁ y N3
ol 210 500 1000 23 x 107 030 0.68 0.02  0.000 028 0.72 0.40 139 20483
02 5 2 100 1000 39 x107'% 032 0.67 0.01  0.000 049 0.51 0.96 0.83 10243
A 5 10 500 1000 1.0x 1072 033 0.64 0.03  0.000 035  0.65 0.70 3.0 20483
B 5 10 100 200 99 x 1075 034 0.63 0.03  0.000 021  0.79 0.26 044 20483
b 5 10 100 200 99 x 1075 031 0.66 0.03  0.000 020 0.76 0.32 054 10243
C 5 10 20 40 9.6 x 1071 0.34 0.63 0.03  0.000 0.06 0.94 0.06 0.08 20483
D 5 10 5 10 1.1 x 107 031 0.66 0.03 0000 —082 182 —048 —044 10243
E 5 10 1 2 5610718 025 0.73 002 0000 —115 125 —096 —1.13 10243
S 5 10 500 1300 8.7 x 107'% 031 0.60 0.09  0.000 0.34  0.66 0.79 247 10247
Ml 5 10 500 1000 1.3 x 103 0.36 0.46 013 005 —17.6 186 —0.94 —038 20483
M2 5 10 500 1000 6.4 x 102 031 0.67 001 001 —097 197 —045 —0.16 20483
M3 5 10 500 1000 4.1 x 102 0.32 0.65 001  0.02 0.03 097 0.17 0.11 20483
M4 5 10 100 200 9.8 x 10° 0.33 0.65 0.02  0.00 020 0.80 0.25 042 20483
Il 5 10 500 1000 1.6 x 103 0.29 0.68 001  0.02 0.67 0.33 2.63 0.05 20483
2 5 10 500 1000 7.5 x 102 031 0.67 001 001 020 0.80 0.26 0.03 20483
3 5 10 500 1000 43 x 102 0.32 0.65 001  0.02 0.32  0.68 0.60 0.33 20483
@ B,
1.0e+00 2.0e—18
5.0e—-01 1.0e—18
0.0e+00 0.0e+00
—5.0e-01 —1.0e—18
—1.0e+00 —2.0e—18
divu Inp
2.0 02
1.0 0.1
0.0 0.0
-1.0 0.1
—-2.0 -0.2

Figure 2. o, (upper left), B, (upper right), V - u (lower left), and In p (lower right) near the end of the run. Note the close correlation of the magnetic field with
the vorticity and their concentration toward regions of strong flow convergence (divuz < 0) and high density.
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Figure 3. (a) Re(k) and (b) Lu(k) for Run B at six different times, indicated by line types and colour.
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Figure 4. (a) Work terms Wj (red) and —Wp (orange), as well as —Wp + Ex (black dashed). Also shown is the kinetic energy dissipation, Q. (b) Work terms
—Wi (red) and Qu (blue), as well as Qum + Em (black dashed). We recall that all work terms are in units of pocgkl.

Therefore, based on the positivity of (—Wy) — Qu, i.e. the positivity
of y, we argue that we can determine the threshold for dynamo
action to be around 25. This is the value for which the interpolated
line of (—WL/Owm) — 1 versus Re crosses zero, which corresponds to
marginal dynamo excitation; Fig. 5. In fact, Run C with Re;, = 20
is close to the marginal point; see Table 1.

During the exponential growth phase of the Jeans instability,
the velocity grows at the rate +/24csk;. During that period, Re(r)
increases rapidly with time, and so does also the difference (—Wr)

—Owm.

3.3 Dependence on the magnetic Reynolds number

As the magnetic Reynolds number increases, we expect a dynamo
to become stronger and thus, €5 = (—W — Om)/Qwu to increase.
However, the magnetic Reynolds number is time-dependent, because
umms increases. This raises the question whether this dependence
follows a similar trend that is seen by comparing different runs.

In Fig. 5, we plot €{;(¢) versus Re, and compare with the values
listed in Table 1 for the nominal time #, = 1.5/(csk;) versus Rey,. We
see that €}(t,) shows a rather shallow increase with Rey(#,) of the
form

€l ~ In(0.45Re'/). (18)

MNRAS 513, 2136-2151 (2022)

Ref{itf 25

1 10 100 1000
Re, and Rey

Figure 5. Time dependence of (—Wi./Om) — 1 on Re; for Runs A (red), B
(orange), C (green), D (blue), and E (black). The values of (—W./Qm) — 1
from Table 1 are shown as diamonds as a function of Rey, and are seen to
obey an approximate fit given by In(0.45 Re'/4); see the dash—dotted line.

The time-dependent tracks do approximately match this dependence
at around intermediate times, but all the lines are curved and
shallower for early times and steeper at late times, where the Jeans
instability becomes dominant.
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Figure 6. Characteristic wavenumbers k,, (blue), kg, (red), kv, (solid
black), and kv ., (dotted black).

3.4 Compression and vorticity

The magnetic field growth seems to be strongly correlated with the
rms vorticity. Earlier studies showed that it is only the vortical part
of the flow that leads to dynamo action (Mee & Brandenburg 2006).
To quantify the relative importance of vortical and irrotational or
compressive contributions to the velocity field, we show in Fig. 6
the evolution of the characteristic wavenumbers k,, kp.u, kv.,, and
kpv.u-

We see that k,, & 35 and k., &~ 20 during the early phase when the
collapse velocity is still subdominant. When the collapse becomes
dominant, k, and k., rapidly decline and kv., & 2.5 prior to the
final collapse. Nevertheless, we always find k,, > kv.,,1.e. vorticity
is still important. This is partially because of the compression of
vortices, as seen in Fig. 2, which enhances the vorticity. Furthermore,
we find that k,v., < kv.,, except very close to the collapse when
the two are similar.

3.5 Dependence on resolution

For our reference models, we use a fairly high resolution of 20483
mesh points. Larger resolutions become easily impracticable and

0.01

0.00

Q.02
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reach computational memory limitations. However, the dependence
on resolution is small and the maximum run time before the collapse
stops the calculation hardly changes at all when increasing the
resolution by a factor of two. By comparing Runs b and B, we see
that the values of Wp/W; and Ex /Wj, as well as those of Em /(—=WL)
and Qw/(—Wy) agree with each other within 10 per cent.

4 RESULTS FOR STRONG MAGNETIC FIELDS

4.1 Earlier collapse with stronger fields

We now consider cases where the magnetic field is dynamically
important. This situation is of particular interest for dense prestellar
cores, where the measured (e.g. Crutcher 2012) or inferred (e.g.
Karoly et al. 2020; Pattle et al. 2021) magnetic fields are particularly
strong.

Fig. 7 shows a comparison of the magnetic field patterns for
Runs M3 and M1, i.e. for weaker and stronger fields, respectively.
For the stronger magnetic fields in Run M1, the magnetic eddies
appear to be organized in larger patches that correspond to over or
underdense regions. For the stronger magnetic fields in Run M1, the
magnetic eddies appear earlier than in Run M3, which is probably
the result of the magnetically driven motion early on; see Fig. 1. This
behaviour is suggestive of an accelerated collapse process. This is
an important difference to the standard paradigm of magnetically
controlled star formation that employs a uniform magnetic field
(Mestel & Spitzer 1956; Mouschovias & Spitzer 1976; Shu 1977).
Instead, here the magnetic field is turbulent and only has moderate
large-scale coherence.

4.2 When Wy, affects the collapse

In Figs 8(a) and (b) we show the work terms for Runs M3 and
M1, respectively. Again, we see that a turbulent magnetic field does
not systematically delay the collapse, and a strong field can even
accelerate it.

We also see that the late-time exponential increase of —W and Qv
changes with respect to the weak-field behaviour from being twice
the rate of Wj to being equal to it; see Fig. 8b. Assuming the change
in J x B to be itself proportional to the change in u, we see that

BZ
0.04

0.02

0.00

—.02

.04

Figure 7. B, for Runs M2 (left-hand panel) and M1 (right-hand panel) at fcsk; = 1.6. Note the large-scale concentrations (marked by white ellipses) and voids
(marked by black circles) for stronger fields, even though the stage of the collapse is the same. For Run M1, one sees indications that the 20483 resolution begins

to become insufficient at t = 1.6.
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Figure 8. Work terms —Wp, (solid red) and Qy (solid blue), together with Wy (dashed red) and —Wp (dashed orange), as well as Qg (dashed blue) for (a)
Run M3 with a relatively weak magnetic field and (b) Run M1 with a strong magnetic field. Dotted lines denote the slopes corresponding to the growth rates
1.6 oy and 3.2 oy in panel (a) and 1.5 oy in panel (b). The thick dash—dotted line in panel (b) denotes Wi, > 0. Note that the work terms are in units of pocfkl.

— Wy is quadratic in u, which explains the growth of —Wy at twice
to Jeans rate. Once the field is strong, J x B does not change much
anymore, and so —W,, only grows at the Jeans rate.

The gravitational collapse is primarily characterized by the in-
crease in the velocity u and not so much by a change in gravity.
In reality, however, the change in gravity does contribute about
50 percent, and so we find that W; increases at a rate of about
1.6 03, and — W, increases at a rate of about 3.2 oy.

4.3 Comparison with uniform initial magnetic fields

In Fig. 9a, we show kinetic and magnetic energy spectra together with
logarithmic density spectra and the normalized enstrophy spectra
representing the kinetic energy spectra of the vortical part, and
compare with the case of a uniform initial magnetic field in Fig. 9b.
The two panels correspond to Runs M1 and I1. Even though Lu,, is
25 per cent higher in 11, the spectral energies are lower. The density
spectra show a rapid increase for k < kj, which is associated with the
Jeans instability, as was already seen in the kinetic energy spectra;
see Fig. 3a.

The magnetic energy spectra and the kinetic energy spectra of
the vortical part do not show the same increase, but there is a
slight one, which is different for the cases with a turbulent and
an initially uniform field. To understand this, it is useful to discuss
now the kinetic and magnetic helicity spectra for the two cases.
We see that, for runs with an initially uniform magnetic field
at intermediate wavenumbers, the magnetic energy is either in
nearly perfect equipartition, or in superequipartition with the kinetic
energy. However, it becomes subdominant at small wavenumbers,
where the behaviour is affected by gravitational collapse. Therefore,
the spectrum resembles that of a small-scale dynamo, where the
magnetic field is also in superequipartition at large k; see Haugen,
Brandenburg & Dobler (2003) and Haugen, Brandenburg & Dobler
(2004a). However, this similarity should not be regarded in any way
as evidence in favour of a dynamo. It appears to be instead just a
typical behaviour of any type of hydromagnetic turbulence.

Returning to the slight uprise of the magnetic field for 1 < k/k,
< 5 in the case of an initially uniform magnetic field, we argue that
this is caused by the tangling of the magnetic field by the collapsing
gas motions. It is therefore not due to an inverse cascade, which
usually occurs only in the absence of a mean magnetic flux through

MNRAS 513, 2136-2151 (2022)

the domain. In the case of a turbulent magnetic field, the build-up
of vorticity at small wavenumbers could be caused by the shear
flows, which leads to what is known as a vorticity dynamo (Elperin,
Kleeorin & Rogachevskii 2003). In the case of an initially uniform
magnetic field, this vorticity dynamo is suppressed (Képyld, Mitra &
Brandenburg 2009). However, the uprise of the vortical part of the
velocity field for 1 < k/k; < 5 appears to be caused by the magnetic
field and becomes weaker for Runs M2 and M3.

4.4 Helicity spectra

It is important to realize that, owing to the use of periodic boundary
conditions, an initially uniform magnetic field is equivalent to
what is sometimes described as an imposed magnetic field. This is
simply because the mean magnetic flux is preserved. A well-known
difference between cases with and without an imposed magnetic
field is the fact that (A - B) is no longer conserved in the former
case (Berger 1997). This is because now the magnetic helicity in the
domain interacts with the magnetic helicity on scales larger than the
size of the periodic domain, but this part is no longer included in the
simulation; see the discussion in Brandenburg & Matthaeus (2004).
In simulations of decaying turbulence, it has been found that the
magnetic fluctuations decay more rapidly when there is an imposed
magnetic field (Brandenburg et al. 2020).

Fig. 10 shows kinetic and magnetic helicity spectra for the
cases with a turbulent and an imposed field for runs with different
magnetic field strengths. The kinetic helicity spectra are similar
in the two cases, but the magnetic helicity spectra are not. In the
case of an imposed magnetic field, there is magnetic helicity of
the same sign at all wavenumbers, although it is less strong at small
wavenumbers. By contrast, in the case with a turbulent magnetic field
with zero net flux, the magnetic helicity is predominantly of opposite
(negative) sign and relatively strong also at small wavenumbers,
except in the case with the strongest magnetic field (Run M1). This
is caused by magnetic helicity conservation, where a small-scale
driving of magnetic helicity of one sign causes automatically the
appearance of magnetic helicity of opposite sign at large scales; see
also Brandenburg et al. (2019) for similar results. The small-scale
magnetic helicity does get slowly dissipated at late times through
finite microphysical magnetic diffusivity, leaving predominantly the
large-scale magnetic helicity of opposite sign behind.
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Figure 9. Comparison of kinetic, magnetic, and potential energy and density spectra at fcsk; = 1.7 for (a) Run M1 with a strong turbulent initial magnetic field
and (b) Run I1 with a strong uniform initial magnetic field. The dashed lines denoted with E,,(k)/k> correspond to kinetic energy spectra of the vortical part of
the velocity. Here, the E(k) are in units of cszkfl. Note that both axis ranges in (a) and (b) are the same.
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Figure 10. Comparison of relative helicity spectra with (a) turbulent and (b) uniform initial magnetic fields at #/csk; = 1.7. Blue (red) lines denote kinetic
(magnetic) relative helicity spectra. The solid lines are for Run B (I3), the dotted lines are for Run D (I12), and the thick dashed lines are for Run E (I1) for

turbulent (uniform) initial magnetic fields.

4.5 Contributions to the Lorentz work

The work done against the Lorentz force serves as one of our main
tools to quantify dynamo action. As we have mentioned at the end of
Section 2.2.1, the work done against the Lorentz force can be subdi-
vided into contributions from the magnetic pressure gradient, the ten-
sion force, and the curvature force. In Fig. 11, we show that, for weak
initial magnetic fields, the most important contribution to the pseudo
growth rate comes from the work done against the curvature force,
but later during the collapse, a more important contribution comes
from the compressional work done against the magnetic pressure
gradient.

In the runs with a strong magnetic field (turbulent or imposed), the
value of y is still negative at the critical time ¢,, but the compressional
work done against the magnetic pressure gradient is positive, and it
was positive also during the earlier phase, especially in the case of
a turbulent magnetic field; see Fig. 11c. The contribution of y. is a
characteristic feature of amplification or at least sustenance of the
magnetic field in collapsing turbulence through compression.

In Fig. 12, we plot the time dependences of y, yap, and yip =
y — y2p. We see that y,p is always close to zero, except during an
early phase which can be associated with 2D tangling of the initial

magnetic field. When y3p is included, the resulting pseudo growth
rate is positive during much of the early part of the evolution.

Based on the positive values of y; and y3p in the cases of weak
magnetic fields in Figs 11 and 12, we are led to suggest that those
runs do indeed host supercritical dynamos. When the magnetic field
is strong, however, y, and y3p are now negative, suggesting that
Run M1 cannot be classified as a dynamo.

For strong magnetic fields, only near the end of the collapse
does y, become positive. On the other hand, y3;p becomes then
the dominant term during the collapse and y,p becomes negative;
see Fig. 12b. This is probably caused by the strong alteration of the
flow by the magnetic field, making now y,p strongly negative. This
increases the compression and tangling terms associated with y,p,
which then contribute to enhancing the kinetic energy rather than the
other way around (as in a dynamo). Nevertheless, since the magnetic
field is now increasing, y3p becomes positive. From Figs 11(c) and
(d) we know, however, that this increase is manifestly caused by
compression, which must therefore be a 3D compression, and not a
dynamo effect.

In summary, we are led to conclude that there is dynamo action in
all cases with weak magnetic fields prior to collapse, but probably
no longer or not very much during the actual collapse. When
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Figure 11. Evolution of the pseudo growth rate y = y. + y) + y1 (solid lines), with contributions from the work done against the curvature force (y 1, red
dashed lines), the tension force (y, black dash—triple-dotted lines), and the magnetic pressure gradient (y, blue dotted lines) for (a) Run B, (b) Run O2, (c)
Run M1, and (d) Run I1. In panels (a) and (b), ) = 0. In panels (c) and (d), y; # 0, and the zero line has been drawn as a straight black line. The vertical
dash—dotted lines denote the critical time ¢, when the Mach number has recovered to the original value of about 0.2.
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Figure 12. Evolution of the pseudo growth rate y (black lines), with contributions from y,p (blue lines) and the residual y — y,p (red lines), for (a) Run B
and (b) Run M1.

the magnetic field is already strong, there is no longer dynamo this happens at such small scales and such late times that this
action, but just 3D compression. For large Mach numbers, at late effect cannot be captured in direct numerical simulations, even at
stages of the collapse, shocks form and cross each other, which a resolution of 20483 mesh points. After fc;k; = 1.98, the Jeans
causes vorticity production (Porter, Jones & Ryu 2015), resulting length is no longer resolved with 30 grid cells — the minimum
then also in dynamo action (Federrath et al. 2011a). However, proposed by Federrath et al. (2011b); see Appendix D, where
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Figure 13. Density spectra at t = 0.2, 0.6, 1, and 1.4, shifted upward by an
exp (10¢) factor to be able to see the shift of the oscillations in the spectra
in k. The dotted orange lines denote approximate fits of the form given by
equation (19).

we show the evolution of the maximum density during the col-
lapse.

4.6 Waves in the density spectra

Before concluding, let us comment on an interesting feature that
we noticed in spectra of the logarithmic density. At early and
intermediate times, we see a wavy structure in Ej, ,(k); see Fig. 13.
In fact, this wavy modulation is of the form cos k& (7), where &(f) =
¢t is the distance a sound wave has propagated in the time 7 since the
initial condition was applied. As time goes on, and as &(¢) therefore
increases, the waves appear to propagate toward smaller values of
k and are of progressively shorter length in k space. The changing
phase of these waves can be described by the formula

Ep(k, 1) = E(k) [14 g(k, 1) (1 — cos keh)] (19)

where E((k) oc k=7 denotes the unmodulated spectrum, and
g(1) = (140/k) exp(—0.8¢) is an empirically defined function (in
code units). Only at later times, the fit is going somewhat out
of phase. Given the agreement of our hypothetical modulation of
the form cos k& (r) with the actual spectrum, we can argue that the
wavy structure is indeed caused by the initial velocity perturbation
launching sound waves from multiple locations in the domain all at
the same time, and that their characteristic scale increases with time
like £(f) = ¢ t. Similar waves have also been seen in simulations
of gravitational waves that are being initiated from an instantaneous
perturbation; see fig. 2 of Roper Pol et al. (2020). No explanation for
this phenomenon was offered there, but we have now confirmed that
it can be explained in a similar way, except that the relevant speed in
the expression for &(7) is the speed of light.

5 CONCLUSIONS

In the present work, we have used the instantaneous excess of the
work done by the Lorentz force over the Joule dissipation as a
quantity that characterizes the dynamo. Under stationary conditions,
the dynamo can easily be characterized by the growth rate. However,
a growth rate cannot be defined in situations when the velocity itself
decays or grows exponentially with time, like we observe in our
models.
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The dynamo criterion based on the work terms results in a value
of the critical Reynolds number of about 25, which is smaller than
the critical value of about 35 for small-scale dynamo action (Haugen
et al. 2004a), but larger than the value for large-scale dynamo action
in the presence of helicity of below six (Brandenburg 2009). Also, in
the present case there is helicity, so we do expect a critical value that is
less than 35. However, there is a strong contribution from irrotational
motions that makes the dynamo harder to excite and does itself not
contribute to dynamo action (Mee & Brandenburg 2006). During the
collapse, i.e. after t = t,, and for weak magnetic fields (Runs B and
02), y1 and y3p show a slight decrease when the magnetic field
is weak, supporting the idea that this magnetic field growth is not
primarily caused by dynamo action, but just by compression.

Our investigation shows that the most important contribution to
the growth of a magnetic field comes from the work done against
the curvature force, although later during the collapse, there is an
even more important contribution from the compressional work
done against the magnetic pressure gradient. However, as we have
argued above, this type of magnetic field amplification happens also
in one or two dimensions and should therefore not be associated
with dynamo action. By considering the decomposition into y,p and
y3p we have made an attempt of distinguishing dynamo action from
the type of non-dynamo amplification seen also in two dimensions.
Nevertheless, our dynamo criterion is not very precise, as the pseudo-
growth rate changes behaviour with different initial conditions and a
number of factors need to be considered in combination.

We stated in the introduction that the exact fraction of potential
energy that goes into turbulence is unknown. Our results now show
that one-third of the energy input from potential energy goes into
compressional heating, and two-thirds go into the kinetic and mag-
netic energies of the turbulence. Thus, one would expect that, at the
end of the collapse, the sum of kinetic and magnetic energy densities
is twice the thermal energy density from compressive heating. This is
different from the virial theorem, which relates potential and kinetic
energies to each other. As explained in Section 3.2, however, since
the two-third contribution to the kinetic energy comes from potential
energy, which becomes more negative with time, it follows that the
ratio of kinetic to potential energy is 2/3 and thus, the virial parameter
is 4/3. It would be unity, if the contribution to the kinetic energy was
half the Jeans work. At later times, however, the fractional kinetic
energy gain increases toward 3/4 of the Jeans work, which implies a
virial parameter of about 3/2.

In all the simulations presented here, we have used an isothermal
equation of state. However, deviations from isothermality probably
play an important role during molecular cloud collapse. For example,
Lee & Hennebelle (2018) caution that, in simulations studying gravi-
tational fragmentation of molecular clouds, an isothermal equation of
state cannot lead to converged results with increasing numerical
resolution. They propose that an adiabatic equation of state at high
densities, essentially accounting for the formation of the Larson core
is a more physically meaningful approach. In future work, it would be
interesting to perform simulations using an ideal gas equation of state
instead of an isothermal one. Such simulations could also allow for
cooling, which would further increase the density in regions of strong
flow convergence and counteract an otherwise singular collapse.

It would also be interesting to apply our analyses to earlier work
that uses Bonnor—Ebert spheres as initial conditions (Sur et al. 2010,
2012; Federrath et al. 2011b). Bonnor—Ebert spheres are non-uniform
equilibria in a non-expanding finite space, so there is no p term in
equation (1). Our simulations never go through such a state or reach
any near-equilibrium state. Starting with a Bonnor—Ebert sphere
could lead to the collapse proceeding in a different way from ours. If
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the collapse occurs sufficiently slowly, it could be easier to achieve
dynamo growth rates that remain faster than the collapse rate for a
longer time.

Another useful extension would be to compare with simulations
that make use of adaptive mesh refinement (see e.g. Federrath et al.
2010). Such simulations would have varying accuracy in space, and
it is currently unclear how this affects the kinetic and magnetic
energy spectra and other diagnostics. Since the varying accuracy
is not a concern in the present simulations, they can be used as a
benchmark. Another advantage of the present simulations is the fact
that the viscosity and magnetic diffusivity are fixed and that therefore
numerically converged and accurate results are possible.
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APPENDIX A: VIRIAL PARAMETER

In Section 2.2.1, we noted that ay;, = 2Ek/|Ep| is expected to be
around unity, but that its value can be different at large Mach numbers
and for strong magnetic fields. We have also stated that a value
of 4/3 is expected if 2/3 of the Jeans work goes into building up
kinetic energy. The purpose of this appendix is now to compare the
evolution of ;. for runs with strong magnetic field (Run M1), larger
Mach number (Run S), with a subsonic run with weak magnetic field
(Run B).

l?gg Run B E
3E fun B 1] Rum 81N BE
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Figure Al. Time evolution of (a) the virial parameter, (b) the fractional
kinetic energy gain, and (c) the fractional pressure work for Runs B, M1,
and S. In (a), the inset is a logarithmic representation of «y;j. over a larger
range. At the end of Runs S and M1, the results are affected by insufficient
resolution and cannot be trusted.
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Initially, when the density is uniform, the potential energy density
E = —((V®)*) /87 G is small,? so a; is large. However, when
the collapse has started, deep potential wells develop and |Ep|
increases with & < 0, so a.; drops and eventually settles at
a value of around 1.5 for weak magnetic fields (Run B), and
perhaps also for the supersonic run before the collapse occurred
(Run S); see Fig. Ala. This larger value o =~ 1.5 is caused
primarily by the fact that the fractional kinetic energy gain from
the Jeans work in equation (16) increases with time from 2/3 to
3/4; see Fig. Alb. At the same time, the fractional pressure work
decreases correspondingly from 1/3 to 1/4; see Fig. Alc. For strong
magnetic fields (Run M1), «y; continues to decrease below unity;
see Fig. Al.

APPENDIX B: GROWTH OF AND RELATION
BETWEEN MAGNETIC FIELD AND DENSITY

The purpose of this appendix is to assess the role of the density in
determining a relevant measure of the magnetic field in collapsing
turbulence. During radial collapse, a uniform magnetic field is
amplified such that the ratio | B|/p*/? is constant (Pudritz, Rogers &
Ouyed 2006). Therefore, it is customary to monitor the evolution
of this quantity (Sur et al. 2010, 2012; Federrath et al. 2011b;
Sharda et al. 2021). As a suitable volume average, one can consider
|B|/p*? ~ (B?/p*3)!/2, In Fig. BI, we show that for Runs B

1.0f ' = ' ]
I x10' Run S ]
g [ ) 4
A F ’ 1
&
& R n=0 Run M1 _
v |/ n=1/2
v Run B
0.1} n=2/3 =
I x10'® ]
0.0 0.5 1.0 1.5 2.0
t ck,

Figure B1. Different scalings of the magnetic field strength as a function of

time (scaled ug by 10' for Runs B and S). Note that the units of (B2/p%")!/2
1/2 1/2—n

are csjuy' P

and M1, the quantities (B?/p*)!/2/pf are nearly the same for
different exponents n. For Run S, the differences for different n
are somewhat larger, but the differences between the cases n = 1/2
and n = 2/3 are still negligible. This justifies the use of vy™ in
Fig. 1 of the main text, which corresponds to n = 1/2 in Fig. BI.
In fact, also the case n = 1/2 has been discussed previously in
the context of gravitational collapse (Crutcher 1999). In Fig. B2,
we present the logarithm of 2D histograms P(In p, In|B|) to show
that most of the points in the volume lie within elliptical islands
stretched along the line |B| ~ p?*?3. They are normalized such that
fP(lnp,ln|B|)dlnpdln|B| =1.

2Using the identity V - (®V®) = (V)% + ®V2d, the potential energy
density can also be written as &p = —(p®)/2, where we have made use of
periodicity and the fact that (®) = 0. This yields &p = —(V® - Vd) /47 G =
—(p®), which leads to equation (5) after using equation (3).
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Figure B2. Logarithm of 2D histograms P(In p, In|B|) for Runs M1 and
I1. The solid and dashed lines correspond to |B| ~ p*/? and |B| ~ p'/?,
respectively.
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Figure B3. Histograms P(B - VInp/|B||V In p|) for Runs M1 and I1, for
different times.

In Section 3.1, we mentioned that In p lacks small-scale structure,
and that only V In p displays noticeable small-scale variations. In
Fig. B3 we present histograms of the cosine of the angle between
B and the logarithmic density gradients, P(B - VInp/|B||V Inp)|),
for Runs M1 and I1 at different times. They show that B is mostly
perpendicular to V In p, i.e. the magnetic field lines tend to be aligned
with the contours of Inp. This behaviour has been observed in
numerous simulations of self-gravitating turbulence (e.g. Soler et al.
2013; Chen, King & Li 2016; Barreto-Mota et al. 2021), as a result
of the converging motions driven by gravity (Soler & Hennebelle
2017).

APPENDIX C: COMPARISON WITH THE
TAYLOR MICROSCALE REYNOLDS NUMBER

In Fig. C1, we compare the evolution of the Taylor microscale
Reynolds number, Re;, with other Reynolds numbers: Rey, and Re;,,
whose values at t = ¢, are given in Table 1 for k¢/k; = 10, and
the maximum of Re; over k, max ;(Re;), which is at later times
dominated by the peak at small k; see Fig. 9, where the peak is at
klk, ~ 2. Note that max ;(Rey) begins to grow exponentially shortly
after fcsky ~ 1.1. After t = t,, the collapse is well underway and
the rms velocity grows exponentially. At the same time, the rms
vorticity and the dissipation rate do not change much, so the Taylor
microscale increases approximately exponentially. This means that
Re; now grows faster than the other Reynolds numbers based on
fixed length scales or wavenumbers.

In Section 5, we compared our critical magnetic Reynolds number
of 25 with the earlier value of 35 by Haugen et al. (2004b),
and we argued that the new value is smaller because of helicity
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Figure C1. Comparison of the evolution of the Taylor microscale Reynolds
number with other Reynolds numbers for Run B.

in the flow. We also stated that the results depend on the Mach
number (Haugen et al. 2004b). We can now compare with the highly
compressible, supersonic hydromagnetic turbulence simulations of
Federrath et al. (2014), who gave a critical magnetic Reynolds
number of ~130. This value is based on half the size of the
computational domain. To convert it to the normalization of Haugen
et al. (2004a, b), it should be divided by 2z. This results in a
value of ~20, which is smaller than the values of 35-70 found
by Haugen et al. (2004b) for Mach numbers below and above
unity, respectively. However, when they increased their magnetic
Prandtl number from unity to five, they found Refv'[“ = 25 and 50
for Mach numbers below and above unity, respectively; compare
Figs 7 and 8 of Haugen et al. (2004b). Federrath et al. (2014)
used Pry = 10, so their value of Refi' =20 cannot directly be
compared with those of Haugen et al. (2004b) for Pry; = 5, but
it seems a bit low. This question cannot be fully clarified here
and might depend on subtle numerical aspects. The FLASH code
(Fryxell et al. 2000) used by Federrath et al. (2014) is based on
a Riemann solver, which may affect the effective viscosity and
magnetic diffusivity.

APPENDIX D: MAXIMUM DENSITY AND
OTHER DENSITY MOMENTS

As time goes on and the collapse proceeds, the density contrast
increases. This has implications for the nominal Jeans length, which
decreases with increasing maximum density. To get an idea of this,
we plot in Fig. D1 the evolution of the maximum density. For
completeness, we also plot the minimum density and intermediate
moments of the density, (") for n = 2, 4, and 12. Note that

Pmax = lim (pn)l/n’ and Pmin = REIPOC“)”)I/”- (Dl)

n—o0o

To show the values close to the collapse time f,,x more clearly,
we plot the densities versus (fn,x — t) csk; in a doubly logarithmic
representation.

The nominal Jeans length is proportional to p~"2, although the
standard stability analysis breaks down if the density is no longer
constant. We see that the resolution criterion of Federrath et al.
(2011b) is reached when the square root of the density exceeds 1/30
of the initial Jeans length of 410 grid cells for o)/csk; = 5; see
Section 2.3.
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Figure D1. Evolution of the maximum density along with the minimum
density and intermediate moments of the density for n = 2, 4, and 12. Note
that time increases toward the left. The time tcgk; = 1.98 for which the Jeans
length becomes resolved by less than 30 mesh points is marked by the black
symbol. This is when (pmax /00) " = 410/30.
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