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We perform direct numerical simulations of magnetohydrodynamic turbulence in the early universe and
numerically compute the resulting stochastic background of gravitational waves and relic magnetic fields.
These simulations do not make the simplifying assumptions of earlier analytic work. If the turbulence is
assumed to have an energy-carrying scale that is about a hundredth of the Hubble radius at the time of
generation, as expected in a first-order phase transition, the peak of gravitational wave power will be in the
mHz frequency range for a signal produced at the electroweak scale. The efficiency of gravitational wave
(GW) production varies significantly with how the turbulence is driven. Detectability of turbulence at the
electroweak scale by the planned Laser Interferometer Space Antenna (LISA) requires anywhere from
0.1% to 10% of the thermal plasma energy density to be in plasma motions or magnetic fields, depending
on the model of the driving process. Our results predict a new universal form below the spectral peak
frequency that is shallower than previously thought. This implies larger values of the GWenergy spectra in
the low-frequency range. This extends the range where turbulence is detectable with LISA to lower
frequencies, corresponding to higher energy scales than the assumed energy-carrying scale.
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I. INTRODUCTION

A period of turbulence in the early universe can produce
a stochastic background of gravitational waves (GWs). The
turbulence that produces GW radiation might arise from
the dynamics of a first-order phase transition [1–3], from
the dynamics of primordial magnetic fields [4], or from the
dynamical coupling of primordial magnetic fields and the
highly conducting primordial plasma [5–8]. Analytic esti-
mates suggest that turbulence generated by an electroweak
phase transition can produce GWs within the detectable

amplitude and frequency range of the Laser Interferometer
Space Antenna (LISA) if the turbulent energy density is
roughly 1% of the total energy density of the Universe at
that time [9–12].
However, the aforementioned analytic estimates make a

number of simplifying assumptions. Turbulence is assumed
to be hydrodynamic with a typical Kolmogorov power
spectrum and a duration set by a small fraction of the
Hubble time, omitting the effect of the expansion of the
Universe during the turbulent period. The inclusion of
magnetic fields can extend the frequency range of the
resulting GWs due to the transfer of power to larger scales
[5,13]. These turbulence models depend on the temporal
correlation function of the turbulent velocity field, which
was assumed in earlier works and not computed from
magnetohydrodynamic (MHD) simulations. An accurate
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treatment of these effects is essential for reliably establish-
ing the spectral shape of the resulting GW background and
its detectability with upcoming detectors [14]. A proper
understanding of turbulent sourcing of GWs is especially
relevant for using LISA to constrain the parameter space of
a first-order phase transition [15].
If primordial magnetic fields were present during the

early universe, they could dynamically enhance turbulent
plasma motions and serve as an additional source of GWs
[4,16,17]. Such magnetic fields can persist until the present
epoch. Lower bounds on the strength of magnetic fields
obtained from observations of TeV blazar spectra [18] are
suggestive of the existence of these primordial fields.
Numerical simulations are required to make progress

beyond previous analytic estimates, as pointed out in a
recent report of the LISA cosmology working group [19].
We present here the results of direct numerical simulations
of MHD turbulence and the resulting stochastic GW
spectra. Given that the turbulent energy densities are below
10% of the total energy density of the Universe, the bulk
motions in our simulations are subrelativistic, but the
equation of state is still a relativistic one. We use the
PENCIL CODE [20], a sixth-order finite-difference code
using third-order time stepping for the MHD equations
and a novel approach for numerically solving the GW
equation, which is discussed in a separate paper [21].
The present paper is arranged as follows. Section II

presents the equations that describe the production of GWs
and the dynamics of the magnetic and velocity fields during
the radiation-dominated epoch of the early universe. The
initial conditions and the setup of the simulations are
presented in Sec. III. The results of the numerical simu-
lations are presented and compared with previous analytic
estimates, and the prospects of detectability with LISA are
discussed in Sec. IV.
Electromagnetic quantities are expressed in Lorentz-

Heaviside units where μ0 ¼ 1. Einstein index notation is
used, so summation is assumed over repeated indices. Latin
indices i and j refer to spatial coordinates 1 to 3.

II. EQUATIONS

We assume the evolution of the background universe
to be described by the spatially flat, homogeneous, and
isotropic Friedmann-Lemaître-Robertson-Walker metric
gij ¼ a2δij, with a being the scale factor. The expansion
of the Universe described by the temporal evolution of a
leads to a dilution of radiation energy density and magnetic
fields, and to the damping of the GW amplitude. It is
convenient to scale out the effects of expansion by using
conformal time t defined as dt ¼ dtphys=a, and comoving
coordinates x ¼ xphys=a and MHD fields. The physical
coordinates and time are expressed as xphys and tphys. The
ultrarelativistic equation of state p ¼ ρc2=3 is valid during
radiation domination. This leads to a linear evolution of the

scale factor with conformal time t as the solution to the
Friedmann equations [22].

A. Gravitational wave equation

We consider small tensor-mode perturbations a2hphysij

over the background metric gij. The GW equation is
then [23,24]

ð∂2
tphys þ 3HðtÞ∂tphys − c2∇2

physÞhphysij ðx; tÞ

¼ 16πG
c2

TTT
ij;physðx; tÞ; ð1Þ

where c is the speed of light, G is Newton’s gravitational
constant, and H ¼ a−2∂ta is the Hubble rate. The trans-
verse and traceless stress tensor TTT

ij;phys sources the gauge-
free metric perturbations [25].
The introduction of comoving coordinates, conformal

time, comoving stress tensor TTT
ij ¼ a4TTT

ij;phys, and scaled

strains hij ¼ ahphysij simplifies Eq. (1) to [21]

ð∂2
t − c2∇2Þhijðx; tÞ ¼

16πG
ac2

TTT
ij ðx; tÞ; ð2Þ

where the omitted damping term hija−1∂2
t a is zero during

radiation domination.
The stress tensor T̄TT

ij is normalized by the energy density
at the initial time of turbulence generation t�, which, during
the radiation-dominated era, is

E�
crit ¼

3H2�c2

8πG
≈ E�

rad ¼
π2g�ðkBT�Þ4
30ðℏcÞ3 ; ð3Þ

where T�, g�, and H� are the temperature, the number of
relativistic degrees of freedom, and the Hubble rate,
respectively, kB is the Boltzmann constant, and ℏ is the
reduced Planck constant.
We also normalize conformal time by t� and define

t̄ ¼ t=t�. Because of the linear evolution of the scale factor
t� ¼ H−1� , where a� ¼ 1 has been used. The scale factor
is just a ¼ t̄. Note that in this convention, a0 ≠ 1 at the
present time. Similarly, the space coordinates are normal-
ized as x ¼ xH�=c. Equation (2) reduces then to the
normalized GW equation,

ð∂2
t̄ − ∇̄2Þhijðx̄; t̄Þ ¼

6

t̄
T̄TT
ij ðx̄; t̄Þ: ð4Þ

This is the wave equation that we solve within the PENCIL

CODE. From now on, we omit overbars and always refer to
normalized variables, unless stated otherwise.
The use of normalized variables has the advantage

that our simulations can readily be applied to different
energy scales where our equations are applicable, i.e.,
after the electroweak phase transition and within the
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radiation-dominated epoch. Through a simple set of steps,
the final diagnostic frequency diagram can then easily be
assembled from the normalized results.

B. Gravitational wave characteristics

The characteristic amplitude of GWs is defined as [26]

h2cðtÞ ¼
1

2
hðhphysij ðx; tÞÞ2i ¼ 1

2t2
hh2ijðx; tÞi; ð5Þ

where angle brackets denote averaging over the physical
volume, and the second equality is true during the radia-
tion-dominated epoch with the normalization described
above. The spectrum of the characteristic amplitude is
defined following Ref. [26], such that

R
h2cðk; tÞd ln k ¼

h2cðtÞ; see details in Ref. [21]. The integration to compute
hc is performed over wave numbers k from 0 to ∞. Since
the spectral function hcðkÞ is defined to be integrated in
ln k, the limits of integration become −∞ to∞. Note that k
refers to the normalized wave number k̄, consistently given
by k̄ ¼ ck=H� ¼ ackphys=H�, where again we omit the
overbar from now on.
In the absence of turbulent sources, and neglecting the

details of the GW transfer function due to evolving relativ-
istic degrees of freedom and transitions between radiation,
matter, and dark energy dominations (see Ref. [27]), the
characteristic amplitude hcðk; tÞ dilutes due to the expansion
of the Universe as a−1. Hence, the relic observable amplitude
at the present time hcðkÞ is the amplitude at the end of the
simulation tend diluted by a factor tend=a0. Note that tend is
assumed to be within the radiation-dominated epoch, such
that the computed numerical results and the described
normalization are valid. The value of the scale factor a0
is obtained assuming adiabatic expansion of the Universe,
i.e., such that gST3a3 stays constant, where gS is the number
of adiabatic degrees of freedom.
The physical energy density carried by the GWs EGWðtÞ

is defined as [26]

EGWðtÞ ¼
c2

32πG
hð∂tphysh

phys
ij ðx; tÞÞ2i; ð6Þ

which we normalize by the radiation energy density,
ΩGWðtÞ ¼ EGWðtÞ=E�

rad. In terms of conformal time t and
scaled strains hijðx; tÞ during the radiation-dominated
epoch, our normalization leads to

ΩGWðtÞ ¼
1

12t4
hð∂thijðx; tÞ − hijðx; tÞ=tÞ2i: ð7Þ

The GWenergy density spectrumΩGWðk; tÞ is defined as in
Ref. [26], such that

R
ΩGWðk;tÞdlnk¼ΩGWðtÞ; see details

in Ref. [21]. This is the standard normalization that we use
within the PENCIL CODE. However, when we are interested
in the observable relic signal, it is useful to normalize by the

critical energy density at the present time, E0
crit ¼

ð3H2
0c

2Þ=ð8πGÞ, where H0 ¼ 100h0 km s−1 Mpc−1 ≈
3.241 × 10−18h0 s−1 is the Hubble rate at the present time.
We use h20ΩGW to quote our results independently of the
uncertainties in the value of h0 [26]. The GW energy
density dilutes due to the expansion of the Universe as a−4.
Hence, the relic observable at the present time ΩGWðkÞ is
the energy density in Eq. (7) at the end of the simulation
tend, reduced by a factor ðH�=H0Þ2ðtend=a0Þ4 ∝ g−1=3� .
During the radiation-dominated epoch, a4ΩGW is constant.
However, since a does not evolve as t all the way to the
present time, this factor is not unity. Finally, we express the
GW amplitude hcðfÞ and the energy spectra ΩGWðfÞ,
which are observables at the present time—as a function
of the physical frequency, shifted to the present time. The
frequency is related to k̄ through

f ¼ ckphys
2π

¼ H�a−10
2π

k̄: ð8Þ

C. MHD equations

The GW equation is sourced by the stress tensor Tij. In
particular, we consider GWs sourced by MHD turbulence.
Starting with initial conditions for the plasma velocity and
magnetic fields at the starting time of the turbulence period,
we numerically solve for the dynamics of early-universe
MHD turbulence using the PENCIL CODE. At each time step,
we compute the spatial Fourier components of the stress
tensor of a relativistic perfect fluid,

Tij ¼
4

3

ρuiuj
1 − u2

− BiBj þ ðρ=3þ B2=2Þδij; ð9Þ

where u is the plasma velocity and B is the magnetic field.
The MHD fields ρ¼a4ρphys and B ¼ a2Bphys are expressed
as comoving variables. We emphasize that in MHD, the
Faraday displacement current is omitted. This implies that
electric fields do not contribute to the stress tensor [5,28].
The MHD equations for an ultrarelativistic gas in a flat

expanding universe in the radiation-dominated era after the
electroweak phase transition are given by [5,8,29]

∂ ln ρ
∂t ¼ −

4

3
ð∇ · uþ u · ∇ ln ρÞ

þ 1

ρ
½u · ðJ × BÞ þ ηJ2�; ð10Þ

∂u
∂t ¼ −u · ∇uþ u

3
ð∇ · uþ u · ∇ ln ρÞ

−
u
ρ
½u · ðJ × BÞ þ ηJ2� − 1

4
∇ ln ρ

þ 3

4ρ
J × Bþ 2

ρ
∇ · ðρνSÞ þF ; ð11Þ
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∂B
∂t ¼ ∇ × ðu × B − ηJ þ EÞ; ð12Þ

where Sij ¼ 1
2
ðui;j þ uj;iÞ − 1

3
δij∇ · u are the components

of the rate-of-strain tensor with commas denoting partial
derivatives, ν is the kinematic viscosity, and η is the
magnetic diffusivity. Energy can be injected into velocity
and magnetic fields through ponderomotive and electro-
magnetic forces F and E, respectively.
All variables are normalized with the appropriate

powers of the radiation energy density and the Hubble
rate, both at the time of generation: ρ̄ ¼ ρc2=E�

rad, ū ¼ u=c,
J̄ ¼ ðc=H�ÞJ=

ffiffiffiffiffiffiffiffi
E�
rad

p
, B̄ ¼ B=

ffiffiffiffiffiffiffiffi
E�
rad

p
, η̄ ¼ H�η=c2,

ν̄ ¼ H�ν=c2, F̄ ¼ F=ðH�cÞ, and Ē ¼ E=
ffiffiffiffiffiffiffiffiffiffiffiffi
c2E�

rad

p
, where

the overbars have been dropped on Eqs. (9)–(12). In
addition, similar to ρ and B, the current density J is
comoving, i.e., scaled with a3. The physical value of
the magnetic diffusivity η at the electroweak phase
transition is given in Eq. (9) of Ref. [30]: η≈
4 × 10−9ðkBT�=100 GeVÞ−1 cm2=s. This corresponds to
9.2 × 10−20 in our normalized units.
The energy densities of the magnetic and velocity fields

are computed as ΩMðtÞ ¼ hB2i=2 and ΩKðtÞ ¼ hρu2i=2.
We define the magnetic and kinetic energy spectrum
such that

R
ΩM;Kðk; tÞd ln k ¼ ΩM;KðtÞ. Here, ΩM;Kðk; tÞ

are the spectra in terms of logarithmic wave number
intervals. They are defined analogously to ΩGWðk; tÞ; see
Refs. [21,26,31].

III. NUMERICAL SIMULATIONS

To compute the resulting GW production, we evolve the
strains in Fourier space using Eq. (4), assuming a constant
source term during the length of one time step of the MHD
evolution. This assumption is accurate for time steps small
enough to guarantee numerical stability of the MHD
equations, and it allows much longer time steps than what
is required by a direct numerical simulation; see Sec. 2.6 of
Ref. [21] for a discussion of this new method, which is
described there as approach II.
It turns out that the GW energy production ceases some

time after the kinetic and/or magnetic energies have started
to decay. The GW spectrum is then statistically steady.
We continue our simulations to gather sufficient statistics
to compute accurate averages for the GW spectra in
comoving variables (more specifically, until the GW
spectra start to fluctuate around a steady state and we
have computed at least one period). In all our simulations,
this occurs well within the radiation-dominated era. The
last time of the numerical simulations is what we have
previously called tend.
To study the sensitivity to initial conditions, we have

performed several sets of simulations with different physi-
cal models for driving plasma motions. The motivation for
the different types of primordial magnetic fields obtained

below is given in Ref. [8], where their subsequent evolution
and observational constraints are discussed. The physical
magnetic diffusivity η of the early universe is much smaller
than what we can accurately simulate. For similar reasons,
thermal and radiative diffusion were not included in the
equations above. We fix the viscosity ν ¼ η and choose it to
be as small as possible, but still large enough such that the
inertial range of the computed spectra is appropriately
resolved [8]. If the much smaller physical values were used
instead, much larger numerical resolution would be
required, and the inertial range of the turbulence would
extend to higher frequencies. Those higher frequencies are
of little observational interest since the GW amplitude at
those frequencies would be very low, as seen from our
spectra shown below.
Our full set of runs is summarized in Table I. For all of

the calculations, we assume uðxÞ ¼ 0 initially. In set I (runs
ini1–3), BðxÞ is initialized as a fully helical (indicated by
“y” under “hel”) Gaussian random field with magnetic
energy spectrumΩMðkÞ ∝ k5 for k < k� corresponding to a
solenoidal causally generated field, and ΩMðkÞ ∝ k−2=3

(Kolmogorov spectrum) for k > k�, where k� is the wave
number at which the magnetic energy is injected. In set II
(runs hel1–4 and noh1–2), BðxÞ ¼ 0 initially, but it is
then numerically driven by applying an electromotive force
E during 1 ≤ t ≤ tmax in the induction Eq. (12) consisting
of random and nearly monochromatic waves around wave
number k�.
The driving force field is taken as either fully helical

(runs hel1–4) or nonhelical (noh1–2), using a forcing term
quantified by E0 described in Refs. [32,33]; see Table I for
values of E0 and tmax. The initial number of eddies per
horizon length at the driving scale is N ≡ k�=2π, usually
taken to be between 1 and 100 for the first-order electro-
weak phase transition [34].
We compute the decaying MHD turbulent motions, with

no forcing term, for times t > tmax, where tmax has been
defined for set II of runs, and it can be assumed to be
tmax ¼ 1.0 for the runs corresponding to set I. We arrange

TABLE I. Summary of runs.

Run E0, F 0 Ωmax
i Ωsat

GW i hel tmax N η

ini1 (…) 1.16 × 10−1 2.05 × 10−9 M y 1.00 100 5 × 10−6
ini2 (…) 7.62 × 10−3 6.38 × 10−12 M y 1.00 100 5 × 10−8
ini3 (…) 7.62 × 10−3 6.36 × 10−10 M y 1.00 10 5 × 10−7
hel1 1.4 × 10−3 2.17 × 10−2 4.43 × 10−9 M y 1.10 100 5 × 10−7
hel2 8.0 × 10−4 7.18 × 10−3 4.67 × 10−10 M y 1.10 100 5 × 10−7
hel3 2.0 × 10−3 4.62 × 10−3 2.09 × 10−10 M y 1.01 100 5 × 10−7
hel4 1.0 × 10−4 5.49 × 10−3 1.10 × 10−11 M y 1.01 1000 2 × 10−6
noh1 1.4 × 10−3 1.44 × 10−2 3.10 × 10−9 M n 1.10 100 5 × 10−7
noh2 8.0 × 10−4 4.86 × 10−3 3.46 × 10−10 M n 1.10 100 2 × 10−6
ac1 3.0 1.33 × 10−2 5.66 × 10−8 K n 1.10 100 2 × 10−5
ac2 3.0 1.00 × 10−2 3.52 × 10−8 K n 1.10 100 5 × 10−5
ac3 1.0 2.87 × 10−3 2.75 × 10−9 K n 1.10 100 5 × 10−6
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the simulations such that the maximum total magnetic
energy density Ωmax

M integrated over all wave numbers is a
specified fraction of the radiation energy density. We take
values in the range 10−3 to 10−1. The lower limit is required
for the turbulence to be the dominant source of GWs during
a first-order phase transition according to analytic estimates
[35], and the higher limit is imposed on magnetic fields
due to their effect on big bang nucleosynthesis [36,37].
Recently, values up to 10% have been obtained for
magnetogenesis lattice simulations [38].
We also consider set III (runs ac1–3) with initial

BðxÞ ¼ uðxÞ ¼ 0, using irrotational or “acoustic” hydro-
dynamic turbulence. In this case, the forcing F appears as
an additional term in the momentum Eq. (11), which acts
during 1 ≤ t ≤ tmax. The forcing term, with amplitude F 0,
is computed as the gradient of a combination of Gaussian
random potentials ϕ ∝ exp½−ðx − xiÞ2=R2� centered at
random positions xi of the domain. This results in a number
of eddies N ¼ ðπRÞ−1 [39].
We choose solenoidal and irrotational forcing fields

in sets II and III, respectively, for comparison purposes.
In all of our runs, the size of the cubic domain L is taken
to be L ¼ 2π=N, such that the lower wave number in the
computed spectra corresponds to N. We evolve the
dynamical equations on a mesh of 11523 grid points.

IV. RESULTS

A. The turbulent GW energy spectrum

We begin by discussing the spectrum for a run of set I.
Figure 1 shows the resulting magnetic field and GWenergy
spectra for such a case with a Kolmogorov-type spectrum.
In this case, the magnetic field has a Batchelor (k4)
spectrum in the subinertial range and a Kolmogorov
(k−5=3) spectrum in the inertial range. For the resulting
stress, this corresponds to a white noise (k2) spectrum in the
subinertial range and to the same Kolmogorov power law in

the inertial range; see the Appendix and Ref. [40]. The GW
energy density shows a spectrum proportional to k−2 with
respect to the spectrum of the stress. This can be understood
by comparing the order of k of the different terms in Eq. (1).
The third and fourth terms of the equation in Fourier space are
c2k2physh̃

phys
ij ðk; tÞ and ð16πG=c2ÞT̃TT

ij;physðk; tÞ=t. Therefore,
if one assumes these terms to be of the same order,
then k4h̃physij ðk;tÞh̃physij ðk;tÞ∼ T̃TT

ij;physðk;tÞT̃TT
ij;physðk;tÞ=t2.

We shell integrate both sides to obtain a term pro-
portional to the spectrum, k4h2cðk; tÞ ∼ΩTðk; tÞ=t2. We
define the stress spectrum ΩTðkÞ=k ¼ ETðkÞ analogously
toΩM; see the Appendix. On the other hand, the first term is
∂2
tphys h̃

phys
ij ðk; tÞ in Fourier space, and ω2h̃physij ðk;ωÞ ¼

c2k2physh̃
phys
ij ðk;ωÞ if we Fourier transform this term also

in time. This leads again to a similar relation, although
now in frequency space: k4h2cðk;ωÞ ∼

R
ΩTðk; tÞe−iωt=t2dt.

TheΩGWðk; tÞ spectrum is computed by shell integration of
∂tphys h̃

phys
ij ðk; tÞ∂tphys h̃

phys
ij ðk; tÞ, which is c2k2physh̃

phys
ij ðk;ωÞ×

h̃physij ðk;ωÞ in the frequency domain. Hence, we have the
asymptotic relation ΩGWðk;ωÞ ∼ k2h2cðk;ωÞ. This leads to
the observed behavior ΩGWðkÞ ∼ΩTðkÞ=k2 for any fixed
time or frequency.
Figure 1 shows a GW spectrum ΩGWðkÞ that asymp-

totically falls off faster by a k2 factor than the magnetic
spectrum ΩMðkÞ in the inertial range. This is explained by
noting that ΩMðkÞ and ΩTðkÞ follow the same power law in
the inertial range. Hence, ΩGWðkÞ∼ΩTðkÞ=k2∼ΩMðkÞ=k2.
For wave numbers below the spectral peak kGW ≈ 2k�,
the GW spectrum ΩGWðkÞ=k becomes essentially flat.
This small-k behavior in ΩGWðkÞ can be traced back to
the white noise (k2) spectrum of the magnetic stress ETðkÞ,
which seems to emerge even when the magnetic field itself
has a spectrum EMðkÞ ¼ ΩMðkÞ=k steeper than k2 in the
subinertial range; see the Appendix. This argument shows
that the scaling of ΩGWðkÞ with k3 obtained in previous
analytical estimates as in, e.g., Ref. [12], is not expected for
the turbulent developed spectrum. The subinertial power
law ΩGWðkÞ ∼ k is a novel result from our simulations that
was not obtained in previous analytical estimates.
The characteristic amplitude has the following asymp-

totic behavior: hcðkÞ ∼Ω1=2
T ðkÞ=k2 ∼Ω1=2

GWðkÞ=k for a fixed
instant of time. Looking at Fig. 1 of Ref. [12], we see that
their subinertial range slope in hcðkÞ is 1=2. This slope in
hcðkÞ corresponds to the þ3 slope in ΩGWðkÞ mentioned
above. At high frequencies, our spectrum hcðkÞ has a
slope of −7=3 corresponding to a magnetic spectrum of
Kolmogorov type. This agrees with what has been obtained
in recent analytic work [41,42], although earlier work [12]
reported a slope of −10=3, which we would obtain if we
used a small magnetic Reynolds number, which results in a
k−8=3 Golitsyn-type spectrum for the magnetic fieldΩMðkÞ;
see Table II.

FIG. 1. Magnetic and GW energy spectra for run ini2
averaged over late times (t > 1.1), after the GW spectrum
has started to fluctuate around a steady state.
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The emergence of a flat GW spectrum in Fig. 1
makes one wonder how this can be reconciled with the
principle of causality. We recall that the reason for the
magnetic energy spectrum to have a k4 subinertial range
is indeed causality combined with the fact that the
magnetic field is solenoidal. A flat GW energy spectrum
would imply that there must have been GW energy
immediately at the largest possible length scales, which
would be unphysical. Therefore, we have performed
numerical simulations with very small time steps to
study how the novel low-k spectrum develops at initial
times. In Fig. 2, we show that initially, the GW
spectrum is indeed proportional to k2 and that similar
spectra are also being reproduced in 10 and 50 times
larger domains. It is only during the first few time steps
of the numerical simulation that the GW spectrum is
still proportional to k2, until the k0 scaling extends over
the range between the stirring scale and the lower wave
number in our simulations. We observe the development
of this flat spectrum for the different sizes of the
numerical domain. This rules out the possibility that
this scaling is due to numerical artifacts, indicating that
the flat spectrum is physical and emerges only later.
The time it takes for the change of slope to occur below

the horizon scale is much shorter than the time it takes
for the GW spectrum to become stationary. Therefore, we
conclude that the þ2 slope in ΩGWðkÞ=k is not relevant for
the characterization of the signal. To demonstrate this
further, we show in Fig. 3 that at small k, ΩGWðk; tÞ=k
grows with t proportional to k2ðt − t�Þ2, where t� ¼ 1 in
normalized units, and reaches a constant level that is
independent of k and is given by the white noise spectrum
of the source at large scales. This is demonstrated for wave
numbers as small as a few times the Hubble horizon wave
number, k ¼ 1, 2, 4, and 8.

B. Spectra from the electroweak phase transition

The GWenergy density h20ΩGWðfÞ and the characteristic
strain amplitude hcðfÞ are shown in Fig. 4 for runs ini1–3
as a function of the frequency f, all shifted to the present
time as defined in Sec. II A. These are obtained by scaling
the computed normalized GW spectra to the physical
spectra produced at the electroweak scale. If we take

T� ¼ 100 GeV for the temperature, and g� ≈ gS ¼ 100
for the number of relativistic and adiabatic degrees of
freedom at the electroweak phase transition, the Hubble
rate is [see Eq. (3)]

TABLE II. Correspondence between the slopes expected from
Ref. [12] for the subinertial range (“ana”) and what is obtained in
our run ini2 (“sim”), and the results for spectra with the
Kolmogorov slope (“Kol”) and the Golitsyn slope (“Gol”), which
agrees with Ref. [12].

Slope of ana sim Kol Gol

ΩM 5 5 −2=3 −8=3
ΩGW 3 1 −8=3 −14=3
hc 1=2 −1=2 −7=3 −10=3

FIG. 2. Time evolution of the magnetic and GWenergy spectra
amplified by a factor of k� for run ini2. Also shown are the results
for a domain larger by a factor of 10 (red) and 50 (blue). All runs
have 11523 mesh points.

FIG. 3. GW spectral energy versus time for four values of k,
demonstrating the k2 scaling at early times for run ini2.
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H� ≈ 2.066 × 1010 s−1
�

kBT�
100 GeV

�
2
�
g�ðT�Þ
100

�
1=2

; ð13Þ

where the proportionality factors T and g� are kept as a
parameter due to the uncertainty of the exact values. Our
convention of setting a� ¼ 1 leads to the following value of
a0 computed assuming adiabatic expansion of the Universe
[see text above Eq. (6)],

a0 ≈ 1.254 × 1015
�

kBT�
100 GeV

��
gSðT�Þ
100

�
1=3

; ð14Þ

where we have used the values gS ¼ 3.91 and T0 ¼ 2.73 K
at the present time.
For different scenarios, the results scale in the following

way: The frequency shifts proportional to Tg1=2� g−1=3S , the

strain amplitude varies with T−1g−1=3S , and the GW energy

density with g�g
−4=3
S . Likewise, the GW strain amplitude is

proportional to the stirring scale N−3=2 and the frequency is
proportional to N [12].
The slopes of ΩGWðfÞ in Fig. 4 are consistent with those

in Fig. 1, where ΩGWðkÞ was shown, due to the dispersion
relation; see Eq. (8). The spectrum of hcðfÞ shows scaling
with f−1=2 for low frequencies and with f−7=3 in the inertial
range, as expected. As discussed above, we expect the
subinertial slope of −1=2 to eventually turn over a slope
ofþ1=2 as f and time decrease, due to the lack of causality
on scales larger than the horizon. However, the simulation
domains are smaller than the horizon scale, so this turnover
is not observed.

The analytic approximation in Ref. [12] gives a peak
value hc ≈ 4 × 10−20 at 1 mHz for their largest Mach
number of unity (see Fig. 1 of Ref. [12]). By comparison,
for our run ini1, the spectrum shows an intermediate peak at
3 mHz with hc ≈ 0.7 × 10−20; see Fig. 4.
In runs ini1–3, GWs are produced by the sudden

emergence of a magnetic field. In reality, this will be a
gradual process, as modeled by sets II and III of runs. The
time evolution of Ωi (for i ¼ GW, K, or M) integrated over
all wave numbers is shown in Fig. 5 for ini1–3, hel1–2, and
ac1. In all these cases, the GWenergy density saturates at a
value Ωsat

GW shortly after the sourcing energy density has
reached its maximum value Ωmax

M;K; see Table I.
In Fig. 6, we observe that runs hel1–3, noh1, and ac1

present steeper GW spectra at high frequencies than runs
ini1–3. The monochromatic forcing produces a spike in
ΩMðfÞ at f� and a sharp drop in ΩGWðfÞ and hcðfÞ beyond
fGW ≈ 2f� for the magnetic runs. For the acoustic runs, we
observe a smooth bump on the spectra of ΩGWðfÞ and
hcðfÞ near the spectral peak f�. Again, the spectra have the
same low-frequency tail, which underlines its universal
nature. Also, for a given input energy Ωmax

M;K, we obtain
larger values of Ωsat

GW for acoustic than for vortical turbu-
lence. This case was already studied in Refs. [15,41,45].
These features could not be captured by previous analytical
estimates, and the power laws in the inertial range also

FIG. 4. Spectra of h20ΩGWðfÞ and hcðfÞ evaluated at the present
time, along with the LISA sensitivity curve (green dot-dashed
line) to a stochastic GW background after four years of mission
[43,44]. See Table I for details of runs ini1–3.

FIG. 5. Evolution of ΩM;K (top) and ΩGW (bottom) for runs
with initial energy (ini1–3) and runs where energy is driven
through monochromatic forcing (hel1–2 and ac1). Note that the
energy densities are normalized with the radiation energy density
at the time of generation.
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seem to be affected by how the turbulent fields are driven at
initial times.
For a given type of initial condition and stirring scale, the

final energy density in GWs has the expected quadratic
dependence on the source energy density to a very good
approximation as shown in Fig. 7. The efficiency of GW
production varies significantly with the type of initial
conditions; for the same total source energy, the cases with
forced acoustic compression lead to a factor of around 2000
more GW energy than those with a sudden magnetic field
(ini1–3), while the cases with forced nonhelical magnetic
fields are 100 times more efficient than the latter. We also
observe that nonhelical forcing fields are about a factor of
1.6 more efficient than helical magnetic fields. The detailed
reasons behind these significant variations in efficiency are
unclear, but they imply that accurate predictions of GW
production from cosmological phase transitions will require

a detailed model of how latent heat is converted to plasma
and magnetic field energies. The comparison of efficiency in
GW generation between acoustic and rotational turbulence is
a subject of further investigation.

C. LISA detectability

The projected sensitivity curve for the LISA space
mission was plotted in Figs. 4 and 6 along with GW
spectra from our runs. The plotted sensitivity assumes a
mission of four years [43,44]. The cases ini2–3, each with a
turbulent energy input of around 1% of the total radiation
energy density, produce GW amplitudes below LISA’s
sensitivity, while ini1, with a turbulent energy input of
around 10%, could be detectable. An energy input of about
3% is required to obtain a GW spectrum above LISA’s peak
sensitivity for runs with an initial helical magnetic field. On
the other hand, the runs with forced magnetic fields would
peak above LISA for an energy input of approximately 2%
for nonhelical forcing, and 3% for helical forcing, accord-
ing to our results. Acoustic forced turbulence has been
shown to be the more efficient case considered, even
though it leads to a GW spectral peak closer to the forcing
peak, which slightly reduces the prospects of detection for
T� ¼ 100 GeV and N ¼ 100. An energy input of around
0.3% would be enough in this case for GW spectrum to
peak over LISA’s sensitivity.

V. CONCLUSIONS

In the early universe, hydrodynamic and MHD turbulence
can be an efficient source of GWs. Our direct numerical
simulations have shown that the GW energy produced by
the turbulence depends quadratically on the energy of the
turbulence at the time turbulence is strongest. In the inertial
range of the turbulence, the slope of the GW spectrum is
steeper than the slope of the magnetic energy spectrum by a
factor of k2. For a magnetic energy spectrum of Kolmogorov
type of the form ΩM ∼ k−2=3, the GW energy spectrum is of
the form ΩGW ∼ k−8=3. In the subinertial range, however,
where the magnetic energy spectrum is expected to be
proportional to k5, the GW energy spectrum is not propor-
tional to k3, as naively expected, but proportional to k.
The shallow subinertial range spectrum for the GW

energy also implies a novel f−1=2 low-frequency spectrum
for hcðfÞ. This would enhance the detectability of such a
signal compared to the f1=2 spectrum obtained from earlier
analytic models typically assumed in recent analyses as,
e.g., in Ref. [46].
Comparing vortical MHD turbulence with irrotational

turbulence driven by spherical expansion waves, we find
that at similar turbulent energies, irrotational turbulence
appears to drive GW energy more efficiently than vortical
MHD turbulence. This may be connected with the temporal
correlations of the turbulence. Depending on the specific
dynamical evolution during the symmetry breaking

FIG. 6. Similar to Fig. 4, but for runs hel1–3, noh1, and ac1.

FIG. 7. Ωsat
GW versus Ωmax

M;K. The quadratic dependence inferred
from theþ2 slope of the lines holds within runs of the same type.
Note that runs ini3 (N ¼ 10) and hel4 (N ¼ 1000) in green have
different stirring scales than the rest of the runs (N ¼ 100).
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process, the GWs produced by primordial turbulence may
be detectable with LISA when the fraction of radiation
energy converted into turbulent energy exceeds a value
between 0.1% and 10%. In addition to the total GWenergy
density, the spectral shape is also affected by the dynamical
evolution of the magnetic and/or velocity fields during the
phase transition. The specific features around the spectral
peak and the power law in the inertial range require
numerical simulations to be accurately described.
Now scheduled for launch in the mid 2030s, LISA may

provide crucial insight into fundamental physics during the
first picoseconds of cosmic evolution.

Data Availability—The source code used for the simu-
lations of this study, the PENCIL CODE, is freely available
from Ref. [20]. The simulation setup and the corresponding
data are freely available from Ref. [47].
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APPENDIX: SPECTRUM OF THE SOURCE

We compare in Fig. 8 the shell-integrated spectrum of
the magnetic field EMðkÞ ¼ ΩMðkÞ=k defined such thatR
∞
0 EMðkÞdk ¼ R

∞
−∞ΩMðkÞd ln k, with the spectrum of the

stress tensor Tij. The latter spectrum ETðkÞ ¼ ΩTðkÞ=k is
defined such that

R
∞
0 ETðkÞdk ¼ hTijTiji=2. Note that, in

the absence of fluid motions, this corresponds to the
spectrum of the squared magnetic field, whose integral over
all wave numbers gives hðB2Þ2i=2 instead of just hB2i=2.
In the k range where EMðkÞ has a Batchelor (k4)

spectrum, the stress spectrum ETðkÞ is white noise (k2).
The k4 spectrum is caused by a white noise (k2) spectrum of
the vector potential. Recent work [40] shows that the
spectrum of the stress ETðkÞ can never be steeper than
that of white noise, and that the peak of the stress spectrum
shifts to 2k�, being k� the position of the spectral peak of
the magnetic field, as it is observed in Fig. 8. In the inertial
range, we observe both spectra EMðkÞ and ETðkÞ to possess
the same Kolmogorov scaling k−5=3. These results have also
been confirmed analytically by calculating the spectrum
of the stress as the autocorrelation function of the two
turbulence spectra under the assumption that the underlying
fields are Gaussian distributed [40]. As inferred from
Eq. (4), the relevant spectrum related to the GW energy
is the stress spectrum, instead of the magnetic spectrum.

(a)

(c) (d)

(b)

FIG. 8. Shell-integrated spectra of the vector B, EMðkÞ, and of the scalar B2, ETðkÞ, for a random nonhelical magnetic field, with
spectral peak at k� ¼ 15 (left panels) and k� ¼ 2 (right panels). We see that the magnetic spectrum EMðkÞ has the same slope in the
inertial range as that of the stress spectrum ETðkÞ. In the subinertial range, when B has a Batchelor k4 spectrum, the spectrum of B2 is
always that of white noise, i.e., proportional to k2.
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