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Abstract

For velocity and magnetic fields, the turbulent pressure and, more generally, the squared fields such as the
components of the turbulent stress tensor, play important roles in astrophysics. For both one and three dimensions,
we derive the equations relating the energy spectra of the fields to the spectra of their squares. We solve the
resulting integrals numerically and show that for turbulent energy spectra of Kolmogorov type, the spectral slope of
the stress spectrum is also of Kolmogorov type. For shallower turbulence spectra, the slope of the stress spectrum
quickly approaches that of white noise, regardless of how blue the spectrum of the field is. For fully helical fields,
the stress spectrum is elevated by about a factor of two in the subinertial range, while that in the inertial range
remains unchanged. We discuss possible implications for understanding the spectrum of primordial gravitational
waves from causally generated magnetic fields during cosmological phase transitions in the early universe. We also
discuss potential diagnostic applications to the interstellar medium, where polarization and scintillation
measurements characterize the square of the magnetic field.

Unified Astronomy Thesaurus concepts: Interplanetary turbulence (830); Gravitational waves (678); Magnetohy-
drodynamics (1964); Hydrodynamics (1963)

1. Introduction

In aeroacoustics, the stress tensor of the turbulent velocity
field plays an important role in sound generation. Its theory
goes back to the work of Lighthill (1952a, 1952b), whose
equation is also used in astrophysics to describe the heating of
stellar coronae by pressure waves excited in the outer
convection zones of stars (Stein 1967). Similarly, in the early
universe, the velocity stress and also the combined stress of
velocity and magnetic fields can be responsible for driving
primordial gravitational waves (Kamionkowski et al. 1994;
Durrer et al. 2000). In that case, it is important to relate spectra
of the turbulence to the spectra of the kinetic and magnetic
stresses in order to compute the spectrum of the gravitational
waves (Gogoberidze et al. 2007; Roper Pol et al. 2019).

Empirically, it was known that a velocity or magnetic field
with a Kolmogorov-type power-law spectrum produces a
similar spectrum for the stress, except that in the subinertial
range, where the spectral energy increases with wavenumber k,
the spectral slope of the stress never increases with k faster than
for white noise (Roper Pol et al. 2019), even if the turbulence
has a blue spectrum. This has important implications for
understanding the gravitational wave production at very low
frequencies from primordial magnetic fields. Such magnetic
fields can be generated at the electroweak phase transition (see
Subramanian 2016, for a review), but their spectrum would be
steeper than that of white noise (Durrer & Caprini 2003) and
could not readily explain the shallower white noise spectrum of
the stress.

There are different conventions for expressing energy
spectra. In this paper, we always present the energy per
uniform (linear as opposed to logarithmic) wavenumber
interval, so the mean energy density is therefore ( )ò

¥
E k dk

0
.

In three dimensions, a white noise spectrum is then

proportional to k2. At some wavenumber k*, the spectral
energy begins to decline again. The value of k* determines the
scale where most of the energy resides. At an even higher
wavenumber kD, dissipation becomes important and the
spectral energy falls off exponentially. The spectral range from
k* to kD is called the inertial range. Its spectral slope is
determined by the nature of turbulence. For Kolmogorov
turbulence, it would be proportional to k−5/3. The spectral
range below k* is called the subinertial range. Here, the flow
tends to be completely uncorrelated, and this is what
determines its spectral slope.
In the early universe, when it was just -10 s11 old, magnetic

fields are believed to have been produced with a blue
subinertial range spectrum proportional to k4 (Durrer &
Caprini 2003). This is because the magnetic field is divergence
free, so the magnetic field itself does not have a white noise
spectrum, but it must be the magnetic vector potential that does.
Since the magnetic field is the curl of the vector potential, the
spectrum of magnetic energy has an extra k2 factor as compared
to white noise, which is the reason why the magnetic energy
spectrum is steeper than that of white noise.
There are other applications where the knowledge of the

spectrum of a squared function is important. An example is the
magnetic pressure, which can lead to a modulation of the gas
pressure and the gas density in the interstellar medium and
hence to interstellar scintillation (Lithwick & Goldreich 2001).
Similarly, the square of the magnetic field perpendicular to the
line of sight affects dust polarization as well as synchrotron
radiation. Both dust and synchrotron emission, as well as
interstellar scintillation can provide useful turbulence diagnos-
tics in astrophysics, provided we understand the relationship
between the spectra of the magnetic field and its square.
The purpose of the present paper is to derive the relationship

between the spectrum of the turbulence and that of the resulting
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stress. Our calculations are independent of the physical model
of the turbulence and apply equally to fluid and magneto-
hydrodynamic turbulence. With the help of several examples,
we illustrate the detailed crossover behavior between different
power laws. In all cases, we ignore the temporal evolution of
the fluctuations. The temporal correlations are important for the
radiation produced by turbulence, e.g., the gravitational waves
(Gogoberidze et al. 2007), where the turbulent stress tensor
enters as a source in the wave equation. Studying this in detail
will be the subject of a separate investigation. Here we focus
instead on the specific relationships between the spectra of a
field and that of its stress found in the numerical simulations of
Roper Pol et al. (2019). To illustrate the nature of the problem,
it is useful to begin with a simple example of a one-
dimensional scalar field and turn then to three-dimensional
cases for scalar and vector fields, with and without helicity. The
calculations are relatively straightforward, but we are not aware
of earlier work addressing this question.

2. A One-dimensional Example

Let us consider the fluctuations of a scalar field (e.g.,
temperature, chemical concentration, etc.) θ(x) as a function of
position x. We write θ(x) in terms of its Fourier transform as

( ) ˜( ) ( )òq q
p

=x k e
dk

2
. 1ikx

Due to spatial homogeneity, the correlation function of the field
can be written as

˜( ) ˜ ( ) ( ) ( ) ( )q q p dá ¢ ñ = - ¢k k E k k k2 , 2*

where E(k) is the energy spectrum of θ. Its Fourier transform
yields the two-point correlation function,

( ) ( ) ( ) ( )( )òq q
p

á ¢ ñ = - ¢x x E k e
dk

2
, 3ik x x

and therefore

( ) ( ) ( )òq
p

á ñ =x E k
dk

2
. 42

Consider now the fluctuations of the squared field

( ) ( ) ( )f q=x x . 52

We are interested in the two-point correlation function of f(x).
We now make an important simplifying assumption (for which
a physical justification will be provided later) that the four-
point correlation function of θ can be split into two-point
correlation functions analogously to the Gaussian rule. We then
obtain

( ) ( ) ( ) ( ) ( )f f q q qá ¢ ñ = á ñ + á ¢ ñx x x x2 . 62 2 2

In order to find the energy spectrum of f, we Fourier transform
Equation (6) to obtain

( ) ( ) ( ) ( )( )òf f
p

á ¢ ñ = - ¢x x F k e
dk

2
, 7ik x x

where

( ) ( ) ( ) ( ) ( )òp q d
p

= á ñ + - ¢ ¢
¢

F k k E k k E k
dk

2 2
2

. 82 2

The first term could be removed by subtracting the average
of qá ñ2 2.

Let us assume we know the spectrum E(k). Our question
concerns the resulting spectrum F(k). Specifically, we may
think of a piecewise power law of the form E(k)∝kα, where α
is positive for 0<k<k*, and negative for  k k kD* , so
that the energy is contained mostly at the scale -k 1

* , which is
the outer scale of fluctuations. We expect F(k) to be
asymptotically also of piecewise power-law form, F(k)∝kβ

within a certain k-range. For k>0 we have

( ) ( ) ( ) ( )ò p
= ¢ - ¢

¢
-¥

¥
F k E k E k k

dk
2

2
, 9

where we have highlighted the fact that the integration over k′
goes from -¥ to +¥.
At small wavenumbers k=k*, the integral in Equation (9)

is dominated by the scales ¢k comparable to the outer scale k*,
so we may expand

( ) ( ) ( ) ( ) ( )¢ - » ¢ -
¢
¢

+
¢

¢
E k k E k k

dE k

dk
k

d E k

dk

1

2
. 102

2

2

We then obtain from Equation (9) the asymptotic behavior of F
(k) at small wavenumbers as ( ) » -F k c c k1 2

2, where c1 and
c2 are positive constants. This means that the spectrum F(k) is
flat at small k, that is, β=0.
In order to find the asymptotic behavior at large wavenum-

bers, k?k*, we note that, if the energy spectrum in this
interval is E(k)∝kα, and −3<α<−1, then the correlation
function of θ behaves at small scales as

( ) ( ) ( )q q
q

á ¢ ñ
á ñ

» -
- ¢ a- -x x x x

L
1 , 11

2

1

where L∼1/k* is a scale comparable to the outer scale of the
fluctuations. The square of this correlation function then scales
as

( ) ( ) ( )q q
q

á ¢ ñ
á ñ

» -
- ¢ a- -x x x x

L
1 2 , 12

2

2 2

1

where we have expanded the right-hand side in the small
parameter ∣ ∣- ¢x x L. Therefore, asymptotically at large k, the
spectrum F(k)∼kβ should scale with the same scaling
exponent as the original energy spectrum E(k), that is, β=α.
Expressions (11) and (12) allow us to provide a physical

motivation for splitting the fourth-order correlation functions of
θ in the pair-wise ones in formula(6). For that, consider the
Fourier component of the f field,

( ) ˜( ) ˜( ) ( )òf q q
p

= ¢ - ¢
¢

k k k k
dk

2
. 13

One can ask what typical wavenumbers ¢k and - ¢k k
contribute to this integral. The first possibility would be to
have both wavenumbers of the same order,
¢ ~ - ¢ ~k k k k 2. The second possibility is to have one of
these numbers much larger than the other one, say ¢ »k k and
- ¢ »k k 0. Since for the Kolmogorov spectrum, the intensity

of fluctuations declines rapidly with wavenumber, the domi-
nant contribution is expected to come from the second
possibility. This means that the fluctuating fields ˜( )q k
contributing to the integral (13) have rather disparate
wavenumbers. A similar argument also applies to the integral
(8). Since the assumption of locality of Kolmogorov turbulence

2
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implies that the small-scale fluctuations are uncorrelated from
the large-scale ones, we may average the q̃ fields in f
independently, which formally leads to the “Gaussian splitting
rule” resulting in Equation (6).

To illustrate the resulting slope of F(k) for given E(k), we
consider as a first example

⎧⎨⎩( ) ( )=
-  E k k kfor 1 100

0 otherwise
. 14

2

We compute the convolution in Equation (9) through multi-
plication of the Fourier transformed quantities, i.e., through
their autocorrelation function,

˜( ) ∣ ˜( )∣ ( )=F x E x , 152

where ˜( ) ( )ò p=E x e E k dk 2ikx , and likewise for ˜( )F x . Note
that the Fourier integral is carried out from-¥ to+¥ and that
E(k) is symmetric about k=0. We evaluate the integral in
Equation (9) numerically. The energy-carrying wavenumber in
our example is ºk 1* .

The result is plotted in Figure 1. We see that in the range
5<k<100, we have F(k)≈E(k). At k=2, the profile of F
(k) has a sharp dip, which results in a local maximum at k≈3,
before approaching E(k). At small values of k, however, F(k)
always has a flat spectrum.

In our second example, we define the spectrum as

( ) ∣ ∣
[ ∣ ∣ ]

( )( )
(∣ ∣ )=

+

a

a a-
-E k

k

k
e

1
, 16

q q
k k

1

1

1 2

D
2

where we allow for an exponential cutoff at the dissipation
wavenumber kD=100 and a power-law subinertial range of
the form ak 1 with α1=10, 4, 2, 1, and 0. Here we have
included the exponents q and 1/q with q=4 to sharpen the
crossover between the subinertial range and the inertial range
power laws. Furthermore, α2=−5/3 is the exponent chosen
for the Kolmogorov-type inertial range.

The result is plotted in Figure 2. In all these cases, we see
that F(k) has a flat spectrum for k0.5. We see that the dip at
k=2 has disappeared for α1=0, but it becomes stronger
when α1 is large and β1 develops a white noise spectrum for
small k.

3. The Three-dimensional Case

Next, we consider fully three-dimensional examples. In the
case of a scalar field, ( )q r , the derivation is similar to the one-
dimensional case. The Fourier transform of the field is defined
as

( ) ˜( )
( )

( )·òq q
p

=r k e
d k

2
. 17k ri

3

3

Then, given the correlation function of the fields

˜( ) ˜ ( ) ( ) ( ) ( ) ( )q q p dá ¢ ñ = - ¢k k k k kI2 , 183*

one derives the correlation function of the quadratic field
( ) ( )f q=r r2 in the form

( ) ( ) ( )
( )

( )òf f
p

á ¢ ñ =r r kH
d k

2
, 19

3

3

where

( ) ( ) ( ) ( ) ( )
( )

( )òp q d
p

= á ñ + ¢ - ¢
¢

k k k k kH I I
d k

2 2
2

. 203 2 2
3

3

3.1. Nonhelical Vector Fields

The situation is qualitatively similar for a vector field. Let us
consider an incompressible vector field ( )u r , representing a
velocity or magnetic field. Its Fourier transform is defined as

( ) ˜( )
( )

( )·ò p
=u r u k e

d k

2
. 21k ri

3

3

We assume that the distribution of this field is homogeneous
and isotropic, so that its correlation function is given by

˜ ( ) ˜ ( ) ( ) ( ) ( ) ( ) ( )p dá ¢ ñ = - ¢k k k k k ku u I P2 , 22i j
ij

3*

where we have denoted ( ) d= -kP k k kij ij i j
2. The energy of

this field then satisfies

( ) ( )
( )

( )ò p
á ñ =r ku I

d k
2

2
. 232

3

3

Similarly to the one-dimensional case, we are interested in
the correlation function of the quadratic field

Figure 1. Numerically computed F(k) (red) for E(k)=k−2 (blue) for
1�k�100 (and zero otherwise). The vertical solid and dotted lines mark
k=1 and 2, respectively.

Figure 2. Similar to Figure 1, but for different subinertial range slopes: α1=0
(triple-dotted–dashed), 1 (dotted–dashed), 2 (dashed), 4 (solid), and 10
(dotted).

3
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( ) ( ) ( )f =r r ru uij i j . Assuming that the four-point correlation
functions of the u-field can be split into the two-point ones by
using the Gaussian rule, we get

( ) ( ˜)

( ) ( ˜) ( ) ( ) ( ) ( )

( ˜) ( ) ( ) ( ) ( )

( ˜) ( ) ( ) ( ) ( )

( )

ò
ò
ò

f f

d d

d

d

á ñ

= ¢  ¢  ¢ 

+ - - ¢ ¢ - ¢ ¢ ¢

+ - - ¢ ¢ - ¢ ¢ ¢

k k

k k k k k k

k k k k k k k k

k k k k k k k k

I I P P d k d k

I I P P d k

I I P P d k .

24

ij lm

ij lm

il jm

im jl

3 3

3

3

*

As an example, consider the correlation function of energy
fluctuations,

( ) ( ˜)
( )

( ) ( ) ( ˜) ( ) ( )f f
p

d d
á ñ

= á ñ + -
k k

k r k k ku H
2

2 , 25
ii ll

3
2 2*

where

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) [ · ( )]

( ) ( )
( )ò p

= ¢ - ¢ +
¢ - ¢
¢ - ¢

¢
k k k k

k k k
k k

H I I
k

d k
1

2
. 26

2

2 2

3

3

In a statistically isotropic case, instead of the power spectrum I
(k), it is convenient to use the energy spectrum

( ) ( )p=E k k I k4 2 , and similarly ( ) ( )p=F k k H k4 2 . The above
equation then becomes

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

( )
( )ò k

k
m
k

m
p

= ¢ +
- ¢ ¢

F k E k E
k k k dk d

1
2

, 27
2

2

2

2 3

where

∣ ∣ ( )k m= - ¢ = + ¢ - ¢k k k k kk2 , 282 2

and ·m = ¢ ¢k k kk is the cosine of the angle between k and ¢k .

3.2. Helical Vector Fields

For completeness, we also consider a more general case,
when the system is not mirror invariant. In this case, the field
correlation function has an extra term,

˜ ( ) ˜ ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
p d

p d

á ¢ ñ = - ¢

- - ¢ 
k k k k k

k k

u u I k P

J k ik k

2

2 . 29

i j
ij

ijl
l

3

3

*

The last term in this expression is responsible for the helicity of
the field. In particular, it enters the helicity integral

( ) · ( )
( )

( )ò ò p
á ´ ñ =u u d x k J k

d k
2

2
, 303

3

3

which would be zero in a mirror-invariant case. The helicity
spectral function J(k) is not necessarily positive, but it has to
satisfy the realizability condition ∣ ( )∣ ( )J k I k . The general-
ization of our results to the helical case is straightforward; it is
achieved by replacing the nonhelical terms ( ) ( )kI k Pij in
Equation (24) by their helical counterparts

( ) ( ) ( )- kI k P J k ik kij ijl
l . For example, in the correlation

function of the energy fluctuations (25) we will need to replace

the ( )kH function (26) by the general expression

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) [ · ( )]
( ) ( )

( ) ( ) · ( )
∣ ∣ ( )

( )

ò

ò

p

p

= ¢ - ¢ +
¢ - ¢
¢ - ¢

¢

- ¢ - ¢
¢ - ¢
¢ - ¢

¢

k k k k
k k k

k k

k k k
k k k

k k

H I I
k

d k

J J
k

d k

1
2

2
2

.

31

2

2 2

3

3

3

3

Again, in a statistically isotropic case, instead of the power
spectrum J(k), it is convenient to introduce the helicity
spectrum defined as ( ) ( )p=G k k J k4 2 . The above equation
then becomes

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

( )

( ) ( )
( )

( )

ò

ò

k
k

m
k

m
p

k
k

m
k

m
p

= ¢ +
- ¢ ¢

- ¢
- ¢ ¢

F k E k E
k k k dk d

G k G
k k k dk d

1
2

2
2

, 32

2

2

2

2 3

2

2 3

which can readily be evaluated using numerical integration.

3.3. Examples

In Figure 3, we show the results for the case of a single
power law, as in Equation (12). We consider two values for the
slope α (−2 and −3) in the range 1�k�100. We see that,
for k>2, we obtain for F(k) a power law, F(k)∝kβ, with
β=α, as in the one-dimensional case. In the range 1<k<2,
F(k) is still increasing with k, but the slope is slightly less steep
than two. We emphasize that this behavior is different from that
in the one-dimensional case, where we saw instead a marked
dip in F(k).
In Figure 3, we also plot F(k) for the case of a fully helical

field using Equation (32), where G(k)=E(k) is assumed. We
see that the basic features of F(k) are rather similar to the case
without helicity, but there is now slightly more power in the
subinertial range, where F(k) appears to be elevated by about a
factor of two. In the inertial range, on the other hand, F(k) is not
affected by the presence of helicity.
Next, we consider a spectrum with two different slopes, α1

and α2, along with an exponential cutoff, just as in
Equation (16). Again, we denote the corresponding slopes of
F(k) as β1 and β2, respectively. Here, we always assume a
Kolmogorov inertial range spectrum for E(k), i.e., α2=−5/3,

Figure 3. Similar to Figure 1, but for the 3D integral for power laws kα in
1<k<100 with α=−2 and −3. For α=−2, F(k) is also plotted for the
helical case (green dashed line).

4
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and we vary α1 from 0 to 10. Physically relevant are the
Saffman (α1= 2) and Batchelor (α1= 4) asymptotic scalings
for k→0 (e.g., Davidson 2015). In our finite simulation
domain it is, however, interesting to consider arbitrary values
of α1.

Figure 4 confirms the statement of Roper Pol et al. (2019)
that β=2 is obtained even if E(k) has a blue spectrum, i.e.,
α�2. We also see from Figure 4 that for α1=2, the
crossover from the k2 scaling for small k to the k−5/3 scaling for
large k extends now over more than one decade (0.2< k< 5).
This shows that we may expect slight differences when
approximate scalings are based on the inspection of spectra
over a limited dynamical range.

To study in more detail the crossover from β=2 for α�2
to β=α for α of around and below −5/3, for example, let us
now consider single power-law spectra within a more extended
range 1�k�1000 using intermediate values α=−1, 0, and
1. No distinction between α1 and α2 will therefore be made.
The result is shown in Figure 5. We see that in this range of α,
β is always larger than α. We see that already for the scale-
invariant k−1 spectrum, we have β=−0.86, so the β=α
relation is only approximately obeyed.

To determine the relation between α and β in the
intermediate regime, we now compute β using the same
numerical setup as before, but we now consider power-law
scalings in a range that is 100 times larger, 1�k�105. The
result is shown in Figure 6. Here we also compare with the
corresponding results in one dimension. We now see that in the
range −1<α<1, the value of β deviates markedly from the
β=α relation, and that we have β≈2 already for α=1.

Likewise, in one dimension, the β=α relation is only true
for α<−1. Again, there is a small intermediate interval,
−1<α<0, where β is somewhat larger than α, but this
departure is by far not as dramatic as in three dimensions; see
Figure 6.

4. Comparison with Turbulence Simulations

To address the assumption of Gaussianity, we now present
the results of numerical simulations of the hydromagnetic
equations for a weakly compressible gas in a cubic domain of
size L3 using 10243 mesh points. We employ the PENCIL

CODE,7 which uses sixth order accurate finite differences for
the spatial discretization and a third order time stepping
scheme. We first consider decaying nonhelical turbulence. Our
simulations are similar to RunA of Brandenburg et al. (2017),
where α1≈4 and α2≈−5/3. The turbulence is magnetically
dominated, so the velocity is almost entirely the result of the
Lorentz force.

Figure 4. Similar to Figure 2, but now for the three-dimensional case. Blue: E
(k), red: F(k), for α1=0 (triple-dotted–dashed), 1 (dotted–dashed), 2 (dashed),
4 (solid), and 10 (dotted).

Figure 5. Solutions of the 3D integral for power laws kα in 1<k<1000 with
α=−1, 0, and 1.

Figure 6. β vs. α in the range from −2 to 2 for one-dimensional (1D) and
three-dimensional (3D) cases. The dotted line indicates the diagonal.

Figure 7. Comparison with Ei(k) and Fi(k) from a turbulence simulations for
the magnetic field (i = M) and the current density (i = C). The Fi(k) spectra
have been shifted to show the agreement of their slopes with those of Ei(k) for
large k.

7 https://github.com/pencil-code
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In Figure 7, we present the results for the magnetic energy
spectrum ( )E kM after about 100 Alfvén times. Initially, the
peak of ( )E kM was at =k k* with p =k L 2 60* , but, owing to
an effect similar to the inverse cascade—here without helicity
—the peak has moved to about k* L/2π=15 by the end of the
simulation; see Brandenburg et al. (2015) for similar results. In
Figure 7 we also compare with the corresponding spectrum of
B2, referred to as Fi(k), where i=M stands for the magnetic
stress. We see that the spectral slopes of EM and FM agree in the
inertial range. In the subinertial range, the slopes of EM and FM
are, as expected, different from each other. However, the values
of the slopes, 3.5 and 1.5, respectively, are below the
expectations of 4 and 2, respectively.

To characterize the departure from Gaussianity, we have
computed the kurtosis of the magnetic field separately for all
three components and then take the average, which is denoted
by

( )å= - + á ñ á ñ
=

B B Bkurt 3
1

3
. 33

i
i i

1

3
4 2 2

We find a rather small value of less than 0.1. Thus, the field is
close to Gaussian and our results are qualitatively in close
agreement with those of the present paper.

To compare with a field where the assumption of
Gaussianity cannot be justified, we also show the results for
the normalized current density = ´J B. We denote the
corresponding spectra for current density by Ei(k) and Fi(k)
with i=C. The kurtosis of J , defined analogous to Bkurt , is
about 4.5.

In the inertial range, EM has a slope of about −2.2, which is
steeper than that of the Kolmogorov spectrum. The current
density spectrum has a slope of about −0.2. The slopes were
initially closer to the Kolmogorov values, but they became
steeper with time. What is important, however, is that in the
inertial range, the spectral slopes of FM and FC agree with those
of EM and EC, respectively, i.e., both have slopes of −2.2 and
−0.2, respectively. In the subinertial range, the slopes are again
somewhat different from the expectation. We find a = 3.51 and
5.5 for the spectra of EM and EC, respectively, but 1.5 for the
slopes of both FM and FC. It should be noted that, even under
the assumption of isotropy, the stress tensor contains different
contributions (scalar, vector, and tensor modes) that might
behave differently. However, the resulting differences are also
sensitive to the nature of the turbulence, whose study is beyond
the scope of the present paper.

Next, we compare with two runs of forced turbulence. In
these two examples, we consider the forcing wavenumbers
k*=30 and 6, respectively. In the former case (Figure 8), the
subinertial range is more developed. The magnetic field and
current density are now closer to being Gaussian (∣ ∣ Bkurt 0.1
and »Jkurt 1.4). We see that in the subinertial range, the slope
of FC is now even more shallow (b = 11 ), while that of FM is
slightly steeper (b = 1.71 ), but still not quite as steep as what is
expected (β1= 2).

In the latter run with k*=6 (Figure 9), the inertial range is
more developed and we see a clear k−5/3 spectrum in EM. The
magnetic field and current density are now further away from
being Gaussian ( =Bkurt 0.1 ... 0.2 and »Jkurt 5). In the
inertial range, the slope for EC agrees with what is expected for
Kolmogorov-type turbulence (1/3 for FM). However, we also
see departures from the b a= relation, where the β for FM is

slightly larger, while that of FC is now smaller and even
negative.

5. Conclusions

We have derived the general formula that allows us to
compute a spectrum F(k) of the square of a fluctuating field
whose spectrum, in turn, is E(k). Our results are independent of
whether the spectrum is that of a scalar or that of a vector field.
We have seen that in the inertial range with ( ) µ aE k k and
α−1, we find a spectrum F(k)∝kβ with β≈α if we are
sufficiently far away from the boundaries of the validity range
of where the power law applies. In the subinertial range, where
α1, we find β≈2.
A possible application of our work concerns the generation

of gravitational waves from hydrodynamic and hydromagnetic
turbulence with a known energy spectrum E(k). The resulting
stress Tij sources a wave equation of the form =h Tij ij,
where, except for normalization factors, hij is the linearized
strain field, =  - ¶ ¶- c t2 2 2 2 is the d’Alembertian wave
operator, and c is the speed of light. The actual gravitational
wave fields are the transverse and traceless projections of hij.
The nature of the wave operator can lead to a complicated
relation between the spectra of hij and Tij (e.g., Roper Pol et al.
2020). If, however, the time delay in the wave equation can be
neglected, the spectrum of hij is proportional to ( )F k k4.
The simulations of Roper Pol et al. (2020) show that most of

the wave generation occurs at the time when the stress has

Figure 8. Similar to Figure 7, but for forced turbulence with =k 30* .

Figure 9. Similar to Figure 7, but for forced turbulence with k*=6.
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reached maximum amplitude. Subsequent changes of the
source hardly contribute to wave production. It may be for
this reason that the assumption of no time delay is a reasonable
one. Under this assumption, we expect that the gravitational
wave energy, which is proportional to ( )¶ ¶h tij

2, should be
proportional to ( )F k k ;2 see Roper Pol et al. (2020) for details.
The extent of the empirically determined departures from this
simplistic way of estimating the gravitational wave energy
spectrum are not yet fully understood and would need to be
determined numerically or analytically, similarly to earlier
work using the aeroacoustic approximation of Lighthill
(1952a), as already done by Gogoberidze et al. (2007) in the
context of primordial gravitational waves.

Cosmological magnetic fields may well be helical (Tashiro
et al. 2014). They could be generated by the chiral magnetic
effect (Joyce & Shaposhnikov 1997; Boyarsky et al. 2012;
Yamamoto 2016; Anand et al. 2017). However, even under the
most optimistic conditions, this effect can only produce about

-10 G18 on a scale of 1 Mpc at the present time (Brandenburg
et al. 2017). Our work now shows that the presence of magnetic
helicity enhances the stress spectrum by up to a factor of two in
the subinertial range, while leaving that in the initial range
unchanged. This implies a small shift in the peak of the stress
spectrum, which itself would hardly be a distinguishing feature.
However, helical magnetic fields lead to circular polarization of
gravitational waves (Kahniashvili et al. 2005), which may be
detectable with the Laser Interferometer Space Antenna if there
is a sufficiently strong dipolar anisotropy in the signal (Domcke
et al. 2019).

Another potentially important application concerns the
spectrum of the parity even and parity odd linear polarization
modes. Those depend quadratically on the magnetic field
components perpendicular to the line of sight (Caldwell et al.
2017; Kandel et al. 2017; Brandenburg et al. 2019). Our work
now suggests that, measuring the polarization spectrum, one
can only infer the spectrum of the underlying turbulence
if a < -1.
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