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Abstract A brief summary of the various observations and constraints that underlie solar
dynamo research are presented. The arguments that indicate that the solar dynamo is an
alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main
open questions that remain are concerned with the subsurface dynamics, including why
sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle
is about 11 years long, and why the sunspot groups emerge tilted with respect to the equa-
tor (Joy’s law). Next, we turn to magnetic helicity, whose conservation property has been
identified with the decline of large-scale magnetic fields found in direct numerical simula-
tions at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the
solar surface can alleviate this problem and connect theory with observations, as will be
discussed.

Keywords Solar dynamo · Sun

1 Introduction

The Sun’s magnetic field is maintained by its interaction with plasma motions, i.e. dynamo
action. From the 1950s to 1980 the most compelling question of whether dynamo action
could in fact be responsible for the Sun’s magnetic fields (a suggestion originally made by
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Larmor 1919) was answered. That dynamo action is in principle possible for some pre-
scribed flows in a body with uniform conductivity was established rigorously in the 1950’s
by Herzenberg (1958). In fact, a number of simple spatially periodic flows were later shown
to act as dynamos (Roberts 1970). From 1955 to about 1980 the next step was taken, where
it was shown that turbulence driven by convection in a rotating system can produce a mag-
netic field with scales comparable to the size of the system (Parker 1955a; Steenbeck et al.
1966). The key concept introduced here is helicity that is the breaking of the symmetry of
the convecting system by the rotation Moffatt (1978), Krause and Rädler (1980). This an-
swered the most compelling question of whether dynamo action could in fact be responsible
for the Sun’s magnetic fields, as suggested originally made by Larmor (1919).

The next step was to begin working out which motions are actually producing the Sun’s
magnetic field. Going in this direction substantially beyond what was presented by Parker
(1955a), the work of Babcock (1961), Leighton (1964), and Leighton (1969) provide a phe-
nomenological model for the solar dynamo with close contact to the observations. Their
work has been put within the framework of mean-field models by Stix (1974). Hence the
Babcock-Leighton model can be considered a special example of the mean-field model
where the important dynamo effects are identified with what is seen on the Sun (such as
the “rush to the poles” and the tilt of bipolar active regions).

The aim of dynamo theory today, in the context of the Sun, is to understand how the
dynamo actually operates to produce the magnetic fields we see. The constraints that inform
our understanding are thus the various different observations of solar magnetic fields. We
will discuss some of the different types of observations that are available to us in Sect. 2.
We will try to present some coverage of what time- and spatial-scales are covered by the
observations but cannot hope to be comprehensive. Some of the observational constraints
will then be presented in their distilled form in Sect. 3 (such as Hale’s law, Joy’s law, the
Waldmeier effect, some properties of grand minima and maxima). A few implications for
the dynamo that can easily be inferred from the observations will be discussed in Sect. 4.

Our coverage of the theoretical and modeling progress that has been made will be even
more sparse. It is an exciting time when there are a large number of theoretical models
backed by simulations to explain a number of aspects seen on the Sun. Again our choice of
topics and models is necessarily biased. In Sect. 5 we will discuss some prominent results
from Flux Transport Dynamo models, and in Sect. 6 we will discuss some results from de-
tailed calculations of the evolution of the velocity and magnetic fields based on the MHD
equations in a geometry resembling that of the Sun. We comment that because the param-
eters of the plasma inside the Sun are extreme, it is beyond the state of the art to hope to
realistically model the solar dynamo at present. These simulations are therefore intended to
give an insight into the physics that could possibly be occurring on the Sun.

2 What Do We Know from Observations?

2.1 What We Would Like to Know?

Our aim is to understand the solar dynamo. Because understanding requires synthesis, even
a complete knowledge of the magnetic and velocity fields inside the Sun as a function of
time would not necessarily be sufficient—however it would certainly be a much better start
than what we have at present. What we have is incomplete in many ways. Firstly we only
have reasonably consistent synoptic measurements based on seeing only one half of the Sun,
and only for a few cycles. We know that there are Grand Minima for which we do not have
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this type of data, and in fact the last few cycles were part of a Grand Maximum so we do
not have data representative of even the “typical” behavior of the Sun. Finally our only tool
for probing the convection zone directly is helioseismology which comes with limitations
in resolution due to finite-wavelength effects and in practice limitations due to the noise
associated with granulation. Our (partial) blindness to the long-term and interior dynamics
is a severe problem for understanding the solar dynamo.

2.2 What Observations Do We Have?

Since dynamo action occurs beneath the solar surface, the most directly relevant observa-
tions for dynamo theory are the time series of surface magnetic and velocity fields. For full-
disk almost continuous space-based observations we have SDO/HMI (Scherrer et al. 2012)
and SOHO/MDI (Scherrer et al. 1995) observations. These instruments allow, through in-
version of the spectropolarimetric observations, the line-of-sight velocity and magnetic field
at the solar surface to be inferred (SDO/HMI allows the full vector magnetic field to be de-
termined). The tangential velocity can be inferred on scales larger than granules using Local
Correlation Tracking techniques (e.g. Roudier et al. 1998).

These observations cover cycle 23 and so far the rising and maximum phase of cycle 24.
This allows the study of the evolution of the magnetic field on timescales from minutes to a
decade or more. Its main limitation is that only having two cycles means essentially we only
have two data points (on solar-cycle timescales) and hence cannot make strong statements
about the variation of activity level from cycle to cycle. Also while the resolution is adequate
for some purposes, it is less than optimal near the poles.

The limited spatial resolution is partly compensated by high-resolution space missions
such as Hinode (Lites et al. 2013) that can observe small magnetic flux concentrations near
the poles (Tsuneta et al. 2008). The limited number of cycles covered is partly mitigated by
observations which decrease in there temporal coverage and detail as we go further back in
time. The most detailed of these are the magnetograms taken in synoptic programs which
cover most of cycles 21 to 24. These include observations by KPNSO/VTT and SOLIS, the
Mount Wilson observatory, the Wilcox solar observatory and for the later cycles GONG.
These data allow us to follow the evolution of magnetic fields on periods of days to years.

Still in the era of photographic plates, we have only occasional magnetograms. In their
place synoptic programs regularly recorded images of the Sun in white light (for examples
see Howard et al. 1984, 1990) and in some important lines Ca II K (e.g. Bertello et al. 2010)
at Mount Wilson and Kodaikanal. These types of programs have been undertaken for over
100 years.

Prior to photography, sunspots were drawn by hand, and we have systematic and contin-
uous records of sunspot location and areas extending back to 1874 (Balmaceda et al. 2009),
and less systematically to earlier times (e.g. Arlt et al. 2013; Diercke et al. 2015). Before
this we have sunspot counts going back to before the Maunder Minimum (see the review by
Clette et al. 2014).

Only sparse records of direct sunspot observations exist prior to this—there are for in-
stance occasional reports extending back thousands of years. Instead we must rely on records
of the interaction between the solar magnetic fields with the Earth’s magnetic field—these
exist in the form of records of auroral (e.g. Křivský and Pejml 1988) and more systemati-
cally in terms of the geomagnetic indices, such as the “aa” index. This index can be used
to infer the interplanetary magnetic field near the earth, which in turn can be related to the
open flux of the Sun because the field strength of the radial component of the interplane-
tary magnetic field largely depends only on the distance from the Sun (Smith and Balogh
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1995). The “aa” index then gives us a record of global properties of the solar magnetic field
that can be extended back to 1844 (Nevanlinna and Kataja 1993). Nature has also created
records that can be used to infer solar activity, in particular cosmogenic nucleotides stored
in ice cores, which extends our knowledge back to over 9600 years (Steinhilber et al. 2012).

2.3 Constraints

The dynamo problem is essentially concerned with plasma motions generating and sustain-
ing magnetic fields. We therefore begin by extremely briefly outlining what is known about
the motions themselves.

2.3.1 The Flows

Granulation and Supergranulation Heat is transported by convective motions in the
outer 30 % of the Sun. The dominant scale of the convection near the surface (granulation) is
well understood and depends mainly on the Sun’s mass and luminosity (Stein and Nordlund
1989). The properties of flows at larger scales (both supergranulation and the lack of giant
cells) are much more poorly understood theoretically (Lord et al. 2014) and observationally
(compare Hanasoge et al., 2012 and Greer et al., 2015).

The interaction between the convection and rotation, especially at larger scales, drives
global-scale flows such as differential rotation and meridional circulation. Improving our
understanding of the large-scale convection is therefore a priority.

Rotation The total angular momentum of the Sun is a result of the angular momentum
it had when it formed, and its evolution since then (e.g. due to magnetic breaking). The
total angular momentum of the Sun, and in particular of the convection zone, is thus a basic
parameter from the point of view of dynamo theory.

Differential Rotation—Latitudinal and Radial The Sun’s differential rotation is well
known as a function of both latitude and radius (Schou et al. 1998). The main properties are
that latitudinal shear is much greater that the radial shear, the latter of which is localized at
the tachocline at the base of the convection zone and in a near-surface shear layer. (For a
detailed review see Howe 2009).

Torsional Oscillations The time dependence of the differential rotation is called “tor-
sional oscillations” (Howard and Labonte 1980; Schou et al. 1998). These are clearly as-
sociated with magnetic activity, but are probably too weak to significantly influence the
evolution of the Sun’s magnetic field (they are however likely to be an important diagnos-
tic).

Meridional Flow There is also a large-scale meridional flow, with a well-observed pole-
ward component at the solar surface (Duvall 1979; Ulrich 2010). The subsurface structure
of the flow is more controversial (compare Zhao et al. 2013; Schad et al. 2013; Jackiewicz
et al. 2015). Given the important role of the subsurface meridional flow in transporting the
field in the Flux Transport Dynamo model (discussed in Sect. 4.1) resolving this controversy
should be seen as a priority.
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Fig. 1 A butterfly diagram: the number of sunspots appearing as a function of latitude λ and time (based on
Royal Greenwich Observatory and USAF/NOAA SOON data)

Fig. 2 A magnetic butterfly diagram: the longitudinally averaged radial component of the solar magnetic
field as a function of latitude and time (based on Kitt Peak National Observatory Synoptic magnetograms)

2.3.2 Magnetic Field Evolution

Observations of the type described in Sect. 2.2 are the constraints we have for the solar
dynamo. They contain a lot of information, some of which can be summarized in simple
figures, and some of which can be distilled into “laws”. Two figures which contain a lot
of information are the butterfly diagram (Maunder 1904, see also Fig. 1) and the magnetic
butterfly map (Fig. 2).

From the observations a number of properties (some of them “laws”) have been described
in the literature. A comprehensive solar dynamo model should be able consistent with these
observational constraints. We begin with a number of constraints that are directly related to
the magnetic activity.

11 Year Activity Cycles, 22 Year Magnetic Cycles A good proxy of magnetic activity is
the number of sunspots, which varies in time with minima every 10 to 12 years. This was
first noted by Schwabe (1849). Different cycles have different amplitudes (and modulation
on longer periods might be present, e.g. Gleissberg 1939). The 11 year solar activity cycle
corresponds to half of the 22 year magnetic cycle (Hale et al. 1919), with the dominant
polarity of the leading sunspots in each hemisphere changing between each activity cycle.

Spörer’s Law The emergence location of sunspots is observed to migrate equatorward
during the cycle (Carrington 1858; Spörer 1879), beginning at about 35◦ and propagating to
about 8◦ at the end of the cycle. The rate of propagation is similar for all cycles (Waldmeier
1955; Hathaway 2011).
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Hales Law The magnetic nature of sunspots was discovered by Hale (1908). Sunspots
typically appear in groups, with the leading and trailing spots (with respect to the solar
rotation) having different polarities. The leading spots in each hemisphere mostly have the
same polarity, and the polarity is opposite in the other hemisphere. The polarities of the
leading and following spots switch between cycles (Hale et al. 1919).

Joy’s Law As implied by Hales Law, sunspots often appear as bipolar pairs with the
leading spots during one cycle and in one hemisphere having the same polarity. This is a
statement about the east-west orientation of the sunspots. There is also a tendency for the
leading spots to be slightly closer to the equator than the following spots. This tendency is
much weaker than that of Hale’s law, with the angle implied by the North-South separation
compared to the East-West separation being about 7 degrees. This effect is known as Joy’s
law and was reported by Hale et al. (1919). There is some evidence that the strength of the
effect depends on the strength of the cycle (Dasi-Espuig et al. 2010).

The effect is also much weaker in the sense that there is a lot of scatter in the North-South
separation so that the effect is only robust when a large sample of sunspots is considered.

Waldmeier Effect The Waldmeier effect states that strong cycles peak earlier than weak
cycles (Waldmeier 1941) (although the Waldmeier effect does not appear in all measures of
the solar activity, cf. Dikpati et al. 2008; Cameron and Schüssler 2008). There is a closely
related fact that strong cycles rise quickly, which Karak and Choudhuri (2011) call WE2,
for the Waldmeier effect 2.

North-South Asymmetry Cycles are not symmetric (Spörer 1889a), and interestingly the
asymmetric behavior can be coherent over many cycles (Carbonell et al. 1993).

Extended Cycle While the sunspot number has a period of around 11 years, the butterfly
diagram indicates that the wings overlap so that sunspots corresponding to each cycle are
present for about 13 years. Smaller than sunspots, ephemeral regions associated with a cycle
have been shown to emerge about 5 years earlier, so the activity related to one cycle extends
to about 18 years (Wilson et al. 1988).

Correlation Between Polar Fields, Open Flux and Strength of Next Cycle There is a
strong correlation between the polar field at minimum (determined using polar faculae as a
proxy) and the strength of the next cycle (Muñoz-Jaramillo et al. 2013); a stronger correla-
tion exists between the Sun’s open flux, determined using the minima of the aa index as a
proxy, and the strength of the next cycle (Wang and Sheeley 2009). Cameron and Schüssler
(2007) have suggested that this might be accounted for by the overlapping of cycles com-
bined with the Waldmeier effect. A commonly claimed effect that the length of a minimum
correlates positively with the weakness of the next cycle peak has been shown from sunspot
data by Dikpati et al. (2010a) to be false for the most recent 12 cycles.’

Magnetic Fields at the Surface Are Advected by Surface Flows as if They Were Corks
Outside of active regions, the radial component of the magnetic field is advected by the
horizontal component of the velocity as if it were a passive tracer (DeVore et al. 1984). The
details of the modeling and observations that support this were reviewed recently in Jiang
et al. (2014).
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Coronal Mass Ejections and Magnetic Helicity Fluxes The structure of the magnetic
field in the solar atmosphere, with filaments and sigmoid shaped active regions as well as the
various types of activity in the solar atmosphere, such as flares and coronal mass ejections
also contain information related to the solar cycle. The interpretation of these structures in
terms of the helicity generated by the dynamo is however not straightforward (Zirker et al.
1997). We return to the helicity in some detail in Sect. 5.

Grand Minima and Maxima The above “laws” and properties of the magnetic activity
are mainly based on the last few hundred years of data. We however know that the solar dy-
namo does not always behave like this—there are extended periods of low activity including
the Maunder minimum (Spörer 1889b). They occur on average every 300 years (Usoskin
et al. 2007) and presumably represent a different state of the dynamo. We have very few
observational constraints for this state of the dynamo and therefore do not discuss it further
in this paper.

3 Synthesising the Observations and Theory

We now turn to the open problem of synthesizing the observations and the “laws” they em-
body with well known basic physics in order to gain an understanding of the solar dynamo.

3.1 The Omega and Alpha Effects

Cameron and Schüssler (2015) used the simplicity of the toroidal field implied by Hale’s law
to show that the surface magnetic field plays a key role in the solar dynamo. The argument
begins by noting that Hale’s law tells us that in each hemisphere, and during one cycle, the
leading spots mainly (about 96 % for large active regions, Wang and Sheeley 1989) have
the same magnetic polarity. This strong preference for the leading spots to have the same
polarity indicates that the spots are coming from the emergence of toroidal flux that is all of
the same polarity. The authors then considered the induction equation

∂B

∂t
= ∇ × (u × B − ημ0J ), (1)

where u and B are velocity and magnetic fields, t is time, J = ∇ × B/μ0 is the current
density, μ0 is the magnetic permeability, and η = 1/σμ0 is the magnetic diffusivity with σ

being the conductivity. They then applied Stokes theorem to with a contour in a meridional
plane and encompassing the convection zone in the northern hemisphere. This allowed them
to demonstrate that the generation of net toroidal flux in each hemisphere is dominated by
the winding up of the poloidal flux threading the poles of the photosphere at the poles by the
latitudinal differential rotation.

The polar fields themselves are the remnants of flux that has crossed the equator (Durrant
et al. 2004), which is dominated by either the emergence of tilted active regions across the
equator (Cameron et al. 2013) or the advection of active region flux across the equator due
to the random shuffling of the field lines due to the supergranular flows.

The simplicity of the toroidal magnetic field at solar maxima, and the poloidal mag-
netic field at solar minima, therefore indicates that the solar dynamo is of the Babcock-
Leighton type. Explicitly it is an alpha-omega dynamo where the relevant poloidal field
threads through the photosphere. The omega effect is simply the winding up of this poloidal
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Fig. 3 Illustration of the cause of the equatorial propagation in the dynamo wave model. The model begins
with toroidal field (shown in blue) situated away from the equator in Panel (A)—the equator is towards the
top of the panel. In Panel (B) a sunspot group emerges from the toroidal flux. The rising tube is acted on by
the Coriolis force, and by the convection, and poloidal field is produced (this is the alpha effect). In Panel (C)
the poloidal field is sheared by radial differential rotation, producing positive and negative toroidal field. The
dashed blue line represents toroidal field of the opposite sign to the original (solid) toroidal field. In Panel (D)
the dashed poloidal field has canceled the existing toroidal field at high latitudes. The low lying newly created
toroidal field leads to a new band of toroidal field with the same orientation as the existing field but at lower
latitudes. The net action has thus been to move the toroidal field closer to the equator

field by the latitudinal differential rotation. The alpha effect is what produces the tilt of the
active regions with respect to the equator (Joy’s law).

We comment that the question of why we have a butterfly diagram, why sunspots obey
Joy’s law, why the cycle length is around 11 years, and why sunspots only emerge below
about 40 degrees all remain open questions. They are difficult to answer because they are
intimately related to the subsurface dynamics, which are mostly poorly understood theoret-
ically and observationally. In the next two subsections we discuss some of the ideas which
are in the literature.

3.2 Equatorial Migration of the Butterfly Wings

Spörer’s law (discussed in Sect. 2.3.2) states that the latitude of emergence of sunspots
propagates towards the equator as the cycle proceeds. The most straightforward (and proba-
bly correct) interpretation of this is that the underlying toroidal field is propagating towards
the equator. There have been two main suggestions to explain the propagation of the toroidal
field. The first is that of Parker (1955a), and explains the equatorward propagation in terms of
a dynamo wave. The cause of the equatorial propagation in this model is explained in Fig. 3
in the case of a Babcock-Leighton dynamo. The essential idea is that radial differential shear
causes toroidal flux to propagate latitudinally. The direction of propagation (equatorwards
or polewards) depends on the sign of the alpha effect (which generates poloidal flux from
toroidal flux) and the on whether the differential rotation rate increases or decreases with
depth (Yoshimura 1975).

In terms of the Sun, the sign of the alpha effect is generally believed to be such that
differential rotation has to increase with depth to obtain equatorward propagation. This is
an issue on the Sun where the differential rotation decreases inwards near the base of the
convection zone in the range of latitudes where sunspots form Brown and Morrow (1987).
Thus if the solar dynamo is substantially located in the tachocline then this mechanism is
excluded, the mechanism is however viable if the winding up of the toroidal field occurs in
the near-surface shear layer.

The second mechanism for explaining the equatorward propagation is shown in Fig. 4
and is supposed to work at the base of the convection zone. The essential idea is that, if the
meridional flow near the base of the tachocline is sufficiently strong, and if the latitudinal
transport due to diffusion is sufficiently weak, then the simple advection of the toroidal flux
by the meridional flow can produce the observed equatorial migration (Wang and Sheeley
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Fig. 4 Illustration of the cause of the equatorial propagation in the flux transport dynamo model—the
toroidal flux (blue lines) is simply advected towards the equator by the meridional circulation (green ar-
rows). The question are whether such a flow exists, where the toroidal field is stored and whether diffusive
transport plays a role

1991; Choudhuri et al. 1995; Durney 1995; Dikpati and Charbonneau 1999; Küker et al.
2001).

Which, if either, of these two explanations accounts for the transport on the Sun remains
an open question.

3.3 Emergence Latitudes

A second important question, which is probably closely related, is why sunspots overwhelm-
ingly appear at latitudes below 40 degrees in latitude (see Fig. 1). An obvious explanation for
this would be that the toroidal flux is concentrated at low latitudes, however this explanation
is problematic for Babcock-Leighton type dynamos where the latitudinal differential shear
occurs over essentially all latitudes. A second possible mechanism considers the instability
which leads to flux emergence. This explanation assumes that the toroidal flux is stored in or
near the tachocline. In this case flux tubes must have a field strength of about 105 G in order
to have a substantial number of emergences at low latitude (Choudhuri and Gilman 1987).
The argument is that if the tubes are weaker then their rise is more affected by the Coriolis
force which preferentially causes them to rise with at a constant distance from the rotation
axis (i.e. along cylinders). The value of 105 G is nicely consistent with the field strength
required to produce Joy’s law (D’Silva and Choudhuri 1993). Such flux tubes turn out to
be much more unstable (Parker 1955b) at low latitudes than at high latitudes (Caligari et al.
1995), hence if the toroidal flux is stored in the tachocline then even if the 105 G loops form
at high latitudes the loops are unable to escape to the surface.

This is an attractive possibility because the value of 105 G links several observational
results. However we caution that this effort was focussed on the case where the storage
is in the tachocline or near the base of the convection zone because this was the dominant
paradigm at the time the work was carried out. Much less work has been put into considering
why sunspots don’t emerge at high latitudes in the case where the toroidal field is stored in
the bulk of the convection zone. For this reason we regard the issue of the latitudinal range
of the butterfly diagram as an open question.

3.4 Length of the Solar Cycle

It is somewhat sobering that after more than 160 years after the discovery by Schwabe (1849)
that the level of solar activity varies with a period of about 11 years that we still don’t have
a good idea of why it is 11 years.

In principle the length of the solar cycle should reflect the latitude range over which
activity appears (say from a latitude of 30 degrees at the start of a cycle to 8 degrees at the
end of a cycle) and the rate at which it propagates towards the equator. Within the framework
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of flux transport dynamos, the rate at which activity propagates towards the equator and the
period of the dynamo, is largely determined by the meridional flow circulation rate (Dikpati
and Charbonneau 1999), however we have no clear basis in either observations or theory
for understanding why the strength of the meridional flow at depth should be such that the
dynamo period is 11 years. Within the alternative frame of a dynamo wave framework the
period is set mainly by the magnitude of the alpha and omega effects, and the alpha effect
in particular is not well understood.

To end this section on a positive light, it is clear that improving our understanding both
what causes the equatorward propagation and what sets the latitudinal extent of the butterfly
diagram, will give us a clearer handle on why the period of the solar cycle is 11 years.

3.5 The Alpha Effect

The above discussion indicates that the net toroidal field in each hemisphere is produced by
the winding up of poloidal field by latitudinal differential rotation. In this regard it is only the
field that threads through the surface which has an effect on the net flux. This winding up of
the field is the omega effect of an alpha-omega dynamo. The details of how the alpha effect
actually works in the Sun is less well understood—we observe the emergence of magnetic
bipolar regions which are systematically tilted with respect to the equator, we observe their
subsequent evolution, and we can infer (as in the previous section) that this is the field
which is the poloidal field which gets wound up to produce the net toroidal flux in each
hemisphere. What we do not observe are the processes which cause the field to emerge with
a tilt.

It is relatively clear that the Coriolis force is implicated in the tilt; the uncertainty is
whether the Coriolis for acts directly on the flows associated with the rise of the flux tube
(e.g. D’Silva and Choudhuri 1993), or whether it acts on the convective flows which then
interacts with the flux tube (Parker 1955a). This question is currently completely open.

Even without a proper understanding of the subsurface processes we can include flux
emergence and Joy’s law into idealized mean-field simulations. Most of the recent work
along these lines has been in the context of the flux transport dynamo, and the next section
will outline some results from these efforts.

4 Modeling Dynamo Action

4.1 Flux-Transport Dynamos

Two-dimensional “flux-transport” dynamos incorporate in some form all of the pro-
cesses discussed above, including the idea of flux emergence from toroidal flux at the
base of the convection zone producing tilted active regions at the surface. These mod-
els have been successful in simulating the most important features of the solar cycle,
including the butterfly diagram, polar field reversals near solar cycle maximum, cer-
tain global coronal features, and certain asymmetries between North and South hemi-
spheres.

These models were used to simulate and predict the timing and amplitude of solar cycle
24 (Dikpati et al. 2006, 2010b; Choudhuri et al. 2007; Nandy et al. 2011), with limited
success. There are several possibilities for this. Some of the suggestions of what was not
included (but needs to be) are changes in the global meridional circulation profile and speed
(Belucz and Dikpati 2013), or localized inflow cells associated with active regions (Cameron
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Fig. 5 Left frame: Eruption of tilted, bipolar spots and their dispersal by diffusion, meridional circulation
and differential rotation; right frame: drift of trailing flux towards the poles appears in a series of streams,
and cause polar reversal (top right) and toroidal field butterfly diagram (bottom right), showing equatorward
migration and dynamo cycle-period governed by meridional circulation speed (frames adopted from Miesch
and Dikpati (2014))

and Schüssler 2012; Shetye et al. 2015) or the scatter in tilt angles (Jiang et al. 2015).
Unfortunately the results from helioseismology are too divergent to provide guidance on
changes in the meridional flow (for example, compare the results in recent publications
Ulrich 2010; Zhao et al. 2013; Schad et al. 2013; Jackiewicz et al. 2015).

One possibility, supported by the observations, is that the weak cycle 24 is the result of
the actual values of the tilt angles in cycle 23 (Jiang et al. 2015). The essential point here
is that poloidal source term in the Babcock-Leighton model is based on Joy’s law, which is
extremely noisy. The noise in Joy’s law translates to noise in the alpha effect, and thus to
the strength of the different cycles. For cycle 23 Jiang et al. (2015) used the observed tilt
angles (Li and Ulrich 2012) and showed that alpha effect was indeed weak for cycle 23 (thus
accounting for the weak cycle 24).

Current work includes extending the simulations to 3D, see, e.g., Miesch and Dikpati
(2014). An example of such a simulation is shown in Fig. 5, which depicts the longitude-
latitude pattern of emerged flux, and the patterns of surface mean poloidal fields and deep-
seated toroidal fields that are created in a sequence of solar cycles.

However, perhaps the biggest challenge to the flux-transport dynamos model is whether
the meridional circulation is single-celled or multiple-celled or is indeed not steady at all.
Many solar cycle features can be reproduced well by a flux-transport dynamo model if the
meridional circulation contains a single cell in each hemisphere, but models with two cells
in depth do not (Belucz et al. 2015). There is currently no consensus from observational
evidence and meridional circulation models on the dominant profile of meridional flow in
depth and latitude within the convection zone and tachocline. At the photosphere there is
clearly one primary, poleward cell or often along with that a weak reverse cell appears at
high latitudes. If it is established that there are two cells in depth, then another paradigm
shift in solar dynamo theory will be needed; however it seems to be too early to decide on
that issue now.
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4.2 Global Convective Dynamo Simulations

Attempts have also been made to simulate the convective motions and dynamo action in
the Sun, with as few assumptions as possible—essentially from first principles. The first
semi-successful attempts go back to the early 1980s when two different groups used the
Cray 1 computer at the National Center for Atmospheric Research in Boulder (Colorado):
Peter Gilman using a model of rotating convection (Gilman and Miller 1981) and Meneguzzi
et al. (1981) using forced turbulence in a Cartesian domain. Both studies provided remark-
able first steps into numerical studies of large-scale and small-scale dynamos, but they also
demonstrated that simulating the Sun will be difficult.

Subsequently, Gilman (1983) obtained cyclic solutions that were however quite different
from the Sun: instead of equatorward migration of magnetic activity, he obtained poleward
migration. Furthermore, small-scale dynamo action was not well understood at the time and
the original paper by Meneguzzi et al. (1981) did not even quote the now important reference
to the paper by Kazantsev (1968). The role of helicity was also not clear in some of those
first studies, see also Kida et al. (1991). This was partly because those early simulations
did not have sufficient scale separation, i.e., the scale separation ratio kf/k1, where k1 is
the smallest wavenumber in the domain, was too small, as was noted subsequently (Haugen
et al. 2004). In agreement with earlier work on rapidly rotating convection (Gilman 1977),
the contours of angular velocity tend to lie on cylinders. This implies that the radial gradient
of the local angular velocity, ∂Ω/∂r , is positive. Therefore, as expected predictions from
mean-field dynamo theory, the dynamo simulations of Gilman (1983) and Glatzmaier (1985)
produced poleward migration, and were thus unable to reproduce the solar butterfly diagram.
(These simulations were subsequently applied to the geodynamo problem by Glatzmaier and
Roberts 1995, where success was much clearer.)

From these simulations it is clear that reproducing the basic properties of the convection
and the large-scale flows it drives are essential for a complete understanding of why a rotat-
ing middle-aged star such as the Sun should have an 11 year activity cycle and a butterfly
diagram with equatorward propagation.

Computing power has increased dramatically since 1981, and simulations in more turbu-
lent regimes became possible. This leads to flow patterns departing from otherwise nearly
perfectly cylindrical contours (Miesch et al. 2000). Global simulations are now being con-
ducted by many groups. Simulations with the anelastic spherical harmonics (ASH) code
(Brun et al. 2004) work with a mean stratification close to that of mixing length theory, but
at the solar rotation rate the resulting dynamo is statistically steady. Only at higher rotation
rate, the solutions become time-dependent and cyclic (Brown et al. 2010). Simulations with
the EULAG code (Ghizaru et al. 2010; Racine et al. 2011) also produce cyclic solutions,
although the latitudinal migration of the mean magnetic field is weak. The pattern of merid-
ional circulation in the simulations is, to date, mostly multicellular. This is in stark contrast
to mean-field (flow) models, in which differential rotation is produced by the Λ effect and
meridional circulation is dominated by one large cell (Brandenburg et al. 1992). As men-
tioned above, helioseismology does not yet provide a consistent answer to guide the theory
or simulations.

A (surprising) key issue which has emerged is the convective power spectrum. Obser-
vations through correlation tracking (Rieutord et al. 2008; Hathaway 2012) and helioseis-
mology (Hanasoge et al. 2012) suggest that the power in large-scale convective flows (giant
cells) is very small. As alluded to in the introduction, the helioseismic evidence is contested
(Greer et al. 2015), so the question remains open on the observational side. As already sug-
gested by Spruit (1997), the structure of the large-scale convection is also unclear on the
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theoretical side—global simulations miss the physics of the radiating surface, and this may
turn out to be crucial for producing simulations with realistic flow structures, which may be
dominated by what is known as ‘entropy rain’. This would be a fast small-scale downflow
originating from the surface in such a way that the bulk of the convection zone is nearly
isentropic, but with slightly stable stratification so as not to produce giant cell convection in
the deeper parts (Brandenburg 2015). Clearly, simulations must eventually be able to repro-
duce the Sun, and reproducing the convective power spectrum and the large-scale flows is
probably a precondition to accurately reproducing the solar dynamo. Knowing what those
flows are is essential.

Currently the convective simulations are most useful in providing guidance on what is
possible, and elucidating mechanisms. For example in simulations by Käpylä et al. (2012)
using the PENCIL CODE,1 there was pronounced equatorward migration, which was later
identified as being due to a local negative radial Ω gradient (Warnecke et al. 2014). While
this is a feature not expected to be present in the Sun, it does demonstrate that the dy-
namo wave in global simulations follows closely that expected from mean-field simulations
(Parker 1955a; Yoshimura 1975). Global simulations have also produced evidence for strong
(≈40 kG) flux tubes in the bulk of the convection zone (Nelson et al. 2014; Fan and Fang
2014). This is interesting in view of understanding the overall magnetic flux concentra-
tion required to form active regions, although further amplification is needed; see Stein and
Nordlund (2012) and Mitra et al. (2014) for possible mechanisms.

Both flux transport and full 3D dynamo models necessarily contain parametrizations
of processes acting on scales smaller than spatially resolved. These parametrizations are
all rooted in formulations of MHD turbulence, in which helicity of velocities, magnetic
fields and electric currents play central roles. Therefore we consider helicity effects in detail
in Sect. 5

5 The Roles of Magnetic Helicity

As revealed above, we are still struggling to understand the true nature of the solar dynamo
and the relation between the large-scale dynamo in the Sun and in global simulations. In
this regard we need to be sure that what we see in the simulations survives in the limit of
large magnetic Reynolds numbers such as are found in the Sun. This has not been yet been
fully confirmed. One example of this is that in the simulations the large-scale field magnetic
field (as opposed to the small-field magnetic field) is often found to decrease with increasing
values of Rm. In this section we show that this can be understood quantitatively in terms of
magnetic helicity conservation, as will be discussed below.

Magnetic helicity is a quantity conserved by ideal MHD, and as such is conserved in
the absence of microphysical diffusivity (i.e. it is not changed by the turbulent flow, or
the associated turbulent magnetic diffusivity). In a closed volume, at low microphysical
diffusivity of the sun, the amount of helicity is not expected to change on timescales of the
solar cycle. This is remarkable and unprecedented in hydrodynamic turbulence. The only
way that magnetic helicity can change and evolve (e.g., over the course of the 11 year cycle)
is through magnetic helicity fluxes. They can be determined at the surface and this allows
contact to be made between theory and observations. In this section we will therefore outline
some of the different attempts to determine the helicity flux through the solar surface and
what this tells us about the solar dynamo.

1https://github.com/pencil-code.

https://github.com/pencil-code
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Fig. 6 Sketch of interlocked flux rings of positive helicity with two right-handed crossings (left), compared
with two right-handed mutual crossings (I and II) and two left-handed mutual crossings (III and IV), as well
as a high-resolution EUV image in 171 Å of a magnetic filament showing a crossing of type III in active
region NOAA 8668 at 23◦ north on 1999 Aug 17 (right; courtesy of Jongchul Chae)

There are other types of helicity, including kinetic helicity, which also play important
roles in dynamo theory. Most importantly kinetic helicity makes it relatively simple to gen-
erate a large-scale magnetic field (Moffatt 1969). We therefore begin by discussing the dif-
ferent types of helicity and their definitions.

5.1 Definitions

Mathematically, helicities are so-called pseudo-scalars, i.e., they are the dot product of a
proper vector and an axial vector. (The latter changes its orientation when viewed in a mir-
ror.)

Four such pseudoscalars are of particular interest: mean kinetic helicity density 〈ω · u〉,
with ω = ∇ × u being the vorticity, mean magnetic helicity density 〈A · B〉, with A being
magnetic vector potential such that B = ∇ × A, mean current helicity density 〈J · B〉, and
finally the cross helicity, 〈u · B〉; see Yokoi (2013) for a recent review, especially on cross
helicity. All these helicities have topological interpretations that refer to the mutual linkage
between interlocked structures, for example two flux rings in the case of magnetic helicity
(Fig. 6, left), two vortex rings in the case of kinetic helicity, two current tubes in the case
of current helicity, and a vortex tube with a magnetic flux tube in the case of cross helicity.
This topological interpretation goes back to early work of Moffatt (1969) and is important
for the existence of qualitative helicity indicators.

Qualitative Helicity Indicators Familiar to all of us is the case of kinetic helicity in the
Earth’s atmosphere: a glance at weather maps in England and Australia shows low pres-
sure whirlpools of opposite orientation. This helicity is the direct result of the Coriolis force
acting on large-scale flows. Likewise the Sun is rotating and has large-scale (supergranula-
tion or larger) flows which feel the effect of the Coriolis force. Hence on the Sun we see
the morphological or qualitative signatures of helicity in large-scale structures: Hα images
reveal S-shaped structures in the south and N-shaped structures in the north (i.e., inverted
S-shaped structures). They are referred to as sigmoidal structures and the importance of in-
terpreting them was recognized by Sara Martin (1998a, 1998b) and many people after her
(Canfield et al. 1999; Magara and Longcope 2001; Gibson et al. 2002). These helicity in-
dicators can also be linked to mutual crossings of magnetic flux structures, which are best
seen at EUV wavelengths where filaments appear occasionally in emission. This technique,
which is due to Chae (2000), requires an additional assumption: the angle between two adja-
cent structures is an acute one (i.e., the invisible arrows of the field vectors point in roughly
the same direction) rather than an obtuse one, as illustrated by the configurations I–IV in
Fig. 6 from his paper. His study confirms that the magnetic field has negative helicity in the
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north (corresponding to crossings of types III and IV with N-shaped or so-called dextral fil-
aments) and positive helicity in the south (corresponding to crossings of types I and II with
S-shaped or so-called sinistral filaments). In Fig. 6 we also reproduce an EUV image from
his paper with a filament of type III in the northern hemisphere, consistent with negative
helicity.

Semiquantitative Indicators We turn now to semiquantitative indicators, by which we
mean quantitative measures of something which is only qualitatively linked the helicity.
As an important example, we can consider the product of what is known as the horizontal
divergence and horizontal curl of the velocity, defined respectively as

(divu)h = ux,x + uy,y,

(curlu)h = uy,x − ux,y.
(2)

Here, commas denote partial differentiation. The horizontal curl is just the same as the z

component of the usual curl. The product of (div)h and (curl)h has been determined for the
Sun using local correlation tracking and local helioseismology by Langfellner et al. (2014).
In fact, Rüdiger et al. (1999) have shown that the product of (div)h and (curl)h is a proxy
of kinetic helicity. This is simply because one of the three terms in ω · u is uz (uy,x − ux,y),
but, using the anelastic approximation, ∇ · (ρu) = 0, where ρ is density, and the definition
of the density scale height,

Hρ = −(d lnρ/dz)−1, (3)

we have uz = Hρ divu ≈ Hρ(divu)h and therefore 〈ω · u〉 ≈ 3Hρ〈(divu)h(curlu)h〉.

Quantitative Helicity Measures The measurement of current helicity density, J ·B , goes
back to early work of Seehafer (1990), who determined Bz from circular polarization mea-
surements, while Bx and By (giving Jz) were obtained from linear polarization. Such mea-
surements are now obtained routinely from solar vector magnetograms. They all suggest
that J · B is negative in the north and positive in the south. Typical values of μ0J · B are
around 3 G2 km−1 (Zhang et al. 2014).

Regarding magnetic helicity, there is a notable complication in that 〈A · B〉 is gauge-
dependent and changes by adding an arbitrary gradient term to A, which does not change B .
Exceptions are triply-periodic and infinite domains, for which 〈A ·B〉 turns out to be gauge-
invariant. However, there exists a quantity called the relative magnetic helicity

Hrel =
∫

V

(A + Ap) · (B − Bp) dV, (4)

where Bp = ∇ × Ap is a potential field (∇ × Bp = 0) that satisfies Bp|surf · n̂ =
B|surf · n̂ (Berger and Field 1984). It is gauge-independent, but it can only be determined
over a finite volume. There is also a corresponding magnetic helicity flux 2

∮
E ×Ap, where

E = J /σ − u × B is the electric field. Simple examples of magnetic helicity and its flux
have been presented by Berger and Ruzmaikin (2000) for theoretical models with rigid and
differential rotation as well as with an assumed α effect. Quantitative measurements for
the Sun’s magnetic field are in the range of 1046 Mx2/cycle (DeVore 2000; Chae 2001;
Welsch and Longcope 2003). This value is easily motivated by standard dynamo theory
(Brandenburg 2009).
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Let us finally comment on the cross helicity density u · B , or its spatial average 〈u · B〉.
Just like 〈A · B〉, it is a quantity that is conserved by the nonlinear interactions of the mag-
netohydrodynamic equations (Woltjer 1958), but it is often small, i.e., the normalized cross
helicity 2〈u · B〉/〈u2 + B2〉, which is the ratio of two conserved quantities (the latter being
the total energy), is far away from its extrema of −1 and +1, if it was vanishing initially. An
exception is a stratified layer with an aligned magnetic field. This also applies to the solar
wind, where there can be regions where gravity g and the magnetic field are systematically
aligned with each other. In those cases, a finite cross helicity can be driven away from zero.
This can be understood by noting that there are two externally imposed vectors: gravity with
a parallel (vertical) magnetic field B0. The latter is a pseudovector, giving rise to a pseu-
doscalar g · B0 that is odd in the magnetic field—just like 〈u · B〉. Indeed, theoretical and
numerical work by Rüdiger et al. (2011) showed that

〈u · b〉 = (τ/3)
(
u2

rms/c
2
s

)
g · B0 = −(ηt/Hρ)B0, (5)

where b = B − 〈B〉 denotes the fluctuating magnetic field, τ is the correlation time of the
turbulence, urms is its rms velocity, cs is the sound speed, ηt = τu2

rms/3 is the turbulent
magnetic diffusivity, and Hρ = g/c2

s is the density scale height defined in Eq. (3) for an
isothermal layer. Measurements for active regions are in the range 1–2 G km s−1 (Zhao et al.
2011; Rüdiger et al. 2012).

5.1.1 Large and Small Length Scales

The length-scale dependence of the different types of helicity can be investigated by looking
at the spectra of magnetic energy and helicity.

Magnetic Helicity Spectra Given that the magnetic helicity is a conserved quantity, it
should be zero if it was zero initially. However, because it is a signed quantity, “zero” can
consist of a “mixture” of pluses and minuses. These two signs can be segregated spatially
(typically into north and south) as well as spectrally (into large and small scales). This is
discussed in more detail below when we talk about catastrophic quenching of a large-scale
dynamo. For now it suffices to say that we can define a magnetic helicity spectrum HM(k),
where k is its wavenumber (inverse length scale), and whose integral gives the mean mag-
netic helicity density, i.e., ∫ ∞

0
HM(k) dk = 〈A · B〉. (6)

If the turbulence or the magnetic field were homogeneous, it can be related to the Fourier
transform of the two-point correlation function

Mij (r) = 〈
B i (x + r)Bj (x)

〉
, (7)

which is independent of x owing to the assumption of homogeneity, and r = |r| is the
separation. Its Fourier transform over r gives M̃ij (k), which, under isotropy, has the repre-
sentation

4πk2M̃ij (k) = (δij − k̂i k̂j )2μ0EM(k) + εijkikkHM(k), (8)

where k̂ = k/|k| is the unit vector of k and EM(k) is the magnetic energy spectrum with the
normalization

∫
EM(k) dk = 〈B2〉/2μ0. The dependence of EM(k) and HM(k) on the mod-

ulus k = |k| of the wavevector k is again an consequence of isotropy. This relation is slightly
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Fig. 7 Latitudinal dependence of spectral magnetic helicity for k = 300 AU−1 ≈ 2 × 10−3 Mm−1 (left) and
the magnetic helicity spectrum for heliocentric distances above 2.8 AU for the northern hemisphere (right).
Filled blue symbols denote negative values and open red ones positive values

modified when applied to the two-dimensional solar surface, but it allows us to obtain for the
first time spectra of magnetic helicity, i.e., information about its composition from different
length scales; see Zhang et al. (2014) for results that have confirmed that, in the southern
hemisphere, the magnetic helicity is positive on wavenumbers of about 1 Mm−1. This is in
agreement with the results presented in Sect. 3.5.

Magnetic Helicity Spectra of the Solar Wind A similar technique to that presented
above has been applied to the solar wind, where it is possible to obtain the magnetic field
vector from in situ spacecraft measurements. The idea to compute the magnetic helicity
spectrum by using Eq. (8) goes back to early work of Matthaeus et al. (1982), who used data
from Voyager 1 and 2. To obtain measurements at positions x and x + r , one uses the Taylor
hypothesis to relate the spatial separation r to a temporal separation t through r = r0 −uWt ,
where uW is the solar wind velocity of about 800 km s−1 and r0 is some reference position.
However, since Voyager 1 and 2 flew close to the equatorial plane, the resulting magnetic he-
licity was expected to fluctuate around zero, which was indeed the case. This changed when
data from Ulysses were used for such an analysis (Brandenburg et al. 2011b). In Fig. 7 we
show the resulting spectrum, as well as the latitudinal dependence a specific k. We should
point out that HM(k) is here gauge-invariant because we are dealing with an infinite or pe-
riodic domain, which is automatically implied by the use of Fourier spectra. Note also that
k|HM(k)| ≤ 2μ0EM(k), which is also known as the realizability condition.

The importance of magnetic helicity became particularly clear in connection with under-
standing the phenomenon of catastrophic quenching, which will be explained in the next
section.

5.1.2 Magnetic Helicity Conservation

To understand the basics of dynamo action, including saturation mechanisms, it is often
useful to work in idealized periodic geometries, and with turbulence either from simple
forcing or driven by convection. While early work in this context at small values of Rm were
promising (Brandenburg et al. 1990), subsequent studies at larger values of Rm showed that
the field-aligned emf, 〈u × b〉‖/B‖ approaches zero as Rm → ∞ (see Cattaneo and Hughes
1996).

This was understood as a consequence of magnetic helicity conservation (Gruzinov and
Diamond 1996). Consider the equation for the fluctuation of the magnetic vector potential
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a = A − 〈A〉, where angle brackets denote volume averages and lower case symbols the
fluctuations. The mean flow is assumed to vanish. Thus, we have

∂a

∂t
= u × 〈B〉 + u × b − ημ0j . (9)

We now derive the equation for the mean magnetic helicity density of the small-scale field
as

d

dt
〈a · b〉 = −2〈u × b〉 · 〈B〉 − 2ημ0〈j · b〉. (10)

In the steady state, we find that

“α” ≡ 〈u × b〉 · 〈B〉/〈B〉2 = −ημ0〈j · b〉/〈B〉2. (11)

This relation for “α” is sometimes known as Keinigs relation (Keinigs 1983) and shows not
only that “α” is positive when 〈j · b〉 is negative (i.e., in the north), but also that “α” → 0
when η → 0, i.e., in the limit of large magnetic Reynolds numbers. This remarkable result
seems like a disappointment to α effect theory, but it only means that no 〈B〉, defined as a
volume average (!), can be generated. This should then be no surprise, because the volume
average of B is a conserved quantity for the periodic boundary conditions used in the study
of Cattaneo and Hughes (1996) (which is the reason we put α in quotes).

When we consider the case where the averages are allowed to vary in space, the diver-
gences of magnetic helicity flux will in general be non zero in the magnetic helicity equation.

Dynamical Quenching Consider planar averages, denoted by an overbar, magnetic helic-
ity conservation yields instead

α = αK + Rm[μ0J · B/B2
eq − ∇ · F f/2B2

eq − (∂α/∂t)/(2ηtk
2
f )]

1 + RmB
2
/B2

eq

. (12)

Here, F f is the magnetic helicity flux from the fluctuating magnetic field and αK =
−(τ/3)〈ω · u〉 is the kinetic α effect, which itself could depend on B , but this is here
neglected. The main contribution to the quenching in Eq. (12) comes from the magnetic
contribution αM to the α effect, where α = αK + αM (Pouquet et al. 1976).

Equation (12) confirms first of all that α is catastrophically quenched (i.e., in an
Rm-dependent fashion), when volume averages are used, i.e., when J = F f = 0 and the
assumption of stationarity is made (∂α/∂t = 0). In that case, we obtain

α = αK

1 + RmB
2
/B2

eq

(for volume averages!). (13)

This equation was first motivated by Vainshtein and Cattaneo (1992) on the grounds that
the energy ratio of small-scale to large-scale magnetic fields is proportional to Rm, i.e.,

〈b2〉/〈B2〉 ≈ Rm (e.g. Moffatt 1978; Krause and Rädler 1980), but this relation becomes
invalid at large values of Rm where the rhs has to be replaced by lnRm (Kleeorin and Ro-
gachevskii 1994). Furthermore, this relation assumes that the small-scale magnetic field is
solely the result of tangling, so dynamo action is actually ignored in the old argument of
Vainshtein and Cattaneo (1992).

It is now clear from Eq. (12) that catastrophic quenching is alleviated when there are
mean currents (J �= 0), which is already the case in triply-periodic helical turbulence, where,
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in fact, a super-equipartition field with 〈B2〉/〈b2〉 ≈ kf/k1 can be generated, albeit only on
a resistive time scale (Brandenburg 2001). Here, kf/k1 is the aforementioned scale sepa-
ration ratio. Nevertheless, because of the long saturation time (which is determined by the
microphysical diffusivity), such dynamos cannot be astrophysically relevant.

The ultimate rescue from catastrophic quenching seems to come from the presence of
magnetic helicity flux divergences (∇ · F f �= 0). Interestingly, what is primarily required is
that the dynamo-generated field is no longer completely homogeneous as in α2 dynamos,

where B is a Beltrami field with spatially constant B
2
. For example, when there is shear,

we can have αΩ-type dynamo action with finite ∇ · F f within an otherwise periodic (or
shearing-periodic) domain where catastrophic quenching was indeed found to be alleviated
(Hubbard and Brandenburg 2012). However, to demonstrate complete Rm independence is
still difficult, and can only be expected for Rm � 1000 (Del Sordo et al. 2013).

At this point it is useful to return to the question of gauge-dependence. The evolution
equation for the mean magnetic helicity density of the fluctuating field, a · b, can be written
with a finite magnetic helicity flux divergence,

∂

∂t
a · b = −2u × b · B − 2ημ0j · b − ∇ · F f. (14)

On can now examine whether a · b, in the gauge under consideration, happens to be statis-
tically stationary. In general, this does not need to be the case (for an example, see Fig. 2
of Brandenburg et al. 2002), but if it is, we can consider the overbars as denoting also an
average over time, because then the left-hand side of Eq. (14) vanishes and we have

0 = −2u × b · B − 2ημ0j · b − ∇ · F f. (15)

What is remarkable here is the fact that, at least in this special case (a · b constant in time)
the magnetic helicity flux divergence ∇ · F f is no longer gauge-dependent, i.e., it must
be the same in all gauges. Moreover, unlike the aforementioned surface-integrated gauge-
invariant magnetic helicity flux 2

∮
E × Ap, we can now make statements about its local

dependence and its physical relation to mean flows and gradients of the magnetic helicity
density. This has been done in several simulations which all confirm that an important part
of the magnetic helicity flux is carried turbulent-diffusively like in Fickian diffusion (Mitra
et al. 2010; Hubbard and Brandenburg 2010; Del Sordo et al. 2013).

5.1.3 Observational Clues

The Sign of the Helicity at Different Spatial Scales To make contact with solar magnetic
helicity observations, we must ask about the scales on which helical fields are generated.
If the large-scale field is really generated by an α effect, then both magnetic and current
helicities of the large-scale field should have the same sign (Brandenburg 2001; Blackman
and Brandenburg 2002) and should be positive in the north, where α > 0. On large scales,
the magnetic helicity 〈A · B〉 obeys

d

dt
〈A · B〉 = 2α

〈
B

2〉 − 2ηTμ0〈J · B〉, (16)

where we have assumed an isotropic α effect and an isotropic turbulent magnetic diffusivity
ηt and ηT = ηt + η is the total (turbulent plus microphysical) magnetic diffusivity. Note that,
in the steady-state, we have

μ0〈J · B〉 = (α/ηT)
〈
B

2〉
, (17)
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Fig. 8 Sketch of N-shaped and S-shaped sigmoidal structures in the northern and southern hemispheres
(courtesy of Sara Martin) and sketch of an α loop for the southern hemisphere with positive kinetic helicity,
taking S-shaped form when viewed from above (courtesy of Nobumitsu Yokoi)

i.e., the magnetic helicity of the large-scale field should indeed be positive in the north.
At small scales, on the other hand, we expect the opposite sign. Only the latter has been
observed directly. However, the N- and S-shaped structures in Hα images can indirectly be
associated with large-scale fields resulting from a positive α affect in the north; see Fig. 8.
Indeed, the barbs of filaments are an example, because right-handed (left-handed) barbs are
found in filaments in which the purely axial threads (independent of the barb threads) have
a slight but definite shape of a left-handed (right-handed) sigmoid. This way of interpreting
the two signs of helicity within a single filament was discussed by Ruzmaikin et al. (2003);
see Table 1 of Martin (2003) for details.

Helicity Reversals Within the Solar Wind The observation of the magnetic helicity
spectrum in the solar wind poses some questions, because the sign is exactly opposite of
what is observed at the solar surface. Theoretical support for this surprising result comes
from simulations of dynamos with an extended outer layer that only supports turbulent dif-
fusion, but no α effect. A magnetic helicity reversal was first recognized in the simulations
of Warnecke et al. (2011, 2012), but such reversals were already present in early mean-field
simulations of Brandenburg et al. (2009), which included the physics of turbulent-diffusive
magnetic helicity fluxes.

Two related explanations have been proposed. Firstly, within the dynamo the effects of
α and ηT nearly balance, which implies that both terms enter the magnetic helicity equation
with opposite signs; see Eq. (16). However, within the wind, the α effect is basically absent,
creating therefore an imbalance and thus a contribution of opposite sign. A related explana-
tion assumes a steady state and invokes a turbulent-diffusive magnetic helicity flux obeying
a Fickian diffusion law, i.e., F f = −κf∇a · b, where κf is a turbulent diffusivity for magnetic
helicity of the small-scale field. The difference from heat diffusion is that temperature is pos-
itive definite, but magnetic helicity is not. To transport positive magnetic helicity outward,
we need a negative magnetic helicity gradient, which tends to drive it to (and even through)
zero, which could explain the reversal. At present it is unclear which, if any, of these propos-
als is applicable. It is interesting to note, however, that similar reversals are seen also in the
opposite orientations of coronal X-ray arcades in the northern and southern hemispheres; see
Fig. 9. In essence, many filaments develop a sideways rolling motion that begins from the
top down (Martin 2003) and evidence of this motion was found in Hα Doppler observations
and in 304 Å images from SOHO (Panasenco and Martin 2008) and subsequently in 304 Å
from SDO and STEREO (Panasenco et al. 2011). The most convincing evidence that the
forces for this change come from the coronal environment is the correlation with coronal
holes. Quiescent filaments without exception were found to roll from the top down away
from adjacent coronal holes (Panasenco et al. 2013). The right-hand part of Fig. 9 shows the
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Fig. 9 Sketch of coronal X-ray arcades in the northern and southern hemispheres as well as their respective
signs when they turn into interplanetary clouds (courtesy of Sara Martin)

Fig. 10 Left: Normalized spectra of Bz from Run A40/1 of Brandenburg et al. (2014) at turbulent diffusive
times tηt/H

2
ρ ≈ 0.2, 0.5, 1, and 2.7 with kfHρ = 10 and k1Hρ = 0.25. Right: Magnetic field configuration

at the upper surface near the end of the simulation

direction of motions in the filament that result in their becoming twisted during eruption.
The general direction of the magnetic field is denoted by the polarity at the footpoints.

Magnetic Structures from Cross Helicity? In the presence of strong stratification, cross
helicity is being generated if a large-scale magnetic field pierces the surface. This leads to
a gradual evolution of the magnetic energy spectra of the vertical field, Ez

M(k), showing
a growth at small wavenumbers, akin to inverse transfer resulting from the α effect and
approximate magnetic helicity conservation. This growth is associated with the development
of magnetic structures; see Fig. 10.

The formation of such magnetic structures has also been associated with the possibility
of a large-scale instability resulting from a negative contribution to the effective (turbulent)
magnetic pressure. This instability is therefore referred to as negative effective magnetic
pressure instability (NEMPI). Earlier work on NEMPI has shown a remarkably degree of
predictive power of this theory in comparison with simulations (Brandenburg et al. 2011a;
Kemel et al. 2013; Losada et al. 2013), but it is still unclear what drives the magnetic struc-
tures in simulations where the field strongly exceeds equipartition with the energy density
of the turbulent motions (Mitra et al. 2014). Whether or not NEMPI or similar phenomena
play a role in the formation of active regions or even sunspots is however an open question.
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6 Conclusion

The question appears simple: Why does a star such as the Sun support have a global-
scale magnetic field which reverses every 11 years and has equatorially propagating activity
wings? We do not have anything like a complete answer to this question.

At the most fundamental level we do not we do not know the profiles of all the large-scale
flows that are present. Beginning with convection, which is the driver for the global-scale
motions and the magnetic field, we have to leave the reader with the following unanswered
questions: Why is there so little power at scales larger than supergranulation in the solar
photosphere (Lord et al. 2014)? Does this lack of power reflect a lack of power in these
large scales at depth (compare the results in Hanasoge et al. 2012; Greer et al. 2015)? Is our
fundamental picture of convection inapplicable to the solar convection zone (Spruit 1997;
Brandenburg 2015)?

Moving to the flows on the global scale: What does the meridional circulation look like
beneath the solar surface (Zhao et al. 2013; Schad et al. 2013; Jackiewicz et al. 2015)? What
maintains the solar differential rotation? What maintains the meridional circulation? For the
latter two questions we have some ideas (which give different answers), but they depend
partly on the strength of the convective flows and will also depend on how the ’small-scale’
turbulent dynamo, supposed to operate in the convection zone, modifies the flows.

These problems in our understanding, for example the power spectrum of the convec-
tive flows in the Sun, are not necessarily critical for understanding the solar dynamo if we
take the observed flows as given. This simplifies the problem to asking how the (partially)
observed flows produce the solar dynamo with all its observed features. Even this more lim-
ited problem is not solved. In this review we have briefly highlighted two important open
questions. One of these questions is: Why do sunspots only appear at latitudes below about
±40◦? The commonly given answer concerns the stability of toroidal flux located at the
base of the convection zone, which for 105 G flux tubes are much more unstable at low
latitudes than at high latitudes. Little consideration has however been given in this regard to
the possibility that the toroidal flux is stored in the bulk of the convection zone. The second
question we have highlighted is what causes the equatorial propagation of the activity belt
towards the equator, and here we have competing answers. Both of these problems appear
to be difficult, and their solution is likely to come from improvements in helioseismology
and modeling efforts.

In order to end on a bright note, we think it is important to point out some of the re-
cent progress which has occurred. For example we have Hale’s law which tells us that the
structure of the toroidal flux is quite simple, and at solar minimum the surface radial field
is also simple (it is mainly near the poles and mainly of one sign in each hemisphere). This
simplicity has enabled some rather strong conclusions to be drawn: the solar dynamo is an
alpha-omega dynamo of the Babcock-Leighton type (Cameron and Schüssler 2015). Fur-
thermore we have a number of ideas as to why the amount of activity varies from cycle to
cycle (e.g. Jiang et al. 2015), and critically we are beginning to test these models against real
data (Dikpati et al. 2006; Choudhuri et al. 2007; Dikpati et al. 2010b; Nandy et al. 2011). We
thus have a long way to go but are making progress and have the right tools and perspective
to make real progress in the coming years.
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