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ABSTRACT

Context. The formation mechanism of sunspots and starspots is not yet fully understood. It is a major open problem in astrophysics.
Aims. Magnetic flux concentrations can be produced by the negative effective magnetic pressure instability (NEMPI). This instability
is strongly suppressed by rotation. However, the presence of an outer coronal envelope was previously found to strengthen the flux
concentrations and make them more prominent. It also allows for the formation of bipolar regions (BRs). We aim to understand
the important issue of whether the presence of an outer coronal envelope also changes the excitation conditions and the rotational
dependence of NEMPI.
Methods. We have used direct numerical simulations and mean-field simulations. We adopted a simple two-layer model of turbulence
that mimics the jump between the convective turbulent and coronal layers below and above the surface of a star, respectively. The
computational domain is Cartesian and located at a certain latitude of a rotating sphere. We investigated the effects of rotation on
NEMPI by changing the Coriolis number, the latitude, the strengths of the imposed magnetic field, and the box resolution.
Results. Rotation has a strong impact on the process of BR formation. Even rather slow rotation is found to suppress BR formation.
However, increasing the imposed magnetic field strength also makes the structures stronger and alleviates the rotational suppression
somewhat. The presence of a coronal layer itself does not significantly reduce the effects of rotational suppression.
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1. Introduction

The solar dynamo operates in hydromagnetic turbulence in the
presence of strong stratification – especially near the surface. The
stratification can lead to a secondary instability, in addition to
the primary dynamo instability, and can concentrate the field fur-
ther into spots. This instability was discovered by Kleeorin et al.
(1989, 1990) and applied to explain sunspot formation and other
hydromagnetic processes in the Sun (Kleeorin et al. 1993, 1996;
Kleeorin & Rogachevskii 1994; Rogachevskii & Kleeorin 2007).
In the last ten years, direct numerical simulations (DNS) have
demonstrated that this instability – the negative effective magnetic
pressure instability (NEMPI) – is able to concentrate magnetic
fields in different physical environments.

Since its first detection in a stably stratified isother-
mal setup with a weak horizontal (Brandenburg et al. 2011)
and a weak vertical (Brandenburg et al. 2013) magnetic field,
NEMPI demonstrated its operation in polytropic stratification
(Losada et al. 2014) and turbulent convection (Käpylä et al.
2012, 2016), in the presence of weak rotation (Losada et al.
2012, 2013), and with a coronal envelope (Warnecke et al.
2013a, 2016a). In this context, a “weak” magnetic field is one
that is of subequipartition strength, but already dynamically
important. Likewise, weak rotation means that the angular veloc-
ity is small compared with the inverse correlation time of the
turbulence, although it is already dynamically important. The

coronal envelope is crucial for producing a bipolar region (BR)
in the domain. Here we define BRs as structures that are much
larger than the size of individual turbulent eddies. The emer-
gence of opposite polarities is a consequence of zero total ver-
tical flux across a horizontal surface. This implies that regions
with weak large-scale magnetic fields are separated by regions
with strong fields of opposite magnetic polarity.

In principle, spot structures could also be tripolar or
quadrupolar (for example AR 11158), but those cases are rare.
Interestingly, these tri- and quadrupolar spot structures allow one
to determine the magnetic helicity in the space above by only
using the surface magnetic field (Bourdin & Brandenburg 2018).
This property may help tying the nature of dynamo-generated
subsurface magnetic fields to observations. A similarly useful
tool is helioseismology, which may allow for a detection of sub-
surface magnetic fields in the days prior to active regions forma-
tion; see Singh et al. (2016) for such work providing evidence
for a gradual buildup of active regions rather than a sudden buoy-
ant emergence from deep down.

The coronal envelope allows the orientation of a weak
imposed horizontal magnetic field to change locally due to the
interface between the turbulence zone and the coronal envelope
so that it can attain a vertical component. On the other hand,
rotation plays against the instability (i.e., NEMPI), which can-
not survive above a certain critical rotation rate. This critical rate
is found to be surprisingly small (Losada et al. 2012, 2013).
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Other types of surface magnetic flux concentrations develop
in a number of different circumstances, all of which share the
presence of a strong density stratification. There is first of all the
phenomenon of magnetic flux segregation into weakly convect-
ing magnetic islands within nearly field-free convecting regions
(Tao et al. 1998). This has also been seen in several recent high
resolution and high aspect ratio simulations (Käpylä et al. 2013,
2016) and perhaps also in those of Masada & Sano (2016). This
process may explain the formation of flux concentrations seen in
the simulation of Stein & Nordlund (2012), in which an unstruc-
tured magnetic field of 1 kG is allowed to enter the computa-
tional domain at the bottom. These simulations include realistic
surface physics in a domain 96 Mm wide and 20 Mm deep, so,
again, the aspect ratio is large and there is significant scale sep-
aration. Another approach is to let a flux tube rise from the bot-
tom of the computational domain to simulate flux emergence
at the surface (Fan et al. 1993; Fan 2001; Archontis et al. 2004,
2005; Fournier et al. 2017); see Fan (2009) for a review. Simi-
lar results, but with realistic surface physics, have been obtained
by Cheung et al. (2010) and Rempel & Cheung (2014), who let
a semi-torus of magnetic field advect through the lower bound-
ary. Their simulations show that the magnetic field is able to rise
through the top 16 Mm of the convection zone to form spots;
see the reviews by Cheung & Isobe (2014) and Schmieder et al.
(2014). In their simulations, however, flux emergence is signifi-
cantly faster than in the real Sun (Birch et al. 2016). Recently,
Chen et al. (2017) have been able to reproduce a complex
sunspot emergence using a modified magnetic flux bundle from
the dynamo simulation of Fan & Fang (2014) in a spherical shell
and inserting it into a setup similar to that of Rempel & Cheung
(2014).

The production of magnetic flux concentrations in con-
vection could also be related to the magnetic suppression of
the convective heat flux, which, again, could lead to a large-
scale instability (Kitchatinov & Mazur 2000). On the other hand,
Kitiashvili et al. (2010) explain the formation of magnetic flux
concentrations in their radiation-hydromagnetic simulations as
being confined by the random vorticity associated with convec-
tive downdrafts. However, the process seen in their simulations
seems to be similar to flux concentrations found in the down-
draft of the axisymmetric simulations of Galloway & Weiss
(1981). Likewise, there is a process known as convective col-
lapse (Parker 1978), which can lead to a temporary concen-
tration of field from a weaker, less concentrated state to a
more concentrated collapsed state, for example, from 1270 G
to 1650 G in the specific calculations of Spruit (1979). How-
ever, the collapsed state is not in thermal equilibrium, so the
system will slowly return to an uncollapsed state. This effect
may be related to the ionization physics, which can strongly
enhance the resulting concentrations (Bhat & Brandenburg
2016).

Strong magnetic flux concentrations also appear in simula-
tions where a large-scale dynamo is responsible for generating
magnetic field. The dynamo arises as a result of helically driven
turbulence in the lower part of the domain, while in the upper
part turbulence is non-helically driven. In the upper part, the mag-
netic field forms strongly concentrated BRs. This was seen in DNS
in both Cartesian domains (Mitra et al. 2014; Jabbari et al. 2016,
2017) and spherical shells (Jabbari et al. 2015).

The relation to NEMPI is unclear in some of these cases,
because NEMPI can be excited when the magnetic field is below
the equipartition value of the turbulence. A negative effective
magnetic pressure is possible in somewhat deeper layers and at
intermediate times, which may be important in initializing the

formation of magnetic flux concentrations. In particular, it
would lead to downward suction along vertical magnetic field
lines that creates an underpressure in the upper parts and
results in an inflow. The latter causes further concentrations
in the upper parts. This was clearly seen in the axisymmet-
ric mean-field simulations (MFS) of Brandenburg et al. (2014);
see Brandenburg et al. (2016) and Losada et al. (2017) for recent
reviews.

In the present work, we have considered a setup similar to
that of Warnecke et al. (2013a, 2016a). There, turbulence of an
isothermal gas is forced in the lower part of a horizontally peri-
odic domain, while the upper part is left unforced and subject to
the response from the dynamics of the lower part. This approach
has been used to study the effect of a coronal envelope on the
dynamo (e.g., Warnecke & Brandenburg 2010; Warnecke et al.
2011, 2013b, 2016b) and the formation of coronal ejections
(Warnecke et al. 2012a,b). In these simulations, the simple treat-
ment of the coronal envelope does not allow for a low plasma βc
as in the solar corona, where βc is the ratio of magnetic pressure
to gas pressure. However, in the solar corona too, the value of βc
is not extremely small (e.g., Peter et al. 2015) and plasma flows
can play an important role for the formation of loop structures
(Warnecke et al. 2017).

We have included the Coriolis force to examine the effects
of rotation in the presence of our simplified corona. Then, we
studied whether this facilitates the development and detectabil-
ity of NEMPI, and whether it changes the critical growth rate
above which NEMPI is suppressed. We have also studied the
dependence on latitude, as well as the dependence on the
numerical resolution. Finally, we compared our solutions with
corresponding MFS, where a prescribed effective (mean-field)
magnetic pressure operates only beneath the surface, but not in
the coronal layer.

2. The model

2.1. DNS

We used the same two-layer model as Warnecke et al. (2013a,
2016a). We considered a Cartesian domain with forced turbu-
lence in the lower part (referred to as turbulent layer), and a
more quiescent upper part (referred to as coronal envelope).
We further adopted an isothermal equation of state and solved
the equations for the velocity U, the magnetic vector potential
A, and the density ρ. We adopted units for the magnetic field
such that the vacuum permeability is unity. Here we extend this
model by including the presence of rotation with an angular
velocity Ω,

DU
Dt

= −2Ω × U − c2
s∇ ln ρ + g +

1
ρ

J × B + Θw(z) f + Fν, (1)

∂A
∂t

= U × B − ηJ, (2)

∂ρ

∂t
= −∇ · (ρU), (3)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative, B =
B0 + ∇ × A is the magnetic field, B0 = (0, B0, 0) is a weak
imposed uniform field in the y direction, J = ∇×B is the current
density, ρ−1 so that it reads Fν = ρ−1∇ · (2νρS) is the viscous
force, ν is the kinematic viscosity, η is the magnetic diffusivity, g
is the gravitational acceleration, Si j = 1

2 (∂ jUi+∂iU j)− 1
3δi j∇·U is

the traceless rate-of-strain tensor, and f is a forcing function that
consists of random, white-in-time, plane, non-polarized waves
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within a certain narrow interval around an average wavenumber
kf . It is modulated by a profile function Θw(z),

Θw(z) = 1
2

(
1 − erf

z
w

)
, (4)

that ensures a smooth transition between unity in the lower layer
and zero in the upper layer. Here w is the width of the transition.
The angular velocity vectorΩ is quantified by its modulus Ω and
colatitude θ, such that

Ω = Ω (− sin θ, 0, cos θ) . (5)

Following Warnecke et al. (2013a), the domain used in the
DNS is Lh × Lh × Lz, where Lh = 2π and Lz = 3π with
−π ≤ z ≤ 2π with −π ≤ z ≤ 0 for the turbulent layer and
0 ≤ z ≤ 2π for the coronal envelope. This defines the base hor-
izontal wavenumber k1 = 2π/Lh, which is set to unity in our
model. Our Cartesian coordinate system (x, y, z) corresponds to
a local representation of a point on a sphere mapped to spherical
coordinates (r, θ, φ) → (z, x, y), where r is radius, θ is colati-
tude, and φ is longitude. Similar to earlier work (Kemel et al.
2012a, 2013), in all cases we used kf = 30 k1 and ν = 10−4 cs/k1
with the sound speed cs. The normalized gravity is given by
gHρ/c2

s = 1, which is just slightly below the value of 1.2 that
is found to maximize the amplification of magnetic field con-
centrations (Warnecke et al. 2016a). Here Hρ is the density scale
height. As in most of our earlier work, we use k1Hρ = 1, so the
vertical density contrast is exp(Lz/Hρ) = exp 3π ≈ 12, 000 in the
total box and exp(Lz/Hρ) = exp π ≈ 23 in the turbulent layer.
We set the width of the profile functions in the DNS and MFS to
w = 0.05/k1, as in most of the cases of Warnecke et al. (2016a).

For the rms velocity, we used the averaged value in the tur-
bulent layer defined as: urms = 〈U2〉

1/2
xy;z≤0. We normalized the

magnetic field by its equipartition value, Beq =
√
ρ urms, using

either the z dependent value of Beq or the value at the surface at
z = 0, i.e., Beq0 ≡ Beq(z = 0).

Our simulations are characterized by the magnetic and fluid
Reynolds numbers,

ReM = urms/ηkf , Re = urms/νkf , (6)

respectively, and the Coriolis number

Co = 2Ωτ, (7)

where τ = 1/urmskf is the eddy turnover time, and the colatitude
θ of our domain is positioned on the sphere. In the following,
we use ReM ≈ 14 and Re ≈ 29, so the magnetic Prandtl num-
ber is PrM = ν/η = 0.5. These values of the magnetic and fluid
Reynolds numbers are based on the forcing wavenumber, which
is rather high (kf/k1 = 30). Thus, the values of ReM and Re
based on the wavenumber of the domain would be 420 and 870,
respectively, and those based on the size of the domain, which
are larger by another factor of 2π, would be 2640 and 5470,
respectively. The definitions of these Reynolds numbers must
therefore be kept in mind when comparing with other work. In
our definition, the magnetic Reynolds number required for the
effective magnetic pressure to be negative must be larger than
a critical value of about three (Brandenburg et al. 2011, 2012;
Käpylä et al. 2012; Warnecke et al. 2016a). For small ReM, the
effective magnetic pressure can only be positive (Rüdiger et al.
2012; Brandenburg et al. 2012). In our work, we chose ReM to
be about ten times supercritical. With the choice of Re ≈ 29
and PrM = 0.5, we exclude that the excitation of a small-scale
dynamo influences our results. As shown in Warnecke et al.

(2016a), PrM ≥ 1 is needed to excite a small-scale dynamo in
this setup.

In this work, time is often expressed in units of the turbu-
lent diffusive time, τtd = ηt0k2

1, where ηt0 = urms/3kf is an
estimate of the turbulent magnetic diffusivity. As in our earlier
work (Warnecke et al. 2013a, 2016a), we used the Fourier fil-
tered magnetic and velocity fields as diagnostics for character-
izing large-scale properties of the solutions. Our Fourier filtered
fields are denoted by an overbar and the superscript fil, i.e., Bz

fil

for the vertical magnetic field. This includes contributions with
horizontal wavenumbers below kf/2. This filtering wavenumber
is the same as that used in Warnecke et al. (2013a), but the cut-
off wavenumber is three times larger than the filter value kf/6
used by Brandenburg et al. (2013) and Warnecke et al. (2016a).
This is appropriate here because, owing to the nature of our BRs,
where the spots tend to be close together, they would not be
well captured when the averaging scale is too large or the fil-
tering wavenumber too small. The corresponding spectral mag-
netic energy contained in the vertical magnetic field, Bz, is Ez

M
and obeys

∫
Ez

M dk = 〈B2
z 〉/2. Of particular interest is the energy

per logarithmic wavenumber interval, 2k∗Ez
M(k∗), which we usu-

ally evaluate at k∗/k1 = 2, where the energy reaches a maxi-
mum. (The factor 2 in front of kEz

M compensates for the 1/2 fac-
tor in the definition of the energy.) For the velocity, however,
we find that kf/6 is the appropriate filtering wavenumber. There-
fore, we filter the velocities on a larger scale than the magnetic
field.

We computed growth rates and magnetic energies as aver-
ages over a certain time interval. We calculate error bars as the
largest departure from any one third of the full time interval used
for computing the average. In some cases, those error estimates
were themselves unreliable. In such exceptional cases we have
replaced it by the average error for other similar simulations.

We used resolutions between 192 × 192 × 384 and 1152 ×
1152 × 2304 meshpoints in the x, y, and z directions, respec-
tively. We adopted periodic boundary conditions in the xy
plane, a stress-free perfect conductor condition on the bottom
boundary, and a stress-free vertical field condition on the top
boundary.

2.2. MFS

In this section, we state the relevant equations for the mean-
field description of NEMPI in a system with coronal enve-
lope in the presence of rotation. The pertinent equations
have been obtained by Kleeorin et al. (1989, 1990, 1996) and
Kleeorin & Rogachevskii (1994) through ensemble averaging.
In practical applications, these averages should be replaced by
spatial averages, but their precise nature depends on the physical
circumstances and could be planar (e.g., horizontal) or azimuthal
(e.g., around a flux tube), or some kind of spatial smoothing,
although those obey the Reynolds rules only approximately. In
the present case with inclined stratification, rotation vectors, and
mean magnetic field vectors, we expect the formation of bipolar
structures that cannot be described by simple planar or azimuthal
averages. The only meaningful average is a smoothing operation
that could preserve such structures. In the following, we denote
the dependent variables of our MFS by overbars. For the analy-
sis of our DNS, on the other hand, we sometimes used Fourier
filtering and sometimes horizontal averaging and also denoted
them with an overbar. In those cases, a corresponding comment
is made, and in the particular case of Fourier filtering, the vari-
able is additionally denoted by the superscript “fil”.
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In the MFS, the equations for the mean velocity U, mean
vector potential A, and mean density ρ, are given by

D U
D t

= −2Ω × U − c2
s∇ ln ρ + g + FM + FK, (8)

∂A
∂t

= U × B − (ηt + η)J, (9)

∂ρ

∂t
= −∇ · (ρU), (10)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative based on
U, ηt is turbulent magnetic diffusivity,

FK = (νt + ν)
(
∇2U + 1

3∇∇ · U + 2S∇ ln ρ
)

(11)

is the total (turbulent plus microscopic) viscous force with νt

being the turbulent viscosity, Si j = 1
2 (U i, j + U j,i) − 1

3δi j∇ · U
is the traceless rate-of-strain tensor of the mean flow and, as
in the DNS, we adopt units for the mean magnetic field such
that the vacuum permeability is unity. The effective Lorentz
force, FM, which takes into account the turbulence contribu-
tions, that is, the effective magnetic pressure (Kleeorin et al.
1996; Rogachevskii & Kleeorin 2007; Brandenburg et al. 2016)
and an anisotropic contribution resulting from gravitational strat-
ification, is given by

ρFM = J × B + ∇

[
1
2 qp(z, B) B

2
]

+ ẑ
∂

∂z

[
qg(z, B) B

2
]
, (12)

where qp and qg are functions that have previously been deter-
mined from DNS (Brandenburg et al. 2012). Warnecke et al.
(2016a) found qg to be negative for weak and moderate stratifi-
cation (we note that the abscissa of their Fig. 6 shows g/k1c2

s and
not gHρ/c2

s , as was incorrectly written). Thus, there is the possi-
bility of partial cancelation, which we model here by assuming
qp and qg to have the same profile with

qg = agqp (ag = const). (13)

Warnecke et al. (2016a) determined qpβ
2 = −qgβ

2 = −0.002,
resulting in ag = −1 for the same stratification as in this work
(g/k1c2

s = 1). We note here that the values of qp and qg are
the result of averaging in time and space, so locally the values
can be different, and therefore they do not need to cancel out
locally. Furthermore, the error estimate by the spread is compa-
rable to the averaged value, see Fig. 6 of Warnecke et al. (2016a).
We modeled qp and qg as the product of a part that depends

only on β2 = B
2
/B2

eq(z) and a profile function Θw(z). The lat-
ter function varies only along the z direction and mimics the
effects of the coronal layer, using the same error function as in
Eq. (4), i.e.,

qp(B, z) = q(B)
p (β2) Θw(z), (14)

where

q(B)
p (β2) =

qp0

1 + β2/β2
p

=
β2
∗

β2
p + β2

· (15)

Here β∗ =
√qp0 βp is a parameter that can be used alter-

natively to qp0 and has the advantage that the growth rate
of NEMPI is predicted to be proportional to it (Kemel et al.
2013). In the following, we mainly use the parameters found

by Losada et al. (2013), namely qp0 = 32 and βp = 0.058,
which corresponds to β∗ = 0.33. On one occasion, we also
used another parameter combination that will be motivated
by our results presented in Sect. 3.7 below. In hindsight, it
might have been more physical to use Θ2

w in Eq. (14), but we
know from experience that this would make a hardly noticeable
difference.

We note that, while in both the DNS and the MFS, the coro-
nal envelope is modeled with the same profile function Θw(z),
in the MFS, it appears underneath the gradient (inside the effec-
tive Lorentz force), while in the DNS it does not. In the MFS,
this leads to an additional term involving the derivative of Θw(z),
which is a gaussian function. In one of the cases reported below,
we checked that the presence of this term causes a very minor
difference in the growth rates.

In addition to adopting the parameterization given by
Eq. (14), the effects of turbulence are modeled in terms of turbu-
lent viscosity νt and turbulent magnetic diffusivity ηt. Both can
be expressed in terms of urms and kf , whose values are known
from the DNS and give νt = ηt ≈ 10−3csHρ. Thus, 3ηt/η = ReM
and 3νt/ν = Re. Among the range of other possible mean-field
effects, we have included here only the negative effective mag-
netic pressure functions qp and qg.

As already noted by Losada et al. (2012), the usual Coriolis
number is not the relevant quantity characterizing the relative
importance of rotation on NEMPI. A more meaningful quantity
is the ratio of 2Ω/λ∗0, where λ∗0 is the nominal value of the
growth rate

λ∗0 = β∗urms/Hρ, (16)

which was found to be comparable to the growth rate of NEMPI
(Losada et al. 2012). Therefore, the Coriolis number given by
Eq. (7), can be rewritten as

Co =
2Ω

urmskf
=

2Ω

λ∗0

β∗
kf Hρ

· (17)

With urms ≈ 0.1cs and k1Hρ = 1, this means that λ∗0 = 0.033csk1;
see Eq. (16). This value has also been used to characterize the
rotation rate of the DNS, which are well characterized by the
parameter β∗ = 0.33; see Brandenburg et al. (2012). Therefore,
2Ω/λ∗0 is about 100 times larger than Co. We note also that in
the MFS, Co = 6Ωηt/u2

rms (Jabbari et al. 2014), which results
in the same estimate. The actual growth rates obtained from
our DNS and MFS will be normalized either also by λ∗0 or by
τ−1

td .
Both DNS and MFS simulations are done with the Pencil

Code1. It uses sixth order accurate finite differences and a third-
order timestepping scheme. It comes with a special mean-field
module that can be invoked for the MFS.

3. DNS results

3.1. Numerical resolution

Since NEMPI is a mean-field instability, which relies on small-
scale turbulence for developing large-scale structures, we begin
by demonstrating the effects of changing the resolution on the
formation of magnetic field concentrations. The growth rates are
shown in Fig. 1 as a function of resolution. The corresponding
simulations are listed in Table 1 where we have always used the
same domain size of (2π)2 × 3π, but with different numbers of

1 http://github.com/pencil-code
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Table 1. Summary of run with different resolutions.

Run Resolution B0/Beq0 Bfil max
z /Beq0 τ

Bz=max
td (Ez,max

M /B2
eq0)1/2 τ

Ez
M=max

td Regrid λτtd BR

A1 1922 × 384 0.027 0.37 1.2 0.06 (0.08) 0.61 (1.6) 0.018 0.74 ± 0.08 Yes
A2 3842 × 768 0.026 0.35 0.9 0.08 (0.11) 0.92 (0.9) 0.018 1.28 ± 0.13 Yes
A3 5762 × 1152 0.025 0.42 1.2 0.07 (0.10) 0.61 (1.2) 0.074 1.27 ± 0.11 Yes
A4 7682 × 1536 0.025 0.54 1.5 0.13 (0.17) 1.41 (1.4) 0.001 1.27 ± 0.14 Yes
A5 11522 × 2304 0.025 0.40 1.0 0.09 (0.12) 0.92 (0.9) 0.004 1.26 ± 0.10 Yes

Notes. Bfil max
z is the maximum of the Fourier-filtered vertical magnetic field strength at the surface (z = 0), τBz=max

td is the time when Bfil max
z /Beq0

reaches a maximum while τ
Ez

M=max
td is the time when Ez

M(k∗) with k∗/k1 = 2 reaches a maximum. The numbers in parentheses refer to spectral
values averaged between k/k1 = 1 and 4. Regrid = urms/νkNy is the mesh Reynolds number. The column BR indicates the visual appearance of BRs
at the surface.

Fig. 1. Growth rate λ (black line), the peak spectral magnetic field
(2k∗Ez,max

M )1/2 (red), and the maximum of the Fourier-filtered vertical
magnetic field Bfil max

z (blue) for Runs A1–A5 at different resolutions.

-3

-2

-1

0

1

2

3

x/
H

ρ

1.42t/τtd

192
2
× 384

1.22t/τtd

384
2
× 768

-3 -2 -1 0 1 2 3
y/Hρ

-3

-2

-1

0

1

2

3

x/
H

ρ

0.93t/τtd

576
2
× 1152

-3 -2 -1 0 1 2 3
y/Hρ

1.27t/τtd

1152
2
× 2304

-0.4

-0.2

0.0

0.2

0.4

Bz/Beq

Fig. 2. Vertical magnetic field Bz at the surface (z = 0) for runs with dif-
ferent resolution (Runs A1–A3 and A5) at the time when the structures
are strongest. The resolution is indicated by the number of grid points
at the top of each panel.

meshpoints. We also quote the mesh Reynolds number, Regrid =
urms/νkNy, where kNy = π/δx is the Nyquist wavenumber and
δx is the mesh spacing. In all cases, this number is well below
unity. Sometimes the quantity urmsδx/ν is used in the literature;
it is simply 2π times larger than our Regrid.

We see formation of bipolar regions (denoted by BR in the
table) in all the cases, but at the lowest resolution, the growth

Fig. 3. Evolution of Bfil max
z /Beq vs. t/τtd for Run A2 showing exponen-

tial growth with growth rate λ = 1.3τ−1
td (black solid line), compared

with that of Brms
z /Beq (red dashed line) and Bmax

z /Beq (blue solid line) at
z = 0. We also show the unity line corresponding to Beq (orange dotted
line).

rate of the magnetic field is significantly smaller than at all
higher resolutions. Based on this, we conclude that a resolution
of 3842×768 meshpoints results in a good compromise between
accuracy and computational cost. Therefore, we use simula-
tions with this resolution for the following parameter study.
Because of this, Warnecke et al. (2016a) double their resolution
in their followup work of Warnecke et al. (2013a). Qualitatively,
the coherence increases with increasing resolution; see Fig. 2.
From Table 1, the structures become strongest at a resolution of
7682 × 1536 meshpoints, where the normalized Fourier-filtered
vertical magnetic field at the surface, Bfil max

z /Beq0, reaches a
value of 0.54 corresponding to only 0.4 at both lower and higher
resolutions.

3.2. Growth of BRs

We now discuss the main properties of BRs. Large-scale BRs
form during the first one or two turbulent-diffusive times. They
are referred to as large-scale structures, because their size is that
of many turbulent eddies (about 2π/kf in the horizontal plane).
To average over these turbulent eddies and still resolve the large-
scale structure of the BRs, we Fourier-filter the magnetic field
at the surface. To investigate the growth of these structures we
then plot the maximum of the vertical Fourier-filtered magnetic
field Bfil

z over time. In Fig. 3, which corresponds to Run A2, we
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Fig. 4. Vectors of the large-scale (Fourier-filtered) flow superimposed
on a color scale representation of Bz at the surface at t/τtd = 0.91 for
Run A4 (upper panel) and t/τtd = 1.12 for Run A5 (lower panel). Note
that the coordinate system has been rotated by 90◦, so y points to the
right and x points downward.

clearly see an exponential growth with growth rate λ ≈ 1.3 τ−1
td .

A similar growth has been seen before in numerical experi-
ments both with a horizontally imposed field (Brandenburg et al.
2011; Kemel et al. 2012a) and a vertical one (Brandenburg et al.
2013). A similar value has also been determined with the same
setup, where BRs form (Warnecke et al. 2016a). Such exponen-
tial growth is suggestive of NEMPI.

In Fig. 3, we also show for comparison the evolution of the
maximum of the surface vertical magnetic field Bmax

z , that is, not
the filtered value. Its value is always close to the local equipar-
tition field strength. No exponential growth phase can be seen
in the temporal evolution of Bmax

z . Likewise, the rms value of

1 10 100
k⊥Hρ
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Fig. 5. Power spectra of Bz at the surface (z = 0) for Run A2 at several
times around the maximum growth for zero rotation. The inset shows
the time dependence (time in units of τtd) for k = k∗ = 2 k1 and for the
values averaged between k/k1 = 1 and 4.

surface vertical magnetic field Brms
z = 〈B2

z (z = 0)〉1/2xy is about 20
times smaller and shows no exponential growth.

The formation of BRs in our simulations are associated
with large-scale flows. As for the magnetic field, we performed
Fourier filtering to averaged over the turbulent scales. In Fig. 4
we show these Fourier-filtered large-scale flows that includes
only wavenumbers below kf/6. The two panels are for Runs A4
and A5 with two different resolutions, but otherwise the same
as Run A2, and similar times. In both cases there are BRs, but
in one case the two spots are more separated from each other.
Nevertheless, in all cases the BRs are surrounded by a large-
scale inflow with relative rms value U

rms
hor /urms = 0.16–0.18,

where U
rms
hor = 〈U2

x + U2
y〉

1/2
xy . Its maximum value is around 0.4.

Given that the scale of the turbulent motions is much smaller
than the scale of the spots, and that there is otherwise no mech-
anism producing large-scale flow perturbations, the inflow can
only be a consequence of the magnetic field itself, and not the
other way around. This is indeed also what one expects for
NEMPI.

Another diagnostics for the formation of magnetic structures
in our simulations are magnetic power spectra taken at the sur-
face. In Fig. 5 we can see the time evolution of such power spec-
tra. At early times when there are no structures yet, the spectrum
peaks at the energy injection wavenumber, kf = 30 k1. As time
evolves and structures start forming near the surface, magnetic
energy is transported toward smaller wavenumbers. When we
see the BRs forming at the surface, the magnetic power spec-
trum peaks at k = k∗ ≈ 2k1, and the amplitude at this wavenum-
ber decreases until the structures disappear. The strength of the
magnetic surface structures at this wavenumber is characterized
by the value of (2kEz,max

M )1/2 at k = k∗ = 2 k1; see Sect. 2.1. The
resulting values are listed in Tables 1–3. In addition, we also
give the spectral values averaged over the first four wavenum-
bers from k/k1 = 1 to 4. The averaging helps reducing the sensi-
tivity to discretization noise that arises from looking at just one
wavenumber k∗. In the tables, we also judge BR formation as
Yes, no, or weak. These attributes are based on the qualitative
assessment of images of Bz.

The energy transfer to larger scales is reminiscent of an
inverse cascade. Brandenburg et al. (2014) have speculated that
such a cascade might be a consequence of the conservation of

A61, page 6 of 17

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833018&pdf_id=4
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833018&pdf_id=5


I. R. Losada et al.: Magnetic bipoles in rotating turbulence with coronal envelope

Table 2. Summary of runs with different Coriolis numbers and colatitudes.

Run Co θ Bfil max
z /Beq0 τ

Bz=max
td

√
2k∗E

z,max
M /Beq0 τ

Ez
M=max

td λτtd Pmin
eff

BR

A2 0 0 0.35 0.9 0.08 (0.11) 0.92 (0.9) 1.28 ± 0.13 −0.029 Yes
B1 0.0012 0 0.31 0.8 0.17 (0.22) 0.61 (0.61) 1.32 ± 0.20 −0.029 Yes
B2 0.0012 30 0.35 0.9 0.13 (0.18) 0.61 (0.73) 1.37 ± 0.11 Yes
B3 0.0012 60 0.32 1.7 0.16 (0.20) 0.67 (0.67) 1.46 ± 0.16 Yes
B4 0.0012 90 0.42 1.8 0.13 (0.16) 0.73 (0.67) 0.58 ± 0.06 Yes
C1 0.0023 0 0.672 1.7 0.30 (0.42) 1.59 (1.59) 1.03 ± 0.07 −0.025 Yes
C2 0.0023 30 0.303 0.8 0.12 (0.16) 0.61 (0.61) 1.46 ± 0.19 −0.021 Yes
C3 0.0023 60 0.428 1.7 0.18 (0.26) 1.65 (1.65) 0.66 ± 0.06 −0.019 Yes
C4 0.0023 70 0.341 2.4 0.12 (0.16) 3.18 (1.96) 0.24 ± 0.05 Yes
C5 0.0023 90 0.467 2.0 0.14 (0.20) 1.16 (1.96) 0.64 ± 0.06 −0.020 Yes
D1 0.0029 0 0.532 1.41 0.26 (0.38) 1.16 (1.28) 1.40 ± 0.17 −0.028 Yes
D2 0.0029 60 0.406 2.63 0.16 (0.22) 1.16 (1.96) 0.37 ± 0.05 Yes
E1 0.0035 0 0.228 0.6 0.11 (0.15) 0.9 (0.9) 0.92 ± 0.3 −0.023 Yes
E2 0.0035 60 0.241 1.1 0.13 (0.16) 0.5 (0.5) 0.56 ± 0.1 Weak
F1 0.0076 0 0.296 1.4 0.11 (0.14) 1.5 (1.5) 0.38 ± 0.09 −0.029 Weak
F2 0.0076 30 0.269 3.0 0.12 (0.16) 1.8 (1.8) 0.17 ± 0.05 Yes
F3 0.0076 60 0.226 0.5 0.11 (0.14) 0.3 (0.3) 0.16 ± 0.13 No
F4 0.0076 90 0.209 0.7 0.11 (0.15) 0.8 (0.8) 0.60 ± 0.15 Weak

Notes. All runs have a resolution of 3842 × 768 meshpoints (as in Run A2), an imposed field of B0/Beq0 ≈ 0.026, and a size of (2π)2 × 3π. Pmin
eff

is
the minimum value of the effective magnetic pressure, defined in Sect. 3.7. All other quantities are defined in Table 1.

Table 3. Summary of runs with different values of imposed field and Coriolis number.

Run B0/Beq0 Co Bfil max
z /Beq0 τ

Bz=max
td

√
2k∗E

z,max
M /Beq0 τ

Ez
M=max

td λτtd Pmin
eff

BR

A2 0.026 0 0.35 0.9 0.08 (0.11) 0.92 (0.9) 1.28 ± 0.13 −0.029 Yes
G1 0.065 0.002 0.38 0.4 0.32 (0.40) 0.49 (0.55) 1.21 ± 0.20 −0.046 Yes
G2 0.066 0.004 0.54 0.9 0.32 (0.46) 0.73 (0.73) 1.27 ± 0.12 −0.041 Yes
G3 0.066 0.006 0.52 1.6 0.38 (0.52) 1.59 (1.59) 0.67 ± 0.05 −0.039 Yes
G4 0.067 0.012 0.50 2.5 0.38 (0.50) 1.34 (1.34) 0.50 ± 0.06 −0.048 Yes
G5 0.066 0.015 0.46 1.3 0.32 (0.42) 0.98 (1.89) 0.34 ± 0.07 Weak
G6 0.068 0.018 0.43 1.4 0.28 (0.34) 0.98 (0.98) 0.33 ± 0.06 −0.036 No
H1 0.13 0.002 0.50 0.8 0.28 (0.38) 0.5 (0.3) 0.55 ± 0.09 −0.069 Yes
H2 0.14 0.006 0.49 0.5 0.32 (0.42) 0.5 (0.5) 0.22 ± 0.13 −0.070 Yes
H3 0.14 0.012 0.63 2.3 0.44 (0.64) 0.7 (2.1) 0.20 ± 0.03 −0.067 Yes
H4 0.14 0.018 0.54 3.0 0.32 (0.54) 3.5 (0.9) 0.09 ± 0.04 −0.068 Weak
I1 0.27 0.002 0.59 0.4 0.24 (0.34) 0.4 (0.4) 0.50 ± 0.52 −0.12 Yes
I2 0.28 0.006 0.61 0.4 0.44 (0.58) 0.4 (0.4) 0.56 ± 0.29 −0.12 Yes
I3 0.29 0.013 0.56 1.0 0.42 (0.64) 0.6 (0.5) 0.21 ± 0.08 −0.12 Weak
I4 0.30 0.019 0.59 1.0 0.42 (0.74) 0.7 (1.0) 0.15 ± 0.07 −0.12 Very Weak
J1 0.77 0.003 0.69 0.05 0.20 (0.28) 0.22 (0.22) 0.10 ± 0.29 −0.15 Very weak
J2 0.82 0.007 0.64 0.21 0.21 (0.26) 0.32 (0.32) 0.05 ± 0.10 −0.16 Very weak
J3 0.91 0.014 0.69 0.37 0.23 (0.30) 1.31 (1.31) 0.02 ± 0.12 −0.15 No
J4 0.91 0.021 0.73 0.73 0.31 (0.38) 1.36 (1.36) 0.03 ± 0.10 −0.16 No

Notes. The colatitude is set to θ = 0◦, corresponding to the pole. All other quantities are defined in Tables 1 and 2.

cross helicity, u · b, where the overbar denotes horizontal aver-
aging, b = B − B are the magnetic fluctuations and u = U − U
are the velocity fluctuations; see Rüdiger et al. (2011). (For hor-
izontal averages, we usually have U = 0.) They studied the pro-
duction of u · b as a result of a mean magnetic field along the
direction of gravity, so there exists a pseudoscalar g · B0 that has
the same symmetry properties as u · b and is also odd in the mag-
netic field. A similar result was also obtained by Kleeorin et al.
(2003); see their Eq. (11) where they considered inhomogeneous

turbulence. Furthermore, recent work of Zhang & Brandenburg
(2018) has shown that the cross helicity spectrum shows a steep
slope at large scales. This was interpreted as a potential signature
of NEMPI-like effects.

3.3. Influence of rotation

The structure of the bipolar regions is strongly influenced by
rotation; see Fig. 6. Faster rotation causes the magnetic flux
concentrations to be weaker. In some cases, for example in
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Fig. 6. Rotational dependency on the active region formation. We show the vertical magnetic field Bz/Beq for Runs A2, B2 and F2 corresponding
to Co = 0, 0.0012, 0.0076 at the time of the strongest BR. In the first panel for Co = 0, the value of θ is insignificant.

Fig. 7. Rotational dependency of the growth rate λ, the peak spectral
magnetic field (2k∗Ez,max

M )1/2, and the maximum of the Fourier-filtered
vertical magnetic field Bfil max

z for colatitudes 0◦ (black line), 30◦ (blue
line), 60◦ (purple line), and 90◦ (red line). The error bars are either the
errors of the exponential fit (λ; see Table 2), or estimated as 10% of the
actual value.

Run B3 (middle panel of Fig. 6), the structure of BRs splits
into three parts with one negative and two positive polarities.
In our most rapidly rotating case (right-most panel of Fig. 6),
the structure appears rotated by 90◦ with respect to slower
rotations.

Table 2 shows that, as the Coriolis number is increased from
0.0012 to 0.0076, BR formation gets almost entirely suppressed
(see Runs B1 to F4). At θ = 0◦ (corresponding to the pole),
BR formation tends to be slightly easier, but as the Coriolis
number is increased the BRs become clearer at intermediate
latitudes.

The rotational dependency of the growth rate λ for differ-
ent colatitudes θ is shown in Fig. 7. For most of the colatitudes,
the growth rate first increases for weak rotation and then gets
reduced to around a third of the values for more rapid rotation.
Even though we cannot visually detect any clear indication of

BRs in the rapidly rotating runs, the growth rate of magnetic field
is still positive. The magnetic field strength determined from the
spectral energy (see middle panel of Fig. 7) shows actually an
enhancement with rotation. Even for the rapidly rotating cases,
the magnetic field strength in the flux concentrations is stronger
than without any rotation. The strongest values are achieved
with Co = 0.002. For most of the colatitudes, the maxima of
the large-scale magnetic field, as shown in the bottom panel of
Fig. 7, decrease for increasing rotation, similarly as the λ (top
panel). However, we see the maximum value for Co = 0.002 to
0.003.

The time when the Fourier-filtered magnetic field and the
field of spectral energy become maximal depends on rotation,
but there is no clear trend visible (see Tables 2 and 3). However
there seems to be an indication that the time becomes longer,
as expected for a smaller growth rate. As the Coriolis number
increases, the structures become weaker and it gets more difficult
to discern a clear rotation pattern.

We note here that, contrary to convection, the energy-
carrying length scale is not influenced by rotation, because the
driving scale is prescribed through the forcing function. Simi-
larly, the kinetic energy is also only weakly influenced by rota-
tion, so urms decreases only weakly for more rapid rotation.

3.4. Dependence on latitude

As we change the colatitude θ, the growth rates and the strengths
of BRs change. This is demonstrated in Fig. 8, where we show
λτtd, (2k∗E

z,max
M )1/2/Beq0 and Bfil max

z /Beq0 for Co = 0.0012 (cor-
responding to 2Ω/λ∗0 ≈ 0.15) and different values of θ. For
θ = 0, which corresponds to the pole, the saturation magnetic
field strength shows a maximum at t/τtd ≈ 1. For larger values
of θ, that is, closer to the equator, the maximum is slightly higher
(about 0.8) and more long-lived, for example, for 0.5 ≤ t/τtd ≤

2.5 at θ = 60◦, when B
rms
z /Beq is above 0.6 and sometimes even

0.8.
Bipolar structures are still fairly pronounced at θ = 60◦, i.e.,

at 30◦ latitude; see Fig. 9. It is remarkable that for all values of
θ, the inclination of BRs is approximately the same. The same
feature is also seen in the MFS, except that for θ = 90◦ the struc-
tures are always aligned in the y direction. This may also be the
case here, but the structures are so weak that this is hard to see.
For somewhat faster rotation, when Co > 0.01, corresponding to
2Ω/λ∗0 ≈ 1, the structures disappear.
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Fig. 8. Summary of the results for the different colatitudes showing the
normalized growth rate of the Fourier-filtered z-component of the mag-
netic field (top panel) for B0/Beq0 = 0.02, the averaged magnetic spec-
trum over k ≤ 4 (middle panel) and the maximum of the Fourier-filtered
vertical magnetic field Bfil max

z (bottom panel) for different values of the
Coriolis number and colatitude. As elsewhere, error bars are either the
errors of the exponential fit (λ; see Table 3), or estimated as 10% of the
actual value.

3.5. Inclination of BRs

A systematic orientation of BRs was already seen in the original
papers of Losada et al. (2012, 2013) both for MFS and DNS. For
most of the runs, the BRs are either aligned with the imposed
magnetic field or they are inclined by 45◦. To compare with
the Sun, we map our Cartesian coordinate system to spherical
ones via (x, y, z) → (θ, φ, r), so the y coordinate points in the
toroidal (eastward) direction and x corresponds to colatitude,
which points southward. This explains the orientations of our
surface visualizations where we plot −x versus y; see Fig. 9.

We usually find that rotation leads to a poleward tilt of the
BR. We return to the question of the inclination angle in Sect. 4.4
where we study a similar phenomenon in MFS and show that
the inclination angle is then not an artifact of the domain size.
We also note that the orientation is the same in DNS and MFS.
In fact, the orientation agrees with that found by Losada et al.
(2012, 2013). It is interesting to note that the sense of inclina-
tion is the other way around than what is expected based on the
buoyant rise of magnetic flux tubes, which gives rise to Joy’s law
(Choudhuri & Gilman 1987).

The “anti-Joy’s” law orientation of NEMPI structures is
likely a consequence of the interaction of rotation with the con-
centration of flux as opposed to the expansion of flux, which is
usually expected as a flux tube rises through a stratified layer.
A similar phenomenon of a concentration of flux in stratified
turbulence (as opposed to an expansion) has been found in tur-
bulence driven by the magneto-rotational instability, where this
was argued to be the reason for an unconventional sign of the
α effect (Brandenburg et al. 1995); see the more detailed discus-
sion of Brandenburg & Campbell (1997).

3.6. Dependence on the imposed magnetic field strength

Rotation weakens the formation of structures for even smaller
Coriolis numbers than those of previous studies (Losada et al.
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Fig. 9. Vertical surface magnetic field Bz/Beq for Runs C1–C3 and C5
with Co = 0.0012.

2012, 2013). We can therefore increase the efficiency of the for-
mation mechanism by increasing the imposed magnetic field,
as was suggested by Warnecke et al. (2016a). The increase in
the imposed field allows the BRs to be formed for even higher
Coriolis numbers, up to the point where the magnetic field
becomes so strong that the derivative dPeff/dB2 becomes pos-
itive and NEMPI cannot be excited in the domain; for details,
see Brandenburg et al. (2016) and the appendix of Kemel et al.
(2013).

Table 3 shows simulations of domains located at the pole
(θ = 0◦) and gives their dependence on the magnetic field
strength and angular velocity. As B0/Beq0 is doubled from 0.07
to 0.14, BR formation becomes slightly easier: compare model
G6 with model H4 (both are for Co = 0.018). Weak BR forma-
tion is only possible in model H4. For even stronger fields, how-
ever, this trend disappears. In model I4 with B0/Beq0 = 0.3, BR
formation is now very weak and for Co = 0.019, and in model
J3 with B0/Beq0 = 0.9, BR formation is impossible – even for
Co = 0.014; see Table 4 for an overview.

The growth rate of the magnetic field shows a strong
decrease for higher rotation rates. This can be compensated for
to some extent by using a stronger imposed magnetic field; see
the top panel of Fig. 10. For Co ≈ 0.006, the growth rates with
imposed magnetic fields of B0/Beq = 0.066 and B0/Beq = 0.28
are indeed higher than for B0/Beq = 0.026. A similar behav-
ior can be found by looking at the magnetic field strength deter-
mined from the spectral energy (see middle panel of Fig. 10). For
imposed magnetic field strengths between B0/Beq = 0.066 and
0.85, the magnetic field is not much influenced by rotation and
stays roughly constant above Co ≈ 0.006 at a level that is even
higher than for smaller rotation. The large-scale magnetic field
Bfil max

z for imposed magnetic fields larger than B0/Beq = 0.06
does not show a strong rotational influence. The large-scale mag-
netic field is higher for larger imposed magnetic field and keeps
this level for a large range of rotation rates. This means that
a higher imposed magnetic field can indeed prevent NEMPI
from being quenched for larger rotation rates. Even with a large
imposed magnetic field, rotational quenching takes place, but at
larger rotation rates.
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Table 4. Comparison of BR formation as a function of rotation in terms
of Co and imposed magnetic field B0/Beq0.

B0/Beq0
Co 0.07 0.14 0.3 0.8

0.0 Yes Yes No
0.002 Yes Yes Yes Very weak
0.006 Yes Yes Yes Very weak
0.012 Yes Yes Weak No
0.018 No Weak Very Weak No

Notes. The values for the Co = 0 cases were taken from Warnecke et al.
(2016a).

Fig. 10. Rotational dependency of the growth rate λ, the peak spectral
magnetic field (2k∗Ez,max

M )1/2, and the maximum of the Fourier-filtered
vertical magnetic field Bfil max

z for various averaged imposed magnetic
field strengths B0/Beq = 0.026 (blue line), 0.066 (red), 0.14 (green),
0.28 (cyan), and 0.85 (black). Error bars denote either the errors of the
exponential fit (λ; see Table 2), or are estimated as 10% of the actual
value.

3.7. Effective magnetic pressure

The concentration of magnetic field in a NEMPI scenario is
possible due to a turbulence effect on the effective magnetic
pressure, which is the sum of non-turbulent and turbulent contri-
butions to the large-scale magnetic pressure. This effect results
in a suppression of the total (hydrodynamic plus magnetic) tur-
bulent pressure by the large-scale (mean) magnetic field. This
means that an increase of the mean magnetic field due to the
instability will be accompanied by a decrease of the turbulent
pressure and a reduction of the equipartition field strength, Beq.
This is because the hydrodynamic part of the total turbulent
pressure, phydro = ρu2

rms/3 = B2
eq/3, as well as the turbulent

kinetic energy density, decrease due to an increase of the tur-
bulent magnetic energy density as well as the turbulent magnetic
pressure through tangling magnetic fluctuations (Kleeorin et al.
1996; Rogachevskii & Kleeorin 2007).

Figure 11 shows the profiles of Beq and Bz at the surface
along y = 0 at t/τtd = 1. This figure clearly shows that at
the location of the maximum of the vertical magnetic field, the

Fig. 11. Profiles of Beq and Bz at z = 0 (i.e., the surface of the turbulent
region), for Run B1 with Co = 0.0015, θ = 0 at t/τtd = 1 and along
y = 0 (black line). The red solid line gives the Fourier-filtered pro-
files of Bz. The dotted orange line gives the values of Beq through the
magnetic structure based on the local turbulent pressure and the solid
orange lines denotes its Fourier-filtered value. The blue line represents
the value of Beq based on the volume-averaged velocity, but the local
density, which does not show the local suppression of urms. All values
have been normalized by the volume-averaged value of Beq.

equipartition field Beq is decreased. Most of this suppression
comes from a local decrease in the turbulent velocity, while the
local density through the structure varies only little; see the blue
line of Fig. 11. We attribute this behavior to the operation of
NEMPI in the simulation.

Next, we determined the normalized effective magnetic pres-
sure, Peff , as

Peff = (1 − qp) β2/2, (18)

where qp is obtained from (Kemel et al. 2013)

qp = −
1

B
2

∆Πxx + ∆Πyy −
(
∆Πxx − ∆Πyy

) B
2
x + B

2
y

B
2
x − B

2
y

 . (19)

Overbars denote here xy averaging and the diagonal compo-
nents of the total (Reynolds and Maxwell) stress tensor, ∆Πii,
are obtained from the DNS as

∆Πii = ρ (u2
i − u2

0i) + 1
2 (b2

− b2
0) − (b2

i − b2
0i), (20)

where the subscript 0 refers to values for B0 = 0 and lower case
letters denote fluctuations, i.e., u = U − U and b = B − B.
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Fig. 12. Dependence of the minimum value of the normalized effective
magnetic pressure, Peff , on the Coriolis number for different values of
the imposed field strength, B0/Beq0 (the curves have been labeled by an
average value), for the runs listed in Tables 2 and 3. Error bars are esti-
mated using the maximum difference of the total mean with the means
of each third of the time series.

Fig. 13. Dependence of Peff(β) obtained from Fig. 12 by taking an aver-
age for different values of Co (filled circles). The blue line is our stan-
dard representation for qp0 = 32 and βp = 0.058, which corresponds
to β∗ = 0.33, while the red line is a better fit to the present data giv-
ing qp0 = 13 and βp = 0.18, which corresponds to β∗ = 0.65. We note
that the data point at β = 0.85 and Peff = −0.16 is well outside any
Peff(β) curve that could fit all the data and has therefore been discarded
as an “outlier”. As a comparison, we plot the values of Warnecke et al.
(2016a) as triangles.

No summation over the index i is assumed. In Fig. 12 we show
the dependence of the minimum value of Peff on the Coriolis
number (see Table 2) and for different values of the imposed
field (see Table 3). It turns out to be relatively insensitive to the
value of Co, but it drops dramatically with increasing strength of
the imposed field.

Given that the values of Peff shown in Fig. 12 for different
values of Co are almost the same, we conclude that those coeffi-
cients do not depend on Ω. We can therefore obtain a new set of
parameters that is representative of our model with coronal layer
and for all values of Ω, which is different from our standard rep-
resentation without a coronal envelope. This is shown in Fig. 13.
The values of the parameters qp0 and βp fit very well with the
data of Warnecke et al. (2016a), shown as triangles.

The new data can be fitted to Eq. (15) by determining the
position and value of the minimum, βmin and Pmin

eff
, respectively.

Looking at Fig. 13, we find βmin ≈ 0.3 and Pmin
eff
≈ −0.12. We

then obtain the fit parameters as (Kemel et al. 2012b)

βp = β2
min

/√
−2Pmin

eff
, β? = βp +

√
−2Pmin

eff
. (21)

Fig. 14. Dependence qp, qs, and qg on the Coriolis number for different
values of the imposed field strength, β0 = B0/Beq0 (the curves have been
labeled by an average value), for the runs listed in Tables 2 and 3. Error
bars are estimated using the maximum difference of the total mean with
the means of each third of the time series.

This results in the following new set of parameters: qp0 = 13 and
βp = 0.18, which corresponds to β∗ = 0.65. In the next section
we therefore also present MFS results based on our model with
this parameter combination.

Along with qp and Peff , we also determine qs and qg in

∆Πi j = −qpδi j
B

2

2
+ qsBiB j − qg

gig j

g2 B
2
, (22)

resulting in

qs =
∆Πxx − ∆Πyy

B
2
x − B

2
y

, (23)

qg =
1

B
2

−∆Πzz − qp
B

2

2
+ qsB

2
z

 , (24)

where gi are components of g which, in our setup, has only a
component in the negative z direction. In Fig. 14 we plot the
dependencies of qp, qs, and qg on Coriolis number and imposed
magnetic field strength. The values for no and weak rotation
are consistent with those obtained by Warnecke et al. (2016a)
for a non-rotating setup and the same magnetic field strengths.
Because of the large errors resulting from the strong variation in
space and time, we cannot determine whether the sign is neg-
ative or positive. For larger imposed magnetic field strengths,
the situation becomes more clear. There, the errors are signifi-
cantly larger and qp, qs, and qg do not strongly depend on rota-
tion. However, we see a dependence on the imposed magnetic
field strength. In particular, qp is positive for B0/Beq0 ≥ 0.066
and decreases from around 1.5 to 1.0 for increasing imposed
magnetic field strength. Next, qs is also positive for imposed
magnetic fields B0/Beq0 ≥ 0.066, but has an inconclusive depen-
dence on the imposed magnetic field. Finally, qg is also positive
for B0/Beq0 ≥ 0.066, it decreases with increasing imposed field
until it is nearly zero for B0/Beq0 = 0.85. For B0/Beq0 = 0.066,
qg tends to decrease with increasing angular velocity, but not
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Fig. 15. Dependence of qp, qs, and qg on the colatitude, θ, for Runs C1–
C3 and C5, with Co=0.0023 and B0/Beq0 = 0.026. Error bars are esti-
mated using the maximum difference of the total mean with the means
of each third of the time series.

for the other magnetic field strengths. We should keep in mind
that the qp and qg in Eq. (12) are multiplied by the horizontal
averaged magnetic field, which will be larger for larger imposed
magnetic fields. We also look at the latitudinal dependencies
of qp, qs, and qg; see Fig. 15. We find no latitudinal depen-
dence of these coefficients, mostly because the errors are so
large. In conclusion, we cannot explain the rotational depen-
dence found in the DNS with just the rotational dependence of
qp, qs, and qg.

4. MFS results

4.1. General aspects

We now present mean-field calculations with a coronal envelope.
In all cases, we use νT = ηT = 10−3csHρ and urms = 0.1cs, corre-
sponding to kf Hρ = 33, which is similar to the value of 30 used
in the DNS. We first considered the same domain size as in the
DNS, i.e., (2π)2 × 3π. To alleviate finite domain size effects, we
also considered a wider and deeper domain, but with a smaller
coronal part that is reduced by half. We thus also considered
Lx = Ly = 6π, Lz = 4π, and ztop = π.

The MFS lack small-scale turbulent motions, so fewer mesh
points can be used. However, to resolve the vertical density
contrast of around 12,000, we used 288 mesh points in the z
direction. For our domains, are used 1922 × 288 meshpoints, but
we found no differences in the results when using 962 × 288
meshpoints. For the larger domains, we used 3843 meshpoints,
but again, with fewer meshpoints the results would have been
sufficiently accurate. In all cases, we used B0/Beq0 = 0.1,
because the DNS (Sect. 3.6) showed that this value maximizes
the range of rotation rates where NEMPI is still excited.

Although we find that the parameters qp0 ≈ 13 and βp ≈ 0.65
describe the DNS best, there are reasons to consider also other
choices. First, there is no good reason why the parameters qp0
and βp are so different in different circumstances. One would
have expected them to reflect properties of the turbulence which
is similar in all the different cases. Second, the response for ver-
tical and horizontal magnetic fields turns out to be different; see
Fig. 7 of Losada et al. (2014). There are also other differences
between MFS and DNS that we address below. Thus, we cannot
expect the two approaches to agree. One objective is therefore to
find out just how well the MFS perform relative to the DNS.

4.2. Growth rates

In the DNS, the value of λ/λ∗0 is found to drop by about a fac-
tor of five as 2Ω/λ∗0 increases from 0.2 to 3; see Fig. 16. We

Fig. 16. Dependence of λ/λ∗0 on 2Ω/λ∗0 for B0/Beq0 = 0.1 and θ = 0 for
the MFS using the large (black line) and small domains (blue solid line),
as well as the DNS for neighboring magnetic field strength of B0/Beq0 =
0.066 and 0.14 (dashed and solid red lines, respectively). The fat blue
line denotes the case of a small domain using ag = −0.4 instead of 0.
The green dashed line denotes the DNS of Losada et al. (2013) without
coronal layer and B0/Beq0 = 0.05. The orange line refers to MFS in a
small domain with qp0 = 13 and βp = 0.18, so β∗ = 0.65. The blue
dashed line adjacent to the blue solid line denotes the results obtained
when neglecting the derivative term of the profile function Θw(z).

compared the MFS for B0/Beq0 = 0.1 with the DNS at B0/Beq0 =
0.066 and 0.14; see Table 2. We also compared the MFS with
the DNS of Losada et al. (2013) without coronal envelope using
β∗ = 0.33 and, as in Losada et al. (2013), the value β∗ = 0.75,
which was suitable for one of their sets of MFS. This now
explains the ratio of λ/λ∗0 that is 2.3 times larger than in their
Fig. 2. In addition, however, the growth rates of their DNS were
incorrectly scaled by a factor (urms/cs)(kf/k1) ≈ 0.1 × 30 = 3,
which is now corrected; see the green line of Fig. 16. Thus, even
in the absence of a corona, the growth rates were by a factor of
about seven larger in the MFS than in the DNS; see Appendix A
with a corrected version of Fig. 2 of Losada et al. (2013).

Again, the growth rates of the large-scale instability in the
MFS are significantly larger than those in the DNS. We spec-
ulate that this could be caused by a partial cancelation (i.e., a
decrease of the effective magnetic pressure gradient) from the qg
term in Eq. (12). To illustrate this possibility, we have overplot-
ted in Fig. 16 a case with ag = −0.4; see Eq. (13). Given that in
Eq. (12), only the qp term comes with a 1/2 factor, the effective
magnetic pressure gradient in the z direction is reduced. Thus,
qp/2 is replaced by qp/2 + qg = (1/2 + ag) qp, so qp is scaled
by a factor 1 + 2ag = 0.2 with respect to the z direction. We
see that the growth rate is now suppressed, but also the max-
imum rotation rate for which NEMPI can operate is reduced.
Obviously, a more accurate modeling requires a more detailed
knowledge of the actual form of qg, which is likely to be dif-
ferent from that of qp. We also point out that, when calculating
∂zqg(β) in Eq. (12), one of the resulting terms involves the gra-
dient of Θw(z) in Eq. (14). We have verified that neglecting this
term causes only a very minor change in the resulting growth
rates (cf. the solid and dashed blue lines in Fig. 16).

We now discuss the non-monotonic behavior of the growth
rate of the magnetic field as a function of the Coriolis number;
see Fig. 16. In corresponding DNS without coronal layer
(Jabbari et al. 2014), the increase in the growth rate at faster
rotation rates (Co> 0.1 or 2Ω/λ∗0 > 10) has been explained
as a result of large-scale dynamo action; see Fig. 8 of
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Jabbari et al. (2014). In particular, at larger rotation rates, kinetic
helicity is produced by a combined effect of uniform rotation
and density stratified turbulence. It results in the excitation of an
αΩ or α2Ω dynamo instabilities and the generation of a large-
scale magnetic field. This causes an increase of the growth rate
at larger Coriolis numbers, which is also observed in the DNS
of Losada et al. (2013) and Jabbari et al. (2014). This implies
that two different instabilities are excited in the system, mean-
ing NEMPI at low Coriolis numbers and the mean-field dynamo
instability at larger values of the Coriolis numbers. This causes a
non-monotonic behavior of the growth rate of magnetic field as
the function of the Coriolis number, observed in Fig. 16.

A non-trivial evolution of the magnetic field in rotating tur-
bulence with a coronal envelope is caused for the following rea-
sons. In an earlier study by Losada et al. (2012) with rotation,
no coronal envelope, and an imposed horizontal magnetic field,
an analytical expression for the growth rate of NEMPI has been
derived in the framework of a mean-field approach. During the
magnetic field evolution in the presence of a coronal envelope,
as in the simulation of Warnecke et al. (2013a, 2016a) and the
present ones, there is a change in the direction of the large-scale
magnetic field from horizontal at t = 0 to nearly vertical after
about one turbulent diffusive time. Therefore, in turbulence with
a coronal envelope one can expect to find a mixture of effects
caused by the horizontal and vertical magnetic fields.

The growth rates and saturation mechanisms of NEMPI for
horizontal and vertical fields are very different (see review by
Brandenburg et al. 2016). For horizontal fields, NEMPI saturates
rapidly in the non-linear stage of the magnetic field evolution
due to the “potato-sack” effect. This means that a local increase
of the magnetic field causes a decrease of the negative effective
magnetic pressure, which is compensated for by enhanced gas
pressure. This leads to an enhanced gas density, so the gas is
heavier than its surroundings and sinks. This effect removes hor-
izontal magnetic flux structures from regions in which NEMPI
is excited. For a vertical magnetic field, the heavier fluid moves
downward along the field without affecting the flux tube, so that
NEMPI is not stabilized by the potato-sack effect. In this case
the operation of NEMPI results in the formation of strong con-
centrations (see Brandenburg et al. 2013, 2016).

In the non-rotating cases, the growth rates of the large-scale
magnetic field measured in DNS with coronal envelope and hor-
izontal initial field (Warnecke et al. 2016a), and with vertical
magnetic field but without corona (Brandenburg et al. 2013), are
the same. This is an indication that the growth rates of the large-
scale magnetic field in the simulations with coronal envelope are
determined by the evolution of the vertical field. On the other
hand, the fact that the BRs dissolve after a few turbulent diffu-
sion times is more similar to the behavior of NEMPI with a hor-
izontal imposed magnetic field. Therefore, the evolution of the
magnetic structures in the system with coronal envelope is non-
trivial and cannot easily be described with our current mean-field
models. This also explains the rotational dependency of growth
rates in this setup suffers from the mixture of effects.

4.3. Latitudinal dependence

At slower rotation, a decrease in λ/λ∗0 can be seen as θ increases
from θ = 0 at the poles to θ = 90◦ at the equator; see Fig. 17.
In both plots we also show the growth rates for the larger
domain, which are found to be enhanced by a factor of two when
2Ω/λ∗0 ≈ 1. These values are about an order of magnitude larger
than those for the DNS, but have otherwise a similar functional
dependence on Ω and θ. The reason for the difference between

Fig. 17. Dependence of λ/λ∗0 on θ for B0/Beq0 = 0.1 and Co = 0.006.

DNS and MFS is not entirely clear. It is possible that the mean-
field parameter β∗ is smaller than what was previously found for
simulations with coronal envelope. There is also the possibility
that β∗ decreases with increasing angular velocity, which is what
Rüdiger (private communication) found, although our present
simulations presented in Fig. 12 and earlier ones of Losada et al.
(2013) did not give such indications.

4.4. Inclined surface structures

Next, we show cross-sections of Bz(x, y, 0, t∗) along the surface
z = 0 at a chosen time t∗ during the linear growth phase of
NEMPI for three values of Co using domain sizes of (2π)2 × 3π
(Fig. 18) and (6π)2 × 4π (Fig. 19). In the linear phase, when
the magnetic field fluctuations are still growing exponentially
in time, only relative values are of physical interest. We there-
fore present in the following the magnetic field normalized by
its maximum value. As in the DNS, the imposed magnetic field
points in the y direction. It turns out that rotation not only tends
to make the structures inclined relative to the direction of the
imposed magnetic field, but it also leads to higher wavenumbers
of the structures. Figure 19 shows that the number of nodes in the
x direction, which is perpendicular to the magnetic field, remains
about constant (kxLx/2π = 4), while that in the y direction along
the magnetic field increases from kyLy/2π = 1 (for Co = 0) to 2
(for Co = 0.006) and 4 (for Co = 0.018).

In both the DNS and the MFS, the orientation of the inclina-
tion is the same and it is opposite to what is seen in Joy’s law.
The runs presented here apply only to the poles, but even at lower
latitudes (e.g., at 30◦ latitude, corresponding to θ = 60◦) do we
find the same anti-Joy’s law orientation of the tilt. This is shown
in Fig. 20, where we compare two runs with θ = 80◦ (close to
the equator) for a section of the large domain and the full section
of the smaller domain, as well as a run with θ = 90◦ (at the
equator). At the equator, the inclination angle with respect to
the toroidal direction is 90◦, which agrees with what was found
in Losada et al. (2012). However, slightly away from the equa-
tor, at θ = 80◦, the inclination angle is already 45◦. This is not
an artifact of having chosen a small domain, because even for a
three times larger domain, the same inclination angle is found.
We thus remain puzzled about this finding, and hope to be able
to return to it as soon as further numerical and analytic results
can be obtained and assessed.

One might speculate that the reason for the difference to
Joy’s law has to do with the expansion of rising structures
whereas NEMPI structures are caused by contraction, which
leads to the opposite tilt. Thinking again of possible applications
to the Sun, one may therefore wonder whether the effect of flux
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Fig. 18. Cross-sections of Bz(x, y, 0, t∗) through the surface z = 0 at
times t∗ during the linear growth phase of NEMPI for a MFS with
B0/Beq0 = 0.1 and three values of Co using the smaller domain size of
(2π)2 × 3π. In each panel, the magnetic field is scaled to the maximum
value.

Fig. 19. Similar to Fig. 18, but for the large domain, (6π)2 × 4π.

Fig. 20. Similar to Fig. 18, but for two runs with θ = 80◦ for a 1/3
section of the large domain and the full section of the smaller domain,
as well as a run with θ = 90◦.

concentrations in NEMPI, which must also be responsible for
causing the tilt, operate on relatively small scales and might be
responsible for causing sunspot rotation (Evershed 1909; Kempf
1910; Pevtsov 2012; Sturrock et al. 2015), for example. In a dis-
tributed solar dynamo scenario, the tilt of active regions is pri-
marily caused either by differential rotation (Brandenburg 2005)
or simply by the sign of the mean latitudinal field Bθ relative to
that of the azimuthal field Bφ (Jabbari et al. 2015).

4.5. Emergence of solitary structures

The magnetic field patterns in Figs. 18–20 are more or less regu-
lar. This is basically because those pictures were taken from the
linear phase of the run. In Fig. 21 we show a visualization of Bz

along with horizontal flow vectors (U x,Uy) through the surface
for an arbitrarily chosen time t∗/τtd = 40 during the saturated
state for the large domain using Co = 0.006. We can now clearly
see solitary structures in the form of isolated spots. However,
with a few exceptions, most of these structures lack the distinct
bipolarity seen in the DNS. We also note that the mean flow is
mostly circular around each spot rather than a convergent inflow,
as seen in the DNS.

In Fig. 21 we plot a white horizontal line in the toroidal direc-
tion through x = 0 the position of a BR near y = 0. Unlike the

Fig. 21. Cross-sections of Bz(x, y, z∗, t) (color coded) together with
velocity field vectors (white streak lines) through z∗ = 0 at t∗/τtd = 40
during the saturated state for a MFS with large domain and Co = 0.006.
The white horizontal line through x = 0 marks the position of a BR near
y = 0, which is discussed separately. The ellipse marks the position of
the BR discussed in the text.

DNS, the separation of the two polarities is rather large (about
3 Hρ) and there are other spots in almost the same distance.
Thus, it is not clear that these two polarities are connected to
each other. There is also no clear indication of BRs. To exam-
ine this further, we present a side view of this BR in Sect. 4.6
below.

4.6. Side view of BRs

In Fig. 22 we show a longitudinal cross-section of the magnetic
field through x∗ = 0 at the same time as Fig. 21 during the sat-
urated state. Magnetic flux concentrations are seen to occur at a
depth of z/Hρ ≈ −6, which is well below the surface. Near the
surface, on the other hand, there is only a relatively small num-
ber of vertical magnetic flux structures that seem to close upon
themselves over relatively large horizontal distances. We recog-
nize the positive and negative polarities at y/Hρ ≈ ±1.5 and the
negative one at y/Hρ ≈ −8 in both Figs. 21 and 22. Conversely,
over short distances, bipolar magnetic flux structures separate
above the surface, which is consistent with them being the result
of a localized subduction of a horizontal flux structure.

To compare with DNS results, we show in Fig. 23 a similar
plot of Bz together with Fourier-filtered magnetic field vectors
in the same plane. A major difference to Fig. 22 is the absence
of significant horizontal field in the deeper parts. However, since
this horizontal field in the MFS is so deep down (z/Hρ . −8), it
is unclear whether it plays any role in explaining the difference
in, for example, the growth rates between DNS and MFS seen in
Fig. 16. On the other hand, in the deeper parts of the MFS, there
are magnetic structures of significant strength, which are not so
prominent in the DNS. This is an important difference that would
affect global comparisons of, for example, the growth rates of
structures shown in Fig. 16.
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Fig. 22. Cross-sections of Bz(x∗, y, z, t) (color coded) together with mag-
netic field vectors (white streak lines) through x∗ = 0 at an arbitrarily
chosen time during the saturated state for a MFS with a large domain.
The surface at z = 0 is shown as a white horizontal line.

Fig. 23. Slice of Bz(x∗, y, z, t) (color coded) together Cross-section of
Bz(x∗, y, z, t) (color coded) together with vectors of Fourier-filtered mag-
netic field vectors (k < kf/2) superimposed for the DNS Run A4 at the
time t/τtd = 0.91 through x∗ = 0.5.

5. Discussion

Our calculations have been performed using idealizing circum-
stances such as forced turbulence and an isothermal equation of
state. This is in many ways different from turbulence in the Sun,
which is driven by convection. Nevertheless, some tentative con-
clusions can be drawn regarding possible applications to sunspot
formation. In the surface layers of the Sun, the turnover time
τto = Hp/urms based on the pressure scale height Hp is around
5 min. Assuming k1Hp = 1, the turbulent diffusive time scale is
related to this via

τtd = H2
p/ηt0 = 3kf H2

p/urms = 3kf Hpτto. (25)

In the simulations, we have kf Hp ≈ kf/k1 = 30, so τtd would be
about 90 times longer than τto, that is, about eight hours. This

would appear suitable in view of applications to the Sun as well,
where the formation time of sunspots is of a similar order.

Although the presence of our simplified corona has the effect
of allowing BRs to form that reach a significant fraction of the
equipartition value with respect to the turbulence, these struc-
tures can no longer form when the Coriolis number exceeds a
critical value of about 0.02. This value is rather small. However,
given that the growth rate of NEMPI does not scale with the
inverse turnover time τ−1

to , but with the turbulent-diffusive time
τ−1

td , a meaningful measure of the rotation rate in this context
could also be the square root of the turbulent Taylor number,
Ta1/2

t = 2Ω/νtk2
1 = 3 (kf/k1)2Co, where we took into account that

the turbulent viscosity νt is equal to the turbulent magnetic dif-
fusivity ηt (Yousef et al. 2003; Kleeorin & Rogachevskii 1994)
and given by ηt ≈ urms/3kf (Sur et al. 2008). The values of Ta1/2

are typically on the order of ten when NEMPI begins to be sup-
pressed. Using our estimate of τtd = 8 hrs for the solar surface,
we find Ta1/2 = 0.2, which is well below our critical value of ten.

In the standard mixing length theory of convection, the value
of kf Hp is estimated to be around six to seven (Kemel et al.
2013), but it is about 30 in the present simulations. Earlier
work showed that NEMPI would not work for kf Hp much
below 15 (Brandenburg et al. 2012). On the other hand, the
actual value in the Sun is unclear given that the findings of
Hanasoge et al. (2012) did not confirm turbulent velocities in the
Sun at the expected levels. A possible resolution to this problem
might be the idea that the relevant scales of the energy-carrying
eddies is much smaller than the inverse pressure scale height
(Brandenburg 2016). This would also help making NEMPI more
powerful. However, this issue is controversial in view of results
by Greer et al. (2015), which showed that the turbulent flows
in the Sun might actually be just as large as assumed in stan-
dard mixing length theory. Thus, the possibility of NEMPI being
responsible for the production of sunspots is being favored par-
ticularly in the scenario envisaged by Hanasoge et al. (2012).

An additional complication is that at the solar surface, radi-
ation plays an important role. Mean-field models with radiation
transport (Perri & Brandenburg 2018) have shown that the rel-
evant length scale of NEMPI can drop significantly below the
value found for isothermal and isentropic stratifications. It is
possible, however, that this result is a consequence of not having
included the convective flux in such a model. In the Sun, virtually
100% of the energy is transported by convection almost imme-
diately beneath the surface, so radiation should be completely
unimportant below the surface. In addition, ionization dynamics
can strongly exaggerate the effects of cooling near the surface.

6. Conclusions

Our work has confirmed that NEMPI cannot be exited at
Coriolis numbers above a critical value that can be as low as
0.02 or so. The presence of an upper coronal layer was previ-
ously found to make the appearance of structures more promi-
nent. However, rotation seems to affect the growth rates more
strongly with a coronal envelope than without. In the bulk of
the solar convection zone, the Coriolis number is of the order
of unity and above, but this is not the case in the surface layers,
where the convective time scale is much shorter than the solar
rotation period of 25 days. So this may not really be a problem
for applications of NEMPI to sunspot formation.

A more severe problem for astrophysical applications of
NEMPI are the moderate magnetic field strengths that can
presently be achieved with NEMPI. This suggests that some
essential physics is still missing. An important ingredient
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of sunspots physics is convection and its suppression in
the presence of magnetic fields. A number of aspects such
as radiation and ionization physics, taken in isolation, have
as yet not produced more favorable conditions for NEMPI
(Bhat & Brandenburg 2016; Perri & Brandenburg 2018).

The difficulty in explaining the spontaneous formation of
sunspot-like magnetic flux concentrations is not really alleviated
by invoking the rising flux tube scenario. The problem here is
that any flux tube rising from some depth to the surface will
expand and therefore weaken. This means that some mechanism
for reamplification is needed. An important next step might be
to invoke a suitable model for convection, or possibly the inclu-
sion of a magnetic suppression of turbulent radiative diffusion as
suggested by Kitchatinov & Mazur (2000).

Acknowledgements. J.W. acknowledges funding by the Max-Planck/Princeton
Center for Plasma Physics and funding from the People Program (Marie Curie
Actions) of the European Union’s Seventh Framework Programmed (FP7/2007-
2013) under REA grant agreement No. 623609. This work has been supported in
part by the NSF Astronomy and Astrophysics Grants Program (grant 1615100),
the Research Council of Norway under the FRINATEK (grant 231444), the
Swedish Research Council (grant 2012-5797), and the University of Colorado
through its support of the George Ellery Hale visiting faculty appointment. I.R.
acknowledges the hospitality of NORDITA and Max Planck Institute for Solar
System Research in Göttingen. We acknowledge the allocation of computing
resources provided by the Swedish National Allocations Committee at the Cen-
ter for Parallel Computers at the Royal Institute of Technology in Stockholm.
This work utilized the Janus supercomputer, which is supported by the National
Science Foundation (award number CNS-0821794), the University of Colorado
Boulder, the University of Colorado Denver, and the National Center for Atmo-
spheric Research. The Janus supercomputer is operated by the University of
Colorado Boulder. Additional simulations have been carried out on supercom-
puters at GWDG, on the Max Planck supercomputer at RZG in Garching, in the
facilities hosted by the CSC – IT Center for Science in Espoo, Finland, which
are financed by the Finnish ministry of education.

References
Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., & O’Shea, E. 2004,

A&A, 426, 1047
Archontis, V., Moreno-Insertis, F., Galsgaard, K., & Hood, A. W. 2005, ApJ,

635, 1299
Bhat, P., & Brandenburg, A. 2016, A&A, 587, A90
Birch, A. C., Schunker, H., Braun, D. C., et al. 2016, Sci. Adv., 2, e1600557
Bourdin, P. A., & Brandenburg, A. 2018, ApJ, 869, 2
Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A. 2016, ApJ, 832, 6
Brandenburg, A., & Campbell, C. 1997, in Accretion Disks - New Aspects, eds.

E. Meyer-Hofmeister, & H. Spruit (Berlin: Springer Verlag), Lecture Notes
in Physics, 487, 109

Brandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U. 1995, ApJ, 446,
741

Brandenburg, A., Kemel, K., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2011,
ApJ, 740, L50

Brandenburg, A., Kemel, K., Kleeorin, N., & Rogachevskii, I. 2012, ApJ, 749,
179

Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2013, ApJ, 776, L23
Brandenburg, A., Gressel, O., Jabbari, S., Kleeorin, N., & Rogachevskii, I. 2014,

A&A, 562, A53
Brandenburg, A., Rogachevskii, I., & Kleeorin, N. 2016, New J. Phys., 18,

125011
Chen, F., Rempel, M., & Fan, Y. 2017, ApJ, 846, 149
Cheung, M. C. M., & Isobe, H. 2014, Liv. Rev. Sol. Phys., 11, 3
Cheung, M. C. M., Rempel, M., Title, A. M., & Schüssler, M. 2010, ApJ, 720,

233
Choudhuri, A. R., & Gilman, P. A. 1987, ApJ, 316, 788
Evershed, J. 1909, MNRAS, 69, 454
Fan, Y. 2001, ApJ, 554, L111
Fan, Y. 2009, Liv. Rev. Sol. Phys., 6, 4
Fan, Y., & Fang, F. 2014, ApJ, 789, 35
Fan, Y., Fisher, G. H., & Deluca, E. E. 1993, ApJ, 405, 390
Fournier, Y., Arlt, R., Ziegler, U., & Strassmeier, K. G. 2017, A&A, 607, A1
Galloway, D. J., & Weiss, N. O. 1981, ApJ, 243, 945

Greer, B. J., Hindman, B. W., Featherstone, N. A., & Toomre, J. 2015, ApJ, 803,
L17

Hanasoge, S. M., Duvall, T. L., & Sreenivasan, K. R. 2012, Proc. Natl. Acad.
Sci., 109, 11928

Jabbari, S., Brandenburg, A., Losada, I. R., Kleeorin, N., & Rogachevskii, I.
2014, A&A, 568, A112

Jabbari, S., Brandenburg, A., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2015,
ApJ, 805, 166

Jabbari, S., Brandenburg, A., Mitra, D., Kleeorin, N., & Rogachevskii, I. 2016,
MNRAS, 459, 4046

Jabbari, S., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2017, MNRAS,
467, 2753

Käpylä, P. J., Brandenburg, A., Kleeorin, N., Mantere, M. J., & Rogachevskii, I.
2012, MNRAS, 422, 2465

Käpylä, P. J., Brandenburg, A., Kleeorin, N., Mantere, M. J., & Rogachevskii, I.
2013, IAU Symp., 294, 283

Käpylä, P. J., Brandenburg, A., Kleeorin, N., Käpylä, M. J., & Rogachevskii, I.
2016, A&A, 588, A150

Kemel, K., Brandenburg, A., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2012a,
Sol. Phys., 280, 321

Kemel, K., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2012b, Astron.
Nachr., 333, 95

Kemel, K., Brandenburg, A., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2013,
Sol. Phys., 287, 293

Kempf, P. 1910, Astron. Nachr., 185, 197
Kitchatinov, L. L., & Mazur, M. V. 2000, Sol. Phys., 191, 325
Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A., & Mansour, N. N. 2010, ApJ,

719, 307
Kleeorin, N., & Rogachevskii, I. 1994, 50, 2716
Kleeorin, N. I., Rogachevskii, I. V., & Ruzmaikin, A. A. 1989, Sov. Astron. Lett.,

15, 274
Kleeorin, N., Rogachevskii, I., & Ruzmaikin, A. 1990, JETP, 70, 878
Kleeorin, N., Mond, M., & Rogachevskii, I. 1993, Phys. Fluids B, 5, 4128
Kleeorin, N., Mond, M., & Rogachevskii, I. 1996, A&A, 307, 293
Kleeorin, N., Kuzanyan, K., Moss, D., et al. 2003, A&A, 409, 1097
Losada, I. R., Brandenburg, A., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2012,

A&A, 548, A49
Losada, I. R., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2013, A&A,

556, A83
Losada, I. R., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2014, A&A,

564, A2
Losada, I. R., Warnecke, J., Glogowski, K., et al. 2017, IAU Symp., 327, 46
Masada, Y., & Sano, T. 2016, ApJ, 822, L22
Mitra, D., Brandenburg, A., Kleeorin, N., & Rogachevskii, I. 2014, MNRAS,

445, 761
Parker, E. N. 1978, ApJ, 221, 368
Perri, B., & Brandenburg, A. 2018, A&A, 609, A99
Peter, H., Warnecke, J., Chitta, L. P., & Cameron, R. H. 2015, A&A, 584, A68
Pevtsov, A. A. 2012, Astrophys. Space Sci. Proc., 30, 83
Rempel, M., & Cheung, M. C. M. 2014, ApJ, 785, 90
Rogachevskii, I., & Kleeorin, N. 2007, Phys. Rev. E, 76, 056307
Rüdiger, G., Kitchatinov, L. L., & Brandenburg, A. 2011, Sol. Phys., 269, 3
Rüdiger, G., Kitchatinov, L. L., & Schultz, M. 2012, Astron. Nachr., 333, 84
Schmieder, B., Archontis, V., & Pariat, E. 2014, Space Sci. Rev., 186, 227
Singh, N. K., Raichur, H., & Brandenburg, A. 2016, ApJ, 832, 120
Spruit, H. C. 1979, Sol. Phys., 61, 363
Stein, R. F., & Nordlund, Å. 2012, ApJ, 753, L13
Sturrock, Z., Hood, A. W., Archontis, V., & McNeill, C. M. 2015, A&A, 582,

A76
Sur, S., Brandenburg, A., & Subramanian, K. 2008, MNRAS, 385, L15
Tao, L., Weiss, N. O., Brownjohn, D. P., & Proctor, M. R. E. 1998, ApJ, 496,

L39
Warnecke, J., & Brandenburg, A. 2010, A&A, 523, A19
Warnecke, J., Brandenburg, A., & Mitra, D. 2011, A&A, 534, A11
Warnecke, J., Brandenburg, A., & Mitra, D. 2012a, JSWSC, 2, A11
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012b, Sol. Phys.,

280, 299
Warnecke, J., Losada, I. R., Brandenburg, A., Kleeorin, N., & Rogachevskii, I.

2013a, ApJ, 777, L37
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2013b, ApJ, 778,

141
Warnecke, J., Losada, I. R., Brandenburg, A., Kleeorin, N., & Rogachevskii, I.

2016a, A&A, 589, A125
Warnecke, J., Käpylä, P. J., Käpylä, M. J., & Brandenburg, A. 2016b, A&A, 596,

A115
Warnecke, J., Chen, F., Bingert, S., & Peter, H. 2017, A&A, 607, A53
Yousef, T. A., Brandenburg, A., & Rüdiger, G. 2003, A&A, 411, 321
Zhang, H., & Brandenburg, A. 2018, ApJ, 862, L17

A61, page 16 of 17

http://linker.aanda.org/10.1051/0004-6361/201833018/1
http://linker.aanda.org/10.1051/0004-6361/201833018/2
http://linker.aanda.org/10.1051/0004-6361/201833018/2
http://linker.aanda.org/10.1051/0004-6361/201833018/3
http://linker.aanda.org/10.1051/0004-6361/201833018/4
http://linker.aanda.org/10.1051/0004-6361/201833018/5
http://linker.aanda.org/10.1051/0004-6361/201833018/6
http://linker.aanda.org/10.1051/0004-6361/201833018/7
http://linker.aanda.org/10.1051/0004-6361/201833018/8
http://linker.aanda.org/10.1051/0004-6361/201833018/8
http://linker.aanda.org/10.1051/0004-6361/201833018/9
http://linker.aanda.org/10.1051/0004-6361/201833018/9
http://linker.aanda.org/10.1051/0004-6361/201833018/10
http://linker.aanda.org/10.1051/0004-6361/201833018/11
http://linker.aanda.org/10.1051/0004-6361/201833018/11
http://linker.aanda.org/10.1051/0004-6361/201833018/12
http://linker.aanda.org/10.1051/0004-6361/201833018/13
http://linker.aanda.org/10.1051/0004-6361/201833018/14
http://linker.aanda.org/10.1051/0004-6361/201833018/14
http://linker.aanda.org/10.1051/0004-6361/201833018/15
http://linker.aanda.org/10.1051/0004-6361/201833018/16
http://linker.aanda.org/10.1051/0004-6361/201833018/17
http://linker.aanda.org/10.1051/0004-6361/201833018/17
http://linker.aanda.org/10.1051/0004-6361/201833018/18
http://linker.aanda.org/10.1051/0004-6361/201833018/19
http://linker.aanda.org/10.1051/0004-6361/201833018/20
http://linker.aanda.org/10.1051/0004-6361/201833018/21
http://linker.aanda.org/10.1051/0004-6361/201833018/22
http://linker.aanda.org/10.1051/0004-6361/201833018/23
http://linker.aanda.org/10.1051/0004-6361/201833018/24
http://linker.aanda.org/10.1051/0004-6361/201833018/25
http://linker.aanda.org/10.1051/0004-6361/201833018/26
http://linker.aanda.org/10.1051/0004-6361/201833018/26
http://linker.aanda.org/10.1051/0004-6361/201833018/27
http://linker.aanda.org/10.1051/0004-6361/201833018/27
http://linker.aanda.org/10.1051/0004-6361/201833018/28
http://linker.aanda.org/10.1051/0004-6361/201833018/29
http://linker.aanda.org/10.1051/0004-6361/201833018/30
http://linker.aanda.org/10.1051/0004-6361/201833018/31
http://linker.aanda.org/10.1051/0004-6361/201833018/31
http://linker.aanda.org/10.1051/0004-6361/201833018/32
http://linker.aanda.org/10.1051/0004-6361/201833018/33
http://linker.aanda.org/10.1051/0004-6361/201833018/34
http://linker.aanda.org/10.1051/0004-6361/201833018/35
http://linker.aanda.org/10.1051/0004-6361/201833018/36
http://linker.aanda.org/10.1051/0004-6361/201833018/36
http://linker.aanda.org/10.1051/0004-6361/201833018/37
http://linker.aanda.org/10.1051/0004-6361/201833018/38
http://linker.aanda.org/10.1051/0004-6361/201833018/39
http://linker.aanda.org/10.1051/0004-6361/201833018/40
http://linker.aanda.org/10.1051/0004-6361/201833018/40
http://linker.aanda.org/10.1051/0004-6361/201833018/41
http://linker.aanda.org/10.1051/0004-6361/201833018/42
http://linker.aanda.org/10.1051/0004-6361/201833018/42
http://linker.aanda.org/10.1051/0004-6361/201833018/43
http://linker.aanda.org/10.1051/0004-6361/201833018/44
http://linker.aanda.org/10.1051/0004-6361/201833018/45
http://linker.aanda.org/10.1051/0004-6361/201833018/46
http://linker.aanda.org/10.1051/0004-6361/201833018/47
http://linker.aanda.org/10.1051/0004-6361/201833018/48
http://linker.aanda.org/10.1051/0004-6361/201833018/48
http://linker.aanda.org/10.1051/0004-6361/201833018/49
http://linker.aanda.org/10.1051/0004-6361/201833018/49
http://linker.aanda.org/10.1051/0004-6361/201833018/50
http://linker.aanda.org/10.1051/0004-6361/201833018/51
http://linker.aanda.org/10.1051/0004-6361/201833018/52
http://linker.aanda.org/10.1051/0004-6361/201833018/52
http://linker.aanda.org/10.1051/0004-6361/201833018/53
http://linker.aanda.org/10.1051/0004-6361/201833018/54
http://linker.aanda.org/10.1051/0004-6361/201833018/55
http://linker.aanda.org/10.1051/0004-6361/201833018/56
http://linker.aanda.org/10.1051/0004-6361/201833018/57
http://linker.aanda.org/10.1051/0004-6361/201833018/58
http://linker.aanda.org/10.1051/0004-6361/201833018/59
http://linker.aanda.org/10.1051/0004-6361/201833018/60
http://linker.aanda.org/10.1051/0004-6361/201833018/61
http://linker.aanda.org/10.1051/0004-6361/201833018/62
http://linker.aanda.org/10.1051/0004-6361/201833018/63
http://linker.aanda.org/10.1051/0004-6361/201833018/64
http://linker.aanda.org/10.1051/0004-6361/201833018/65
http://linker.aanda.org/10.1051/0004-6361/201833018/65
http://linker.aanda.org/10.1051/0004-6361/201833018/66
http://linker.aanda.org/10.1051/0004-6361/201833018/67
http://linker.aanda.org/10.1051/0004-6361/201833018/67
http://linker.aanda.org/10.1051/0004-6361/201833018/68
http://linker.aanda.org/10.1051/0004-6361/201833018/69
http://linker.aanda.org/10.1051/0004-6361/201833018/70
http://linker.aanda.org/10.1051/0004-6361/201833018/71
http://linker.aanda.org/10.1051/0004-6361/201833018/71
http://linker.aanda.org/10.1051/0004-6361/201833018/72
http://linker.aanda.org/10.1051/0004-6361/201833018/73
http://linker.aanda.org/10.1051/0004-6361/201833018/73
http://linker.aanda.org/10.1051/0004-6361/201833018/74
http://linker.aanda.org/10.1051/0004-6361/201833018/75
http://linker.aanda.org/10.1051/0004-6361/201833018/75
http://linker.aanda.org/10.1051/0004-6361/201833018/76
http://linker.aanda.org/10.1051/0004-6361/201833018/77
http://linker.aanda.org/10.1051/0004-6361/201833018/78


I. R. Losada et al.: Magnetic bipoles in rotating turbulence with coronal envelope

Appendix A: Comparison of growth rates in DNS
and MFS of Losada et al. (2013)

In Losada et al. (2013), the growth rates are accidentally scaled
by a factor (urms/cs)(kf/k1) ≈ 0.1 × 30 = 3. In addition, they
use β∗ = 0.75, which was suitable for one of their sets of MFS,
but not for the other. Therefore, the growth rates of their MFS
exceeded those of their DNS by a factor of about seven. The
corrected version of their Fig. 2 is shown in Fig. A.1.

Fig. A.1. Corrected version of Fig. 2 of Losada et al. (2013) showing the
dependence of λ/λ∗0 on 2Ω/λ∗0 for DNS (red dashed line), compared
with MFS (i) where qp0 = 20 and βp = 0.167 (black solid line), and
MFS (ii) where qp0 = 32 and βp = 0.058 (blue dash-dotted line).
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