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Much work on turbulent three-dimensional dynamos has been done using triply

periodic domains, in which there are no magnetic helicity fluxes. Here, we present

simulations where the turbulent intensity is still nearly homogeneous, but now

there is a perfect conductor boundary condition on one end and a vertical field

or pseudovacuum conditions on the other. This leads to migratory dynamo waves.

Good agreement with a corresponding analytically solvable 𝛼2 dynamo is found.

Magnetic helicity fluxes are studied in both types of models. It is found that at mod-

erate magnetic Reynolds numbers, most of the magnetic helicity losses occur on

large scales. Whether this changes at even larger magnetic Reynolds numbers, as

required for alleviating the catastrophic dynamo quenching problem, remains still

unclear.
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1 INTRODUCTION

Stars like the Sun possess large-scale magnetic fields that are

believed to be generated by an 𝛼 effect, which amplifies the

magnetic field and sustains it against turbulent diffusive decay

(Rüdiger & Hollerbach 2004). Together with differential rota-

tion, it can lead to cyclic magnetic fields and equatorward

migration (Parker 1955). The theoretical “butterfly” diagram

of the mean toroidal magnetic field versus time and latitude

is similar to that observed (Steenbeck & Krause 1969).

The theory of the 𝛼 effect of Steenbeck et al. (1966) is based

on a kinematic treatment, so the velocity field is assumed

given. Not only are the velocity fluctuations given, but one

also assumes that the magnetic fluctuations are entirely the

result of tangling of the large-scale magnetic field. This is

justified at small magnetic Reynolds numbers (ReM ≪ 1, cor-

responding to low electrical conductivity) or in cases when

the turbulence has a short correlation time. The latter is an

artificial construct, because real turbulence always has a finite

correlation time. Therefore, the theory was always known

to be problematic under astrophysically relevant conditions

when ReM ≫ 1 and the correlation time finite.

Significant progress was made by Pouquet et al. (1976),

who extended the theory of the 𝛼 effect to a fully dynamical

one, where 𝛼 attains a magnetic contribution corresponding

to the swirl of the magnetic field or, more precisely, the cur-

rent helicity of the small-scale magnetic field. Their work also

emphasized the importance of magnetic helicity conserva-

tion, leading to an inverse cascade of magnetic helicity toward

large scales, but no explicit connection was drawn between

the current helicity of the small-scale field contributing to the

𝛼 effect and the large-scale magnetic field, as it builds up at

the same time.

In an important article reported by Kleeorin & Ruzmaikin

(1982), the gap between the current helicity contribution to

the 𝛼 effect and the actual large-scale magnetic field was

closed. At that time, however, the focus was on the possibility

of chaos resulting from such a feedback (Ruzmaikin 1981), a

topic that was just introduced into solar physics by Tavakol

(1978).

Then, in the early 1990s, dynamo theory experienced a

crisis with the work of Cattaneo & Vainshtein (1991) and

Vainshtein & Cattaneo (1992), who found that turbulent diffu-

sion and 𝛼 effect are “catastrophically” quenched, that is, they

are quenched in an ReM-dependent fashion. In a series of arti-

cles, Gruzinov & Diamond (1994, 1995, 1996) developed an

explanation in terms of magnetic helicity conservation. Using

turbulent dynamo simulations in periodic domains, Branden-

burg (2001) found large-scale magnetic fields in excess of

the equipartition value, but the ultimate nonlinear saturation
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phase lasted a microphysical diffusion time, which would be

very long in astrophysical applications. It was only with the

works of Field & Blackman (2002), Blackman & Branden-

burg (2002), and Subramanian (2002) that it became clear

that the relevant theory describing such a quenching is that of

Kleeorin & Ruzmaikin (1982).

Unfortunately, the authors of this early work did not con-

sider the somewhat academic case of a homogeneous system,

which was what Cattaneo & Hughes (1996) simulated. They

found a suppression of 𝛼 proportional to 1∕(1+ReMB
2
∕B2

eq),
suggesting that, in a saturated state, ∣B ∣ would only be a

fraction ReM
−1/2 of the equipartition field strength Beq. In an

inhomogenous system, magnetic helicity fluxes are possible,

and those were already included in the theory of Kleeorin &

Ruzmaikin (1982), but whether this really alleviates the catas-

trophic quenching problem remains unclear even today. It is

a hard problem, because even at magnetic Reynolds numbers

of 1000, resistive contributions are still comparable to those

of the magnetic helicity flux (Del Sordo et al. 2013; Hubbard

& Brandenburg 2010; Mitra et al. 2010).

The basic idea of invoking magnetic helicity fluxes is the

following. As the 𝛼 effect builds up a large-scale magnetic

field, it also builds up magnetic helicity associated with this

large-scale field. In the absence of magnetic helicity fluxes,

small-scale magnetic helicity of a sign opposite to that of

the large-scale field must be produced to obey total magnetic

helicity conservation. This is indeed what Seehafer (1996)

and Ji (1999) found using independent approaches. The cur-

rent helicity associated with small-scale magnetic helicity

quenches the dynamo prematurely. Thus, to alleviate this

quenching, small-scale magnetic helicity must be removed

preferentially. This was demonstrated by Brandenburg et al.

(2002) in what they called a “vacuum cleaner” experiment, in

which they removed all the small-scale magnetic field from

a simulated dynamo in regular intervals. They found that

this allows the field to saturate at a new level with a stronger

magnetic field.

The purpose of the present article is to give an update on

this situation and to present new results of a model of an inho-

mogeneous dynamo that may be suitable for addressing the

problem of catastrophic quenching. In particular, we will use

an 𝛼2 dynamo that is made inhomogeneous through the intro-

duction of different boundary conditions on opposite ends of

the domain: a perfect connector (PC) boundary condition on

the lower end and a quasi-vacuum or vertical field (VF) condi-

tion on the upper. This leads to an oscillatory 𝛼2 dynamo with

dynamo waves migrating away from the PC boundary to the

VF boundary. This is a system for which an analytic solution

exists (Brandenburg 2017). Helicity fluxes of such a model

were first studied using a mean field model that incorporates

magnetic helicity conservation (Brandenburg et al. 2009,

hereafter BCC).

The results of BCC remained puzzling in view of our under-

standing so far, because they found that the flux of magnetic

helicity on large and small length scales was equally strong

and of opposite sign. This did not fit the expectation that there

should be a preferential loss of small-scale magnetic helicity.

Things became even more confusing when they found that

the magnetic helicity ejected into the halo outside the dynamo

region has the wrong sign; see the last panel of Figure 7 of

BCC. Two years later, it was found that the magnetic helicity

in the solar wind at a distance of 1–5 AU from the Sun also

has the wrong sign (Brandenburg et al. 2011). Even today,

there is no clear understanding of what this means in view of

the idea of alleviating catastrophic quenching by preferential

small-scale magnetic helicity losses.

The model of BCC has never been tested in a direct numeri-

cal simulation (DNS). This will be done in the present article.

We begin by presenting the model and then report results from

the magnetic helicity fluxes in the resistive Weyl gauge (Can-

delaresi et al. 2011), which is convenient for numerical pur-

poses, although the results may a priori be gauge-dependent.

2 THE MODEL

We use DNS similar to the homogeneous models of Branden-

burg (2001) and the inhomogeneous ones of Brandenburg &

Dobler (2001), except that here we have a PC boundary condi-

tion at z= 0 and a VF condition at z=𝜋/2. Such a choice was

already adopted by BCC, and this size of the domain was cho-

sen because the eigenfunctions of the free decay problem are

quarter sine wave with wavenumber k1 = 1. In other words, the

decay rate, 𝜂tk2
1
, with a turbulent diffusivity 𝜂t = 1 is then also

unity. We choose here a cubic domain, so its size is (𝜋/2)3.

We adopt an isothermal equation of state, so the pressure

p is proportional to the density 𝜌 with p= 𝜌cs
2, where cs is

the isothermal sound speed. We advance the magnetic vector

potential A for the magnetic field B=𝜵×A, and solve the

uncurled induction equation, the momentum equation for the

velocity U, and the continuity equation for ln𝜌, so we have the

following system of equations:

𝜕A
𝜕t

= U × B + 𝜂𝛻2A, (1)

𝜌
DU
Dt

= J × B + 𝛻 ⋅ (2𝜈𝜌S) − c2
s𝛻𝜌 + 𝜌f , (2)

D ln 𝜌

Dt
= −𝛻 ⋅ U, (3)

where J =𝜵×B is the current density in units where the vac-

uum permeability is unity, S𝑖𝑗 = 1

2
(𝜕iuj+𝜕jui)− 1

3
𝛿𝑖𝑗𝛻⋅u are the

components of the traceless rate-of-strain tensor, 𝜈 and 𝜂 are

the kinematic viscosity and magnetic diffusivity, respectively,

and f is a monochromatic forcing function that is 𝛿-correlated

in time and fully helical so that 𝜵× f ≈−kff , that is, the helic-

ity is negative and kf is the average forcing wavenumber. We

choose kf = 16 k1, which corresponds to 4 full wavelengths

across the 𝜋/2 domain.

In most of our simulations, the helicity of the forcing is uni-

form, but in one case we adopt a modulation of the helicity
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TABLE 1 Parameters of the runs, their end times te, and the number of
time steps nt in millions (M) and the number of mesh points

Run ReM urmskfte 𝜼t0k2
1te 𝜼k2

1te nt (M) Mesh

G 170 7000 9.1 0.16 3 2883

A 180 14,000 18.2 0.30 6 2883

B 370 2700 3.5 0.028 2.3 5763

C 750 300 0.4 0.0016 0.5 11523

proportional to cosk1z. Thus, the helicity is then maximum at

z= 0, and goes to zero at the boundary at k1z=𝜋/2.

Our simulations are characterized by the magnetic

Reynolds and magnetic Prandtl numbers,

ReM = urms∕𝜂kf , PrM = 𝜈∕𝜂, (4)

respectively, where urms = ⟨u2⟩1/2 is the root-mean squared

(rms) velocity and angle brackets denote volume averages.

By contrast, horizontal or xy averages will be denoted by

overbars. In this work we always take PrM = 1.

The magnetic field is often expressed in terms of the

equipartition field strength, Beq =
√
𝜌urms. We usually

express time in turbulent–diffusive times, 𝜏td = (𝜂t0k2
1
)−1,

where 𝜂t0 = urms/3kf is an approximation to the turbulent mag-

netic diffusivity (Sur et al. 2008). By comparison, the turnover

time is 𝜏 to = (urmskf)
−1, which is shorter by the square of the

scale separation or, more precisely, 𝜏 to/𝜏 td = 3(kf/k1)2 = 768.

Furthermore, the resistive time 𝜏𝜂 = (𝜂k2
1
)−1 is longer than

the turbulent–diffusive time by one third of the magnetic

Reynolds number, that is, 𝜏𝜂/𝜏 td =ReM/3.

3 RESULTS

We consider three different Reynolds numbers using three

different resolutions. Our model A with ReM = 180 and a

resolution of 2883 mesh points reaches full saturation and

develops magnetic cycles with periods on the scale of the

turbulent–diffusive time, while models B and C with higher

ReM and higher resolution have not fully saturated. In addi-

tion, we present a model with a gradient of the helicity and

hence a gradient of the underlying 𝛼 effect (model G), which

has otherwise similar parameters as model A. In fact, Run G

was the progenitor of Run A. All runs, along with their end

time te, expressed in different ways, and their resolution are

listed in Table 1.

3.1 Magnetic field growth and saturation

We usually start with a random magnetic field that is

𝛿-correlated in space. This has the advantage that the dynamo

quickly develops exponential growth after the first 100

turnover times, or the first 0.2 turbulent–diffusive times; see

Figure 1. In the present runs, the exponential growth phase is

not well developed because the initial field was already rela-

tively strong. In fact, it is initially close to equipartition, but,

(a)

(b)

(c)

FIGURE 1 Comparison of Brms/Beq during the early saturation phase for

Runs G, B, and C (a), the later development and restarting of Run A from

Run G at 𝜂t0k2
1
t ≈ 5, and comparison with Runs B and C (b), and the

establishment of magnetic cycles seen in the magnetic field at one point

x= x* in the lower part of the domain with frequency 𝜔 = 1.16𝜂t0k2
1

(c)

being 𝛿-correlated in space, most of the field is in the diffusive

subrange and so the rms field drops by a factor of a hundred

before the dynamo sets in.

We can cautiously estimate the growth rate to be 𝜆 ≈
0.09urmskf ≈ 70𝜂t0k2

1
. This is about three times faster than

the typical growth rate of a mildly supercritical small-scale

dynamo, suggesting that it is a hybrid between a small-scale

and a large-scale dynamo. The growth rates of such hybrid

dynamos unifying small-scale and large-scale dynamos were

studied by Subramanian & Brandenburg (2014) and Bhat

et al. (2016) for a range of different values of PrM. They

used, however, periodic boundary conditions, for which the

time for establishing a large-scale field is the resistive time

(Brandenburg 2001).

In addition to the total (small-scale plus large-scale) mag-

netic field reaching rapid saturation without a prolonged

nonlinear saturation phase, as in Brandenburg (2001) and

Candelaresi & Brandenburg (2013), also the space–time prop-

erties of the large-scale magnetic field are found to develop

quickly. This is shown in Figure 2, where we compare
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(a)

(b)

FIGURE 2 Butterfly diagrams of By(z, t) for Runs G (a) and B (b) during

the first eight turbulent–diffusive times. Note that in both cases a large-scale

field is clearly visible after a fraction of the turbulent–diffusive time

butterfly diagrams for Run G with ReM = 170 and Run B

with ReM = 370. In both cases, the large-scale field is clearly

visible even after just one turbulent–diffusive time, or even

earlier. Nevertheless, the rms magnetic field is still growing,

as can be seen from Figure 1. Unfortunately, such runs are

getting computationally rather costly and even after 2.3 mil-

lion time steps they have not run for long enough to see a

well-developed cycle.

3.2 Butterfly diagrams for other fields

In Figure 3, we present butterfly diagrams of Ax, Ay, Bx, By,

Jx, and Jy. All panels show clear signs of the magnetic cycle.

However, Jx and Jy are rather “noisy,” which is connected

with the fact that they are related to higher derivatives of A
and B.

Note that, because of 𝛻 ⋅ B = 𝛻 ⋅ J = 0, and because there

is no mean flux, we have Bz = Jz = 0. In our case 𝛻 ⋅ A does

not vanish, so Az does not vanish either, it does not display

any cyclic variations and is not of physical interest because it

does not contribute to B. We return to the discussion of 𝜵⋅A
in connection with magnetic helicity fluxes, but even then it

will turn out to be unimportant.

The large-scale magnetic field varies in the z direction and

is roughly described by what is expected based on the analytic

mean-field theory. It is useful to express the mean magnetic

FIGURE 3 Butterfly diagrams of Ax, Ay, Bx, By, Jx, and Jy for Run A, covering almost two cycles near the end of the run
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FIGURE 4 Moduli and phases of 𝒜 , , and 𝒥 for Run A as a function of z. The fat orange lines denote the temporal averages

fields in complex notation as (Brandenburg 2017)

𝒜 ≡ Ax + iAy = rA(z)ei𝜙A(z)−𝑖𝜔𝑡, (5)

i𝜕𝒜 =  ≡ Bx + iBy = rB(z)ei𝜙B(z)−𝑖𝜔𝑡, (6)

i𝜕 = 𝒥 ≡ Jx + iJy = rJ(z)ei𝜙J (z)−𝑖𝜔𝑡. (7)

Thus, at each time, the complex quantities 𝒜 , , and 𝒥
experience a certain phase shift. However, since we have a

PC boundary condition with 𝒜 = 0 on z= 0, we can sub-

tract the phase at z= 0 at each time and overplot the results

in a single plot. Likewise for , which vanishes on the VF

condition at k1z=𝜋/2, we subtract here the phase at k1z=𝜋/2

and overplot. For 𝒥 , no such condition exists, but we still

get a reasonable result by subtracting the phase at z= 0 at

each time. For the moduli of 𝒜 , , and 𝒥 , no complica-

tions arise. The results for the nonlinearly saturated fields are

plotted in Figure 4, normalized by Beq/k1, Beq, and Beq k1,

respectively.

Again, the current density appears more noisy than the

quantities in any of the other plots. Somewhat more surpris-

ing this time is the fact that |𝒥 | is mostly flat, except in

the proximity of both boundaries. This could possibly hint at

numerical artifacts related to the fact that we have the PC and

VF boundary conditions as symmetry conditions, which also

affect second and higher derivatives in unwanted ways. As

shown in Brandenburg (2017), such an approach still gives

correct solutions, but they converge more slowly.

3.3 Comparison with the analytic 𝛼2 dynamo

The solution of the 𝛼2 dynamo with constant 𝛼 and turbulent

magnetic diffusivity 𝜂t, and with PC boundary conditions on

z= 0 and a VF condition on z=𝜋/2 reads (Brandenburg 2017)

𝒜 (z, t) = 𝒜0(e𝑖𝑘+z − e𝑖𝑘−z)e−𝑖𝜔𝑡, (8)

where 𝒜0 is an amplitude factor, which is undefined in linear

theory. Furthermore,

k+∕k1 ≈ 0.10161896 − 0.51915398i, (9)

k−∕k1 ≈ −2.6522693 + 0.51915398i, (10)

are complex wavenumbers, and

𝜔∕𝜂tk2
1
≈ −1.4296921 (11)

is the frequency for the marginally excited dynamo with the

critical value 𝛼 ≈ 2.5506504𝜂tk1.
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FIGURE 5 Butterfly diagrams of Ax, Ay, Bx, By, Jx, and Jy for the 𝛼2 mean-field dynamo. The color bars are similar to those in Figure 3, except that the

amplitude is undetermined in linear theory

In Figure 5, we plot butterfly diagrams of the real and imag-

inary parts of 𝒜 (z, t), (z, t), and 𝒥 (z, t) for this analytic

solution. In comparison with Figure 3, the main difference is

that in the simulation the pattern develops a large migration

speed at large values of z, that is, the butterfly wings are nearly

vertical. This is not seen in the analytic model. Apart from

this, however, the cycle period is similar: 𝜔 = 1.16𝜂tk2
1

in

the simulation compared with 1.43𝜂tk2
1

in the analytic model,

which is about 23% larger.

In Figure 6 we show the absolute values and phases of 𝒜 ,

, and 𝒥 for this 𝛼2 dynamo as a function of z. All these

dependencies are similar to those in the three-dimensional

simulations; see Figure 4. However, there are also systematic

differences, but it is unclear to what extent those are related

to the fact that these simulations are nonlinear, and that the

effective 𝛼 and 𝜂t acting in this three-dimensional simulations

may not be constant in space. There may be many other such

reasons for the disagreement.

To find out how supercritical the mean-field dynamo in the

simulation is, we estimate the modulus of 𝛼 as 𝛼0 = urms/3

(Sur et al. 2008) and compute the dynamo number as

C𝛼 = 𝛼0/𝜂t0k1 = kf/k1 = 4. Thus, the dynamo is less than 1.6

times supercritical, which is not much. It would be interesting

to compare with solutions that are either more supercritical or

less supercritical, but this will not be carried out in the present

work. Instead, in the rest of this work, we focus on magnetic

helicity fluxes.

3.4 Magnetic helicity balance

We now discuss the magnetic helicity equation, which is

obtained by dotting Equation (1) with B and adding the curl

of Equation (1) dotted with A. The result is

𝜕

𝜕t
A ⋅ B = −2𝜂J ⋅ B − 𝜕

𝜕z
(E × A + ΦB), (12)

where E= 𝜂J −U ×B is the electric field and Φ=−𝜂𝜵⋅A
is a scalar potential that results here from the facts that 𝜂

is constant and the diffusion term on the right-hand side in

Equation (1) can be written as 𝛻2A=−J +𝜵𝜵⋅A. Next, we

consider the evolution of the magnetic helicity of the mean

field, A ⋅ B, and subtract it from Equation (12) to obtain the

evolution equation of the magnetic helicity of the fluctuating
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FIGURE 6 Moduli and phases of 𝒜 , , and 𝒥 for the 𝛼2 of Brandenburg (2017) as a function of z

fields, a = A − A and b = B − B, using

a ⋅ b = A ⋅ B − A ⋅ B, (13)

where we have made use of the Reynolds rules for horizontal

averages. The evolution equation for A can be written in the

form

𝜕A
𝜕t

= U × B +  − 𝜂J − 𝛻Φ, (14)

where Φ = −𝜂𝛻 ⋅ A = −𝜂𝜕Az∕𝜕z, and the 𝜂J term describes

the microphysical diffusion of the mean field, which is usually

small in comparison with turbulent magnetic diffusion. The

traditional 𝛼 effect and turbulent diffusion are all modeled

through the  term as  = 𝛼B−𝜂tJ, but no such specification

needs to be made at this point. Thus, we have

𝜕

𝜕t
(A ⋅B) = 2 ⋅B−2𝜂J ⋅B− 𝜕

𝜕z
(E×A+Φ B−×A), (15)

where E = 𝜂J − U × B is the electric field result-

ing from the mean fields, but without the contribution

from the fluctuations that are already included in the 

term. By subtracting Equation (15) from Equation (12),

we obtain

𝜕

𝜕t
a ⋅ b = −2 ⋅ B − 2𝜂j ⋅ b − 𝜕

𝜕z
(e × a + 𝜙b +  × A), (16)

where

j ⋅ b = J ⋅ B − J ⋅ B (17)

is the current helicity of the small-scale field,

e × a = E × A − E × A (18)

is the magnetic helicity flux of the small-scale field, and

𝜙b = ΦB − Φ B (19)

is a contribution to the magnetic helicity flux that results from

the particular gauge of the small-scale field.

In Figures 7 and 8, we compare the profiles of magnetic

helicity, current helicity, and the magnetic helicity fluxes for

Runs A and B with ReM = 180 and 370, respectively. For

normalization purposes, we have defined

Hm0 = ∫
𝜋∕2

0

B
2
dz, (20)

Cf0 = kfB2
eq, (21)

Fm0 = 𝜂t0k2
1 ∫

𝜋∕2

0

B
2
dz. (22)

Not surprisingly, the largest contribution to the magnetic

helicity density comes from the large-scale field. This is also

reasonably well reproduced by the mean-field model; see

Figure 9.
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FIGURE 7 Magnetic helicity, current helicity, and magnetic helicity fluxes

for Run A with ReM = 180. In the second panel, the kinetic helicity is shown

in green and is found to be of similar magnitude to the current helicity of

the small-scale field. The last two panels are similar except that a smaller

range near zero is shown. Here, the green line denotes 𝜙bz, which is seen to

fluctuate around zero

Again, not surprisingly, the current helicity is dominated by

the small-scale parts with j ⋅ b∕kfB2
eq being reasonably close

to−1. The current helicity of the small-scale field is also close

to the kinetic helicity density, similar to what was found for

perfectly homogeneous dynamos in periodic domains (Bran-

denburg 2001). More surprising is the fact that most of the

magnetic helicity flux comes from the large-scale magnetic

field, and very little from the small-scale field. However, it

may be interesting that the contribution from the small-scale

field is similar for Runs A and B, that is, E × A∕Fm0 ≈ −0.03

in both cases, and perhaps even slightly larger for Run B.

It will be interesting to evaluate these terms at even higher

resolution and for higher magnetic Reynolds numbers. It is

conceivable that the fluxes from the large-scale field con-

tinue to decline, but that those of the small-scale field remain

FIGURE 8 Similar to Figure 7, but for Run B with ReM = 370

constant or increase and might eventually be equal to the

contributions from the small-scale fields.

3.5 Dependence on ReM

To study the dependence of the solutions on ReM, it is useful

to compute the energy contained in the mean field, which is

essentially the same as our normalization constant Hm0. In

Table 2, we list those values for all four runs and normalize

by Beq
2/k1, which itself is almost the same in all four cases.

We see that there is a systematic decline in Hm0 k1/Beq
2 as

ReM increases. Thus, these models do not yet appear to be in

the asymptotic regime. Investigating these values for longer

simulations and at larger values of ReM will be important and

is also needed for calculating reliable error bars.

3.6 Comparison with Run G

Run G had a vertical gradient in the helicity density, while

the turbulent intensity was approximately independent of z. It
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(a)

(b)

(c)

FIGURE 9 Magnetic and current helicity profiles as well as magnetic

helicity fluxes in the mean-field 𝛼2 dynamo

TABLE 2 Comparison of Hm0, normalized by Beq
2/k1, for all of our runs.

For Run C, only a lower limit is given, because it is still too short

Run ReM Mesh Hm0 k1/Beq
2

G 170 2883 0.60

A 180 2883 0.51

B 370 5763 0.36

C 750 11523 > 0.02

is possible that such a gradient in the kinetic helicity, 𝝎 ⋅ u,

where 𝝎=𝜵×u is the vorticity, would produce a similar

gradient both in j ⋅ b and in a ⋅ b, and thereby a magnetic

helicity flux proportional to −𝛻a ⋅ b, as proposed by Hub-

bard & Brandenburg (2011). This does not seem to be the

case and the magnetic helicity flux for the small-scale field

does even go to zero near the upper boundary; see the last

panel of Figure 10. Some other features in the nature of the

small-scale turbulence may be needed that have not yet been

identified.

FIGURE 10 Similar to Figure 7, but for Run G with ReM = 170

4 CONCLUSIONS

The present work has shown that turbulent dynamos

with homogeneous helical forcing, but different boundary

conditions on the lower and upper boundaries, lead to dynamo

waves and magnetic helicity fluxes—similar to what is

expected based on a mean-field model. Both mean-field mod-

els and simulations are similar in many respects and agree

qualitatively within 23% in terms of the cycle period, but there

are differences in the shape of the magnetic field and current

density profiles.

The magnetic helicity profiles are strongly dominated by

the large-scale magnetic field. This is somewhat disappoint-

ing in the sense that, to alleviate the catastrophic quenching

problem discussed in the introduction, we expect the mag-

netic helicity fluxes to be dominated by small-scale contri-

butions. On the other hand, it may be this magnetic helicity

of the large-scale field that contributes to the mysterious sign
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reversal found originally in the solar wind (Brandenburg et al.

2011). If this is correct, it may indicate that even in the

Sun, the catastrophic quenching problem has not quite gone

away yet.

Compared with Run G, which has a gradient in the kinetic

helicity profile, we saw that it does not lead to major differ-

ences, suggesting that small-scale magnetic helicity transport

from a downward gradient of magnetic helicity density is not

very efficient in this model. It may therefore be useful to

reconsider some of the earlier setups that have been studied

to measure magnetic helicity fluxes in dynamo simulations.

Mitra et al. (2010) considered a model between perfectly con-

ducting boundaries, while Hubbard & Brandenburg (2010)

considered a model with a poorly conducting halo. Finally,

Del Sordo et al. (2013) studied a model where both advection

from a wind and a downward gradient of magnetic helic-

ity contributed to the flux of magnetic helicity. Comparative

studies of the magnetic helicity fluxes from the small-scale

magnetic field will be the subject of a separate publication.
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