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ABSTRACT

Context. Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers.
Aims. We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion.
Methods. We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating
spherical wedges at various thermal and magnetic Prandtl numbers (from 0.25 to 2 and from 0.25 to 5, respectively). Differential
rotation and large-scale magnetic fields are produced self-consistently.
Results. We find that for high thermal diffusivity, the rotation profiles show a monotonically increasing angular velocity from the
bottom of the convection zone to the top and from the poles toward the equator. For sufficiently rapid rotation, a region of negative
radial shear develops at mid-latitudes as the thermal diffusivity is decreased, corresponding to an increase of the Prandtl number. This
coincides with and results in a change of the dynamo mode from poleward propagating activity belts to equatorward propagating
ones. Furthermore, the clearly cyclic solutions disappear at the highest magnetic Reynolds numbers and give way to irregular sign
changes or quasi-stationary states. The total (mean and fluctuating) magnetic energy increases as a function of the magnetic Reynolds
number in the range studied here (5–151), but the energies of the mean magnetic fields level off at high magnetic Reynolds numbers.
The differential rotation is strongly affected by the magnetic fields and almost vanishes at the highest magnetic Reynolds numbers.
In some of our most turbulent cases, however, we find that two regimes are possible, where either differential rotation is strong and
mean magnetic fields are relatively weak, or vice versa.
Conclusions. Our simulations indicate a strong nonlinear feedback of magnetic fields on differential rotation, leading to qualitative
changes in the behaviors of large-scale dynamos at high magnetic Reynolds numbers. Furthermore, we do not find indications of the
simulations approaching an asymptotic regime where the results would be independent of diffusion coefficients in the parameter range
studied here.
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1. Introduction

Simulations of convection-driven dynamos have recently
reached a level of sophistication where they capture ef-
fects observed in the Sun such as equatorward migration
of activity belts (Schrinner et al. 2011; Käpylä et al. 2012;
Augustson et al. 2015; Duarte et al. 2016) and irregular cycle
variations such as grand minima and long-term modulations
(Passos & Charbonneau 2014; Käpylä et al. 2016a). Most of
these simulations are individual numerical experiments, and it
is not clear how they are situated in parameter space in relation
to each other. Important parameters in this connection concern
the relative strengths of different diffusion coefficients, viscos-
ity (ν), and magnetic (η) and thermal (χ) diffusivities present
in the system. Their ratios are characterized by the thermal and
magnetic Prandtl numbers, Pr = ν/χ and PrM = ν/η, respec-
tively. In the solar convection zone, these Prandtl numbers are
Pr � 1 and PrM � 1, while the fluid and magnetic Reynolds
numbers, Re = ul/ν and ReM = ul/η, with u and l being the
characteristic velocity and length scale, are on the orders of 1012

and 109, respectively. Such parameter regimes are not accessible
to current numerical simulations, which are restricted to Pr ≈ 1,
PrM ≈ 1, and Reynolds numbers on the order of 102−103. In all
simulations by a number of different groups, the dominant con-
tribution to thermal diffusion is made by a subgrid-scale (SGS)
coefficient χSGS whose magnitude is much higher than the ra-
diative one. Similar arguments also apply to ν and η, but since
the functional form of these diffusion operators is unchanged,
we omit the subscript SGS in them. Thus, the relevant thermal
Prandtl number in simulations is PrSGS = ν/χSGS. We empha-
size that this applies to simulations of all groups, although the
nomenclature may be different (see Table A.1). This is also true
for groups using realistic luminosities, and thus the correct order
of magnitude for the radiative diffusivity (e.g., Brun et al. 2004;
Hotta et al. 2016).

When the convection simulations of Käpylä et al. (2012) in
wedge geometry showed clear equatorward migration for the
first time, it was not obvious that this was related to their choice
of PrSGS = 2.5 compared with PrSGS . 1 used in most earlier
simulations that showed either quasi-stationary configurations
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(Brown et al. 2010) or either weak or poleward migration (e.g.,
Ghizaru et al. 2010; Käpylä et al. 2010b; Brown et al. 2011;
Gastine et al. 2012). Recently, Warnecke et al. (2014) showed
that the change in the dynamo behavior between PrSGS > 1 and
PrSGS < 1 regimes is due to a change in the differential rotation
profile, which in the PrSGS & 1 regime leads to a region of neg-
ative radial shear that facilitates the equatorward migration. The
magnetic Prandtl number, which is proportional to the magnetic
Reynolds number, can also strongly affect the results. Increasing
ReM by increasing PrM can allow magnetohydrodynamic (MHD)
instabilities such as magnetic buoyancy (Parker 1955) and mag-
netorotational instabilities (e.g., Parfrey & Menou 2007; Masada
2011) to be excited.

Increasing the magnetic Reynolds number can influence the
large-scale dynamo by several other avenues. First, the most eas-
ily excited dynamo mode can change. Second, a small-scale dy-
namo is most likely excited after ReM exceeds a threshold value
(e.g., Cattaneo 1999), and this may also affect the large-scale
dynamo by modifying the velocity field. Third, Boussinesq sim-
ulations indicate that differential rotation is strongly quenched
as the magnetic Reynolds number increases (Schrinner et al.
2012). This was shown to be associated with a transition from
oscillatory multipolar large-scale field configurations to quasi-
stationary dipole-dominated dynamos as a function of ReM.
One of the main goals of the present paper is therefore to
systematically study the effects of varying Prandtl numbers
on the differential rotation and dynamo modes excited in the
simulations. We note that similar parameter studies have been
performed with Boussinesq simulations (e.g., Simitev & Busse
2005; Busse & Simitev 2006). Here we explore the stratified,
fully compressible simulations and reach parameter regimes that
are significantly more supercritical in terms of both the convec-
tion and the dynamo.

Another important aspect is related to the saturation level of
the large-scale field in simulations at high ReM. Dynamo the-
ory experienced a crisis in the early 1990s when it was discov-
ered that the energy of the large-scale magnetic field saturates at
a level that is inversely proportional to the magnetic Reynolds
number (Gruzinov & Diamond 1995; Brandenburg & Dobler
2001). If this were to carry over to the Sun, where the mag-
netic Reynolds number is on the order of 109 or greater,
only very weak large-scale fields would survive. This phe-
nomenon was related to a catastrophic quenching of the α ef-
fect (Cattaneo & Vainshtein 1991; Vainshtein & Cattaneo 1992;
Cattaneo & Hughes 1996).

Later, this was understood in terms of magnetic helicity: if
the system is closed or fully periodic, that is, when magnetic
field lines do not cross the boundary of the system, no flux
of magnetic helicity in or out can occur, and only the molec-
ular diffusion can change it (Brandenburg 2001). In astrophys-
ical systems this would mean that magnetic helicity would be
nearly conserved. However, astrophysical systems are not closed
and magnetic helicity can escape, for example, through coronal
mass ejections in the Sun (e.g., Blackman & Brandenburg 2003;
Warnecke et al. 2011, 2012) or through winds from galaxies
(Shukurov et al. 2006; Sur et al. 2007; Del Sordo et al. 2013). In
mean-field theory these physical effects are parameterized by
fluxes, which lead to alleviation of catastrophic quenching in
suitable parameter regimes (e.g., Brandenburg et al. 2009).

Direct numerical simulations of large-scale dynamos have
demonstrated that open boundaries lead to alleviation of catas-
trophic quenching in accordance with the interpretation in terms
of magnetic helicity conservation (e.g., Brandenburg & Sandin
2004; Käpylä et al. 2010a). Although the large-scale magnetic

field amplitude does not decrease proportional to ReM in the
cases when open boundaries are used, there is still a decreas-
ing trend even at the highest currently studied ReM in local
simulations of convection-driven dynamos (e.g., Käpylä et al.
2010a). This, however, is compatible with mean-field models,
which suggest that the magnetic helicity fluxes become effec-
tive only at significantly higher ReM (Brandenburg et al. 2009;
Del Sordo et al. 2013).

In convective dynamos in spherical coordinates the compu-
tational challenge is even greater and systematic parameter scans
have not been performed. Some preliminary attempts have been
made, but the results remain inconclusive. An illuminating ex-
ample is the study of Nelson et al. (2013), where the large-scale
axisymmetric field decreases by a factor of two when the mag-
netic Reynolds number is increased by a factor of four, which
is still rather steep. In a recent paper, Hotta et al. (2016) showed
that in even higher-ReM simulations the mean magnetic energy
recovers, and the authors claim that this is a consequence of an
efficient small-scale dynamo that suppresses small-scale flows.
Another goal of the present paper is therefore to study the satu-
ration level of the large-scale field in convection-driven dynamos
in spherical coordinates with and without a simultaneous small-
scale dynamo (hereafter SSD).

In the present study, we employ a spherical wedge geom-
etry by imposing either a perfect conductor or a normal field
boundary condition at high latitudes. Earlier mean-field simula-
tions of αΩ dynamos have suggested that solutions with a perfect
conductor boundary condition are similar to those in full spheri-
cal shells (Jennings et al. 1990). However, more recent work by
Cole et al. (2016) has demonstrated that this conclusion is not
generally valid and depends on the nature of the solutions. Their
work also suggests that the use of a normal field boundary condi-
tion at high latitudes might be a better way of obtaining solutions
that are applicable to full spherical shells. Owing to this uncer-
tainty, we investigate here cases with both types of boundary
conditions.

2. Model

Our model is similar to that of Käpylä et al. (2012) and is de-
scribed in detail in Käpylä et al. (2013). The model describes
the dynamics of magnetized gas in spherical coordinates where
only parts of the latitude and longitude ranges are retained. More
specifically, the model covers a wedge that spans r0 ≤ r ≤ r1 in
radius, θ0 ≤ θ ≤ π−θ0 in colatitude, and 0 ≤ φ ≤ φ0 in longitude.
Here we use r0 = 0.7 R�, r1 = R�, and where R� = 6.96× 108 m
is the solar radius, θ0 = 15◦, and φ0 = 90◦.

We solve the following set of compressible hydromagnetics
equations

∂A
∂t

= U × B − ηµ0 J, (1)

D ln ρ
Dt

= −∇ · U, (2)

DU
Dt

= g − 2Ω0 × U +
1
ρ

[∇·(2νρS) − ∇p + J × B], (3)

T
Ds
Dt

=
1
ρ

[
ηµ0 J2 − ∇ · (Frad + FSGS)

]
+ 2νS2, (4)

where A is the magnetic vector potential, U is the velocity,
B = ∇ × A is the magnetic field, η is the magnetic diffusiv-
ity, µ0 is the permeability of vacuum, J = ∇ × B/µ0 is the
current density, D/Dt = ∂/∂t + U · ∇ is the advective time
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derivative, ρ is the density, g is the acceleration due to grav-
ity, and Ω0 = (cos θ,− sin θ, 0)Ω0 is the angular velocity vector
where Ω0 is the rotation rate of the frame of reference, ν is the
kinematic viscosity, p is the pressure, and s is the specific en-
tropy with Ds = cVD ln p− cPD ln ρ. The gas is assumed to obey
the ideal gas law, p = (γ − 1)ρe, where e = cVT is the spe-
cific internal energy and γ = cP/cV is the ratio of specific heats
at constant pressure and volume, respectively. The rate of strain
tensor is given by

Si j = 1
2 (Ui; j + U j;i) − 1

3δi j∇ · U, (5)

where the semicolons refer to covariant derivatives; see
Mitra et al. (2009). The radiative and SGS fluxes are given by

Frad = −K∇T, FSGS = −χSGSρT∇s, (6)

where K = cPρχ is the heat conductivity, and χSGS is the (turbu-
lent) SGS diffusion coefficient for the entropy.

2.1. Initial and boundary conditions

We follow the description given in Käpylä et al. (2014) to trans-
form our results into physical units. As our equations are fully
compressible, we cannot afford to use the solar luminosity,
which would lead to the sound speed dominating the time step.
Thus we increase the luminosity substantially, and to compen-
sate for this, we increase the rotation rate to achieve the same
rotational influence as in the Sun. Assuming a scaling of the lu-
minosity with the convective energy flux as L ∝ ρu3, we find that
the convective velocities increase to one-third power of the lu-
minosity (e.g., Brandenburg et al. 2005; Karak et al. 2015). The
ratio between model and solar luminosities is L0/L� ≈ 6.4× 105

in the current simulations. We correspondingly increase the ro-
tation rate by a factor of (L0/L�)

1
3 ≈ 86 for the solar case. We

reiterate that the main effect of increasing the luminosity is to
increase the Mach number and bring the acoustic and dynamical
timescales closer to each other, which facilitates the computa-
tions with a fully compressible method (cf. Fig. 1 of Käpylä et al.
2013). Another possibility would be to apply the so-called re-
duced sound speed method where the sound speed is artificially
changed so that the Mach number does not become too small at
the base of the convection zone (Hotta et al. 2012; Käpylä et al.
2016b).

The higher luminosity also helps to reach a thermal equilib-
rium within reasonable simulation running time. Furthermore,
we assume that the density and the temperature at the base of
the convection zone are the same as in the Sun, that is, ρbot =
200 kg m−3 and T = 2.23 × 106 K.

As the initial condition for the hydrodynamics we use an
isentropic atmosphere. The temperature gradient is given by

∂T
∂r

= −
GM�/r2

cV(γ − 1)(nad − 1)
, (7)

where G = 6.67 × 10−11 N m2 kg−2 is Newton’s gravitational
constant, M� = 1.989 × 1030 kg is the solar mass, and nad = 1.5
is the polytropic index for an adiabatic stratification.

The initial state is not in thermal equilibrium but closer to the
final convecting state to reduce the time needed to reach a statis-
tically stationary state. The heat conductivity has a profile given
by K(r) = K0[n(r) + 1], where n(r) = δn(r/r0)15 + nad − δn, with
K0 = (L/4π)cV(γ−1)(nad+1)ρbot

√
GM� R�, and whereL is a di-

mensionless luminosity defined below. We keep δn = 1.9 fixed

in our simulations, resulting a situation where radiation trans-
ports all of the flux into the domain, but its contribution dimin-
ishes rapidly toward the surface (see, e.g., Fig. 2 of Käpylä et al.
2011a).

The SGS diffusivity χSGS for the entropy has a piecewise
constant profile, such that the value χSGS = 6.1 × 108 m s−2

is fixed above r = 0.98 R� in all runs, and the value χm
SGS =

χSGS(r = rm = 0.85 R�) in the bulk of the convection zone is var-
ied by the corresponding Prandtl number (see below). The value
below r = 0.75 R� is set equal to 0.1χm

SGS. The constant values in
the different layers connect smoothly over a transition depth of
d = 0.01 R�.

The boundary conditions for the flow are assumed to be im-
penetrable and stress free, that is,

Ur = 0,
∂Uθ

∂r
=

Uθ

r
,

∂Uφ

∂r
=

Uφ

r
(r = r0, r1), (8)

∂Ur

∂θ
= Uθ = 0,

∂Uφ

∂θ
= Uφ cot θ (θ = θ0, π − θ0). (9)

The lower radial boundary is assumed to be perfectly conduct-
ing, and on the outer radial boundary the field is purely radial.
The latitudinal boundaries are either perfectly conducting (PC)
or a normal field (NF) condition is assumed. In terms of the mag-
netic vector potential, these are given by

∂Ar

∂r
= Aθ = Aφ = 0 (r = r0), (10)

Ar = 0,
∂Aθ

∂r
= −

Aθ

r
,
∂Aφ

∂r
= −

Aφ

r
(r = r1), (11)

Ar =
∂Aθ

∂θ
= Aφ = 0 (θ = θ0, π − θ0) (PC), (12)

∂Ar

∂θ
= Aθ=0,

∂Aφ

∂θ
=−

cot θAφ

r
(θ = θ0, π − θ0) (NF). (13)

For the density and specific entropy we assume vanishing first
derivatives on the latitudinal boundaries.

At the lower boundary we specify

Frad
r + FSGS

r =
L0

4πr2
0

, (14)

which leads to constant input luminosity into the system. On the
outer radial boundary we apply a radiative boundary condition

σT 4 = Frad
r + FSGS

r , (15)

where σ is the Stefan-Boltzmann constant. We use a modified
value for σ that takes into account that the luminosity and the
temperature at the surface are higher than in the Sun. The value
of σ is chosen so that the surface flux, σT 4, carries the total
luminosity through the boundary in the initial non-convecting
state.

2.2. System parameters and diagnostics quantities

The parameters governing our models are the dimensionless lu-
minosity

L =
L0

ρ0(GM�)3/2 R1/2
�

, (16)

the normalized pressure scale height at the surface,

ξ =
(γ − 1)cVT1

GM�/R�
, (17)
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Table 1. Summary of the runs.

Run Ω̃ Ra [106] Pr PrSGS PrM Ta [108] ν [108 m2 s−1] Re Pe ReM Co ∆t SSD BCs Grid
A1 5 0.8 71.7 0.25 0.25 1.25 1.01 20 5 5 14.0 0.4 – PC 128 × 256 × 128
A2 5 0.8 71.7 0.25 0.50 1.25 1.01 18 4 9 15.1 0.4 – PC 128 × 256 × 128
A3 5 0.8 71.7 0.25 1.00 1.25 1.01 17 4 17 15.9 56 – PC 128 × 256 × 128
A4 5 0.8 71.7 0.25 2.00 1.25 1.01 22 5 45 12.4 37 – PC 128 × 256 × 128
A5 5 0.8 71.7 0.25 3.33 1.25 1.01 23 5 79 11.7 26 – NF 256 × 512 × 256
B1 5 2.9 71.7 0.50 0.25 1.25 1.01 25 12 6 11.1 5.5 – PC 128 × 256 × 128
B2 5 2.9 71.7 0.50 0.50 1.25 1.01 24 12 12 11.3 27 – PC 128 × 256 × 128
B3 5 2.9 71.7 0.50 1.00 1.25 1.01 27 13 27 10.3 26 – PC 128 × 256 × 128
B4 5 2.9 71.7 0.50 2.00 1.25 1.01 29 14 58 9.7 50 – PC 128 × 256 × 128
B5 5 2.9 71.7 0.50 5.00 1.25 1.01 27 13 137 10.3 23 + NF 256 × 512 × 256
C1 5 10 71.7 1.00 0.25 1.25 1.01 28 28 7 9.9 27 – PC 128 × 256 × 128
C2 5 10 71.7 1.00 0.50 1.25 1.01 29 29 14 9.6 44 – PC 128 × 256 × 128
C3 5 10 71.7 1.00 1.00 1.25 1.01 29 29 29 9.4 108 – PC 128 × 256 × 128
C4 5 10 71.7 1.00 1.43 1.25 1.01 30 30 44 9.1 65 – PC 128 × 256 × 128
C5 5 10 71.7 1.00 5.00 1.25 1.01 29 29 146 9.6 35 + NF 256 × 512 × 256
D1 5 36 71.7 2.00 0.25 1.25 1.01 30 60 7 9.3 4.2 – PC 128 × 256 × 128
D2 5 36 71.7 2.00 0.50 1.25 1.01 29 59 14 9.5 60 – PC 128 × 256 × 128
D3 5 36 71.7 2.00 1.00 1.25 1.01 29 59 29 9.4 61 – PC 128 × 256 × 128
D4 5 36 71.7 2.00 2.00 1.25 1.01 29 59 59 9.5 43 + PC 128 × 256 × 128
D5 5 36 71.7 2.00 3.33 1.25 1.01 29 59 98 9.5 25 + NF 256 × 512 × 256
E1 3 10 71.7 1.00 0.50 0.45 1.01 33 33 16 5.0 12 – PC 144 × 288 × 144
E2 3 10 71.7 1.00 1.00 0.45 1.01 34 34 34 4.9 55 – PC 144 × 288 × 144
E3 3 10 71.7 1.00 2.00 0.45 1.01 32 32 65 5.2 70 + NF 144 × 288 × 144
E4 3 10 71.7 1.00 4.00 0.45 1.01 33 33 134 5.0 19 + NF 288 × 576 × 288
F1 1 10 71.7 1.00 0.50 0.05 1.01 40 40 20 1.4 20 – PC 144 × 288 × 144
F2 1 10 71.7 1.00 1.00 0.05 1.01 39 39 39 1.4 43 – PC 144 × 288 × 144
F3 1 10 71.7 1.00 2.00 0.05 1.01 38 38 76 1.5 49 + PC 144 × 288 × 144
F4 1 10 71.7 1.00 4.00 0.05 1.01 37 37 151 1.5 30 + NF 288 × 576 × 288
G1 5 10 71.7 1.00 1.00 1.25 1.01 29 29 29 9.4 108 – PC 128 × 256 × 128
G2 5 73 35.9 1.00 1.00 5.00 0.51 66 66 66 8.5 47 + NF 256 × 512 × 256
G3 5 488 17.9 1.00 1.00 20.01 0.25 134 134 134 8.4 14 + NF 512 × 1024 × 512

Notes. Summary of the runs. Here, Ω̃ = Ω0/Ω�, where Ω� = 2.7 × 10−6 s−1 is the solar rotation rate, ∆t (in years) is the length of the time series
considered, and the columns SSD and BCs indicate whether a small-scale dynamo is present and the type of latitudinal magnetic field boundary
condition, respectively. The last column indicates the grid resolution. All runs have L = 3 × 10−5 and ξ = 0.02. Runs C3 and G1 are the same.

with T1 being the temperature at the surface in the initial state,
the Taylor number

Ta = (2Ω0∆r2/ν)2, (18)

where ∆r = r1 − r0 = 0.3 R�, as well as the fluid, SGS, and
magnetic Prandtl numbers

Pr =
ν

χm
, PrSGS =

ν

χm
SGS

, PrM =
ν

η
, (19)

where χm = K(rm)/cPρm is the thermal diffusivity and ρm is the
density, both evaluated at r = rm. We keep Pr = 71.7 fixed and
vary PrSGS and PrM in most of our models, with the exception of
Set G, where PrSGS and PrM are set to unity and Pr is varied by
changing the value of ν (see Table 1). The Rayleigh number is
defined as

Ra =
GM�(∆r)4

νχm
SGSR2

�

(
−

1
cP

dshs

dr

)
rm

, (20)

where shs is the entropy in the hydrostatic (hs), non-convecting
state obtained from a one-dimensional model where no convec-
tion can develop with the prescriptions of K and χSGS given
above.

The remaining parameters are used only as diagnostics.
These include the fluid and magnetic Reynolds numbers, and the
Péclet number

Re =
urms

νkf
, ReM =

urms

ηkf
, Pe =

urms

χm
SGSkf

, (21)

where kf = 2π/∆r ≈ 21 R−1
� is an estimate of the wavenumber of

the largest eddies. Rotational influence on the flow is given by
the Coriolis number

Co =
2Ω0

urmskf
, (22)

where urms =

√
(3/2)〈U2

r + U2
θ 〉rθφt is the rms velocity and the

subscripts indicate averaging over r, θ, φ, and a time interval
during which the run is thermally relaxed. We omit the contribu-
tion from the azimuthal velocity in urms because it is dominated
by differential rotation (Käpylä et al. 2011b).

We define mean quantities as averages over the φ-coordinate
and denote them by overbars. We also often average the data
in time over the period of the simulations where thermal en-
ergy, differential rotation, and large-scale magnetic fields have
reached statistically saturated states.
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Fig. 1. Top row: temporally averaged rotation profiles from Runs A3, B3, C3, and D3 with PrM = 1 and PrSGS varying from 0.25 (left) to 2 (right).
Lower row: same as above, but for Runs C2, C3, C4, and C5 with PrSGS = 1 and PrM varying from 0.5 (left) to 5 (right).

The simulations are performed with the Pencil Code1,
which uses a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

3. Data analysis: D2 statistic

To detect possible cycles and to estimate their average lengths,
we have chosen to use D2 phase dispersion statistic (Pelt 1983).
It has recently been applied to irregularly spaced long-term pho-
tometry of solar-like stars (Lindborg et al. 2013; Olspert et al.
2015) as well as to more regularly sampled magnetoconvection
simulation data (Karak et al. 2015; Käpylä et al. 2016a). In the
previous applications the statistic has been used exclusively on
one-dimensional time series (e.g., by fixing a certain latitude and
radius in the azimuthally averaged data). In the current study we
use a generalized form of the statistic given by

D2(P,∆tcoh)=

N−1∑
i=1

N∑
j=i+1

g(ti, t j, P,∆tcoh)|| f (ti) − f (t j)||2

2σ2
N−1∑
i=1

N∑
j=i+1

g(ti, t j, P,∆tcoh)
, (23)

where f (ti) is the vector of observed variables at time moment
ti, σ2 = N−2 ∑

i, j>i || f (ti) − f (t j)||2 is the variance of the full time
series, g(ti, t j, P,∆tcoh) is the selection function, which is signifi-
cantly greater than zero only when

t j − ti ≈ kP, k = ±1,±2, . . . , and (24)∣∣∣t j − ti
∣∣∣ / ∆tcoh = lcohP, (25)

1 https://github.com/pencil-code

where P is the trial period and ∆tcoh is the so-called coherence
time, which is the measure of the width of the sliding time
window wherein the data points are taken into account by the
statistic. The number of trial periods fitting into this interval,
lcoh = ∆tcoh/P, is called the coherence length. With this defini-
tion there is no restriction on the dimensionality of the data, but
Eq. (23) leaves open the choice of the vector norm. In most cases
it is natural to use the Euclidean norm, which we also assume in
our analysis. In the following we use this statistic to analyze the
radial and azimuthal components of the magnetic field at regions
near the surface over latitude intervals, where the cycles are the
most pronounced (see Sect. 4.2.2).

4. Results

We performed six sets of simulations (Sets A–F), each with a
constant value of PrSGS but changing PrM in the range 0.25 ≤
PrM ≤ 5; see Table 1. Furthermore, in an additional Set G we
fixed PrSGS = PrM = 1 and varied the Reynolds and Péclet num-
bers. The rotation rate was varied such that Sets A–D and G have
Ω0 = 5Ω�, whereas in Sets E and F we used 3Ω� and Ω�, re-
spectively. Sets E and F were included to study the reliability of
our findings at slower rotation. In some sets (A, D, E, and F)
numerical problems prevented us from using PrM = 5. In these
cases we used a lower value that produces numerically stable so-
lutions. The latitudinal PC boundary conditions led to numerical
problems as a result of an unidentified instability at high mag-
netic Reynolds numbers near the latitudinal boundaries. Cases
where this occurred were rerun with the NF conditions. We did
not find major qualitative differences in the behavior of the large-
scale field between PC and NF runs with otherwise identical pa-
rameters. In the following, we omit the PrM = 0.25 runs that
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Fig. 2. Estimates of radial and latitudinal differential rotation ∆
(r)
Ω

and ∆
(θ)
Ω

, respectively, according to Eq. (26) for Sets A–F as indicated by the
legend.

did not lead to dynamos in Sets E and F. We note that Run B2
has been presented as Run II in Warnecke et al. (2014), Run D3
as Run A1 in Warnecke et al. (2016a,b), and Run C3 covers the
first 120 yr of the run presented in Käpylä et al. (2016a). Fur-
thermore, runs similar to Run D3 (but with PrM = 2.5 instead of
2.0) are presented as Runs B4m and C1 in Käpylä et al. (2012,
2013).

4.1. Large-scale flows and their generators

4.1.1. Differential rotation and meridional circulation

The sign of the radial gradient of Ω plays a crucial role in de-
termining the propagation direction of dynamo waves in αΩ
dynamos: with a positive α effect in the northern hemisphere,
a negative radial gradient of Ω is required to obtain solar-like
equatorward migration and vice versa (Parker 1955; Yoshimura
1975). It is remarkable that this rule also seems to apply to the
fully nonlinear convective dynamo simulations (Warnecke et al.
2014, 2016b). The current simulations can produce equatorward
migration only in cases where a region with a negative radial
gradient of Ω occurs at mid-latitudes (e.g., Käpylä et al. 2012,
2013; Augustson et al. 2015) or if the sign of the kinetic helicity,
which is a proxy of the α effect, is inverted in the bulk of the
convection zone (Duarte et al. 2016).

The simulations of Käpylä et al. (2012), Augustson et al.
(2015), Käpylä et al. (2016a), and Warnecke et al. (2016a)
showing equatorward migration and a region of negative radial
shear at mid-latitudes have PrSGS & 1. This is in contrast to
earlier simulations with PrSGS < 1, which did not show equa-
torward migration (e.g., Brun et al. 2004; Brown et al. 2011;
Nelson et al. 2013) and had consistently positive gradients of Ω.
Given that the dynamo wave propagation is apparently heavily
influenced by this, it is important to study the effect that PrSGS
has on the rotation profiles.

We show representative results of the temporally averaged
rotation profiles as a function of PrSGS from Runs A3, B3, C3,
and D3 in the top row of Fig. 1. In the lowest SGS Prandtl num-
ber case (Run A3), the angular velocity Ω = Ω0 + Uφ/r sin θ de-
creases monotonically from the equator toward the poles. Much

of the latitudinal variation occurs at high latitudes near the lati-
tudinal boundaries. However, the rotation profile is qualitatively
similar to those obtained from low PrSGS models in fully spheri-
cal shells (e.g., Brun et al. 2004; Brown et al. 2010). In Run B3,
a dip at mid-latitudes is developing, which is seen to deepen in
the higher PrSGS Runs C3 and D3. We note that a similar transi-
tion occurs also when the density stratification is increased with
PrSGS = 2 . . . 5 (Käpylä et al. 2011a, 2013). The overall magni-
tude of the differential rotation also decreases from low to high
SGS Prandtl numbers. However, much of this variation occurs
already between Runs A3 and B3, whereas the differences be-
tween Runs B3, C3, and D3 are much smaller.

The time-averaged rotation profiles from runs with PrSGS = 1
with varying PrM are shown in the lower row of Fig. 1 from
Runs C2–C5. The absolute shear decreases steeply as PrM and
ReM increase so that in the highest ReM case the differential ro-
tation is appreciable only near the latitudinal boundaries. There
are also qualitative changes such that the negative shear layer
at mid-latitudes is almost absent in Run C5 and a near-surface
shear layer is developing in Runs C4 and C5.

To quantify the radial and latitudinal differential rotation, we
use the quantities (Käpylä et al. 2013)

∆
(r)
Ω

=
Ωeq −Ωbot

Ωeq
, ∆

(θ)
Ω

=
Ωeq −Ωpole

Ωeq
, (26)

where Ωeq = Ω(r1, π/2) and Ωbot = Ω(r0, π/2) are the rotation
rates at the surface and at the bottom of the convection zone at
the equator. Furthermore, Ωpole = 1

2 [Ω(r1, θ0) + Ω(r1, π − θ0)] is
the average rotation rate between the latitudinal boundaries at the
outer boundary. We show ∆

(r)
Ω

and ∆
(θ)
Ω

for the runs of Sets A–F
in Fig. 2. We find that both radial and latitudinal differential ro-
tation are modestly quenched for ReM . 30 in Sets A–E. For
higher values of ReM, both ∆

(r)
Ω

and ∆
(θ)
Ω

decrease steeply, and
for the highest values of ReM the differential rotation is almost
completely quenched. Set F with the lowest rotation rate stands
apart from the other runs. The main difference in this set is that
the differential rotation is anti-solar, that is, with a slow equator
and faster poles. There the radial differential rotation decreases
monotonically, but the decrease is only roughly 20 per cent in the
range ReM = 20 . . . 151, whereas ∆

(θ)
Ω

remains roughly constant
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above ReM = 39. A possible explanation of the difference be-
tween Set F and the other sets is that the mean magnetic fields
are stronger in the latter sets (see Table 2 and Sect. 4.2.4), which
leads to a stronger back-reaction to the flow.

We list in Table 2 the kinetic energy densities of the total flow
Ekin = 〈 1

2ρU2〉V , differential rotation EDR
kin = 〈 1

2ρU
2
φ〉V , merid-

ional circulation EMC
kin = 〈 1

2ρ(U
2
r +U

2
θ)〉V , the fluctuating velocity

Efluct
kin = 〈 1

2ρu2〉V , and the magnetic energy densities related to
the total field Emag = 〈B2/2µ0〉V , azimuthally averaged toroidal

Etor
mag = 〈B

2
φ/2µ0〉V and poloidal fields Epol

mag = 〈(B
2
r + B

2
θ)/2µ0〉V ,

and the fluctuating magnetic energy Efluct
mag = 〈b2/2µ0〉V with

u = U − U, b = B − B and where 〈 〉V indicates a volume
average in our simulations. We find that the kinetic energy de-
creases monotonically as the magnetic Reynolds number is in-
creased, regardless of the SGS Prandtl number. This is mostly
due to quenching of the differential rotation, whereas the fluctu-
ating kinetic energy is much less affected. Differences between
the sets of runs are large, however. In Set F, the total kinetic en-
ergy drops by less than a factor of two and the energy of the
differential rotation by a factor of four, whereas in Sets A, B, C,
and E, the Ekin reduces by roughly an order of magnitude and
E(DR)

kin by two orders of magnitude. Set D falls between the two
extreme cases. The energy of the meridional flow is negligible
in comparison to both differential rotation and fluctuating (non-
axisymmetric) contributions.

We note, however, that the temporal variations of differential
rotation increase as the magnetic Reynolds number is increased,
see Table 2. This is demonstrated in Figs. 3a–c, where the en-
ergies of the differential rotation and mean toroidal magnetic
field are shown for Runs G1–G3. In the lowest-ReM case, both
are fairly stable with Etor

mag being typically an order of magni-
tude smaller than EDR

kin with a few excursions with strong mag-
netic field and weak differential rotation (e.g., around t ≈ 22 yr
and t ≈ 50–80 yr). In an extended version of this run, the qui-
escent magnetic field leads to stronger-than-average differential
rotation for the last 70 yr of that run (see Figs. 4a and 4b of
Käpylä et al. 2016a). In Run G2 with ReM = 66, two more dis-
tinct states appear to be present: either the differential rotation is
strong and the magnetic fields weak (t ≈ 5–20 and t & 42 yr),
or the two are comparable (t ≈ 25–42 yr). These events are as-
sociated with a change of the large-scale dynamo mode from an
oscillatory equatorward migrating mode (strong DR, weak mag-
netic field) to a quasi-stationary one (DR and magnetic field en-
ergies comparable), see Fig. 3d. Panels e and f of Fig. 3 show that
the latitudinal differential rotation decreases by roughly 30 per
cent from the high to the low state. Similar but apparently more
violent variations are seen in the highest-ReM case (Run G3), but
there the time series is too short to draw reliable conclusions.

Our results appear to stand apart from similar studies in full
spherical shells (e.g., Nelson et al. 2013; Hotta et al. 2016) in
that the differential rotation is strongly quenched as a function of
the magnetic Reynolds number. However, in Nelson et al. (2013)
the values of Rm′ (=2πReM) correspond to a range of 8 . . . 32
in ReM in our units where the radial and latitudinal differen-
tial rotation decrease by about 30 per cent. This is roughly con-
sistent with our results. On the other hand, Hotta et al. (2016)
reached higher values of ReM than in the present study, but no
strong quenching was reported. The reason might be that their
models are rotating substantially slower than ours, leading to
weaker magnetic fields and a weaker back-reaction to the flow.
Furthermore, in these models, the differential rotation is strongly

Fig. 3. Energies of differential rotation (black solid lines) and mean
toroidal magnetic field (red dashed) as functions of time from Runs G1,
G2, and G3 (panels a)–c)). Panel d) shows the azimuthally averaged
azimuthal magnetic field at r = 0.98 R� from Run G2. The vertical
dashed lines indicate the high and low states of differential rotation.
Panels e) and f) show the time-averaged rotation profiles in Run G2
from the high and low states indicated as blue dotted and dashed lines
in panel b).

influenced by their SGS heat flux, which transports one third of
the luminosity. Another obvious candidate for explaining the dif-
ference is the wedge geometry used in the current simulations.
However, we note that earlier simulations with a similar setup
did not show a marked trend in the energy of the differential
rotation as the azimuthal extent of the domain was varied (see
Table 1 of Käpylä et al. 2013). However, results of Boussinesq
simulations of convective dynamos have shown a similar change
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Table 2. Volume and time-averaged kinetic and magnetic energy densities realized in the simulations in units of 105 J m−3.

Run Ekin δEkin EDR
kin δEDR

kin EMC
kin δEMC

kin Efluct
kin δEfluct

kin Emag δEmag Etor
mag δEtor

mag Epol
mag δEpol

mag Efluct
mag δEfluct

mag

A1 12.981 0.281 12.107 0.219 0.011 0.002 0.863 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A2 12.485 0.307 11.741 0.207 0.012 0.003 0.732 0.183 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
A3 8.067 1.150 7.362 1.133 0.009 0.000 0.695 0.017 0.293 0.023 0.197 0.019 0.011 0.002 0.086 0.011
A4 1.206 0.117 0.434 0.132 0.007 0.001 0.766 0.015 0.834 0.130 0.367 0.077 0.041 0.006 0.426 0.051
A5 1.088 0.059 0.282 0.121 0.006 0.001 0.800 0.081 1.116 0.272 0.398 0.200 0.070 0.049 0.649 0.141
B1 24.510 0.144 23.087 0.144 0.017 0.001 1.406 0.068 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B2 20.505 1.056 19.036 1.028 0.015 0.001 1.454 0.033 0.680 0.021 0.350 0.021 0.041 0.003 0.289 0.007
B3 7.233 1.775 5.722 1.674 0.014 0.001 1.496 0.128 0.982 0.139 0.431 0.105 0.051 0.014 0.500 0.055
B4 1.816 0.081 0.558 0.076 0.009 0.000 1.248 0.045 1.463 0.072 0.387 0.081 0.089 0.007 0.987 0.016
B5 1.169 0.139 0.167 0.066 0.007 0.001 0.995 0.074 2.325 1.023 0.501 0.487 0.106 0.040 1.718 0.496
C1 7.248 0.364 5.695 0.359 0.014 0.000 1.538 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
C2 8.484 0.635 6.705 0.614 0.018 0.000 1.760 0.021 0.637 0.057 0.145 0.018 0.118 0.013 0.374 0.026
C3 4.299 0.258 2.641 0.220 0.015 0.001 1.642 0.038 1.035 0.111 0.258 0.044 0.102 0.014 0.676 0.056
C4 2.630 0.382 1.069 0.323 0.012 0.001 1.549 0.058 1.308 0.144 0.357 0.076 0.078 0.011 0.873 0.087
C5 1.310 0.062 0.156 0.041 0.007 0.000 1.146 0.063 2.138 0.071 0.309 0.074 0.089 0.008 1.740 0.121
D1 6.895 0.149 5.211 0.119 0.015 0.001 1.668 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
D2 6.775 0.055 4.977 0.049 0.017 0.000 1.781 0.008 0.653 0.013 0.159 0.007 0.133 0.003 0.361 0.006
D3 3.978 0.426 2.296 0.352 0.014 0.000 1.668 0.074 0.873 0.051 0.171 0.036 0.098 0.012 0.604 0.024
D4 2.012 0.130 0.545 0.110 0.010 0.000 1.457 0.020 0.987 0.041 0.145 0.039 0.074 0.003 0.768 0.026
D5 1.545 0.044 0.313 0.065 0.008 0.000 1.224 0.032 1.607 0.139 0.261 0.082 0.068 0.006 1.278 0.052
E1 26.246 0.545 23.956 0.571 0.035 0.001 2.255 0.066 0.366 0.013 0.107 0.008 0.027 0.002 0.232 0.017
E2 3.904 1.355 1.881 1.289 0.022 0.002 2.000 0.064 1.252 0.137 0.424 0.102 0.070 0.011 0.758 0.064
E3 2.236 0.336 0.542 0.265 0.017 0.001 1.677 0.069 1.377 0.142 0.235 0.064 0.074 0.006 1.068 0.087
E4 2.170 0.114 0.428 0.151 0.017 0.000 1.724 0.056 1.700 0.118 0.267 0.068 0.061 0.007 1.372 0.075
F1 7.383 2.069 4.140 2.086 0.119 0.006 3.124 0.141 0.836 0.106 0.154 0.038 0.101 0.039 0.581 0.095
F2 4.845 0.094 1.524 0.147 0.099 0.002 3.222 0.055 0.871 0.055 0.083 0.002 0.063 0.017 0.724 0.038
F3 4.432 0.111 1.307 0.028 0.086 0.002 3.039 0.093 0.910 0.088 0.067 0.009 0.042 0.012 0.801 0.066
F4 4.015 0.095 1.057 0.092 0.079 0.001 2.880 0.016 1.177 0.050 0.061 0.004 0.036 0.004 1.079 0.041
G1 4.299 0.258 2.641 0.220 0.015 0.001 1.642 0.038 1.035 0.111 0.258 0.044 0.102 0.014 0.676 0.056
G2 2.782 0.947 1.026 0.680 0.014 0.003 1.742 0.264 1.501 0.233 0.288 0.086 0.090 0.008 1.123 0.161
G3 2.401 0.608 0.654 0.487 0.014 0.002 1.733 0.224 1.938 0.212 0.372 0.122 0.087 0.034 1.479 0.124

Notes. Runs A1, A2, B1, C1, and D1 do not have dynamos. The δ-quantities represent the variations in time. These are computed by first dividing
the time series into three equally long parts and temporally averaging over each of these. Then the greatest deviation of these quantities from the
average over the whole time series is taken to represent the variations in time.

as a function of the magnetic Prandtl number (Schrinner et al.
2012). The drop in the amplitude of the differential rotation was
associated with a change in the dynamo mode from an oscil-
latory multipolar solution to a quasi-steady dipolar configura-
tion (cf. Fig. 15 of Schrinner et al. 2012) that prevents strong
differential rotation from developing. We do not find a strong
dipole component in our simulations (see Sect. 4.2.3). However,
the strong suppression of the differential rotation often coincides
with the appearance of a small-scale dynamo (see Table 1 and
the discussion in the Sect. 4.1.2) or a change in the large-scale
dynamo mode as discussed above.

4.1.2. Angular momentum transport

The azimuthally averaged z-component of the angular momen-
tum is governed by the equation

∂

∂t
(ρ$2Ω) + ∇ · {$[$ρUΩ + ρ uφu − 2νρS · φ̂

− µ−1
0 (BφB + bφb)]} = 0, (27)

where $ = r sin θ is the lever arm, and velocity and mag-
netic field have been decomposed into mean and fluctuating

parts according to Ui = U i + ui and Bi = Bi + bi. We de-
note the Reynolds and Maxwell stresses as Qi j = uiu j and
Mi j = −bib j/µ0ρ, respectively. We note that Eq. (27) differs
from the formulation of Brun et al. (2004), for instance, in that
we have retained terms containing the mass flux ρU in the con-
tributions corresponding to the meridional circulation. This is
because in our fully compressible setup, ∇ ·ρU is non-zero. This
is particularly important for the average radial mass flux ρUr.
However, it turns out that the effects of compressibility in the
Reynolds stress and the viscous terms are negligible. This means
that terms of the form (ρui)′u j, where the prime denotes fluctua-
tions, ρuiu j, and νρui; j, are neglected.

The main generator of differential rotation is commonly
thought to be the Reynolds stress and in particular its non-
diffusive contribution that is due to the Λ effect (Rüdiger 1980,
1989). Distinguishing the contributions from the Λ effect and
the turbulent viscosity is currently only possible using assump-
tions regarding either of the two coefficients and computing
the other from the Reynolds stress (e.g., Käpylä et al. 2014;
Karak et al. 2015; Warnecke et al. 2016a). We do not attempt
this here, but study the total turbulent stress Ti j = Qi j +Mi j and
the anisotropy parameters realized in simulations with varying
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Fig. 4. From left to right: Reynolds, Maxwell, and total stress components Qrφ,Mrφ, Trφ, Qθφ,Mθφ, and Tθφ for Runs C2 (top), C3, C4, and C5
(bottom). Data nearer than 2.5◦ from the latitudinal boundaries are not shown, so as to emphasize the structures at lower latitudes. The yellow
contours denote the zero levels in each panel.

magnetic Reynolds number. Figure 4 shows the off-diagonal
Reynolds stress components, Qrφ and Qθφ, from Runs C2 to C5
with ReM varying between 14 and 146. The spatial structures of
the two stress components remain relatively similar in Runs C2,
C3, and C4. Neither of the stresses shows a monotonous behav-
ior as functions of ReM, both being generally smaller in Run C3
than in Runs C2 and C4. However, in Run C5 the overall magni-
tude is decreased by a factor of two for Qrφ and about 15 per cent
for Qθφ. No corresponding decrease is observed in the diagonal
components of the stress, whose overall magnitude is given by
the fluid Reynolds number; see Table 1.

We find that for magnetic Reynolds numbers up to roughly
30, the off-diagonal Maxwell stresses are smaller than the corre-
sponding Reynolds stresses. The magnitude of the vertical com-
ponentMrφ is between a quarter and a half of Qrφ, whereas for
the horizontal component the difference is greater. With higher
ReM, the Maxwell stresses attain similar profiles as the Reynolds
stresses but with opposite signs. The magnitudes of the Maxwell

stresses increase with ReM such that they become comparable to
and locally even larger than the Reynolds stresses at the high-
est magnetic Reynolds numbers. The total vertical stress Trφ de-
creases for Runs C2–C4 such that the effect is most clear near
the equator. For Run C5 the vertical stress is dominated by the
Maxwell stress near the equator. The horizontal component Tθφ
decreases monotonically as ReM increases. The near cancella-
tion of the total stress at high ReM is likely to contribute sig-
nificantly to the quenching of differential rotation. These results
are apparently at odds with those of Karak et al. (2015), who re-
ported that the Maxwell stress is an order of magnitude smaller
than the Reynolds stress. However, their simulations were in a
regime near the transition between anti-solar and solar-like ro-
tation profiles with relatively weak and intermittent large-scale
dynamos.

In Set F with anti-solar differential rotation the Reynolds
stresses show only a weak decreasing trend as a function of ReM
with a corresponding increase in the Maxwell stress (not shown).
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The vertical Maxwell stress has an opposite sign in comparison
to the Reynolds stress in all cases, while a similar tendency for
the horizontal stress is not so clear. The magnitude of the vertical
Maxwell stress is roughly half of the corresponding Reynolds
stress, while the amplitude of the horizontal Maxwell stress is
significantly weaker than the horizontal Reynolds stress. The
much weaker quenching of the total turbulent stress in Set F is
consistent with a clearly milder decrease of the differential rota-
tion than in the other sets.

Assuming that the turbulent viscosity follows a naive mix-
ing length estimate, the quenching of the differential rotation
can indicate that the Λ effect is more severely quenched by the
large-scale magnetic field at high magnetic Reynolds numbers.
Another possibility is that small-scale magnetic fields generated
by an efficient small-scale dynamo contribute to enhancing the
turbulent viscosity. In a recent paper, Hotta et al. (2016) sug-
gested that the small-scale dynamo at high ReM suppresses ve-
locity at small scales and facilitates the growth of the large-scale
magnetic fields. First-order smoothing estimates for isotropic
and homogeneous turbulence (M. Rheinhardt, private commu-
nication) suggest that turbulent viscosity acquires a contribution
ν(SSD)

t = 1
3 b(0)

rmsk−1
f , where b(0)

rms is the rms-value of the saturated
fluctuating magnetic field due to small-scale dynamo. We find
that the fluctuating magnetic field energy grows monotonically
as a function of ReM; see Table 2. A corresponding increase of
turbulent viscosity would be compatible with a strong decrease
of differential rotation. However, we find two counter-examples:
in Set A, no SSD is present but the differential rotation still expe-
riences strong quenching, and in Set F, an SSD is present but dif-
ferential rotation remains strong. Furthermore, the dependence
of the Λ effect on small-scale magnetic fields is currently un-
known. Thus the question of the effect of small-scale dynamo
on the turbulent transport of angular momentum at large scales
remains open.

We also show the anisotropy parameters (Fig. 5)

AV =
Qφφ − Qrr

Qφφ + Qrr
, (28)

AH =
Qφφ − Qθθ

Qφφ + Qθθ
, (29)

which are proportional to the vertical and horizontal Λ ef-
fects in mean-field hydrodynamics (Rüdiger 1980) under the
assumption of slow rotation (see also the numerical results of
Käpylä & Brandenburg 2008). Again the differences between
Runs C2 and C3 are relatively small, whereas in Runs C4 and
C5 the mostly positive AV at mid-latitudes in lower-ReM runs
gives way to negative values. According to mean-field theory,
this corresponds to a sign change of the vertical Λ effect that
is responsible for generating radial differential rotation (Rüdiger
1980). The magnitude and the spatial distribution of the horizon-
tal anisotropy parameter AH are significantly different in Run C5
in comparison to the other runs, whereas the differences between
the other runs are less significant. The negative values of AH at
mid-latitudes in Runs C2–C4 coincide with the minimum in the
angular velocity, suggesting that the horizontal Λ effect is nega-
tive there. In Run C5 the overall magnitude of AH is diminished
near the surface at low latitudes. Along with the change of sign
of AV, this is likely to contribute to the reduced differential ro-
tation as a function of ReM. However, more theoretical work is
needed to distinguish the effects of the small- and large-scale
magnetic fields on the angular momentum transport.

The discussion above is valid when the angular momentum
is in a statistically steady state demanding that the sum of two

Fig. 5. Anisotropy parameters AV (left) and AH (right) for the same runs
as in Fig. 4. The yellow contours denote the zero levels in each panel.

terms, divFr + divFθ, vanishes, that is,

1
r2

∂(r2Fr)
∂r

+
1

r sin θ
∂(sin θFθ)

∂θ
≡ divFr + divFθ = 0, (30)

where

Fr =$
[
$ρUrΩ+ρQrφ−νρ$

∂Ω

∂r
−µ−1

0 (BφBr +brbφ)
]
, (31)

and

Fθ=$
[
$ρUθΩ+ρQθφ−νρ

$

r
∂Ω

∂θ
−µ−1

0 (BφBθ+bθbφ)
]
. (32)

Figure 6 shows representative results from Run C3 for the terms
divFr and divFθ, as well as their sum. We find that the radial
and latitudinal contributions have similar structures but opposite
signs and that their sum is at most roughly eight per cent of the
individual components. The elongated structures at low latitudes
within the tangent cylinder are due to the meridional circulation
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Fig. 6. Radial (divFr, left panel) and latitudinal (divFθ, middle) parts of
the divergence of the angular momentum fluxes. The right panel shows
the total divergence. The units are given in the legend. Data taken from
Run C3.

that yields the dominant contribution to the divergence. We note
that neither the radial nor the latitudinal fluxes need to individu-
ally cancel for the divergence to vanish.

4.2. Large-scale magnetic fields and dynamo cycles

4.2.1. General considerations

We find no dynamos in the lowest magnetic Reynolds number
cases Runs A1, A2, B1, C1, and D1, which are in the range
ReM = 5 . . . 9. On the other hand, the highest magnetic Reynolds
numbers clearly exceed critical values for small-scale dynamo
action to occur in simpler setups (e.g., Schekochihin et al. 2005).
In the present simulations the small- and large-scale dynamos
can be excited at the same time, and separating the two is not di-
rectly possible. We therefore resort to runs where we artificially
suppress the large-scale (φ-averaged) magnetic fields at each
time step. This eliminates the large-scale dynamo and growing
magnetic fields can be associated with a small-scale dynamo.
We have performed such runs for each of the cases where a dy-
namo is observed and find that a small-scale dynamo is excited
in Runs B5, C5, D4, D5, E3, E4, F4, G2, and G3.

4.2.2. Cycle detection using D2 analysis

Using the D2 statistic discussed in Sect. 3, we separately ana-
lyzed radial and azimuthal components of the mean magnetic
field. In the former case we included all the data near the po-
lar region (55◦ ≤ |90◦ − θ| ≤ 75◦) and in the latter case data
around mid-latitude region (10◦ ≤ |90◦ − θ| ≤ 45◦). We consid-
ered data above 0.94 R� and analyzed the northern and southern
hemispheres separately.

The results of the analysis are listed in Table 3. We required
that at least five full cycles were covered for each trial period in
the period search range. To meet this criterion, we adjusted the
upper limit of the period search range according to the length of
the dataset, while the lower limit was always fixed at one year.
We set the lower limit for the coherence length range to two
cycles per given period and the upper value was determined by
the dataset length. However, in some cases the longest possible
trial period was still shorter than two years, in which cases the
analysis was deemed infeasible. This situation was encountered
for Run G3, which has therefore not been included in Table 3.

Table 3. Cycle lengths detected using D2 statistic.

Run Pmax lmax
coh

Cycle length
Bφ(N) Bφ(S) Br(N) Br(S) Class

A3 11 5 4.06 – 3.71 – PW
A4 7 5 – 5.31 – – PW
A5 5 5 – – – – (QS/IR)
B2 5 5 1.57 1.42 2.29 1.92 PW
B3 5 5 – – 4.57 4.77 IR
B4 10 5 8.14 – 9.16 – IR
B5 5 5 – – 4.90 4.90 (PW)
C2 7 6 3.40 3.34 3.40 3.34 EW
C3 21 5 5.11 5.24 4.99 5.11 EW
C4 13 5 – 7.30 8.81 7.56 EW
C5 7 5 – – – 6.80 (QS/IR)
D2 6 9 3.44 3.39 3.44 3.39 EW
D3 12 5 5.85 5.27 5.70 5.14 EW
D4 8 5 – – – – (EW)
D5 5 5 – – – – (QS/IR)
E1 2 5 1.66 1.50 1.70 – PW
E2 11 5 5.89 6.05 6.23 6.05 IR
E3 14 5 8.46 6.42 8.81 6.05 (QS/IR)
E4 4 5 – – – – (QS/IR)
G2 10 5 5.96 – 6.30 (9.57) 9.57 (6.48) EW/QS

Notes. Here Pmax and lmax
coh are the upper limit for the period search range

and the maximum coherence length, respectively. They are related by
∆t ≈ Pmaxlmax

coh . Values in the fourth to seventh columns are detected cy-
cle periods (in years) for azimuthal (Bφ) and radial (Br) mean magnetic
fields in north (N) and south (S) hemispheres. A long dash stands for
no detection. The last column indicates the classification of the dynamo
solution, see Sect. 4.2.3. Brackets indicate an uncertain classification
due to too short time series.

Furthermore, Runs A1, A2, B1, C1, and D1 without dynamos
were not analyzed.

All the cycle lengths given in Table 3 are significant with the
p-values lower than 1%. More precisely, in our case the p-value
represents a probability that a cycle with a given period would
appear by chance out of white-noise data with the same distri-
bution as the original data. In those cases where the obtained
D2 spectrum contained no significant minima, no cycle was de-
tected. However, here we must also note that as a result of nar-
rowing the period search range in some cases, it is possible that
the real cycle length is located outside the range and we did not
detect it. This is particularly relevant for the runs at high mag-
netic Reynolds numbers where the time series are short.

In all the sets, especially when the highest Reynolds num-
ber cases are excluded, the cycle lengths are found to increase
as functions of the magnetic Prandtl number. This shows that
the dynamo period is sensitive to the strength of the magnetic
diffusion such that when the diffusion is decreased, and corre-
spondingly the diffusion timescale increases, the dynamo period
increases.

4.2.3. Dynamo modes

Given that recent simulations reproduce solar-like magnetic cy-
cles with equatorward migration (hereafter EW) of activity belts,
it is of interest to probe the parameter space to determine when
such solutions are excited. After identifying cyclic solutions with
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Fig. 7. Azimuthally averaged azimuthal magnetic field near the surface from Runs B2 (top left), D3 (top right), B3 (bottom left), and F3 (bottom
right) with poleward (PW), equatorward (EW), irregular (IR), and quasi-stationary (QS) dynamo solutions, respectively.

the D2 statistics, we classified them as EW or PW (poleward)
based on the migration direction of the dynamo wave at low
latitudes between ±10◦ and ±45◦. We also find quasi-stationary
(hereafter QS) solutions in Set F. When a clear classification by
visual inspection could not be made, we classify the solution as
irregular (IR). In some cases features from more than one class
can be present, for instance, an equatorward cyclic variation in
addition to a quasi-stationary background. This solution is clas-
sified as EW/QS, but typically such cases are quite uncertain and
are indicated by brackets in the last column of Table 3. No large-
scale dynamo action is denoted by ND. In Fig. 7 we show time-
latitude plots of the azimuthally averaged azimuthal magnetic
field Bφ from four runs exemplifying each of the main dynamo
modes discussed above.

We first consider the Sets A–D with Ω0 = 5Ω�. For PrSGS =
0.25 (Set A) and moderate ReM we obtain solutions with clear
poleward migration. This type of dynamos was first obtained in
the pioneering studies of Gilman (1983) and Glatzmaier (1985).
Solutions showing poleward migration have been reported more
recently by many groups (e.g., Käpylä et al. 2010b; Brown et al.
2011; Schrinner et al. 2012). In one case (Run A3) we see a
hemispheric dynamo with poleward migration, similar to those
reported by Busse (2002) and Gastine et al. (2012), for example.
In the largest ReM case (Run A5) the clear oscillatory solutions
of the runs with smaller Reynolds numbers give way to possi-
bly irregularly reversing or quasi-stationary large-scale fields.
The time series is too short, however, for possible cycles to be

detected. For PrSGS = 0.5 (Set B) we find a PW mode excited
in the case ReM = 12 (Run B2). At intermediate ReM (Runs B3
and B4) the solutions mostly show irregularly reversing fields,
although features from both PW and EW modes can be discerned
at times; see the lower left panel of Fig. 7. The highest Reynolds
number case (Run B5) appears to return to a poleward oscilla-
tory mode with a longer cycle period. However, the large-scale
field shows only four reversals in the 24-yr duration of the sim-
ulation and the D2 statistic captures this only in one of the four
analyzed cases. Therefore the classification of this run as PW is
deemed less reliable than those of the other runs in this set.

For PrSGS ≥ 1 (Sets C and D) we often find solutions with
EW migration (Runs C2, C3, D2, D3, and D4). In Run D4 the
solution is clearly EW, but the time series covers only three full
cycles and is therefore not detected by D2. The transition from
poleward migrating to equatorward migrating solutions at inter-
mediate magnetic Reynolds numbers coincides with the change
of the rotation profile from runs with consistently positive ra-
dial gradient of Ω to ones with a minimum of Ω at mid-latitudes
where ∂Ω/∂r < 0 as PrSGS increases. The change in the dy-
namo mode fits with the interpretation in terms of a classical dy-
namo wave obeying the Parker-Yoshimura rule (Warnecke et al.
2014, 2016b). For the highest magnetic Reynolds number cases
in Sets C and D we again observe possibly quasi-stationary or
irregular configurations. This classification is based on signifi-
cantly shorter time series than in the other cases, and it is possi-
ble that there are cycles that are much longer than in the low-ReM
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Fig. 8. Azimuthally averaged azimuthal magnetic field Bφ (color con-
tours) in units of kG and the fields lines of the poloidal field (continuous
and broken lines for clockwise and anticlockwise loops, respectively).
Left: data from Run B2 averaged over three months near a cycle maxi-
mum at t = 70 yr. Right: data from Run A5 averaged over the last ten
years of the run.

cases or that a prolonged transient is still in progress. These re-
sults appear to be in agreement with those of Schrinner et al.
(2012), who found a transition from oscillatory dynamos to non-
oscillatory ones at a roughly comparable ReM for Boussinesq
convection in spherical shells. They also showed that in the high-
PrM regime the two bistable branches of dynamo solutions merge
and that only strongly dipolar dynamos with weak differen-
tial rotation survive. However, Gastine et al. (2012) have shown
that for sufficiently density stratified cases the dipolar branch
does not exist at least for moderate values of ReM. Our simu-
lations with moderate density stratification of Hρ ≈ 3, where
Hρ = −(∂ ln ρ/∂r)−1 is the density scale height, do not indicate
that a dipolar mode takes over at high ReM, see Fig. 8 for a rep-
resentative result from Run A5. This is consistent with the re-
sults of Gastine et al. (2012), who found no dipole-dominated
dynamos for Hρ & 2.

The realized solutions from the runs in Sets A–D are plot-
ted in the (PrSGS,PrM)-plane in Fig. 9. We find that the low
and intermediate ReM runs produce cyclic solutions with PW
for low PrSGS and EW for high PrSGS. The case PrSGS = 0.5
works as a watershed between the two cyclic regimes. The dy-
namos at high ReM are fundamentally different from their more
diffusive counterparts in that the differential rotation is almost
absent. Although the ratio of the energies in the mean poloidal
to toroidal components is not significantly different in the high-
ReM runs in comparison to lower-ReM runs in each set, the dy-
namos at the high-ReM regime can be of α2 type. Substanti-
ating this claim, however, requires that the turbulent transport
coefficients relevant for the maintenance of large-scale magnetic
fields are extracted from the simulations and applied in corre-
sponding mean-field models, which is not within the scope of
the present study.

In Set E we find a PW solution for the lowest ReM (Run E1),
whereas at higher ReM we find IR (E2) and irregular/quasi-
stationary (E3 and E4) configurations. Generally, Set E be-
haves similarly as Sets A–C, that is, a transition from oscil-
latory dynamos at intermediate ReM to quasi-stationary or ir-
regularly varying solutions at high ReM. However, Run B1 of
Warnecke et al. (2016a) is similar to Run E2, but with PrSGS = 2
instead of 1 shows EW. Set F is qualitatively different from the
other sets similarly as for the differential rotation. The large-
scale magnetic fields show a quasi-stationary configuration in all
of the runs in Set F. In Run G2 the modulation of the differential
rotation was shown to be related to a changing large-scale dy-
namo mode that is either EW or QS; see panels b and d of Fig. 3.
In the highest-ReM case, Run G3, the two competing modes ap-
pear to be present again, but the short data set length renders
such classifications preliminary at best.

4.2.4. Saturation level of large-scale magnetic fields

For the total magnetic energy we find a monotonically increasing
trend as a function of ReM in all sets, see representative results
in the left panel of Fig. 10 and Table 2. The absolute value of the
axisymmetric parts of the poloidal and toroidal magnetic fields
shows monotonically decreasing trends only in Set F with anti-
solar differential rotation. In the other sets the energies of the
poloidal and toroidal mean fields typically do not behave mono-
tonically as functions of ReM. However, given the large tempo-
ral variations, our results are compatible with mean magnetic
field energies converging to constant values at high magnetic
Reynolds numbers, see the right panel of Fig. 10 for the results
of Sets C and G. The same conclusion also applies to Set F. The
findings for the mean magnetic fields appear to contradict the
results of Nelson et al. (2013), who found a monotonically de-
creasing trend as a function of ReM; see Fig. 10.

The main difference to the simulations of Nelson et al.
(2013) is that their models were done with a full spherical shell
as opposed to the wedge geometry used here, and that magnetic
field boundary condition at the outer radial boundary uses ex-
trapolation to a potential field rather than a radial field condition
as in the present study. Furthermore, Nelson et al. (2013) con-
sidered anelastic models, whereas in our case the gas is fully
compressible. Simulations with forced turbulence in spherical
shells with coronal envelopes have shown that a higher field
strength can be achieved when the magnetic field at the boundary
is not restricted to being purely radial (Warnecke & Brandenburg
2014). Furthermore, Nelson et al. (2013) used profiles for ν and
η, which are absent in our study. The constant diffusion coeffi-
cients used here may lead to a steeper increase of the magnetic
field energy than in the runs of Nelson et al. (2013), where the
local value of ReM is significantly higher in the deeper layers.
Detailed comparisons of diffusion schemes and parameter val-
ues are presented in Tables A.1 and A.2.

It is difficult to assess which of these differences is the
most important. However, a plausible candidate is the change
in topology of the field in the full-sphere simulations of
Nelson et al. (2013). As described in Käpylä et al. (2013), the
large-scale magnetic field can become dominated by low-order
non-axisymmetric modes, and therefore applying an axisym-
metric mean will average out such field contributions (see their
Fig. 16 and Table 2). Evidence of such non-axisymmetric modes
can be seen in the instantaneous magnetic fields in Figs. 4 and 6
of Nelson et al. (2013). However, it is not possible to assess how
the degree of non-axisymmetry behaves as a function of ReM
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Fig. 9. Color contours: radial derivative of Ω at
r = 0.85 R� averaged from latitudes +25◦ and
−25◦. The dynamo modes realized in Sets A–D
are overplotted with abbreviations ND, PW,
EW, IR, and QS. The thick yellow curve indi-
cates the zero level of ∂Ω/∂r. Overlapping sym-
bols denote solutions that show characteristics
from several modes, while question marks indi-
cate that the classification is uncertain because
of the insufficient length of the data set.

Fig. 10. Energy densities of the total magnetic field (left panel), and the azimuthally averaged fields (right) from Sets C (black dashed line) and G
(black solid), from two sets of runs by Nelson et al. (2013; solid and dashed red lines) and from Hotta et al. (2016; blue solid lines). The red solid
line consists of data from cases D3, D3a, and D3b of Nelson et al. (2013) with PrM = const. = 0.5. Correspondingly, the dashed red line shows
data from cases D3, D3-pm1, and D3-pm2 of Nelson et al. (2013) with PrM varying from 0.5 to 2. From Hotta et al. (2016) we show data for cases
“Low”, “Medium”, and “High”.

in the results of Nelson et al. (2013), and a direct comparison is
therefore not possible.

In another recent study, Hotta et al. (2016) presented results
from less rapidly rotating (Ω = Ω�) simulations at high values
of ReM. Such simulations are less likely to contain significant
non-axisymmetric modes. Their main claim is that whereas the
mean magnetic energy decreases at intermediate ReM, it recov-
ers as ReM is increased further. We have included their results
in Fig. 10 for comparison. However, only a rough comparison is
possible as only three data points are available and a jump occurs
between the two lowest-ReM runs, which is caused by a switch
from explicit diffusion to a numerical slope-limited scheme. The
absolute values for the mean fields are also lower than ours,
probably because their large-scale dynamo is less efficient than
in the present study because of their slower rotation. Only the
trend as a function of ReM can therefore be compared with the
current results or with those of Nelson et al. (2013). The results

of Hotta et al. (2016) are more in line with ours, but the degree
of temporal variations is indicated only in passing. Hotta et al.
(2016) stated that during the last 200 days the mean magnetic
field energy in the simulation high is almost 2.5 times higher
than in the time average over the full duration (50 yr) of the sim-
ulation. It is not possible to accurately assess the steepness of
the increasing trend of the energy of the mean field as a function
of ReM.

5. Conclusions

We find that, as the SGS Prandtl number (responsible for
SGS turbulent transport) is increased, the rotation profiles re-
alized in the simulations develop a region of negative shear
at mid-latitudes. At moderate ReM this latitude coincides with
a transition from poleward-migrating to equatorward-migrating
dynamo modes. This can be explained by interpreting the
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solutions as dynamo waves propagating along the isocontours
of constant shear (Parker 1955; Yoshimura 1975). However, it
appears that, as PrM is sufficiently high (corresponding to high
ReM), the regular cycles give way to quasi-stationary or irreg-
ularly varying solutions. However, as a result of computational
constraints, the time series of these runs are typically signifi-
cantly shorter than of the lower-ReM runs, so that cyclic solu-
tions with long cycle periods cannot be ruled out.

We also find that the cycle length of the dynamo solution un-
dergoes a systematic increase when the magnetic Prandtl number
is increased: seemingly independent of the other parameters, the
decreasing magnetic diffusivity leads to longer cycles. The high-
est Reynolds number runs are, however, too short for our period
analysis to work conclusively.

We find a strong dependence of the differential rotation on
the magnetic Reynolds number so that for the highest values
of ReM both radial and latitudinal shear are almost absent. The
strongest quenching tends to appear in cases where a small-scale
dynamo is present. However, there are exceptions. The physical
reason for the quenching is therefore unclear, but several mecha-
nisms appear plausible. First, the small-scale magnetic field can
enhance turbulent viscosity or quench the Λ-effect responsible
for maintaining differential rotation. Suppression of small-scale
flows that are due to the small-scale magnetic fields has been
suggested by Hotta et al. (2016). We find that at intermediate
ReM, the Maxwell stress is on the same order of magnitude as the
Reynolds stress and becomes comparable at high ReM. Because
of their opposite signs, the total stress is diminished. We expect
that for intermediate and in particular for high ReM, the Maxwell
stress plays an important role in the angular momentum trans-
port. Second, the dependence of turbulent transport on the large-
scale magnetic field is ReM-dependent and can lead to enhanced
quenching in the parameter regime studied here in comparison to
earlier more laminar simulations. However, for a limited param-
eter range we find that the system vacillates between two states
where either the differential rotation is strong and mean magnetic
field relatively weak, or vice versa. Furthermore, the temporal
variations appear to increase as the Rayleigh and Reynolds num-
bers are increased. Finally, we find that in cases where the dif-
ferential rotation is anti-solar, the quenching is much less promi-
nent, possibly due to significantly weaker mean fields generated
in those cases.

The total magnetic energy grows monotonically as a func-
tion of ReM in all of our runs. The energy of the azimuthally
averaged fields is in all cases consistent with increasing or con-
stant mean fields at high ReM. This is apparently at odds with
the anelastic full-sphere simulations of Nelson et al. (2013), who
found a steeply declining trend with magnetic Reynolds number.
However, their relatively rapidly rotating (Ω = 3Ω�) simula-
tions also allow significant low-order non-axisymmetric modes
to develop that will not show up in azimuthal averaging. A fair
comparison is therefore not possible without a proper assessment
of the non-axisymmetric contributions. Our results are more in
line with those of Hotta et al. (2016), who used a model rotat-
ing at the solar rate where the large-scale fields are more clearly
axisymmetric.

A possible source of discrepancies between the current
and previous studies is the use of wedge geometry. Rigorous
comparisons between wedges and fully spherical simulations
have not been done so far. However, runs with similar pa-
rameters (Rayleigh, Taylor, and Prandtl numbers) produce re-
sults that are in qualitative agreement; compare the results of
Käpylä et al. (2010b) regarding cyclic dynamos with those of
Brown et al. (2011), for instance. Similarly, the more recent

simulations showing equatorward migration (Käpylä et al. 2012;
Augustson et al. 2015) appear to support the validity of the
wedge approach. Furthermore, wedges with full 2π extent in lon-
gitude produce dynamos dominated by non-axisymmetric large-
scale fields with azimuthal dynamo waves (Käpylä et al. 2013;
Cole et al. 2014) that are also routinely seen in anelastic full-
sphere simulations (e.g., Yadav et al. 2015). Last, the transition
from anti-solar to solar-like differential rotation occurs at very
similar Coriolis numbers in a wide range of simulations, in-
cluding wedges with artificially increased luminosity and rota-
tion rate (Gastine et al. 2014). The various modeling approaches
also use a range of different SGS models and parameter values
(see Tables A.1 and A.2) and are still able to reproduce similar
large-scale phenomena. These comparisons suggest that the cur-
rent results obtained in wedges are likely to be realized in fully
spherical simulations in the same parameter regime.

Our final conclusion is that the current simulations are not
near an asymptotic regime where the large-scale results would
be independent of the microphysical diffusion coefficients. This
is most strikingly demonstrated by the steep quenching of the
differential rotation and the disappearance of regularly oscillat-
ing large-scale magnetic fields at high values of ReM.
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Appendix A: Comparison to other simulation
methods

The purpose of this appendix is to compare the diffusion
schemes and estimates of the Prandtl numbers in the present
study with several methods presented in the literature. We con-
sider the papers by Nelson et al. (2013) and Hotta et al. (2016)
that are discussed in the main text as well as the study of
Ghizaru et al. (2010), which represents another established sim-
ulation method; see Tables A.1 and A.2 for details.

Estimating the Prandtl number from simulations using the
solar luminosity requires that the value of the radiative diffusivity
in the solar convection zone is known. For the following we use
an estimate of this quantity at r = 0.85 R�. Standard solar models
(e.g., Stix 2002) indicate that radiation carries roughly ten per
cent of the flux at this radius, such that Lrad ≈ 0.1 L�. Using
Eq. (6), we can write

Lrad = 4πr2Frad = −4πr2K∂rT. (A.1)

We then use the definition of the heat conductivity K = cPρχ,
assume that the temperature gradient is close to the adiabatic
one, ∂rT ≈ −g/cP, and insert g = GM�/r2 to obtain

χ =
Lrad

4πGM�ρ
· (A.2)

Using the values quoted above and ρ ≈ 50 kg m−3 (Stix 2002),
we find that χ ≈ 5 × 102 m2 s−1 for the Sun at r = 0.85 R�.

The solar luminosity is adopted in the study of Nelson et al.
(2013), yielding a radiative diffusion coefficient on the order
of the estimate from Eq. (A.2). The authors did not present
a detailed description of their model, however, but referred to
Brown et al. (2010), where the corresponding quantity is de-
noted as κr. Furthermore, the values of ν at mid-convection zone
depth are in the range 6 . . . 13 × 107 m2 s−1 for their cases D3[a,
b, pm1, pm2], and a value of 2×106 m2 s−1 is estimated for case
S3 with a Smagorinsky SGS model. These yield Prandtl numbers
on the order of 105 and 104, respectively. For the model “Low”
of Hotta et al. (2016), only the surface value ν = 108 m2 s−1 is
given. As ν is proportional to ρ−1/2, the value at mid-convection
zone depth is a few times 107 m2 s−1 and the Prandtl number
is of the order of 105. For their cases “Medium”, “High”, and
“High-S”, a slope-limited diffusion scheme is used, so that es-
timating the diffusion coefficients is non-trivial. However, they
computed the Reynolds number (hereafter ReSL) based on the
Taylor microscale that was obtained from kinetic energy spectra.
They found that the Reynolds numbers for “High” and “High-
S” are roughly an order of magnitude larger than for “Low”,
whereas for “Low” and “Medium” they are comparable. As-
suming that the turbulent velocities in all cases are of similar
strengths, we can estimate “slope-limited diffusion viscosities”
from νSL = νLowReLow/ReSL. We therefore infer that the value
of the Prandtl number in the model “Medium” is 105 and an or-
der of magnitude smaller in the models “High” and “High-S”. In
these runs, the surface value of the turbulent heat conductivity is
κ = 2 × 109 m2 s−1 (H. Hotta, private communication), yielding
PrSGS in the range 0.05 . . . 2 × 10−3 for the runs of Hotta et al.
(2016).

In principle, even a third Prandtl number can be defined
based on the diffusion coefficient applied only to the mean
(spherically symmetric) entropy profile. In the present study and
also in that of Hotta et al. (2016), this coincides with the coef-
ficient relevant for diffusing entropy fluctuations. However, the
coefficients can also be different, which is the formulation of-
ten used in simulations performed with the anelastic spherical

harmonic (ASH) code including those presented in Nelson et al.
(2013). However, the value of the coefficient for mean entropy
diffusion (κ0) is not provided in the reference with a more de-
tailed model description (Brown et al. 2010).

The Eulerian-Lagrangian (EULAG) code of Smolarkiewicz
& Charbonneau (2013) employed by Ghizaru et al. (2010) uses
quite a different approach and replaces radiative conduction by
Newtonian cooling toward a prescribed thermodynamic state.
The timescale of the cooling τc is typically on the order of
20 months (P. Charbonneau, private communication; see also
Strugarek et al. 2016). This timescale would correspond to a ra-
diative/SGS diffusion coefficient of χ = ∆r2/τc ≈ 6×108 m2 s−1,
where ∆r = 0.25 R�. Although this comparison yields some
insight about the entropy evolution, the cooling and diffusion
processes cannot be directly equated. Therefore the concept of
a Prandtl number does not appear suitable in that case. The
diffusion of velocity, magnetic fields, and entropy fluctuations
is due to the numerical scheme making the estimates of the
other Prandtl numbers also problematic. Presumably the diffu-
sivities of all variables at a given resolution are roughly simi-
lar such that PrSGS and PrM are on the order of unity. Hydro-
dynamic EULAG models with an otherwise similar setup to
that of Ghizaru et al. (2010) yield estimates of viscosity and en-
tropy diffusion in ranges νeff = 0.6 . . . 1.2 × 108 m2 s−1 and
κeff = 1 . . . 8 × 107 m2 s−1, with PrSGS = νeff/κeff ≈ 1 . . . 8
(Strugarek et al. 2016).

We show the conversion factors for the definitions used in
the current study for Péclet, fluid and magnetic Reynolds, and
Coriolis numbers in Table A.2. The conversion for the results
of Nelson et al. (2013) is straightforward, except that for the
Coriolis number we have used the relation Ta = Co′2Re′2 to
compute Co′ = 2πCo. The definition of the Rossby number
in Nelson et al. (2013), Ro = ω/2Ω, is based on the vortic-
ity ω = ∇ × u and corresponds to Co = Ro−1kω/kf , where
kω = ωrms/urms. The values of Co for the models of Nelson et al.
(2013) correspond well to our simulations with Ω = 3Ω�, see
Table 1. In the case of the EULAG simulations we use the val-
ues quoted by Passos & Charbonneau (2014) for the Reynolds
numbers (30 . . . 60 in their notation) divided by 2π and the es-
timate of PrSGS quoted above to compute Pe. The estimate of
the Coriolis number is based on simulation data provided by P.
Charbonneau. Finally, for the study of Hotta et al. (2016), the
conversion of the fluid and magnetic Reynolds numbers is based
on values given in the paper, whereas the estimates of Pe and Co
are based on simulation data provided by H. Hotta. The values
of Co are again in excellent agreement with our corresponding
simulations with Ω = Ω�; see Table 1.

We note that the simulations of Nelson et al. (2013) and
Hotta et al. (2016) operate in a low-PrSGS regime that is also
realized in the Sun, although in a much more extreme fashion.
Such a regime is required especially in simulations with solar
luminosity and rotation rate to lower the convective velocities
and to achieve solar-like differential rotation (Käpylä et al. 2014;
Hotta et al. 2016). However, the tradeoff is that the Péclet num-
bers are low and the evolution of entropy is significantly in-
fluenced by the SGS diffusion. It is not clear whether such an
approach is more realistic than having PrSGS and PrM on the or-
der of unity and Re, ReM, and Pe � 1. We also note that the
run times of the highest resolution runs are short: four years
for “S3” in Nelson et al. (2013) and 500 days for “High-S” in
Hotta et al. (2016), whereas transients and/or secular evolution
in the high-ReM regime can have a significantly longer timescale;
see Figs 3b–d.
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Table A.1. Diffusion schemes applied in a few comparable studies.

Study Viscosity Magnetic Radiative Mean entropy Fluctuating entropy
diffusivity diffusion diffusion diffusion

Present work ν η χ χSGS χSGS
(Pencil Code) (constant) (constant) (6.4 × 105 × solar) (piecewise constant) (piecewise constant)

Nelson et al. (2013), (ASH) ν η κr κ0 κ
Cases D3[a, b, pm1, pm2] (∝ρ−1/2) (∝ρ−1/2) (solar) (near surface) (∝ρ−1/2)

Nelson et al. (2013), νS ηS ≡ νS /Pm κr κ0 κS ≡ νS /Pr
Case S3 Smagorinsky Smagorinsky (solar) (near surface) Smagorinsky

Ghizaru et al. (2010) iLES iLES Newtonian Newtonian iLES+Newtonian
(EULAG) cooling cooling cooling

Hotta et al. (2016) ν η κr κ κ
Low (∝ρ−1/2) (∝ρ−1/2) (solar) (∝ρ−1/2) (∝ρ−1/2)

Hotta et al. (2016) Slope-limited Slope-limited κr κ κ
Medium, High, High-S diffusion diffusivity (solar) (∝ρ−1/2) (∝ρ−1/2)

Notes. The entries for each study correspond to the symbols used for the various diffusion coefficients and their spatial profiles or functional de-
pendences, where applicable. The coefficients κr and κ0 are not mentioned by Nelson et al. (2013), who referred to an earlier study by Brown et al.
(2010) for a detailed description of their model. iLES stands for implicit large-eddy simulation where the truncation errors of the numerical scheme
provide the diffusion.

Table A.2. Parameter values with conversion factors to the definition in the present study from the same studies as in Table A.1.

Study Pr PrSGS PrM Pe Re ReM Co
Present work 18 . . . 72 0.25 . . . 5 0.5 . . . 5 4 . . . 134 17 . . . 134 5 . . . 151 1.4 . . . 15.9

Nelson et al. (2013), (ASH) ν/κr ν/κ ν/η PrRe′/(2π) Re′/(2π) Rm′/(2π)
√

Ta/(2πRe′)
Cases D3[a, b, pm1, pm2] O(105) 0.25 0.5 . . . 2 4 . . . 11 16 . . . 43 8 . . . 22 4.5 . . . 5.5

Nelson et al. (2013), νS /κr νS /κS νS /ηS PrRe′/(2π) Re′/(2π) Rm′/(2π)
√

Ta/(2πRe′)
Case S3 O(104) 0.25 0.5 229 915 458 5.8

Ghizaru et al. (2010) – – – – – – –
(EULAG) ? ≈1 ≈1 5 . . . 10 5 . . . 10 5 . . . 10 30

Hotta et al. (2016) ν/κr ν/κ ν/η Pr Re/(2π) Re/(2π) PmRe/(2π) –
Low O(105) 0.05 1 2.5 51 51 1.4

Hotta et al. (2016) νSL/κr νSL/κ νSL/ηSL Pr Re/(2π) Re/(2π) PmRe/(2π) –
Medium, High, High-S O(104 . . . 105) 0.04 . . . 2 × 10−3 1.03 . . . 1.71 2.5 61 . . . 1129 63 . . . 1930 1.4

Notes. The values for Pe, Re, and ReM for the study of Ghizaru et al. (2010) are based on values stated in Passos & Charbonneau (2014) divided
by 2π. The Coriolis numbers for the simulations of Ghizaru et al. (2010) and Hotta et al. (2016) were calculated using our definition, Eq. (22), and
simulation data for the volume-averaged rms-value of velocity fluctuations provided by P. Charbonneau and H. Hotta, respectively. The Prandtl
number Pr is not described in Ghizaru et al. (2010) and thus denoted by a question mark here. In the last row, νSL and ηSL are the viscosity and
magnetic diffusivity estimated from the slope-limited diffusion scheme of Hotta et al. (2016; see text).
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