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Abstract

If the α effect plays a role in the generation of the Sun’s magnetic field, the field should show evidence of magnetic
helicity of opposite signs at large and small length scales. Measuring this faces two challenges: (i) in weak-field
regions, horizontal field measurements are unreliable because of the π ambiguity, and (ii) one needs a truly global
approach to computing helicity spectra in the case where one expects a sign reversal across the equator at all
wavenumbers. Here we develop such a method using spin-2 spherical harmonics to decompose the linear
polarization in terms of the parity-even and parity-odd E and B polarizations, respectively. Using simple one- and
two-dimensional models, we show that the product of the spectral decompositions of E and B, taken at spherical
harmonic degrees that are shifted by one, can act as a proxy of the global magnetic helicity with a sign that
represents that in the northern hemisphere. We then apply this method to the analysis of solar synoptic vector
magnetograms, from which we extract a pseudo-polarization corresponding to a “π-ambiguated” magnetic field,
i.e., a magnetic field vector that has no arrow. We find a negative sign of the global EB helicity proxy at spherical
harmonic degrees of around 6. This could indicate a positive magnetic helicity at large length scales, but the
spectrum fails to capture clear evidence of the well-known negative magnetic helicity at smaller scales. This
method might also be applicable to stellar and Galactic polarization data.
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1. Introduction

The magnetic field of the Sun and other late-type stars is
known to have, on average, opposite signs of magnetic helicity
in the northern and southern hemispheres (Seehafer 1990;
Pevtsov et al. 1995). There is also the possibility of the field
being bihelical (Blackman & Brandenburg 2003) with a sign
change of the magnetic helicity at large length scales. To detect
this in the Sun, one would need to measure spectra of magnetic
helicity, but this is made complicated by the fact that the solar
surface also displays a systematic north–south variation with
opposite signs in the two hemispheres. To capture this
correctly, a global approach must be adopted that takes the
systematic north–south variation into account. This is done by
utilizing what is known as a two-scale approach (Roberts &
Soward 1975). Here, one scale is that of the large-scale
hemispheric modulation, and the other is the scale of the
turbulence, which in itself comprises an entire range of length
scales. In that approach, one can compute a spectrum covering
both north and south, while taking a systematic north–south
variation into account as if both hemispheres looked just like
the northern hemisphere (Brandenburg et al. 2017b,
hereafter BPS).

The problem with the standard two-scale approach is that it
is only a semi-global one. Technically, it is still Cartesian in
that the solar surface magnetic field is represented in the
Lambert cylindrical equal-area projection. In a proper global
approach, by contrast, one would need to employ a spherical
harmonics decomposition, but this must be done in such a way
that the systematic north–south variation can still be taken into
account.

In this paper, a simple heuristic modification to the usual
spherical harmonics spectra is proposed. It is based on the idea
that in the semi-global two-scale approach, the helicity

spectrum is computed as the product of the magnetic field
and its vector potential at wavenumbers that are offset for the
two fields by a small amount that corresponds to the
wavenumber of the large-scale hemispheric modulation.
Analogously, for spherical harmonics spectra, one should
consider the product of the two terms at spherical harmonic
degrees that are shifted by one. This idea is then adapted to
analyzing also the parity-even and parity-odd contributions to
the linear polarization (Kamionkowski et al. 1997; Seljak &
Zaldarriaga 1997). The reason for using such a decomposition
is that there are large uncertainties owing to the π ambiguity of
the magnetic field in weak-field regions of the Sun. This
ambiguity reflects the fact that polarization “vectors” have
neither head nor tail.
Various disambiguation procedures are available (Sakurai

et al. 1985; Georgoulis 2005; Hoeksema et al. 2014; Rudenko
& Anfinogentov 2014), but they tend to fail in regions far away
from sunspots, where the magnetic field is weak. To avoid any
bias, the random disambiguation method is often employed
(Liu et al. 2017). This is justified when the Stokes Q and U
parameters are dominated by noise but, if this were indeed the
case, it should not be possible to detect any systematic north–
south dependence of the parity-odd EB correlation from weak-
field regions. It is also clear that any magnetic helicity derived
from a randomly disambiguated magnetic field may itself be
random and would therefore be unreliable.
The proper way out of this problem of obtaining a qualitative

measure of the Sun’s magnetic helicity from π-ambiguous
magnetic fields is to work directly with the original linear
polarization. This has already been attempted by determining
the rotationally invariant parity-even and parity-odd contribu-
tions, or E and B polarizations, respectively, from the Stokes Q
and U parameters (Brandenburg et al. 2019,
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hereafter BBKMRPS). This decomposition yields a field that is
parity even, i.e., statistically mirror symmetric, and another one
that is parity odd, i.e., statistically mirror antisymmetric
(Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997). The
relevant diagnostic quantity is usually the cross-correlation of
the spectral representations of E and B (Kahniashvili &
Ratra 2005; Kahniashvili et al. 2014; Bracco et al. 2019).

Attempts to analyze solar E and B polarizations have not yet
produced a nonvanishing cross correlation (BBKMRPS).
However, this could be caused by their method still being
provisional in that only a semi-global approach was used to
deal with the fact that the sign of the cross-correlation is
systematically different in the northern and southern hemi-
spheres. It was always clear that a proper analysis should
involve a decomposition into spherical harmonics. More
precisely, the linear polarization parameters Q and U must be
decomposed into what is known as spin-2 spherical harmonics,
which have the appropriate transformation properties for linear
polarization (Kamionkowski et al. 1997; Seljak & Zaldar-
riaga 1997); see Durrer (2008) for a textbook on the subject.
While this method is now routinely applied in cosmology using
data from the Planck satellite (Planck Collaboration results
XI 2018), it has not yet been adapted to the case where one
expects there to be a global sign change of magnetic helicity
about the equator. In that case, we employ the spherical
harmonics decomposition of E and B, which yields Eℓm˜ and
Bℓm˜ , respectively. We then compute their product at spherical
harmonic degrees that are shifted by one, i.e., we compute

+E Bℓm ℓ m1
*˜ ˜ . We also compute -E Bℓm ℓ m1

*˜ ˜ , which we shall show to
be a better proxy of the expected magnetic helicity spectrum
than the former one.

The work of BBKMRPS suffered from another problem in
that the publicly available polarization data were not cleaned
and corrected to the same extent as those finally used to
compute the Sun’s magnetic field (Hughes et al. 2016). For
example, the quality of the images varied across the solar disk.
Furthermore, proper line fits to solar atmosphere models have
not been performed. Therefore, there is a possibility of small
shifts in frequency that could affect the resulting Q and U
signals. In particular, the magnetic field can have different
strengths at different geometrical depths, giving rise to more
complicated spectral line profiles that are usually fully
accounted for in the inversion pipelines (Hoeksema et al.
2014), but they were ignored in the more rudimentary analysis
of BBKMRPS. A legitimate way out of this additional problem
is to use the full solar magnetic field inversion along with its
questionable disambiguated magnetic field and make it
ambiguous again! We can do this by computing a synthetic
(or pseudo) linear polarization from the horizontal magnetic
field. Such work is already in progress (A. Prabhu 2019, in
preparation), but it is still local and constrained to finite patches
in one hemisphere, as was done in the works of BPS and Singh
et al. (2018). Here, by contrast, we employ a novel analysis
using spin-2 spherical harmonics to compute a global cross-
correlation spectrum.

We begin by testing the global two-scale approach and its
ability to extract a unique spectrum by using data from both
hemispheres at the same time. In Section 2, we first construct
simple axisymmetric fields to study the effects of a global sign
change of the magnetic helicity. In Section 3, we consider
nonaxisymmetric magnetic fields to verify the numerical
approach. In Section 4, we use synoptic magnetograms from

Carrington rotations (CRs) 2161 to 2163, for which a semi-
global helicity spectrum was previously determined (BPS). We
discuss the relevance of our results for dynamo theory in
Section 5 and conclude with the broader implications of the
present work in Section 6.

2. An Axisymmetric Example

2.1. Representation of the Magnetic Field

It is useful to begin with a simple example that is similar in
spirit to the one-dimensional example used in BPS (see their
Figure 1), where the magnetic helicity density shows a sign
change in the middle of the domain. For this purpose, we
restrict ourselves to an axisymmetric magnetic field, which can
be written in the form

f f= ´ +f fb a b , 1( ˆ ) ˆ ( )

where r and θ are radius and colatitude, af(r, θ) is the toroidal
component of the magnetic vector potential, and bf(r, θ) is the
toroidal component of the magnetic field itself. The proper
expansion of af and bf is in terms of the associated Legendre
polynomials Pl

1(cosθ) as

å åf fq q= =f f
= =

a a r P b b Pcos , cos , 2
ℓ

N

ℓ ℓ
ℓ

N

ℓ ℓ
1

1

1

1
ℓ ℓˆ ˜ ( ) ( ) ˆ ˜ ( ) ( )

where Nℓ determines the truncation level. The two horizontal
magnetic field components on the surface of the sphere at
r=R, say, are then given by

åq q= -
¶
¶

q
=

b
R r

ra P
1

cos , 3
ℓ

N

ℓ ℓ
1

1
ℓ

( ) ( ˜ ) ( ) ( )

åq q=f
=

b b P cos . 4
ℓ

N

ℓ ℓ
1

1
ℓ

( ) ˜ ( ) ( )

Even if a rℓ˜ ( ) were independent of r, the values of bθ would be
finite because of the r factor under the derivative. At the
surface, however, it is more likely that a rℓ˜ ( ) decays with r as a
power law, for example like - +r ℓ 1( ), as it would if the exterior
magnetic field was a potential field (Krause & Rädler 1980). In
such a case, bf would normally vanish, but this will not be
assumed here, because then the magnetic field would have
vanishing helicity. Specifically, we are interested in a field with
globally antisymmetric magnetic helicity, so we assume that bf
remains finite at r=R.

2.2. Opposite Helicities in the Two Hemispheres

In BPS, we constructed a magnetic field with globally
antisymmetric helicity by having the two horizontal field
components with a relative wavenumber shift that corresponds
to the scale of the latitudinal variation of the magnetic helicity.
This corresponds to the two components having an ℓ value that
is different by one. In the present case, we choose bℓ=b0 and
aℓ=−b0R/ℓ, with some general amplitude factor b0, so

q q q q= - =q f +b b P b b Pcos , cos . 5ℓ ℓ0
1

0 1
1( ) ( ) ( ) ( ) ( )

Analogously to BBKMRPS, we compute the complex linear
polarization at r=R as

º + = - +q fp Q iU b ib , 62( ) ( )

2
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where ò is the emissivity, which is here assumed to be constant.
The minus sign in front of ò accounts for the fact that
polarization is related to the electric field, which is at right
angles to the magnetic field.

2.3. Spin-weighted Spherical Harmonics

Next, we decompose p(θ) into spin-weighted spherical
harmonics (Kamionkowski et al. 1997; Seljak & Zaldar-
riaga 1997). The following expressions readily apply to the
nonaxisymmetric case where the complex polarization also
depends on longitude f, i.e., p=p(θ, f). The spin-weighted
spherical harmonics are computed as (Goldberg et al. 1967)

q f q q= f Y e, sin 2 , cos 2 , 7s ℓm s ℓm s ℓm
im( ) ( ( ) ( )) ( )

where

p
= -

+ +
+

-
-


ℓ ℓ m

ℓ s

ℓ m

ℓ s
1

2 1

4
8s ℓm

m( ) ( )!
( )!

( )!
( )!

( )

is a normalization factor,

å=
=

-
+ - x y x y x, 9s ℓm

ℓ

r

ℓ s

rs ℓm
r s m2

0

2( ) ( ) ( )

are polynomials of x and y/x, and

=
- +

+ -
- - -

ℓ s

r

ℓ s

r s m
1 10rs ℓm

ℓ r s⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )

is yet another normalization factor, where the binomials are
defined to be zero when either of the arguments or their
difference is nonpositive. In Table 1, we list a few selected
spin-2 spherical harmonics.

The numerical application of Equation (9) can become
problematic in the first (second) quadrant for m>0 (m< 0)
and θ→ 0 (θ→ π), because the sum has large terms of
alternating sign. This is not the case in the correspondingly
other quadrant. However, for the cases listed in Table 1, we
observe that q f p q f= --Y Y, ,ℓm ℓ m2 2( ) ( ), although this
relation is not generally true.

2.4. Spin-2 Spherical Harmonics Decomposition

We now compute the spin-2 spherical harmonics representa-
tion of E+iB in terms of Q+iU as (Kamionkowski et al.
1997; Seljak & Zaldarriaga 1997; Durrer 2008; Kamionkowski
& Kovetz 2016)

ò q f q q f= +
p

R Q iU Y d d, sin , 11ℓm ℓm
4

2 *˜ ( ) ( ) ( )

and define = + -E R R 2ℓm ℓm ℓ m,
*˜ ( ˜ ˜ ) as the parity-even part and

= - -B R R i2ℓm ℓm ℓ m,
*˜ ( ˜ ˜ ) as the parity-odd part in spectral

space, where the asterisk means complex conjugation, and
commas have been used to separate ℓ from −m. In the
axisymmetric case, we have m=0 and drop the index m.
Furthermore, Eℓ˜ and Bℓ˜ are then real. It should also be noted
that our coefficients Eℓm˜ and Bℓm˜ are sometimes defined with
the opposite sign (see, e.g., Zaldarriaga & Seljak 1997). Here
we follow the sign convention of the textbook by Dur-
rer (2008).
The spatial dependencies of E(θ, f) and B(θ, f) are given by

the real and imaginary parts of the inverse transform, R, i.e.,

å å q f+ º =
= =-

E iB R R Y , . 12
ℓ

N

m ℓ

ℓ

ℓm ℓm
2

ℓ

˜ ( ) ( )

It turns out that for a magnetic field given by Equation (5),
finite values of Eℓ˜ are only obtained for even ℓ (ℓ� 2), while
finite values of Bℓ˜ are only obtained for odd ℓ (ℓ� 3). In
Figure 1, we show the θ dependence of the components of the
two surface components of b, as well as the fields (Q, U) and
(E, B) for several values of ℓ.
In Figure 1, we also show af, which is just bθR/ℓ, where the

ℓ factor comes from the r derivative in Equation (3) and the fact
that µ - +a r rℓ

ℓ 1˜ ( ) ( ). We choose = - =b ℓa R bℓ ℓ 0
˜ ˜ . In that

case, positive contributions to the local magnetic helicity
density, h(θ)=2afbf (Brandenburg et al. 2002), come from
π/2�θ�π, i.e., from the southern hemisphere. Negative
contributions come from the northern hemisphere. This
corresponds to what is seen on the Sun for the small-scale field,
i.e., the field with k>0.1 Mm−1. We emphasize here that the
corresponding scale, 2π/0.1 Mm−1≈60Mm, is obviously not
small by some standards, but it is small relative to the large-
scale field of the Sun that manifests itself through the 11 yr
cycle and the hemispheric antisymmetry of the mean
toroidal field.
To distinguish the spherical harmonic degrees of the

magnetic field from those of the E and B polarization, we
denote the former with a prime as ℓ′. In order to have negative
(positive) contributions to the local magnetic helicity density in
the northern (southern) hemisphere, we now choose analo-
gously to Equation (5),

d d= - =¢ ¢+a b, , 13ℓ ℓ ℓ ℓ ℓ ℓ 1˜ ˜ ( )

for selected values of ℓ′. Thus, for ℓ′=1, for example, we have
= -a 11˜ and =b 12

˜ as the only two nonvanishing coefficients,
so q q= - =qb P cos sin1

1( )
and q q q= = -fb P cos 3 sin cos2

1( ) .
In Tables 2 and 3, we list the two-scale polarization spectra

= =+
+

-
-K E B K E Band , 14ℓ ℓ ℓ ℓ ℓ ℓ1 1

* *˜ ˜ ˜ ˜ ( )

respectively, for different values of ℓ′. We note here again that,
because m=0, Eℓ˜ and Bℓ 1˜ are real, so we can drop the
asterisk. In all cases, the integral of h(θ) over both hemispheres
vanishes. To get a sense of the strength of helicity, we therefore
list in Tables 2 and 3 the rms value, hrms. We see that hrms

increases only mildly with increasing values of ℓ′. By contrast,
the extrema of +E Bℓ ℓ 1˜ ˜ and -E Bℓ ℓ 1˜ ˜ increase much faster with ℓ.
This suggests that the ℓ-dependence of -Kℓ does not reflect the
actual ℓ-dependence of magnetic helicity.

Table 1
First Few Spin-2 Spherical Harmonics

ℓ m 2Yℓm(θ, f)

2 0 p q3 4 5 6 sin2( )
2 ±1 p q q- fe1 4 5 sin 1 cos i( ) ( )
2 ±2 p q fe1 8 5 1 cos i2 2( ) ( )
3 0 p q q1 4 105 2 sin cos2( )
4 0 p q q-15 4 9 10 sin 1 7 6 sin2 2( ) [ ( ) ]
4 ±3 p q q q q- fe1 4 63 2 sin 1 cos 1 cos 2 sin i2 3( ) ( )[( ) ] 

3
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Tables 2 and 3 also show that the maxima of both Kℓ

+ and
-Kℓ occur for ℓ=2(ℓ′+ 1). An exception is +E Bℓ ℓ 1˜ ˜ for ℓ′=2,

where the maximum still occurs at ℓ=2. It is important to note
that the maximum of -E Bℓ ℓ 1˜ ˜ is much sharper in comparison to
the lower ℓ values than that of +E Bℓ ℓ 1˜ ˜ . For this reason, we focus
our analysis on the former quantity to characterize the spectrum
of magnetic helicity, because it serves as the sharpest proxy of
the magnetic helicity. Also, the largest contribution to +E Bℓ ℓ 1˜ ˜
has the opposite sign for ℓ�6.
It is in principle also possible to use Bℓ m,˜ itself as a proxy of

magnetic helicity. Its values are listed in Table 4 for the same
models as above. We emphasize that Bℓ˜ has contributions only
from odd values of ℓ. This is because B(θ) has a dominant
hemispheric ℓ=1 variation. By contrast, Eℓ˜ always has
contributions for even values of ℓ. This property of Eℓ˜ is also

Figure 1. Latitudinal dependence of af (dashed green), bf (blue), and bθ (red) (left column), Q (blue) and U (red) (middle column), and E (blue) and B (red) (right
column) for the one-dimensional model.

Table 2
Results for +E Bℓ ℓ 1˜ ˜

ℓ

ℓ′ 2 4 6 8 10 12 hrms

1 4.3 0.0 0.0 0.0 0.0 0.0 1.50
2 6.5 −3.1 0.0 0.0 0.0 0.0 1.57
3 8.3 3.9 −13.6 0.0 0.0 0.0 1.69
4 10.1 5.3 2.1 −28.0 0.0 0.0 1.82
5 12.0 6.5 4.0 0.0 −46.4 0.0 1.95
6 13.9 7.5 5.0 2.9 −2.5 −65.7 1.95

Note. The maxima for each ℓ′ are in bold.

Table 3
As Table 2, but for -E Bℓ ℓ 1˜ ˜

ℓ

ℓ′ 4 6 8 10 12 14 hrms

1 22.6 0.0 0.0 0.0 0.0 0.0 1.50
2 −2.1 46.3 0.0 0.0 0.0 0.0 1.50
3 3.8 −8.4 77.9 0.0 0.0 0.0 1.69
4 5.7 1.9 −16.6 117.4 0.0 0.0 1.82
5 7.2 4.1 0.0 −26.6 165.0 0.0 1.95
6 8.6 5.4 2.8 −2.1 −38.6 220.5 2.08

Table 4
Similar to Tables 2 and 3, but Now Just for Bℓ˜

ℓ

ℓ′ 3 5 7 9 11 13

1 5.9 0.0 0.0 0.0 0.0 0.0
2 5.9 8.9 0.0 0.0 0.0 0.0
3 7.1 7.3 11.7 0.0 0.0 0.0
4 8.6 7.9 8.6 14.6 0.0 0.0
5 10.1 9.0 8.8 10.0 17.4 0.0
6 11.6 10.1 9.5 9.8 11.4 20.3

4
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recovered if the field is nonhelical, which is the case if the
magnetic field is purely poloidal or purely toroidal. On the
other hand, if both are present at the same values of ℓ, one has
helicity without hemispheric modulation. In that case, Bℓ˜ has
contributions only from even values of ℓ, while Eℓ˜ vanishes.

2.5. Analogy with Faraday-rotated Fields

Scannapieco & Ferreira (1997) calculated the B mode
polarization of the cosmic microwave background radiation in
the presence of a uniform magnetic field and found correlations
between the temperature at spherical harmonic degree ℓ and the
B mode at degrees ℓ+1 and ℓ−1; see also Scóccola et al.
(2004). Such constructs are reminiscent of those in
Equation (14). In their case, the uniform magnetic field led to
a superposition of Faraday-rotated fields with different angles
over the depth near the last scattering surface.

An analogy with Faraday rotation is indeed justified, because
both magnetic helicity and Faraday rotation lead to similar
effects that, in combination, can either enhance or diminish the
resulting polarized intensity (Sokoloff et al. 1998; Brandenburg
& Stepanov 2014; Horellou & Fletcher 2014). The presence of
magnetic helicity leads either to a correlation or an antic-
orrelation between the rotation measure and the total polarized
intensity (Volegova & Stepanov 2010), depending on whether
one looks along or against the direction of the uniform
magnetic field. This explains the analogy with the present case,
where we have opposite signs of magnetic helicity in the two
hemispheres.

To demonstrate the effect of Faraday rotation in the present
context, we now include the radial magnetic field. In fact, the
poloidal field associated with the latitudinal component

q= -q ¢b b P cosℓ0
1 ( ) of our earlier examples implies

q= ¢ + ¢b ℓ b P1 cos , 15r ℓ0( ) ( ) ( )

where q q q q= - ¢ ¢ +¢ ¢d P d ℓ ℓ Psin cos cos 1 cosℓ ℓ
1[ ( )] ( ) ( ) has

been used, and the ℓ′+1 factor follows from Equation (13) and
the fact that- =ℓa R bℓ 0˜ . We consider models with ℓ′=1 and
2. Faraday rotation rotates the phase angle of the complex
polarization, so Equation (6) has to be replaced by

= - +q fp b ib e , 16ib b2 2 r F( ) ( )

where l= -b k n dF F e
2 1( ) , with = ´ - -k 2.6 10 GF

17 1 being a
constant (e.g., Alissandrakis & Chiuderi-Drago 1994), ne the
mean electron density, λ the wavelength, and d the geometrical
depth. For example, for ne=1014 cm−3, λ=600 nm, and

d=100 km, we have bF≈10 kG. Since the actual surface
magnetic field is much weaker, Faraday rotation will only be a
small effect as far as the average field is concerned. However,
given that the effect is highly nonlinear, it is usually not
negligible in active regions and sunspots.
To assess the effects of Faraday rotation on the resulting EB

correlation, it is instructive to look at the latitudinal dependence
of the product E(θ)B(θ) for two representative cases: one where
ℓ′ is odd and one where it is even. The result is shown in
Figure 2 for ℓ′=1 and 2, using b0/bF=±0.1, and comparing
with the case without Faraday rotation. For clarity, we only
show the range 45°�θ�135°. For the Sun, as alluded to
above, the actual values of b b0 F will be much smaller and the
Faraday rotation effect hardly noticeable for the average field.
We see that for ℓ′=1, Faraday rotation causes an

enhancement (reduction) of the helicity-induced EB correlation
if bF is negative (positive); see Figure 2(a). This agrees
qualitatively with the result of Scannapieco & Ferreira (1997),
because a uniform magnetic field corresponds to an odd
value ℓ′.
For ℓ′=2, on the other hand, we have a mixed hemispheric

dependence of EB with finite values at the equator. In the case
of the Sun, of course, the large-scale magnetic field has odd
symmetry around the equator. This also applies to the field
within sunspots. The difference between leading and following
sunspots would weaken the net effect, but not its systematic
north–south dependence. We can therefore conclude that
Faraday rotation does not compromise the ability to detect
magnetic helicity from EB, provided the Faraday effect remains
subdominant compared with the helicity effect, i.e., λ is small
enough.

3. Nonaxisymmetric Examples

3.1. Two-dimensional Patterns of E and B

We now consider two-dimensional examples in the (f, μ)
plane, where m q= cos . Analogous to earlier work, we
consider the magnetic field º -f m f qb b b b, ,( ) ( ) to be given
by = +b F G, where

=  = F f G gand , 17i i i ij j ( )

using

= - =f f Y g g Yand . 18ℓm ℓm0 0 ( )

The complex linear polarization is then computed as
= - + = - = +q f f q f mp b ib b ib b ib2 2 2( ) ( ) ( ) .

Figure 2. E(θ)B(θ) for bF=10 (red) and −10 (blue) for (a) ¢ =l 1 and (b) l′=2. Note that for l′=2, ¹EB 0 at the equator (θ = 90°).
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Following BBKMRPS, we consider four combinations, namely
=f g, 1, 00 0( ) ( ), 0, 1( ), and (1,± 1). In Figure 3, we show the

result for ℓ=4 and m=3. All quantities are plotted as a
function of f and m q= cos . This corresponds to the Lambert
azimuthal equal-area projection. We recover familiar structures
corresponding to star-like and ring-like features for negative
and positive E polarizations and swirly inward clockwise and
counter-clockwise patterns for negative and positive B
polarizations. These structures agree with those in Figure 2
of BBKMRPS. We recall, however, that we follow here the
sign convention of Durrer (2008), in which our Equation (11)
becomes = - -R k k k ik p k k, ,x y x y x y

2˜( ) ( ˆ ˆ ) ˜ ( ) in the Cartesian
limit, where kx and ky are the components of the two-
dimensional wavevector and hats indicate unit vectors.
Equation (3) of BBKMRPS, followed the sign convention of
Zaldarriaga & Seljak (1997), but their Figure 2 showed
polarization vectors, which are at right angles to the magnetic
field vectors, therefore giving the same orientation as the
magnetic vectors in the Durrer convention shown in our
Figure 3.

3.2. Formulation in Terms of Superpotentials

Nonaxisymmetric magnetic fields can no longer be
expressed in a form analogous to Equation (1), but we must

instead employ the superpotentials S and T in the form

  = ´ ´ + ´b r rS T . 19( ) ( ) ( )

The first part corresponds to the poloidal field and the second to
the toroidal field. The two superpotentials are expanded in
terms of spherical and harmonics, so

å åq f q f=
= =-

S T S T Y, , , , , 20
ℓ

N

m ℓ

ℓ

ℓm ℓm ℓm
1

ℓ

( )( ) ( ) ( ) ( )

with the inverse transformation given by

ò q f q f q q f=
p

S T S T Y d d, , , , sin . 21ℓm ℓm ℓm
4

*( ˜ ˜ ) ( )( ) ( ) ( )

As in Section 2.1, we assume that the radial dependence of
S rℓm
˜ ( ) is proportional to - +r ℓ 1( ). This implies that

¶
¶

= - =
r

rS ℓS r Rfor . 22ℓm ℓm( ˜ ) ˜ ( ) ( )

For chosen values of ℓ and m, we can then write

q f = -  + q q fb ℓS Y T Y, Re , 23ℓm ℓm ℓm ℓm( ) ( ˜ ˜ ) ( )

q f = -  - f f qb ℓS Y T Y, Re . 24ℓm ℓm ℓm ℓm( ) ( ˜ ˜ ) ( )

Note in this connection that for axisymmetric models, bθ and bf
are related to q fY ,ℓm ( ) via θ derivatives. This shows that the
reason for having expanded af(θ) and bf(θ) in Equation (2) in

Figure 3. b(f, μ) vectors compared with split representations of (Q, U) and (E, B) for the four combinations ( f0, g0)=(1, 0), (0, 1), and (1, ± 1) with ℓ=4 and
m=3. Individual cross, ring, and swirl-like patterns are highlighted by squares, along with their positions in the (Q, U) and (E, B) diagrams.
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terms of qP cosℓ
1( ) is that the θ derivative of the Legendre

polynomials gives q q q=dP d Pcos cosℓ ℓ
1( ) ( ). Analogously to

the axisymmetric case, we choose = - =T ℓS R b Rℓm ℓm 0˜ ˜ .
The formulation given by Equations (23) and (24) agrees

with that given by Equation (17), provided we replace

q f q f - f ℓS Y g T Y, , , . 25ℓm ℓm ℓm ℓm˜ ( ) ˜ ( ) ( )

This formulation suggests that the nonaxisymmetric general-
ization of Equation (5) is given by

 - ¢ ¢ ¢ ¢ ¢ ¢+ ¢ ¢+ ¢f ℓ S Y R g T Y, , 26ℓ m ℓ m ℓ m ℓ m1 1˜ ˜ ( )

and that

å= ¢ ¢ +¢


¢=- ¢

¢

¢ ¢ ¢ ¢H ℓ ℓ S T2 1 27ℓ
m ℓ

ℓ

ℓ m ℓ m1
*( ) ˜ ˜ ( )

can be used as a global two-scale measure of the magnetic
helicity spectrum. In the following, we use ¢ ¢

+Hℓ m to specify the
amplitude of a single mode; ¢ ¢

-Hℓ m , by contrast, vanishes in our
single-mode examples by construction. We also use +Hℓ for
solar magnetograms.

3.3. Hemispheric Helicity Modulation

In the examples considered above, either E or B was zero;
see the gray sub-panels in the split representation of Figure 3.
We now consider examples where both are nonvanishing.
Specifically, we reconstruct examples where

åº

=-
K E B 28ℓ

m ℓ

ℓ

ℓm ℓ m1
*˜ ˜ ( )

is nonvanishing. As noted in the previous section, we do this by
using fields where

- ¢ = = -¢ ¢ ¢+ ¢ℓ S R T b 29ℓ m ℓ m1 0˜ ˜ ( )

is a constant for fixed ℓ′ and m′. This is equivalent to our choice
- ¢ = =¢ ¢+ℓ a R b bℓ ℓ 1 0˜ ˜ in Section 2.4. Furthermore, the
models of Figure 1 correspond to

p= - ´ + +f g ℓ ℓ, 1, 1 4 2 1 2 30 0( ) ( ) ( )( ) . The result is
shown in Figure 4, again for ℓ′=4 and m′=3. We see that E
is always symmetric about the equator and B is antisymmetric
about the equator. The product EB is therefore antisymmetric
about the equator, which reflects the opposite signs of magnetic
helicity in the two hemispheres.

The last panel of Figure 4 shows that, although the product
EB is mostly positive in the north and negative in the south,
there are also extended regions of opposite sign. Quantitatively,

we find that á ñ á + ñ = EB E B2 0.252 2 , where the upper
(lower) sign applies to the northern (southern) hemisphere.
In Table 5, we list all nonvanishing coefficients Eℓm˜ and Bℓm˜

for our example with ℓ′=4 and m′=3. For ¹m 0, the only
nonvanishing contributions come from m=±6. Note also that
Eℓm˜ is now complex, while all other coefficients are still real.
The dominant contributions to the parity-odd correlation come
from the product -E Bℓm ℓ m1˜ ˜ with ℓ=2(ℓ′− 1)=6 and ℓ=2ℓ′
=8 for m=0, and ℓ=2(ℓ′+ 1)=10 for m=2m′=6.

4. Solar Synoptic Vector Magnetograms

4.1. Spectra of Global Two-scale Helicity Proxies

We now apply the global two-scale approach to the same
solar synoptic vector magnetograms that were studied by BPS
using the semi-global approach. As alluded to in the
introduction, we use “π-ambiguated” magnetic fields expressed
in terms of pseudo-polarization data. Thus, we only utilize the
two horizontal components, bθ and bf, to compute the complex
linear polarization q f = - +q fp b ib, 2( ) ( ) . The emissivity
prefactor in Equation (6) has been set to unity because, in the
following, we only work with normalized spectra. We then
compute Eℓm˜ and Bℓm˜ and study the spectra K ;ℓ see
Equation (28). We normalize them analogously to those
in BBKMRPS and write them as

å
å

=
+

 =- 

=- -

c ℓ
E B

E B

2
. 30m ℓ

ℓ
ℓm ℓ m

m ℓ

ℓ
ℓm ℓ m

A
1

2
1

2

*
( )

˜ ˜

(∣ ˜ ∣ ∣ ˜ ∣ )
( )

Because we sum over positive and negative m, the values of
c ℓA ( ) are aways real. They vary between −1 and +1. We recall
that, based on the comparison of Tables 2 and 3 in Section 2.4,

Figure 4. f mb ,( ) vectors compared with split representations of (Q, U) and (E, B), and a representation of the product EB, for the model of Section 3.3 with ℓ=4
and m=3. Note the opposite sense of swirl of eddies in the northern and southern hemispheres, as highlighted by the squares.

Table 5
Values of Eℓm˜ , -Bℓ m1˜ , and -E Bℓm ℓ m1˜ ˜ for ℓ′=4 and m′=3

ℓ 2 4 6 8 10

Eℓ 0˜ 1.00 −0.37 −2.61 2.43 −0.63

-Bℓ 1 0˜ 0 −2.37 −3.14 3.25 −0.82

-E Bℓ ℓ0 10
*˜ ˜ 0 0.89 8.19 7.88 0.51

Eℓ6˜ 0 0 0.33−0.52i −0.19−0.15i 1.94

-Bℓ 16˜ 0 0 0 1.67 3.18

-E Bℓ ℓ6 16
*˜ ˜ 0 0 0 −0.31−0.24i 6.19

-Kℓ 0 0.89 8.19 7.26 12.89

åEℓm
2∣ ˜ ∣ 1.00 0.14 7.57 6.02 7.92

å -Bℓ m1
2∣ ˜ ∣ 0 5.62 9.86 16.1 20.90

cA(ℓ) 0 0.31 0.94 0.66 0.89
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we expect -c ℓA ( ) to be a better proxy of magnetic helicity
than +c ℓA ( ).

Following BBKMRPS, we also compute the normalized
difference of the spectra of EE and BB polarizations as

å
å

=
-

+
=-

=-

c ℓ
E B

E B
. 31m ℓ

ℓ
ℓm ℓm

m ℓ

ℓ
ℓm ℓm

S

2 2

2 2
( )

(∣ ˜ ∣ ∣ ˜ ∣ )

(∣ ˜ ∣ ∣ ˜ ∣ )
( )

This quantity varies between −1 and +1. It vanishes when the
EE and BB polarizations have the same amplitude, and it is one
third if the amplitude of the EE polarization is twice that of the
BB polarization, as was found in recent dust foreground
measurements of the interstellar medium (Planck Collaboration
Int. XXX 2016; Planck Collaboration results XI 2018). To
facilitate comparison with earlier work, we define

= +L ℓ ℓ 1 , 322 ( ) ( )

and plot cS and cA also versus the approximate wavenumber
k=L/R. As in BPS, we use the combined synoptic vector
magnetograms of three CRs, 2161, 2162, and 2163. They are
based on the full-disk vector magnetograms obtained from the
Helioseismic and Magnetic Imager on board the Solar
Dynamics Observatory and have been processed by Yang
Liu5 (Stanford).

In Figure 5, we show cS(ℓ) and c ℓA ( ) both for the full data set
of all three CRs and also separately for CRs2161, 2162, and
2163. For the full data set, the total azimuthal angle is 6π, and
the integration in Equation (11) is carried out over 12π instead
of 4π. Similar to our earlier semi-global analysis, cS shows
large variations, but is mostly positive for ℓ�10, corresp-
onding to the wavenumber k=L/R�0.014Mm−1. Further-
more, cA

− shows negative values for similar ℓ, while +cA has the
opposite sign, which is in agreement with our expectations
based on the comparison of Tables 2 and 3. For larger ℓ, both
+cA and -cA are again very noisy, although -cA may be mostly
positive, while +cA may be mostly negative.

To have an estimate of the uncertainty of our results, we also
plot the spectra separately for each of the three CRs. These
results are broadly consistent with those of the full data set. The
tendency of obtaining positive values of cS at ℓ<10 is also
seen individually for all three CRs. By contrast, the tendency of
obtaining negative values of cA

− for <ℓ 10 is seen for
CRs2161 and 2162, but not for CR2163 at ℓ=4. However,

for ℓ=6, all three data sets give the same (negative) sign of
cA
−.
As noted before, Bℓ˜ can itself be used as a helicity proxy, so

we now determine it for the same three CRs. For completeness,
we also analyze Eℓ˜ in a similar fashion. Owing to nonax-
isymmetry, we have contributions from different values of m. It
is then useful to define

å å= =
=- =-

B B B B, . 33ℓ
m ℓ

ℓ

ℓm ℓ
m ℓ

ℓ

ℓm
2 2˜ ˜ ˜ ∣ ˜ ∣ ( )( )

In the following, we plot Bℓ˜ and the ratio B Bℓ ℓ
rms˜ ˜ , where

=B Bℓ ℓ
rms 2 1 2˜ [ ˜ ]( )

is the rms value. We define Eℓ˜ and the ratio
E Eℓ ℓ

rms˜ ˜ analogously. For Bℓ˜ , we only expect to see a
hemispheric modulation for odd values of ℓ. Therefore, to
distinguish the contributions from odd and even values of ℓ, we
denote them as Bℓ

odd˜ and Bℓ
even˜ . The results are shown in

Figure 6 as a function of ℓ. We see that both Eℓ˜ and Bℓ
odd˜ are

negative for small values of ℓ, while Bℓ
even˜ is positive.

The fact that Eℓ˜ is mostly negative for ℓ<5 suggests that,
on large length scales, the magnetic field structures are mostly
star-like, but in the range 5<ℓ<10, they are mostly ring-
like. However, no direct visual evidence of this has been
reported as yet. For the B polarization, on the other hand, the
negative values for odd ℓ, i.e., for Bℓ

odd˜ , may reflect a positive
magnetic helicity on large length scales; see Section 3.3. This
agrees with the negative sign found for -cA . Moreover, as seen
in Table 2, +Kℓ tends to have the opposite sign. This agrees with
what is found for +cA in Figure 5(c).

4.2. Spectra of the Global Two-scale Magnetic Helicity

Finally, we consider Hℓ . We normalize it by the solar radius
R, which is set to unity in our work, so we plot here the ratio

H Rℓ , which has units of G2; see Equation (27) for the
definition. To obtain Sℓm

˜ , we use the observed radial magnetic
field component, br, compute the spherical harmonics decom-
position to find br ℓm,

˜ and thus =S b L ;ℓm r ℓm,
2˜ ˜ see

Equation (32). Analogously, we compute Tℓm˜ from the radial
component of the current density, jr. For the vector
magnetograms, the components of the magnetic field are given
in uniform intervals of m q= cos . We therefore write the radial

Figure 5. (a) cS(ℓ), (b)
-cA (ℓ), and (c) +c ℓA ( ) for the full data set covering CRs2161–2163 (broad solid lines), compared with the corresponding individual results for

CRs2161 (red), 2162 (blue), and 2163 (green).

5 http://hmi.stanford.edu/hminuggets/?p=1689

8

The Astrophysical Journal, 883:119 (11pp), 2019 October 1 Brandenburg

http://hmi.stanford.edu/hminuggets/?p=1689


component of = ´j b as

q q
m q f

= -
¶

¶
-

¶
¶

f
f qj b

b b
cot sin

1

sin
. 34r ( )

We then compute the spherical harmonics decomposition to
find jr ℓm,

˜ and thus compute =T j Lℓm r ℓm,
2˜ ˜ .

In Figure 7 we plot H Rℓ versus ℓ. We see that Hℓ

+ and -Hℓ
are negative for most values of ℓ. Thus, there is no clear
evidence for a positive magnetic helicity at large length scales.
This is surprising in view of the previous findings based on the
B polarization that did suggest positive magnetic helicity on
large length scales. Of course, previous work has long shown
negative magnetic helicity in the northern hemisphere and
positive in the southern (Seehafer 1990; Pevtsov et al. 1995),
including the work of BPS. It may therefore indeed be true that
there is no sign change in Hℓ at the photosphere, and that the
sign change in the helicity proxies may reflect physical
properties of the field at some layer above the photosphere.
However, it could also be an effect of the phase within the solar
cycle, as suggested by Singh et al. (2018), which could then
also explain the evidence for a bihelical field found by Pipin &
Pevtsov (2014). Systematic cycle related magnetic helicity
variations are indeed well documented (Kleeorin et al. 2003;
Zhang et al. 2010; Pipin et al. 2019).

It also is surprising that Hℓ is, for all CRs, consistently much
larger at =ℓ 1 than for any other values of ℓ. In BPS, by
contrast, we found a rapid decline of power for -0.01 Mm ;1 see
Figure 8 therein, but that work was based on a semi-global
approach which is unable to recover the low k values correctly.
Conversely, it is possible that the global approach over-
emphasizes the polar fields. This may be a concern mainly for
the E and B polarization. Indeed, looking at Figure 1, we see
that the clearest hemispheric dependence in B is seen at the
poles, while at lower latitudes, E and B have no definite
correlation. This may well be a general problem with the EB
approach that should be clarified studying the signs of E and B
locally. It would be important to assess the statistical robustness
of these results by inspecting the magnetic helicity signatures
for many more CRs.

5. Implications for Dynamo Theory

The α effect in dynamo theory is the main candidate for
explaining the production of large-scale magnetic fields in the
Sun. One of its signatures is the production of magnetic helicity
of opposite signs. Such a magnetic field is called bihelical.

Figures 5 and 6 present some support for this assertion, in
addition to the earlier results of Pipin & Pevtsov (2014) and
Singh et al. (2018). Our inspection of Hℓ

+ and -Hℓ does not
support this, however. Whether this is indeed related to
potential problems regarding the π ambiguity is, however,
unclear, and one would like to see more evidence before
continuing to speculate further on this. There is, however, the
possibly that it might be related to the anticipated sign reversal
of magnetic helicity some small distance above the photo-
sphere. We elaborate on this possibility next.
To put the various findings into a broader perspective, it is

important to realize that in the solar wind, far away from the
solar dynamo, evidence for a bihelical magnetic field has also
been presented (Brandenburg et al. 2011). However, the sign of
magnetic helicity is at all wavenumbers opposite to what it is at
the solar surface. This was then found to be a generic
phenomenon of any system consisting of a dynamo region
adjacent to a nondynamo region; see the work of Warnecke
et al. (2011, 2012) of a turbulent dynamo simulation with a
simple stellar corona, and the earlier work of Brandenburg et al.
(2009) in the context of galactic halos. We do not know exactly
where the sign would swap. It has been suggested that it could
occur in the lower corona, where the plasma beta crosses unity

Figure 6. (a) E Eℓ ℓ
rms˜ ˜ (for even and odd ℓ), (b) B Bℓ ℓ

odd rms˜ ˜ (only for odd values of ℓ), and (c) B Bℓ ℓ
even rms˜ ˜ (for even values of ℓ), for the full data set covering

CRs2161–2163 (broad solid lines), compared with the corresponding individual results for CRs2161 (red), 2162 (blue), and 2163 (green).

Figure 7. H Rℓ vs. ℓ for the full data set covering CRs2161–2163 (broad
solid lines), compared with the corresponding individual results for CRs2161
(red), 2162 (blue), and 2163 (green). The solid (dashed) lines give the results
for odd (even) values of ℓ.

9

The Astrophysical Journal, 883:119 (11pp), 2019 October 1 Brandenburg



(Bourdin et al. 2018). This could be detectable by measuring
in situ polarized emission from within the corona (Brandenburg
et al. 2017a). On the other hand, if it happened in the
chromosphere, in layers accessible to a direct face-on
measurement of the EB cross-correlation, this sign change
might be detectable using the method discussed in the present
paper.

A major difficulty in detecting an overall sign change of
handedness through the EB cross-correlation lies in the fact that
the E polarization is strongly associated with the magnetic field
topology. This particular property could be characterized, for
example, by its correlation with temperature T (related to the
intensity or Stokes I). This is a parity-even correlation, which
can have either sign, and it may be this quantity, in addition to
EB, that also shows a systematic variation with height. Not
much is known about this, except that in the dust polarization
of the Galactic foreground, the ET correlation is known to be
positive (Planck Collaboration results XI 2018). We also know
that the E polarization is highly skewed and its skewness
depends systematically on the physics governing the magnetic
field. Ambipolar diffusion, for example, is known to affect the
skewness of E in a systematic way (see Figure 13 of
Brandenburg 2019). This is also reflected in the fact that the
EE correlation can be different from the BB correlation, i.e.,

¹c 0S , as has been found in the present work; see Figure 5(a).
Addressing these new questions raised above is of direct
relevance to assessing the possibility of a radial sign reversal of
the magnetic helicity, as predicted by dynamo theory and as has
been found from magnetic helicity measurements in the
solar wind.

6. Conclusions

This work has addressed two critical issues in the calculation
of a proxy of solar magnetic helicity spectra: the π ambiguity
and the systematic north–south sign change of magnetic
helicity. The problem of the π ambiguity has been addressed
previously (BBKMRPS) by calculating the EB cross-correla-
tion from local Cartesian patches. This quantity was shown to
be a proxy of magnetic helicity under inhomogeneous
conditions, in particular for rotating stratified convection. The
problem of the systematic north–south variation has also been
addressed previously, but only in a semi-global fashion;
see BPS. Here, we have generalized this approach to a fully
global one by first calculating the parity-even and parity-odd E
and B polarizations globally using spin-2 spherical harmonics,
and then correlating them at spherical harmonic degrees that
are shifted by one relative to the other. This approach is
analogous to what was done in the semi-global Cartesian
approach of BPS. However, unlike their formalism, the present
one is heuristic and has not been derived rigorously from a
correlation function that depends on mean and relative
coordinates; see Roberts & Soward (1975). It is not entirely
obvious that this is even possible but, if it is, the result may
well look similar to what has been proposed here. Through the
examples constructed here, we have demonstrated that the
correlation -E Bℓm ℓ m1

*˜ ˜ can act as a proxy of the magnetic
helicity, which itself is characterized globally by the
product +S Tℓm ℓ m1

*˜ ˜ .
In the quest for finding clear evidence of an opposite sign of

magnetic helicity at large length scales, one has to tackle the
problem of the π ambiguity in the weak-field regions that
occupy the majority of the solar surface. A standard approach

to π disambiguation in those regions is the random disambi-
guation, which is problematic and may have been responsible
for the relatively low spectral power at wavenumbers around
and below 0.03Mm−1 (Singh et al. 2018) and also for what
looked like a random sign in the resulting magnetic helicity at
those wavenumbers. In fact, the present results now suggest
that there is maximum power at the very smallest wavenumbers
around and below 0.01Mm−1.
Our results show that, in the northern hemisphere, where the

small-scale magnetic helicity is negative, -E Bℓm ℓ m1
*˜ ˜ is positive.

Likewise, the large-scale field is expected to have positive
magnetic helicity in the northern hemisphere and -E Bℓm ℓ m1

*˜ ˜ is
now found to be negative. Thus, our proxy has the opposite
sign to the magnetic helicity. This agrees with what was found
based on the numerical simulations of BBKMRPS. This result
is not, however, based on the actual helicity Hℓ , but rather on
the helicity proxy. As mentioned in Section 4.2, there could be
a general difficulty with the EB approach in that its highest
sensitivity is at the poles. At lower latitudes, the method suffers
a significant amount of cancellation, as can be anticipated from
Figure 1 for =ℓ 4.
Regarding the absence of a clear EB signal in the analysis of

solar Q and U polarization in the work of BBKMRPS, it should
be noted that their results are much more noisy, although in
hindsight not so dissimilar from the present ones. Tentatively,
they found values at small and large length scales that agree
with those here: positive cS(k) at k=0.01Mm−1 along with
cA(k) at similar values of k. However, the main reason for their
noisy result lies probably in the fact that their linear
polarization data were too contaminated by other factors, as
was already discussed in BBKMRPS.
The present approach of computing the EB signal from the

magnetic field rather than the observed polarization combines
the best aspects of two worlds. It uses the elaborate inversion
technique of spectropolarimetry to obtain the magnetic field,
but is insensitive to the problems associated with the π
ambiguity. What is perhaps unsatisfactory, however, is the fact
that the line-of-sight magnetic field (b) or the circular
polarization are not used in the present approach. No
corresponding idea has yet been proposed that would combine
these two pieces of information. Simply correlating bwith E or
B may not yield anything useful because in simple patterns
such as those of Figure 3, the wavelength of b is always twice
that of E or B, so it would lead to a cancellation. This is because
E and B are related to the square of the magnetic field.
Therefore, the spatial wavelengths of the E and B patterns
would agree with that of b 2

 , but then the potentially useful
information implied by the sign of b is lost. So, it is not
obvious what to do with b in this context.
In this connection, it is useful to remind ourselves that, away

from disk center, b does begin to contribute more strongly to
the determination of bθ and bf. One should therefore calculate
the complex polarization not from bθ and bf, but from the two
components of the field vectorb⊥ that is perpendicular to the
line of sight. This would obviously be another next important
step to take. Likewise, it would be highly valuable to inspect
the spatial properties of E and B in much more detail. This
would allow us to study the connection between the sign of E
and the topology or structures, and of course between the sign
of B and the hemispheric position.
One of the other potential applications of the EB transforma-

tion lies in its potential benefit when regularizing the observed
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linear polarization signal. One could imagine that, instead of
applying a random disambiguation for weak field strengths, one
could adopt some type of image reconstruction in EB space
instead of working in QU or b space. This has not yet been
explored and would be a useful target for future research.

Finally, one may wonder whether the global two-scale
helicity proxy introduced here can be used beyond solar
physics. The answer is probably yes, if one thinks about the
technique of Zeeman Doppler imaging of stellar magnetic
fields (see, e.g., Donati et al. 1997; Carroll et al. 2012; Rosén
et al. 2015). Likewise, the magnetic field of our own Galaxy
may also be subject to such an analysis (Jansson &
Farrar 2012). We therefore expect that these points provide
exciting opportunities for future work.
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