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Abstract

Small-scale dynamos (SSDs) are ubiquitous in a broad range of turbulent flows with large-scale shear, ranging
from solar and galactic magnetism to accretion disks, cosmology, and structure formation. Using high-resolution
direct numerical simulations, we show that in non-helically forced turbulence with zero mean magnetic field, large-
scale shear supports SSD action, i.e., the dynamo growth rate increases with shear and shear enhances or even
produces turbulence, which, in turn, further increases the growth rate. When the production rates of turbulent
kinetic energy due to shear and forcing are comparable, we find scalings for the growth rate γ of the SSD and the
turbulent rms velocity urms with shear rate S that are independent of the magnetic Prandtl number: g µ ∣ ∣S and

µ ∣ ∣u Srms
2 3. For large fluid and magnetic Reynolds numbers, γ, normalized by its shear-free value, depends only

on shear. Having compensated for shear-induced effects on turbulent velocity, we find that the normalized growth
rate of the SSD exhibits the scaling, g µ ∣ ∣S 2 3, arising solely from the induction equation for a given
velocity field.
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1. Introduction

In an electrically conducting turbulent fluid, the dynamo is a
fundamental phenomenon that can explain the origin of
magnetic fields in solar-like stars, galaxies, accretion disks,
etc. Two types of turbulent dynamos are usually discussed in
the literature: large-scale and small-scale dynamos (SSDs; see,
e.g., Moffatt 1978; Zeldovich et al. 1990; Brandenburg &
Subramanian 2005). Magnetic field generation on scales
smaller and larger than the integral scale of turbulence are
described as SSD and large-scale dynamo (LSD), respectively.
The SSDs are ubiquitous and naturally find applications in a
broad range of topics such as galactic magnetism (Kulsrud &
Anderson 1992; Rieder & Teyssier 2016), solar coronal heating
(Amari et al. 2015), accretion disks (Blackman & Nauman
2015), cosmology and structure formation (Pakmor et al. 2014;
Soker 2017), Riemannian manifolds (Sokoloff & Rubashny
2013), formation of the first stars in the Universe (Schleicher
et al. 2010), etc.

The nature of the SSD depends strongly on the magnetic
Prandtl number, n h=PrM (see, e.g., Kulsrud & Anderson
1992; Haugen et al. 2004; Schekochihin et al. 2004, 2005;
Brandenburg 2011), where η is the magnetic diffusivity due to
the electrical conductivity of the plasma and ν is its kinematic
viscosity. Random stretching of the magnetic field by smooth
velocity fluctuations in the viscous subrange of scales describes
the SSD for Pr 1M (see, e.g., Zeldovich et al. 1990; Kleeorin
& Rogachevskii 1994; Subramanian 1998; Kleeorin et al.
2002; Haugen et al. 2004; Schekochihin et al. 2004, 2005; Bhat
& Subramanian 2014). The SSD at low PrM is excited by the
turbulent inertial-range velocity fluctuations (the spatially
rough velocity field). The growth rate of the SSD at low PrM
is determined by the resistive magnetic diffusion scale (see, e.g.,
Kazantsev 1968; Vainshtein & Zeldovich 1972; Rogachevskii &
Kleeorin 1997; Boldyrev & Cattaneo 2004; Iskakov et al. 2007;

Schekochihin et al. 2007; Kleeorin & Rogachevskii 2012; Schober
et al. 2012).
Large-scale velocity shear is a common feature of many

astrophysical flows in, e.g., solar and stellar convective zones,
galaxies, and accretion disks (see, e.g., Moffatt 1978; Zeldovich
et al. 1990; Brandenburg & Subramanian 2005). In recent years,
a non-helical turbulent shear dynamo has been discussed, where
the presence of large-scale shear in turbulence with zero
mean kinetic helicity yields an LSD (see, e.g., Sokoloff 1997;
Vishniac & Brandenburg 1997; Rogachevskii & Kleeorin 2003;
Brandenburg 2005; Brandenburg et al. 2008; Käpylä et al.
2008; Kleeorin & Rogachevskii 2008; Yousef et al. 2008;
Sridhar & Subramanian 2009; Sridhar & Singh 2010, 2014;
Singh & Sridhar 2011). The main conclusion from these studies
is that a combination of homogeneous non-helical turbulence
and large-scale shear is able to generate a large-scale magnetic
field without any mean kinetic helicity. Like many other large-
scale turbulent dynamos, they yield pronounced large-scale
magnetic structures. Large-scale shear in non-helical turbulence
also causes a “vorticity dynamo,” i.e., the excitation of a large-
scale instability, resulting in an exponential growth of the mean
vorticity (Elperin et al. 2003; Yousef et al. 2008; Käpylä
et al. 2009).
In turbulence with large-scale shear, the SSD can be strongly

affected by shear, notably because turbulence itself can be
produced by the shear. However, the details related to the effect
of shear on the SSD are unclear. A recent analytical study by
Kolokolov et al. (2011) has demonstrated that, for a given
random smooth velocity field, large-scale shear can support an
SSD such that the dynamo growth rate, which we denote by g
arising solely from the induction equation, increases with shear
rate S as g µ ∣ ∣S 2 3. This is compatible with an upper bound for
growth rates discussed in Proctor (2012).
In this Letter, we study the effects of large-scale shear on an

SSD using high-resolution direct numerical simulations (DNS)
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for different magnetic Prandtl numbers ranging from 0.5 to 10.
To avoid interference from other effects, we consider shear as
the only source of non-isotropy and thus neglect gravity. We
ignore turbulent heating effects, which would lead to undesired
secular changes of the background state. We also ignore related
refinements such as a polytropic instead of an isothermal
equation of state, which causes only negligible differences
(Brandenburg & Kahniashvili 2017). We make the shearing
box approximation, so there is no feedback on the imposed
large-scale velocity shear.

Using the budget equation for turbulent kinetic energy, we
develop a framework for identifying a scaling function that we
then determine in DNS. In agreement with earlier work by
Kolokolov et al. (2011), we demonstrate that the growth rate of
an SSD in non-helically forced turbulence increases with the
shear rate.

2. Budget Equation

Because large-scale shear can affect the turbulent velocity,
we start with a theoretical analysis based on the budget
equation for turbulent kinetic energy,  = u½K

2, assuming
incompressibility (Monin & Yaglom 1971):


eF+ = -  + -· ( )u f

D

Dt
u u Udiv , 1i j j i

K
K f

where = ¶ ¶ + ·UD Dt t is the advective derivative, u is
the fluctuating velocity, U is the mean velocity, and ε is the
dissipation rate of K. The term rF = +- u up u 2K

1 2

includes the third-order moments that determine the flux of
K, where p are the pressure fluctuations, and ρ is the fluid
density. The term ·u ff in Equation (1) describes the
production rate of turbulence caused by external forcing, while
the first term in the right-hand side of Equation (1) determines
the turbulence production rate caused by large-scale shear.

The Reynolds stresses in isotropic turbulence (Monin &
Yaglom 1971; Elperin et al. 2002) are

d
n

= -  + ( ) ( )u u
u

U U
3 2

, 2i j ij i j j i

2
T

where nT is the turbulent viscosity and dij is the Kronecker tensor.
For the sake of simplicity, let us consider turbulence with a linear
velocity shear, = ( )U Sx0, , 0 , which results in anisotropy of
turbulence. However, the modification of the Reynolds stresses
by anisotropic turbulence does not change the turbulence
production rate caused by linear velocity shear; see Equation
(A33) and(12) in Elperin et al. (2002). The dissipation rate of K

for large fluid Reynolds numbers is estimated as e t~ =K f

u ℓ2rms
3

f (Monin & Yaglom 1971), while the turbulent viscosity
is estimated as n ~ ℓ u 3f rmsT

, where ℓf is the integral scale of the

turbulence, = uurms
2 , and t = ℓ uf f rms is the characteristic

turbulent time based on the integral scale.
Substituting Equation (2) into Equation (1) we obtain

 n
F+ = + -· ( )u f

D

Dt
S

u

ℓ
div

2 2
. 3K

K f
2 rms

3

f

T

Depending on the value of shear, Equation (3) implies the
following scalings for ( )u Srms in stationary homogeneous
turbulence.

(i) Small shear: the turbulent production rate caused by the
forcing is much larger than that caused by the shear, so that u0

3

~ ·u fℓ2 f f , and n n= ~( ) ℓ u 30
f 0T T

, where = =( )u u S 00 rms .
For small shear, urms is weakly dependent on shear.
(ii) Intermediate shear: the turbulent production rates caused by

the forcing and the shear are of the same order, and the balance,
n~ ( )u ℓ Srms

3
f

0 2
T

, yields the following scaling: µ ∣ ∣u Srms
2 3.

(iii) Strong shear: the turbulent production rate in
Equation (3) caused by the forcing can be neglected, so that
turbulence is produced only by shear. The steady-state solution
of the equation, n - =S u ℓ 02

rms
3

fT , yields the scaling
=u S ℓrms f . This implies that for shear-produced turbulence,

the small-scale shear rate u ℓrms f cannot be much smaller than
the large-scale shear.

3. Growth Rate of the SSD

Let us consider first the case Pr 1M , when the resistive
magnetic diffusion scale is much larger than the Kolmogorov
viscous scale. This implies that the resistive scale is located
inside the inertial range of the turbulence, where the fluid
motions are spatially rough. The SSD occurs due to random
stretching of the magnetic field by the turbulent velocity, while
scale-dependent turbulent magnetic diffusivity causes dissipa-
tion of the magnetic field. At the resistive scale, the scale-
dependent turbulent magnetic diffusivity approaches η. The
strongest magnetic field stretching is at small scales, i.e., at the
resistive scale. Therefore, the growth rate of the SSD (far from
the threshold) in turbulence without large-scale shear for

Pr 1M is estimated as the inverse resistive time (see, e.g.,
Kazantsev 1968; Schekochihin et al. 2007):

g t~ ~h h
- ( )u ℓ Re , 40 f

1
M
1 2

where e=h h( )u ℓ 1 3 is the characteristic turbulent velocity at
the resistive scale, hℓ , and ReM is the magnetic Reynolds
number.
Using Equation (4), we assume that the growth rate of the

SSD instability with large-scale shear, normalized by that
without shear, can be estimated as

g
g

g~ 
⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )S u S

u
S , 5

0

rms

0

1 2

where g g= =( )S 00 and = =( )u u S 00 rms represent the
dynamo growth rate and the rms velocity for S=0, and
g = = ( )S 0 1. Let us define the normalized rms velocity,

= ( )u u S urms rms 0. Here we assumed that the turbulent forcing
scale, ℓf , is independent of large-scale shear. The contribution
urms

1 2 to the dynamo growth rate is caused by the effect of large-
scale shear on the turbulent velocity field, while the function
g ( )S determines the effect of large-scale shear on the growth of
the SSD instability for a given turbulent velocity field. Thus the
normalized growth rate, g, which can be interpreted as a
contribution to the dynamo growth rate arising solely from the
induction equation for a given velocity field, can be expressed as

g g g=  ( ) ( ) ( )S u . 60 rms

2
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It is useful to define the ratio of the turbulent production rates
caused by shear and forcing,

n p
P =

P
P

= =
~ ( )S

u f

S

k f

2

3
. 7S

f

2

rms

2

f

T

For Pr 1M , magnetic fluctuations are determined by the
smooth velocity field in the viscous subrange. We assume that
in turbulence with large-scale shear, Equation (5) is also valid
for Pr 1M . In the next section we perform DNS to determine
the scaling laws for g g( )S 0 and ( )u S urms 0.

4. Numerical Setup

We consider low-Mach-number compressible isothermal
magnetohydrodynamic turbulence with background shear,

= ( )U Sx0, , 0S with <S 0, and a white-noise non-helical
random statistically homogeneous isotropic body force f as the
source of turbulent motions. The departure U from the mean
shear flow obeys




r r =- + - + ´

+ +

-· ˆ

( )

U
U U y J B

f F
t

SU c ln

, 8

x s
2 1

visc





r
r = - -· · ( )U U

t

ln
ln , 9




h= - + ´ -ˆ ( )A

x U B J
t

SA , 10y

where   º ¶ + t Sxt y is the advective derivative with
respect to U S, = ´B A is the magnetic field in terms of the
vector potential A, Sr nr= - · ( )F 2visc

1 is the viscous force,

S d =  +  -( ) · UU U½ij i j j i ij
1

3
is the traceless rate of

strain tensor, m= ´J B 0 is the current density, m0 is the
vacuum permeability, and cs is the isothermal sound speed.
These equations are solved with shearing-periodic boundary
conditions using the PENCIL CODE (https://github.com/
pencil-code). It uses sixth-order explicit finite differences in
space and a third-order accurate time-stepping method.

We solve Equations (8)–(10) in a cubic domain of size L3

using 5123 or 10243 spatial resolution and choose =k k2.2f 1,
where p=k L21 . Thus the chosen stochastic forcing injects
energy at scales close to the box scale. This allows us to study
the SSD in the absence of the LSD, or the so-called shear
dynamo, that is also expected to be excited in such a setup.
However, the LSD would require a reasonably large scale
separation. Nevertheless, the growth rates measured from an
early kinematic stage predominantly reflect the growth of the
SSD, which grows at a rate much faster than that of the
possible LSD.
The system of equations is characterized by the following set

of non-dimensional numbers:

h n
n
h

n

= = =

= = S = ( )

u

k

u

k

S

u k

S

u k

c k

f

Re , Re , Pr ,

Sh , Sh , 11

M
rms

f

rms

f
M

0 f rms f
f

s 1
2

where Re and ReM are the fluid and magnetic Reynolds
numbers, PrM is the magnetic Prandtl number, Sh and Sh are
the shear parameters based on u0 and urms, respectively, andSf

characterizes the inverse forcing.

5. DNS Results

In this section we discuss the results of DNS and compare
them with the theoretical predictions.

5.1. The Dynamo Growth Rate and Production of Turbulence

First we determine the SSD growth rate as a function of S.
To this end we drop the Lorentz force in the momentum
Equation (8). In Figure 1 we show the shear dependencies of
(i) the normalized dynamo growth rate, g ( )S which is defined
by Equation (6), (ii) the normalized rms velocity, =urms

( )u S urms 0, (iii) total growth rate γ, and (iv) the ratio of
turbulence production rates P

~
, for two values of PrM (smaller

and larger than unity). Figure 1 demonstrates the existence of
the following scalings for intermediate shear when the ratio P

~

Figure 1. Shear dependencies of (a) g, (b) urms, (c) g g0, and (d) P
~
, shown for two choices of PrM, both sets having =u c 0.07max s , and =∣ ∣S c k 0.02max s f . Filled

(black) circles: =Pr 0.5M with g =u k 0.020 0 f , and hº =( ) u kRe 121;M
0

0 f open (blue) circles: =Pr 3M , with g =u k 0.050 0 f , and hº =( ) u kRe 148M
0

0 f .

3

The Astrophysical Journal Letters, 850:L8 (6pp), 2017 November 20 Singh, Rogachevskii, & Brandenburg

https://github.com/pencil-code
https://github.com/pencil-code


is of the order of unity:

g g gµ µ µ ∣ ∣ ∣ ∣ ∣ ∣ ( )S u S S, , . 120 rms
2 3 2 3

These scalings are independent of PrM. The SSD growth rate
increases with shear, which implies that large-scale shear
supports the SSD. The obtained DNS scaling for g coincides
with that found by Kolokolov et al. (2011) from the solution of
the equation for the pair correlation function of the magnetic
field. This equation was derived from the induction equation
for a given random smooth velocity field.

5.2. Nonlinear Stage of the SSD

In Figure 2 we plot the nonlinear evolution of B Brms eq and
spectra of magnetic, ( )E kM , and kinetic, ( )E kK , energies in the
saturation stage, where m r= ( )B ueq 0

1 2
rms is the equipartition

magnetic field. Magnetic fluctuations reach saturation at the
equipartition level and have a short inertial range compatible
with a -k 5 3 spectrum. At larger scales, the velocity is
compatible with a -k 7 3 spectrum, which is expected for
anisotropic sheared fluctuations produced by tangling of the
large-scale gradient of the mean velocity by the background
random velocity field. This spectrum was predicted analytically
by Lumley (1967), detected in atmospheric turbulence by
Wyngaard & Cote (1972), and confirmed in DNS by Ishihara
et al. (2002).

Figure 3 shows results based on 10243 simulations at
=Pr 10M for varying forcing strengths while keeping the shear

rate S as fixed. The turbulence is produced by shear in all three
cases, which yields the same urms in the saturated state, thus
resulting in the same value for the shear parameter Sh. The
growth rates of SSD are found to be identical, as would be
expected from our above findings. Note that the onset of the
dynamo growth is delayed for weaker forcing (e.g., the red
curve in Figure 3).

5.3. Mean Flow Generation

Figure 2 demonstrates the fact that shear fundamentally
modifies the nature of background turbulence, resulting in a
-k 7 3 spectrum, which leads to the generation of a large-scale
flow. In Figure 4 we show a spacetime diagram of the mean

flow components, Ux and Uy, where the mean is obtained by
applying a planar (here xy) average. Both Ux and Uy
spontaneously develop a mean pattern in the direction normal
to the shear plane. Such a generation of mean flow was first
explored by Elperin et al. (2003), and numerically demon-
strated by Yousef et al. (2008) and Käpylä et al. (2009). The
mean flow pattern begins to develop after a few tens of eddy
turnover time, -( )u krms f

1. We found that Uy is about four times
stronger compared toUx and both are excited in phase, which is
in agreement with Käpylä et al. (2009).

5.4. Saturation of the Shear Parameter

Based on 5123 simulations at magnetic Prandtl number
=Pr 0.5M and 3, we showed in Figure 1(b) that the urms

increases with shear. The dimensionless shear parameter, Sh,
defined with respect to ( )u Srms , is thus expected to approach
saturation at large shear rates in the regime of shear-produced
turbulence. Here we check the saturation of Sh by performing a
suite of lower resolution, 1283, simulations at =Pr 1M . For a
fixed shear rate, we explore the shear-produced turbulence
regime (i.e., the regime withP >

~
1) by successively decreasing

the forcing strength, i.e., by increasing S ;f see Equations (7)
and (11) for definitions of P

~
and Sf , respectively.

In Figure 5, we demonstrate the saturation of the shear
parameter, Sh, as a function ofSf . Two different choices of the
shear rate result in the overlap of ∣ ∣1 Sh at large values of Sf
and show saturation at a constant level corresponding to

p»∣ ∣Sh 3 4 . Thus, in a realistic setup with subsonic
turbulence, such as the one being studied here, it would not
be possible to explore values of ∣ ∣Sh that are much larger than
about 0.25. Note that the abscissae in Figure 1 correspond to
Sh, which is defined with respect to u0, instead of ( )u Srms , and
therefore extend up to about unity.
The effect of shear on the SSD becomes noticeable only

when shear rate exceeds a certain threshold such that the
turbulence production ratio, P

~
, becomes of order unity or

larger. This results in a narrow range of possible values for the
shear parameter in order to determine the scalings of the SSD
growth rates versus shear rate. Thus, one interesting regime of a
very strong shear is not found in DNS.

Figure 2. Nonlinear evolution of B Brms eq (upper panel) and spectra of
magnetic ( )E kM (solid curve) and kinetic ( )E kK (dashed curve) energies in the
saturation stage (lower panel) at =Pr 10M with =∣ ∣Sh 0.23, =u c 0.04rms s
and =∣ ∣S c k 0.009s f .

Figure 3. Temporal evolution of urms and Brms from three runs with solid, dashed,
and dashed–dotted curves in the order of decreased forcing, while all other
parameters are the same: =Pr 10M , Re=220, =∣ ∣Sh 0.3, =u c 0.05rms s , and

=∣ ∣S c k 0.02s f . For all three cases, we find g =u k 0.146rms f .

4
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6. Discussion

It is worth noting that recent simulations by Tobias &
Cattaneo (2013) of a prescribed deterministic non-helical flow
with large-scale shear and a superposition of small-scale
cellular deterministic flows have shown that large-scale shear
reduces the SSD growth rate. In those simulations, the Navier–
Stokes equation is not used, so the effects of shear-produced
turbulence, whereby large-scale shear increases the turbulent
velocity, have been ignored. As a result, shear suppresses the
SSD by a sweeping effect, i.e., the shear decorrelates the small
eddies from the magnetic field by advecting the field. On the
other hand, in our study a different setup is used, where large-
scale shear fundamentally modifies and even produces
turbulence, and enhances the efficiency of the SSD. Notably,
the generation of non-uniform mean velocity field, as shown in
Figure 4, was not observed in Tobias & Cattaneo (2013). This
additionally confirms the difference between their setup
and ours.

Remarkably, we obtain from DNS the same scaling,
g µ ( ) ∣ ∣S S 2 3, for SSD growth rate as was theoretically
predicted by Kolokolov et al. (2011) for a given velocity field.
Interestingly, the occurrence of intermittent shear bursts was
found to increase the growth rate of the SSD in turbulent
magnetoconvection (Pratt et al. 2013).

In the present study we considered isothermal non-stratified
low-Mach number turbulence, where the main contribution to
the SSD comes from small resistive or viscous scales. At these
scales, all of the anisotropic effects caused by gravity are
negligibly small. Earlier numerical simulations performed for
turbulent convection without imposed large-scale shear have
shown that the properties of the SSD (growth rates and
characteristic magnetic scales) are similar to those for forced
isothermal turbulence; see, e.g., the review by Brandenburg &
Subramanian (2005). We can expect that the inclusion of large-
scale shear does not introduce strong differences for the SSD in
turbulence with and without gravity.

In turbulence with imposed shear, a large-scale magnetic
field can be generated by an LSD with a much smaller growth
rate than for the SSD. The generated SSD can affect the
growing large-scale magnetic field, but in the present Letter we
have not studied the LSD and its interaction with the SSD. In
particular, by applying periodic or shearing-periodic boundary

conditions, and by injecting energy through our forcing at the
box scale, LSD effects such as the incoherent α-shear effect
(Sokoloff 1997; Vishniac & Brandenburg 1997; Sridhar &
Singh 2014) and η quenching (caused by the feedback of the
large-scale magnetic field on the turbulence; Guerrero
et al. 2009) are suppressed. Note also that global-scale
magnetic fields can produce small-scale magnetic fields by
tangling. However, this growth of the magnetic field is linear in
time rather than exponential. These effects could develop
stronger gradients and thus perhaps islands of different
orientation, but those would not systematically affect the SSD.

7. Conclusions

Using DNS, it was demonstrated that the SSD growth rate
increases with shear in non-helical turbulence. The scalings for
the growth rate of the SSD, g µ ∣ ∣S , and for the turbulent
velocity, µ ∣ ∣u Srms

2 3, are independent of PrM, when the
turbulent production rates caused by shear and forcing are of
the same order. The contribution to the dynamo growth rate,
g µ ∣ ∣S 2 3, is also found to be independent of PrM. This
contribution is determined solely by the equation for the pair
correlation function of the magnetic field derived from the
induction equation.
We found that large-scale shear has the following three

different effects that are relevant for turbulent SSD:

1. the direct effect of shear on the generation of small-scale
magnetic fields through the induction equation;

2. the production of turbulence by the shear which further
enhances the SSD action; and

3. the generation of large-scale non-uniform motions due to
interaction of turbulence with mean shear by the vorticity
dynamo, which in turn produces new large-scale shear,
thus enhancing the SSD.

We have benefited from stimulating discussions with Pallavi
Bhat, Nathan Kleeorin, Igor Kolokolov, Dhrubaditya Mitra,
Matthias Rheinhardt, Kandaswamy Subramanian, and Steve
Tobias. I.R. thanks NORDITA for hospitality and support
during his visits. This work has been supported in parts by the
NSF Astronomy and Astrophysics Grants Program (grant
1615100), the Swedish Research Council grant No. 621-2011-
5076, and the Research Council of Norway under the
FRINATEK grant No. 231444. We acknowledge the allocation
of computing resources provided by the Swedish National

Figure 5. Saturation of the shear parameter Sh as a function of Sf for two
choices of shear rate, =∣ ∣S c k 0.022s f (black open circles) and

=∣ ∣S c k 0.013s f (red filled circles), both at =Pr 1M . Larger values of Sf
correspond to the regime where the turbulence is predominantly produced by
shear. The dotted line represents p=∣ ∣Sh 3 4 .

Figure 4. Ux (top) and Uy (bottom) as functions of time and z from a 10243

simulation with =Pr 10M , =∣ ∣Sh 0.3, P =
~

15 and =u c 0.046rms s .

5

The Astrophysical Journal Letters, 850:L8 (6pp), 2017 November 20 Singh, Rogachevskii, & Brandenburg



Allocations Committee at the Center for Parallel Computers at
the Royal Institute of Technology in Stockholm, and by CSC—
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administered by the Finnish Ministry of Education (project
2000403).

ORCID iDs

Nishant K. Singh https://orcid.org/0000-0001-6097-688X
Igor Rogachevskii https://orcid.org/0000-0001-7308-4768
Axel Brandenburg https://orcid.org/0000-0002-7304-021X

References

Amari, T., Luciani, J., & Aly, J. 2015, Natur, 522, 188
Bhat, P., & Subramanian, K. 2014, ApJ, 791, L34
Blackman, E. G., & Nauman, F. 2015, JPlPh, 81, 395810505
Boldyrev, S., & Cattaneo, F. 2004, PhRvL, 92, 144501
Brandenburg, A. 2005, ApJ, 625, 539
Brandenburg, A. 2011, ApJ, 741, 92
Brandenburg, A., & Kahniashvili, T. 2017, PhRvL, 118, 055102
Brandenburg, A., Rädler, K.-H., Rheinhardt, M., & Käpylä, P. J. 2008, ApJ,

676, 740
Brandenburg, A., & Subramanian, K. 2005, PhR, 417, 1
Elperin, T., Kleeorin, N., & Rogachevskii, I. 2003, PhRvE, 68, 016311
Elperin, T., Kleeorin, N., Rogachevskii, I., & Zilitinkevich, S. S. 2002, PhRvE,

66, 066305
Guerrero, G., Dikpati, M., & de Gouveia Dal Pino, E. M. 2009, ApJ, 701, 725
Haugen, N. E. L., Brandenburg, A., & Dobler, W. 2004, PhRvE, 70, 016308
Ishihara, T., Yoshida, K., & Kaneda, Y. 2002, PhRvL, 88, 154501
Iskakov, A. B., Schekochihin, A. A., Cowley, S. C., McWilliams, J. C., &

Proctor, M. R. E. 2007, PhRvL, 98, 208510
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A, 491, 353
Käpylä, P. J., Mitra, D., & Brandenburg, A. 2009, PhRvE, 79, 016302
Kazantsev, A. P. 1968, JETP, 26, 1031
Kleeorin, N., & Rogachevskii, I. 1994, PhRvE, 50, 493
Kleeorin, N., & Rogachevskii, I. 2008, PhRvE, 77, 036307

Kleeorin, N., & Rogachevskii, I. 2012, PhyS, 86, 018404
Kleeorin, N., Rogachevskii, I., & Sokoloff, D. 2002, PhRvE, 65, 036303
Kolokolov, I. V., Lebedev, V. V., & Sizov, G. A. 2011, JETP, 113, 339
Kulsrud, R. M., & Anderson, S. W. 1992, ApJ, 396, 606
Lumley, J. L. 1967, PhFl, 10, 1405
Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting

Fluids (New York: Cambridge Univ. Press)
Monin, A. S., & Yaglom, A. M. 1971, Statistical Fluid Mechanics, Vol. 1

(Cambridge, MA: MIT Press)
Pakmor, R., Marinacci, F., & Springel, V. 2014, ApJ, 783, L20
Pratt, J., Busse, A., & Müller, W.-C. 2013, A&A, 557, A76
Proctor, M. R. E. 2012, JFM, 697, 504
Rieder, M., & Teyssier, R. 2016, MNRAS, 457, 1722
Rogachevskii, I., & Kleeorin, N. 1997, PhRvE, 56, 417
Rogachevskii, I., & Kleeorin, N. 2003, PhRvE, 68, 036301
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L., &

McWilliams, J. C. 2004, ApJ, 612, 276
Schekochihin, A. A., Haugen, N. E. L., Brandenburg, A., et al. 2005, ApJ,

625, L115
Schekochihin, A. A., Iskakov, A. B., Cowley, S. C., et al. 2007, NJPh, 9, 300
Schleicher, D. R. G., Banerjee, R., Sur, S., et al. 2010, A&A, 522, A115
Schober, J., Schleicher, D., Federrath, Ch., Klessen, R., & Banerjee, R. 2012,

PhRvE, 85, 026303
Singh, N. K., & Sridhar, S. 2011, PhRvE, 83, 056309
Soker, N. 2017, MNRAS, 466, 4776
Sokoloff, D., & Rubashny, A. 2013, GApFD, 107, 403
Sokoloff, D. D. 1997, ARep, 41, 68
Sridhar, S., & Singh, N. K. 2010, JFM, 664, 265
Sridhar, S., & Singh, N. K. 2014, MNRAS, 445, 3770
Sridhar, S., & Subramanian, K. 2009, PhRvE, 80, 066315
Subramanian, K. 1998, MNRAS, 294, 718
Tobias, S. M., & Cattaneo, F. 2013, Natur, 497, 463
Vainshtein, S. I., & Zeldovich, Ya. B. 1972, SvPhU, 15, 159
Vishniac, E. T., & Brandenburg, A. 1997, ApJ, 475, 263
Wyngaard, J. C., & Cote, O. R. 1972, QJRMS, 98, 590
Yousef, T. A., Heinemann, T., Schekochihin, A. A., et al. 2008, PhRvL, 100,

184501
Zeldovich, Ya. B., Ruzmaikin, A. A., & Sokoloff, D. D. 1990, The Almighty

Chance (London: Word Scientific)

6

The Astrophysical Journal Letters, 850:L8 (6pp), 2017 November 20 Singh, Rogachevskii, & Brandenburg

https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-6097-688X
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0001-7308-4768
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://orcid.org/0000-0002-7304-021X
https://doi.org/10.1038/nature14478
http://adsabs.harvard.edu/abs/2015Natur.522..188A
https://doi.org/10.1088/2041-8205/791/2/L34
http://adsabs.harvard.edu/abs/2014ApJ...791L..34B
https://doi.org/10.1017/S0022377815000999
http://adsabs.harvard.edu/abs/2015JPlPh..81e3905B
https://doi.org/10.1103/PhysRevLett.92.144501
http://adsabs.harvard.edu/abs/2004PhRvL..92n4501B
https://doi.org/10.1086/429584
http://adsabs.harvard.edu/abs/2005ApJ...625..539B
https://doi.org/10.1088/0004-637X/741/2/92
http://adsabs.harvard.edu/abs/2011ApJ...741...92B
https://doi.org/10.1103/PhysRevLett.118.055102
http://adsabs.harvard.edu/abs/2017PhRvL.118e5102B
https://doi.org/10.1086/527373
http://adsabs.harvard.edu/abs/2008ApJ...676..740B
http://adsabs.harvard.edu/abs/2008ApJ...676..740B
https://doi.org/10.1016/j.physrep.2005.06.005
http://adsabs.harvard.edu/abs/2005PhR...417....1B
https://doi.org/10.1103/PhysRevE.68.016311
http://adsabs.harvard.edu/abs/2003PhRvE..68a6311E
https://doi.org/10.1103/PhysRevE.66.066305
http://adsabs.harvard.edu/abs/2002PhRvE..66f6305E
http://adsabs.harvard.edu/abs/2002PhRvE..66f6305E
https://doi.org/10.1088/0004-637X/701/1/725
http://adsabs.harvard.edu/abs/2009ApJ...701..725G
https://doi.org/10.1103/PhysRevE.70.016308
http://adsabs.harvard.edu/abs/2004PhRvE..70a6308H
https://doi.org/10.1103/PhysRevLett.88.154501
http://adsabs.harvard.edu/abs/2002PhRvL..88o4501I
https://doi.org/10.1103/PhysRevLett.98.208501
http://adsabs.harvard.edu/abs/2007PhRvL..98t8501I
https://doi.org/10.1051/0004-6361:200810307
http://adsabs.harvard.edu/abs/2008A&amp;A...491..353K
https://doi.org/10.1103/PhysRevE.79.016302
http://adsabs.harvard.edu/abs/2009PhRvE..79a6302K
http://adsabs.harvard.edu/abs/1968JETP...26.1031K
https://doi.org/10.1103/PhysRevE.50.493
http://adsabs.harvard.edu/abs/1994PhRvE..50..493K
https://doi.org/10.1103/PhysRevE.77.036307
http://adsabs.harvard.edu/abs/2008PhRvE..77c6307K
https://doi.org/10.1088/0031-8949/86/01/018404
http://adsabs.harvard.edu/abs/2012PhyS...86a8404K
https://doi.org/10.1103/PhysRevE.65.036303
http://adsabs.harvard.edu/abs/2002PhRvE..65c6303K
https://doi.org/10.1134/S1063776111060033
http://adsabs.harvard.edu/abs/2011JETP..113..339K
https://doi.org/10.1086/171743
http://adsabs.harvard.edu/abs/1992ApJ...396..606K
https://doi.org/10.1063/1.1762299
http://adsabs.harvard.edu/abs/1967PhFl...10.1405L
https://doi.org/10.1088/2041-8205/783/1/L20
http://adsabs.harvard.edu/abs/2014ApJ...783L..20P
https://doi.org/10.1051/0004-6361/201321613
http://adsabs.harvard.edu/abs/2013A&amp;A...557A..76P
https://doi.org/10.1017/jfm.2012.79
http://adsabs.harvard.edu/abs/2012JFM...697..504P
https://doi.org/10.1093/mnras/stv2985
http://adsabs.harvard.edu/abs/2016MNRAS.457.1722R
https://doi.org/10.1103/PhysRevE.56.417
http://adsabs.harvard.edu/abs/1997PhRvE..56..417R
https://doi.org/10.1103/PhysRevE.68.036301
http://adsabs.harvard.edu/abs/2003PhRvE..68c6301R
https://doi.org/10.1086/422547
http://adsabs.harvard.edu/abs/2004ApJ...612..276S
https://doi.org/10.1086/431214
http://adsabs.harvard.edu/abs/2005ApJ...625L.115S
http://adsabs.harvard.edu/abs/2005ApJ...625L.115S
https://doi.org/10.1088/1367-2630/9/8/300
http://adsabs.harvard.edu/abs/2007NJPh....9..300S
https://doi.org/10.1051/0004-6361/201015184
http://adsabs.harvard.edu/abs/2010A&amp;A...522A.115S
https://doi.org/10.1103/PhysRevE.85.026303
http://adsabs.harvard.edu/abs/2012PhRvE..85b6303S
https://doi.org/10.1103/PhysRevE.83.056309
http://adsabs.harvard.edu/abs/2011PhRvE..83e6309S
https://doi.org/10.1093/mnras/stx023
http://adsabs.harvard.edu/abs/2017MNRAS.466.4776S
https://doi.org/10.1080/03091929.2011.562500
http://adsabs.harvard.edu/abs/2013GApFD.107..403S
http://adsabs.harvard.edu/abs/1997ARep...41...68S
https://doi.org/10.1017/S0022112010003745
http://adsabs.harvard.edu/abs/2010JFM...664..265S
https://doi.org/10.1093/mnras/stu1981
http://adsabs.harvard.edu/abs/2014MNRAS.445.3770S
https://doi.org/10.1103/PhysRevE.80.066315
http://adsabs.harvard.edu/abs/2009PhRvE..80f6315S
https://doi.org/10.1111/j.1365-8711.1998.01284.x
http://adsabs.harvard.edu/abs/1998MNRAS.294..718S
https://doi.org/10.1038/nature12177
http://adsabs.harvard.edu/abs/2013Natur.497..463T
https://doi.org/10.1070/PU1972v015n02ABEH004960
http://adsabs.harvard.edu/abs/1972SvPhU..15..159V
https://doi.org/10.1086/303504
http://adsabs.harvard.edu/abs/1997ApJ...475..263V
https://doi.org/10.1002/qj.49709841708
http://adsabs.harvard.edu/abs/1972QJRMS..98..590W
https://doi.org/10.1103/PhysRevLett.100.184501
http://adsabs.harvard.edu/abs/2008PhRvL.100r4501Y
http://adsabs.harvard.edu/abs/2008PhRvL.100r4501Y

	1. Introduction
	2. Budget Equation
	3. Growth Rate of the SSD
	4. Numerical Setup
	5. DNS Results
	5.1. The Dynamo Growth Rate and Production of Turbulence
	5.2. Nonlinear Stage of the SSD
	5.3. Mean Flow Generation
	5.4. Saturation of the Shear Parameter

	6. Discussion
	7. Conclusions
	References



