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We present new simulations of decaying hydromagnetic turbulence for a relativistic equation of state
relevant to the early Universe. We compare helical and nonhelical cases either with kinetically or
magnetically dominated initial fields. Both kinetic and magnetic initial helicities lead to maximally helical
magnetic fields after some time, but with different temporal decay laws. Both are relevant to the early
Universe, although no mechanisms have yet been identified that produce magnetic helicity with strengths
comparable to the big bang nucleosynthesis limit at scales comparable to the Hubble horizon at the
electroweak phase transition. Nonhelical magnetically dominated fields could still produce picoGauss
magnetic fields under most optimistic conditions. Only helical magnetic fields can potentially have
nanoGauss strengths at scales up to 30 kpc today.
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I. INTRODUCTION

A host of astrophysical observations indicate the pres-
ence of coherent magnetic fields with strengths at the
microGauss (μG) level from the scale of galaxies to clusters
of galaxies [1]. It is thought that such fields may have
originated from cosmological or astrophysical seed fields
which were subsequently amplified during structure for-
mation, via processes like adiabatic compression and
magnetohydrodynamic (MHD) turbulence instabilities
[2–4]. The statistical properties of the resulting magnetic
field, viz. the amplitude, spectral shape, and the correlation
length, depend strongly on the initial conditions, i.e., on the
particular generation mechanism.
Primordial magnetic fields can be generated through

causal processes which include all astrophysical scenarios
as well as primordial magnetogenesis occurring after
inflation. In all those cases, the correlation length is
bounded and limited by the causal horizon which is

associated with the Hubble horizon scale at the time of
magnetic field production [5]. If one accounts for the
turbulent magnetic evolution during the expansion of the
Universe, the correlation length may reach galactic length
scales today [6]. In contrast, Refs. [7,8] assumed that the
turbulent evolution is less effective in increasing the
magnetic correlation length and obtained a faster decay
of magnetic energy.
The evolution of the magnetic field and other observable

signatures depend strongly on the magnetic helicity of the
initial seed field [9]. A number of astrophysical objects,
ranging from stars [10] to jets fromactivegalactic nuclei have
detectable magnetic helicity [11]. Usually, the magnetic
helicity is initially much less than the maximum possible
value, which is given by the product of magnetic energy and
the magnetic correlation length. However, the fractional
helicity increases due to MHD turbulence. This leads to a
maximally helical configuration of the observed fields [12].
If primordial magnetic helicity is detected, it will

indicate a statistically significant violation of parity (or
mirror symmetry) in the early Universe, and may point
towards a resolution to the matter-antimatter asymmetry
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problem [13–16]. To generate causal helical magnetic fields
in the early Universe, one requires a fundamental parity
violation that affects the outcome of cosmological phase
(electroweak or QCD) transitions [17–32].
Assuming that the (comoving) mean energy density of the

magnetic fieldEM ≡ hB2i=2, whereB is themagnetic field in
Lorentz-Heaviside units, depends only on the present day
temperature T0 and fundamental constants such as the
Boltzmann constant kB, the reduced Planck constant ℏ,
and the speed of light c, one finds, on dimensional grounds,

hB2i=2≲ ϵ1ðkBT0Þ4=ðℏcÞ3; ð1Þ

where ϵ1 is a dimensionless number. For ϵ1 ¼ 1, this results
in a root mean square (rms) field strength of 3 × 10−6 G. (To
get the field in Gauss, one has to multiply the Lorentz-
Heaviside value by

ffiffiffiffiffiffi
4π

p
.) A certain fraction of this magnetic

field strength is also what is known as the big bang
nucleosynthesis (BBN) bound, which implies that the
total energy density budget, in addition to radiation and
other relativistic components, should not exceed 10%
of the radiation energy density at the moment of BBN.
Equation (1) implies that the mean comoving magnetic
energy density is determined by today’s temperature T0.
On the other hand, today’s temperature is set by the photon
(radiation) energy density, and the dimensionless quantity ϵ1
is a ratio between the mean comoving magnetic energy and
today’s radiation energy densities.
The conserved magnetic helicity per unit volume, i.e., the

mean magnetic helicity density1 is roughly given by hB2iξM,
where ξM is the magnetic correlation length. As above,
assuming that this product depends only on T0 and the
fundamental constants kB, ℏ, and c, one finds [33]

hB2iξM ≲ ϵ2ðkBT0Þ3=ðℏcÞ2; ð2Þ

where ϵ2 is a dimensionless number. This results in a field
strength of 5 × 10−19 G for ξM ¼ 1 Mpc and ϵ2 ¼ 1. (For
ξM ¼ 10 kpc, which is more suitable for magnetic fields
produced during the electroweak phase transition [6], the
corresponding field strength would be 5 × 10−18 G.)
Larger values of hB2iξM are possible if the underlying

physics involves another fundamental constant, for exam-
ple Newton’s constant G. In that case, again just on
dimensional grounds, one can write

hB2iξM ≲ ϵ3ða⋆=a0Þ3G−3=2ℏ−1=2c11=2; ð3Þ

where a⋆=a0 ¼ 8 × 10−16 is the ratio of the scale factor at
the time of magnetic field generation (the electroweak
phase transition) to that at the present time. This corre-
sponds to a field strength of 4 × 106 G for ξM ¼ 1 Mpc and

ϵ3 ¼ 1. Alternatively, of course, geometric means between
Eqs. (2) and (3) are conceivable. Of particular interest
would be a 2∶1 mixing ratio,

hB2iξM ≲ ϵ2=32 ϵ1=33 ða⋆=a0ÞðkBT0Þ2G−1=2ℏ−3=2c1=2; ð4Þ

i.e., 10−20ϵ2=32 ϵ1=33 G2Mpc, or 10−10 G for ξM ¼ 1 Mpc
and ϵ2 ¼ ϵ3 ¼ 1. This mixing ratio corresponds to the
magnetic field being at the BBN limit and ξM being
comparable to the Hubble scale.
The considerations above do not allow us to predict the

maximum available magnetic helicity unless some physical
mechanism is identified. In the case of the chiral magnetic
effect [20,31], for example, Newton’s constant does not
enter, and so Eq. (2) does impose a rather stringent
constraint. However, if stronger magnetic helicities are to
be produced by some as yet unknown mechanism [34], this
should allow us to identify a nonvanishing mixing ratio
between Eqs. (2) and (3). The ratio 2∶1 is physically
appealing, but by no means the only possible choice. Note,
however, that the 2∶1 ratio is also being reflected in the
magnetogenesis scenario with a strong charge-parity (CP)
violation. One such option is presented by the scenario of
Ref. [22], in which maximal helicity is produced through
Chern-Simons CP violation leading to magnetic fields
correlated on 100 kpc scales.
In this paper we focus on magnetogenesis mechanisms

during the electroweak phase transition, as proposed in
Refs. [17,18,23,28,29], assuming that the electroweak
phase transition is strongly first order. Our main goal is
to study the dynamical evolution of the generated magnetic
field during the expansion of the Universe and estimate if it
can serve as the initial seed for the observed magnetic fields
in galaxies and clusters.
We will determine the evolution of the magnetic field

from the electroweak epoch until the epoch of recombi-
nation. We can evolve the magnetic field from recombi-
nation to the present epoch by using the fact that the
primordial plasma is neutral after recombination and the
free MHD decay stops, so the comoving amplitude,
spectral shape, and helicity of the magnetic field stay
unchanged until large-scale structure formation and reio-
nization. In the following, we neglect further nonlinear
evolution of the magnetic field during large-scale structure
formation and reionization.
Since the first order phase transition proceeds via bubble

nucleation and subsequent collisions of these bubbles [35],
there is stirring of the plasma at high Reynolds numbers
and consequent generation of turbulence. This occurs in
addition to the magnetic fields that are produced.
Correspondingly, the turbulent motions can be (i) magneti-
cally dominant, (ii) hydrodynamically dominant (i.e.,
magnetically subdominant), or (iii) have approximate
equipartition between magnetic and kinetic energies. We
address all these cases separately. Most of the earlier
investigations have employed magnetically dominated

1In the following we talk about magnetic helicity and omit the
specification to mean helicity density for simplicity.
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turbulence [9,36]. Recently, for the first time, we have
considered a magnetically subdominant case, but with
initial kinetic helicity [37].2

In Sec. II we briefly review the electroweak phase
transition magnetogenesis, and we determine the initial
conditions for further evolution of the magnetic field. We
study the evolution of MHD turbulence under the initial
conditions presented in Sec. II using direct numerical
simulations (DNS) in Secs. III and IV. We discuss
our results and conclude in Secs. V and VI, respectively.
From now on, we use natural (ℏ ¼ kB ¼ c ¼ 1) Lorentz-
Heaviside units. So there are no factors of 4π in the
Maxwell equations and the magnetic energy density is
B2=2. Unless specified, t denotes the conformal time, dt ¼
dτ=aðτÞ [with τ the physical time, and a ¼ aðτÞ the scale
factor)]. We normalize the scale factor to be unity today,
i.e., a0 ¼ aðτ ¼ τ0Þ ¼ 1.
The expansion of the Universe can be eliminated from

the relativistic MHD equations through the use of suitably
rescaled (comoving) quantities [38]. For example, we use
the comoving value for the magnetic field, i.e., B → a2B,
which also reflects magnetic flux conservation for a frozen-
in magnetic field in the expanding Universe. To avoid
confusion ~B will denote the physical magnetic field.

II. ELECTROWEAK PHASE TRANSITION
MAGNETOGENESIS

We investigate the scenario where a cosmological
magnetic field is generated during baryogenesis at the
electroweak phase transition at conformal time t ¼ t⋆ (that
corresponds to the temperature T⋆). The phase transition is
assumed to be strongly first order, and the magnetic field is
produced by anomalous baryon number violation as
described in Refs. [17,23,28–30,39]. The magnetic field
immediately after production is assumed to be a statistically
homogeneous and isotropic, Gaussian-distributed vector
field, and is described in terms of the equal time correlation
function [40],

hB�
i ðk; tÞBjðk0; tÞi ¼ ð2πÞ3δ3ðk − k0ÞFijðk; tÞ; ð5Þ

where Bðk; tÞ is the Fourier transform3 of Bðx; tÞ. The
correlation function Fijðk; tÞ has nonhelical (symmetric)
and helical (antisymmetric) components,

Fijðk; tÞ
ð2πÞ3 ¼ Pijðk̂Þ

EMðk; tÞ
4πk2

þ iϵijlkl
HMðk; tÞ
8πk2

; ð6Þ

where Pijðk̂Þ≡ δij − k̂ik̂j is the projection operator that

projects any vector in the direction orthogonal to k̂ and
ensures the solenoidal nature of the magnetic field.
Note that the form of the correlation function in Eq. (5)

assumes statistical isotropy—rotational symmetry is pre-
served, while mirror (parity) symmetry is broken by the
helical component. Assuming that the real space two-point
correlation function hBðxÞBðxþ rÞi vanishes for jrj → ∞,
the form of the correlator Fijðk; tÞ in Eq. (6) is strictly valid
only if the spectrum EMðk; tÞ falls off faster than k2 as
k → 0 and fixed time t [40].4

A. Modeling primordial magnetic field

Motivated by electroweak baryogenesis, extensions of
the standard model, in which the electroweak phase
transition is strongly first order, have been considered
(recently in [42]). The models include the standard model
with an extra singlet [43], the two-Higgs doublet model
[44], and the Next-to-Minimal Supersymmetric Standard
Model (NMSSM) [44]. For our work we will assume that
there is a strong first order phase transition at the electro-
weak epoch [45]. The phase transition then proceeds by
bubble nucleation and growth, and since it is a strong first
order transition, the typical bubble size at percolation can
be large, perhaps even of the order of τ⋆. During the phase
transition, there are baryon number violating particle
interactions in the medium that also generate helical
magnetic fields as a by-product [23,28,30]. Far outside
the bubbles, where the electroweak symmetry is unbroken,
we expect the magnetic fields to be in thermal equilibrium.
Inside the bubbles, the electroweak symmetry is broken, the
weak gauge fields are massive, and baryon number
violation is suppressed. Then there is no magnetic field
production within the bubbles. However, any magnetic
field that is generated just outside the bubble walls gets
trapped once the bubble expands further and this magnetic
field can survive. Once the phase transition is over, space is
filled with helical magnetic fields that were generated by
baryon number violation occurring near the bubble walls.

2The generation of kinetic helicity during parity or chirality
violating electroweak phase transitions can be expected since the
interaction strengths of the left- and right-handed particles are
different.

3We use the following convention for the forward and inverse
Fourier transforms of an arbitrary vector field AðxÞ

AiðkÞ ¼
Z

d3xAiðxÞeik·x; AiðxÞ ¼
Z

d3k
ð2πÞ3 AiðkÞe−ik·x:

4The causal magnetogenesis mechanisms considered here do
not include magnetic fields generated during cosmological infla-
tion in which a scale invariant spectrum with EMðkÞ ∝ k−1 is
produced. A scale-invariant spectrum has an unlimited correlation
length scale and cannot be generated by causal processes during
cosmological phase transitions. Following Ref. [40], the require-
ment that the correlation function in Eq. (5) be analytic for k → 0
leads to EMðkÞ ∝ k4 (the so called Batchelor spectrum). A similar
shape has been discussed in Ref. [41] in which the authors argued
that the magnetic field should have strictly vanishing spatial
correlation on length scales larger than the cosmological horizon
scale and then should fall off faster than k4 (instead of k2 for white
noise) to be divergence free.
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Baryon number violating processes will sometimes
produce baryons and sometimes anti-baryons. CP violating
terms in the model will lead to a slight excess of baryons. In
terms of magnetic fields, this means that both left- and
right-handed magnetic fields will be produced but there will
be an excess of left-handed helicity.
A strong first order electroweak phase transition is also

likely to produce turbulence in the cosmological medium
[35]. Particles of the cosmological medium are massless
outside the bubbles and massive within. Thus the bubble
wall interacts with the particles and pushes the medium in
front of it in what is described as a snowplow effect. The
typical turbulence eddy turnover velocity is given by [35]

uT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~κ ~α

4
3
þ ~κ ~α

s
; ð7Þ

where ~α denotes the ratio of the false vacuum energy
density (latent heat) and the plasma thermal energy density,
and characterizes the strength of the phase transition; ~κ is an
efficiency parameter that is determined by ~α and has to be
computed numerically [46],

~κð ~αÞ≃ 1

1þ 0.715~α

�
0.715~αþ 4

27

ffiffiffiffiffiffi
3~α

2

r �
: ð8Þ

A strong phase transition is described by ~α≳ 1 and a weak
phase transition has ~α ≪ 1.
Another important parameter that characterizes the

forcing stage of turbulence is the duration of the phase
transition described by a parameter ~β, which is the rate of
time variation of the nucleation rate itself computed at the
phase transition time τ⋆. Thus, ~β−1 gives a time scale during
which the whole Universe is converted to the true vacuum
phase (typically ~β ≫ H⋆) [47].
An outcome of the DNS of the magnetic field generation

process is that the initial magnetic field spectrum is peaked
at a scale that corresponds to the size of the bubbles at
percolation. Hence, for a strong first order phase transition,
the initial magnetic field can be correlated on cosmological
scales. Let us denote this initial (physical) correlation
length by l⋆ and define the dimensionless parameter
γ⋆ ¼ l⋆H⋆, which we will take as a free parameter in
the interval 10−4 < γ⋆ < 0.1 (it is commonly assumed that
for a first order electroweak phase transition γ ≃ 0.01
[48,49]). It is of interest to evaluate the comoving value
of the Hubble length scale at the electroweak phase
transition. We have already stated H−1⋆ ≈ 1 cm. Then,
the comoving value, denoted λH⋆ , is given by

λH⋆ ≡
a0
a⋆

H−1⋆ ¼ 5.8 × 10−10 Mpc

�
100 GeV

T⋆

��
100

g⋆

�
1=6

;

ð9Þ

where the subscripts ⋆ and 0 denote, respectively, the epoch
of the magnetic field generation and the present epoch; g⋆ is
the number of relativistic degrees of freedom in the medium
at the electroweak epoch, and we have used the time-
temperature relation

a⋆
a0

≃ 8 × 10−16
�
100 GeV

T⋆

��
100

g⋆

�
1=3

: ð10Þ

The numerical value of λH⋆ ≈ 6 × 10−4 pc is much smaller
than the current horizon scale ∼1 Gpc, and without
significant growth, would not be an interesting scale for
astrophysics. However, it is known that turbulent MHD
evolution of helical magnetic fields allows for an inverse
cascade that can lead to a significantly larger coherence
scale, even larger than ∼10 kpc [6,28,38]. This is also seen
in the results of our DNS.
An important quantity associated with the primordial

magnetic field is its total energy density at the moment of
generation, ρM⋆. Since the frozen-in (physical) magnetic
field amplitudes scale with the expansion of the Universe as
~B ∼ a−2, the magnetic energy density scales like radiation
if dissipation and/or amplification processes are ignored.
So the ratio of the magnetic and radiation energy densities
stays constant during the expansion of the Universe. BBN
bounds the radiationlike energy density during BBN, and
only ∼10% of the ordinary radiation energy density can be
additionally present in the Universe in the form of another
relativistic component [50]. In particular, during the radi-
ation-dominated epoch, neglecting the presence of any
additional relativistic components, the Friedman equation
in the flat Friedmann-Lemaître-Robertson-Walker (FLRW)
metric, reads 3H2 ¼ 8πGρR where ρR denotes the (physi-
cal) radiation energy density. The expansion rate (H) can
be limited by the rate of nucleosynthesis (that is bounded
by the abundance of light elements in the Universe). At
the electroweak epoch, the radiation energy density is
given by ρRðt⋆Þ ¼ πg⋆T4⋆=30, where g⋆ is the number of
degrees of freedom at the temperatureT⋆. Applying theBBN
bound that ρMðt⋆Þ=ρRðt⋆Þ ≤ 0.1 (with ρM ¼ ~B2=2) and
assuming a frozen-inmagnetic field ( ~B ∝ a−2), the comoving
magnetic field strength can be no larger than
8.4 × 10−7ð100=gÞ1=6 G ∼ 1 μG,5 which agrees well with
the dimensional argument given inSec. I. In ourDNSwe take

b⋆ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρM⋆

0.1ρR⋆

r
≈
B⋆
μG

≲ 1 ð11Þ

to be a free parameter of the model.
We define the Alfvén velocity associated with the

magnetic field, vA ¼ B=
ffiffiffiffi
w

p
, where w ¼ ρþ p is the

5Here we have assumed that the number of relativistic degrees
of freedom, g, is unchanged from the electroweak phase transition
until BBN.
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specific enthalpy for an ultrarelativistic gas with density ρ
and pressure p. The mean normalized magnetic and kinetic
energy densities per unit mass are hv2AðtÞi=2 and hu2ðtÞi=2,
with uðx; tÞ denoting the velocity and angular brackets
denote ensemble averaging. If the physical magnetic field
scales as a−2 with the expansion of the Universe, the Alfvén
velocity vAðx; tÞ is time independent, and thus does not
require rescaling to the comoving quantity. At this point
vAðx; tÞ is fully determined by the initial value of the
magnetic field, i.e., vAðx; tÞ ¼ vA⋆ðxÞ≡ vAðx; t ¼ t⋆Þ.
Owing to the presence of hydromagnetic turbulence, the

magnetic field evolution can be described by a simple
power law, Bðx; tÞ ¼ B⋆ðxÞðt=t⋆ÞnE=2, where nE character-
izes the scaling of the decay of mean magnetic energy
density EMðtÞ ¼ hB2ðx; tÞi=2, which be written in terms of
the magnetic energy spectrum EMðk; tÞ as

EMðtÞ ¼
Z

dkEMðk; tÞ; ð12Þ

while the magnetic helicity,6 defined asHM ¼ hA · Bi with
B ¼ ∇ × A, and can be computed through the magnetic
helicity spectrum as

HMðtÞ ¼
Z

dkHMðk; tÞ: ð13Þ

The magnetic correlation length is defined as

ξMðtÞ ¼
R
dkk−1EMðk; tÞ

EMðtÞ
: ð14Þ

Assuming that this integral converges, the realizability
condition can be written as

2EMðk; τÞ ≥ kjHMðk; τÞj: ð15Þ
This is a consequence of the Cauchy-Bunyakovsky-
Schwarz inequality and implies that the magnetic energy
cannot decay faster than the helicity [51]. On integration,
the realizability condition gives [52,53]

2ξMðτÞEMðτÞ ≥ jHMðτÞj ð16Þ

and implies that the maximal helicity is 2
R
∞
0 dkk−1EMðkÞ.

Alternately, one can say that there is a lower bound on ξM
given by,

ξmin
M ðtÞ≡ HMðtÞ

2EMðtÞ
: ð17Þ

The realizability condition then implies ξmin
M ≤ ξM. This

allows us to define the fractional magnetic helicity as

ϵMðtÞ ¼
ξmin
M ðtÞ
ξMðtÞ

¼ HMðtÞ
2ξMðtÞEMðtÞ

≤ 1: ð18Þ

Its initial value is related to a parameter σM⋆ that will be
defined below and will serve as a free parameter.
Another free parameter in our considerations is the initial

velocity, u⋆. Applying the BBN bound on the kinetic
energy density, EKðtÞ, which should be less than 10% of
the radiation energy density (i.e., ≤ 0.1ρR), we obtain that
u⋆ ≤ 0.4 if decay and/or amplification of the velocity field
during turbulence is neglected (the initial velocity field is
assumed to be unchanged from the electroweak epoch until
the BBN epoch).

III. MAGNETIC FIELD EVOLUTION

We follow the evolution of fields from the epoch right
after magnetogenesis up to the recombination epoch. We
are interested in the evolution of the magnetic energy
density EMðtÞ, which determines the rms value of the
magnetic field, BrmsðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EMðtÞ

p
, and the correlation

length ξMðtÞ. For a partially helical magnetic field we study
the redistribution of helical structures at large scales, and
estimate the time scale during which the field might
become fully helical. We also study the evolution of the
velocity field.

A. Direct numerical simulations

We solve the equations for the logarithmic total energy
density ln ρ, the velocity u, and the magnetic vector
potential A, in the form [38]

∂ ln ρ
∂t ¼ −

4

3
ð∇ · uþ u · ∇ ln ρÞ þ 1

ρ
½u · ðJ × BÞ þ ηJ2�;

ð19Þ

Du
Dt

¼ u
3
ð∇ · uþ u · ∇ ln ρÞ − u

ρ
½u · ðJ × BÞ þ ηJ2�

−
1

4
∇ ln ρþ 3

4ρ
J × Bþ 2

ρ
∇ · ðρνSÞ; ð20Þ

∂B
∂t ¼ ∇ × ðu × B − ηJÞ; ð21Þ

where B ¼ ∇ × A and D=Dt ¼ ∂=∂tþ u · ∇ is the advec-
tive derivative, f visc ¼ νð∇2uþ 1

3
∇∇ · uþ GÞ is the vis-

cous force in the compressible case with Gi ¼ 2Sij∇j ln νρ
as well as Sij ¼ 1

2
ðui;j þ uj;iÞ − 1

3
δijuk;k being the trace-

free rate of strain tensor. The pressure is given by p ¼ ρc2s,
where cs ¼ 1=

ffiffiffi
3

p
is the sound speed for an ultrarelativistic

gas. Furthermore, J ¼ ∇ × B is the current density. In
Appendix Awe discuss the main difference from the usual
MHD equations for a nonrelativistic isothermal gas.

6HMðtÞ is distinct from the current helicity HCðtÞ¼
hB ·∇×Bi; the current helicity spectrum isHCðk;tÞ≡k2HMðk;tÞ.
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In contrast to some of our previous studies [6,12,54] in
which the initial magnetic energy spectrum was assumed to
be a δ-function (the magnetic field energy density has been
injected at a given wave number), in the present work we
assume the initial spectra to be given by EMðk; t⋆Þ and
HMðk; t⋆Þ. We also use different conditions for the velocity
field, including the magnetically subdominant case and
equipartition with the magnetic field. The magnetically
dominant case has been studied previously, see [55] and
references therein, but the magnetically subdominant and
equipartition cases have not been studied. In particular, the
cases of kinetically dominant and equipartition MHD decay
were presented for the first time in a recent publication [37]
by the present authors. The application to cosmology is
discussed below.
We allow ν and η to be time-dependent; see Ref. [37] for

details. This is done to address the problem that ν and η are
very small in the early Universe, but are also subject to
numerical limitations in that they cannot be too small,
especially at early times when the velocities are still large.
We take advantage of the fact that a self-similar evolution is
possible by allowing ν and η to vary as

νðtÞ ¼ ν⋆ maxðt; t⋆Þr; ð22Þ

where r ¼ ð1 − αÞ=ð3þ αÞ [56] depends on the initial
power law slope α, and t⋆ is the minimal time after which
these coefficients are allowed to be time-dependent. For
α ¼ 2 we have r ¼ −0.20, whereas for α ¼ 4 we have
r ¼ −0.43, so νðtÞ decreases with time in both cases. We
take different values of ν⋆, depending on the value of α. In
all cases with α ¼ 2 we use ν⋆ ¼ 10−6, while in all cases
with α ¼ 4 we use ν⋆ ¼ 10−5. We adopt the same initial
values for η, i.e., η⋆ ¼ ν⋆.
For our DNS we use the Pencil Code (https://github.com/

pencil-code) which is a public MHD code that is particu-
larly well suited for simulating turbulence. We consider a
cubic domain of size L3, so the smallest wave number in the
domain is k1 ¼ 2π=L. The numerical resolution is 11523

meshpoints in all the cases presented below.

B. Initial condition

In practice, we construct the initial condition for the
magnetic vector potential AðxÞ from a random δ-correlated
three-dimensional vector field in real space. It has therefore
a k2 spectrum. We transform this field into Fourier space
and construct the magnetic field, BðkÞ ¼ ik × AðkÞ. We
then scale the magnetic field by functions of k such that it
has the desired initial spectrum, apply the projection
operator Pij ¼ δij − k̂ik̂j (to ensure a divergence free mag-
netic field),

BiðkÞ ¼ B⋆½PijðkÞ − iσMϵijlk̂l�gjðkÞSðkÞ; ð23Þ

where gjðkÞ is the Fourier transform of a δ-correlated vector
field in three dimensions with Gaussian fluctuations, i.e.,
giðxÞgjðx0Þ ¼ δijδ

3ðx − x0Þ, k0 is the initial wave number of
the energy-carrying eddies and SðkÞ determines the spectral
shape with

SðkÞ ¼ k−3=20 ðk=k0Þα=2−1 exp½−Gðk2=k20 − 1Þ�
½1þ ðk=k0Þ2ðαþ5=3Þ�1=4 ; ð24Þ

where G ¼ 0 in most cases, and G ¼ 1 in some special
cases where the initial power is more strongly concentrated
around k ¼ k0. This results in a random magnetic field with
the desired magnetic energy and helicity spectra and obeys

kHMðk; t⋆Þ
2EMðk; t⋆Þ

¼ 2σM
1þ σ2M

≡ ϵM: ð25Þ

A similar scheme allows us to generate the velocity field,

uiðkÞ ¼ u⋆½PijðkÞ − iσKϵijlk̂l�gjðkÞSðkÞ: ð26Þ

These initial condition are implemented as part of the
Pencil Code.
We now consider possible initial conditions in a cos-

mological scenario, where we have in mind magnetic fields
generated at the electroweak phase transition. In the
standard model, the electroweak phase transition is of
second order and CP violation is very weak. However,
we also know that the standard model is incomplete, most
convincingly because of the observed nonvanishing neu-
trino masses. In addition, the standard model does not
contain a candidate for cosmological dark matter. Neither
does it successfully explain the observed baryon asymme-
try of the Universe. Hence it is almost certain that there is
fundamental physics beyond the standard model.
The exact nature of what lies beyond the standard model

is unclear. Yet we expect beyond-standard-model (BSM)
physics to explain neutrino masses and contain a suitable
dark matter candidate and also have a successful baryo-
genesis mechanism. The requirement of baryogenesis
points to some general features essential to BSM as first
outlined by Sakharov [57]: the model should have strong
departures from thermal equilibrium and should contain
significant violations of charge conjugation (C) symmetry,
CP conjugation symmetry, and baryon number.
In the present context, it is possible that strong departures

from thermal equilibrium might occur during strong first
order phase transitions, in which case the cosmological
medium could become turbulent. Thus we would like to
include fluid kinetic energy as an initial condition.
Electroweak symmetry breaking also leads to the produc-
tion of magnetic fields [17]. In addition, baryon number
violating processes lead to the generation of helical
magnetic fields [23,28]. If there is significant violation
of C and CP, helicity might be large. One may also expect

AXEL BRANDENBURG et al. PHYSICAL REVIEW D 96, 123528 (2017)

123528-6

https://github.com/pencil-code
https://github.com/pencil-code
https://github.com/pencil-code


C andCP violation to leak into the kinetic motion, in which
case the initial conditions would have nonvanishing kinetic
helicity.
To keep the discussion as general as possible we consider

three different cases for the initial conditions: (i) magneti-
cally dominant turbulence, (ii) kinetically dominant turbu-
lence, and (iii) equipartition between magnetic and kinetic
energy densities. In every case, there are several parameters
that we have to choose that quantify the magnetic and
kinetic energy and helicity spectra such as B⋆,7 u⋆, σK, and
σM, defined in Sec. II A. In addition, it is assumed that the
phase transition leads to a peak in the spectra at some
fraction, γ⋆, of the Hubble scale. For example, γ⋆ will
depend on the bubble size at percolation in the case of a first
order phase transition. The resulting magnetic field values
are given for several choices of the parameters.
An important control parameter is the initial ratio of the

normalized rms magnetic field (or Alfvén velocity) and rms
velocity defined as

Q⋆ ¼ B⋆=ðρ1=2⋆ u⋆Þ: ð27Þ

In this work, we consider the values 10, 1, and 0.1,
corresponding to magnetically dominant, equipartition,
and magnetically subdominant cases. We also consider the
time-dependent quantity QðtÞ ¼ vA=urms, and list, in par-
ticular, the value at the last time, Qe ¼ QðteÞ. Furthermore,
we quote the Reynolds number, Re ¼ urmsξM=ν, at t ¼ te.

1. Magnetically dominant turbulence

For magnetically dominant turbulence we assume
that the velocity field is small initially. The magnetic
energy spectrum must satisfy the causality requirements,
i.e., the magnetic field two point correlation function
hBiðxÞBjðxþ rÞi≡ BijðrÞ → 0 for r ≥ ξM, where ξM is
the magnetic correlation length with its maximal value
being given by the comoving Hubble horizon radius, and
we have used the isotropy condition, BijðrÞ ¼ BijðjrjÞ. The
causality condition requires that EMðk; t⋆Þ ∝ kα for k → 0
together with the requirement that FijðkÞ is analytical for a
solenoidal magnetic field (divergence-free condition
∇ · B ¼ 0). This leads to α ≥ 4 [41]; in practice, one finds
the Batchelor spectrum with α ¼ 4.
The initial peak position of the magnetic energy spectrum

is determined by the phase transition bubble size (i.e., the
γ⋆-parameter). The ratio between the magnetic and kinetic
energies at the initial moment is a large number
EMðt⋆Þ=EKðt⋆Þ ≫ 1, and at all wave numbers k themagnetic
energy spectrum is dominant, EMðk; t⋆Þ ≫ EKðk; t⋆Þ. This
class of initial conditions is realized in most baryogenesis
mechanisms during cosmological phase transitions. It can be

also applied when themagnetic field was generated at earlier
epochs and undergoes coupling with primordial plasma
within the Hubble horizon.

2. Kinetically dominant turbulence

In the case of kinetically dominant turbulence, the
initial Alfvén velocity is negligibly small compared to
the turbulence turnover velocity; i.e., the magnetic energy
density is negligibly small compared to the kinetic energy
density, EMðt⋆Þ ≪ EKðt⋆Þ, and at all wave numbers k the
magnetic energy spectrum is subdominant, EMðk; t⋆Þ ≪
EKðk; t⋆Þ. This class of initial conditions can be realized for
a strong first order phase transition when the turbulent
turnover velocity uTðt⋆Þ≃ 0.3, which is a consequence of
high enough values for ~α and ~κ parameters. This agrees
with the BBN bound on the relativistic energy density;
see Sec. II. The initial kinetic energy spectrum can be
approximated by a white noise spectrum with EKðk; t⋆Þ ∝
k2 (which ensures the causality requirement) or by the
Batchelor spectrum EKðk; t⋆Þ ∝ k4 (which ensures the
causality and divergence-free requirements). Interestingly
in the latter case the initially solenoidal velocity field
acquires a longitudinal structure through the interaction
with the magnetic field, as will be discussed below. In
addition we study the evolution of a magnetic field that has
initially a white noise spectrum.

3. The Case of Equipartition

The case of equipartition between magnetic and kinetic
energy spectra EMðt⋆Þ≃ EKðt⋆Þ is hard to realize in the
early Universe and requires very specific physical con-
ditions during phase transitions. We study this case for
completeness.

C. Simulation parameters and analysis tools

We compute magnetic and kinetic energy spectra,
EMðk; tÞ and EKðk; tÞ, respectively, and evaluate corre-
sponding magnetic and kinetic correlation lengths using
Eq. (14). We define a time-dependent Reynolds number,
Re ¼ urmsξM=ν, and quote approximate values character-
istic of the late time evolution.
As demonstrated earlier [55], Eiðk; tÞ with i ¼ M and K

can be collapsed onto a function ϕiðκÞ of a single argument
κ ¼ kξiðtÞ via

Eiðk; tÞ ¼ ξ−βii ϕiðkξiÞ; ð28Þ

where βi quantifies the decay of the spectral energy around
the wave number k ¼ ξ−1i , which itself decreases approx-
imately like a power law with ξiðtÞ ∝ tqi , where qi is a
scaling exponent. Since EiðtÞ ¼

R
Eiðk; tÞdk, it also decays

like a power law with EiðtÞ ∝ t−pi , where

pi ¼ ðβi þ 1Þqi: ð29Þ
7Equivalently we can use b⋆; see Eq. (11). Note that b⋆ ¼ 1

corresponds to the case with maximal magnetic field strength
allowed by BBN.
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The values of βi are believed to depend on the physics that
governs a particular case [55].
It is convenient to define and plot instantaneous scaling

exponents as piðtÞ ¼ d ln Ei=dt versus qiðtÞ ¼ d ln ξi=dt
for i ¼ M and K and discuss the evolution of the point

Pi ¼ ðpi; qiÞ ð30Þ

in the pq diagram. Solutions that obey invariance under
rescaling [55,56],

k → k0l and t → t0l1=qi ; ð31Þ

all lie on the line pi ¼ 2ð1 − qiÞ in this diagram. The
functions ϕiðκÞ are universal functions for given βi and thus
qi. If that is the case, then qi ¼ 2=ðβi þ 3Þ.
We are particularly interested in the possibility of an

inverse cascade, which means that the magnetic energy
increases at small wave numbers, even though the total
energy decreases. This implies that

si ≡ ∂ lnEiðk; tÞ=∂ ln t > 0 for k ≪ ξiðtÞ−1: ð32Þ

At small κ ¼ kξiðtÞ, we have ϕiðκÞ ∝ κα, and therefore

si ¼ ðαi − βiÞqi; ð33Þ

which implies that large initial slopes (e.g., α ¼ 4) and
small values of β, e.g., when the decay is governed by the
conservation of magnetic helicity (β ¼ 0) or the mean
squared vector potential (β ¼ 1) will lead to an inverse
cascade, but not when β ≥ 2 [55].

IV. RESULTS

A. Batchelor spectrum and no helicity

We begin by comparing the evolution of initially non-
helical velocity and magnetic fields for Q⋆ ¼ 10, 1, and
0.1, corresponding to Runs A–C; see Figs. 1–3 and Table I.
In all three cases, we plot Eiðk; tÞ at selected times,
normalized by the initial Alfvén time tA⋆. We also show
the evolution of EiðtÞ and ξi, as well as a parametric
representation of the instantaneous scaling exponents piðtÞ
versus qiðtÞ for i ¼ M and K (pq diagram). In all three
cases (Runs A, B, and C), there is inverse energy transfer at
small k, which is in agreement with Eq. (33).
Remarkably, Runs A and B are rather similar at later

times, i.e., for t=tA⋆ ≳ 10, where QðtÞ ≈ 10, which agrees
with the initial value Q⋆ ¼ 10 for Run A, but not with that
of Run B, where the initial ratio was unity. The resulting
values of pM ≈ 1 are similar to those obtained earlier from
an initial condition obtained from a run that was driven for a
short time with a monochromatic magnetic forcing function
[58], which is marked in Table I by BKT, where β turned

(a) (b) (c)

FIG. 1. Run A with Q⋆ ¼ 10, Re ¼ 130, Batchelor spectrum α ¼ 4, so ν⋆ ¼ 10−5cs=k1 and r ¼ −0.43 are used, and no helicity is
applied, i.e., σM ¼ σK ¼ 0. (a) EM (red, solid) and EK (blue, dashed) at times t=tA⋆ ¼ 4, 30, 120, 500, and 2000. The last time is
indicated by thick lines. (b) ξM=ξ⋆ (red, thick) and ξK=ξ⋆ (blue, thick) with scale on the left, together with vA=vA⋆ (red, dashed) and
urms=vA⋆ (blue, dashed) with scale on the right. (c) pq diagram showing the evolution of PM (red, filled symbols) and PK (blue, open
symbols). The symbol size increases with time. The equilibrium line p ¼ 2ð1 − qÞ is shown as solid, while the β ¼ const lines are
dotted.

(a) (b) (c)

FIG. 2. Same as Fig. 1, but for Run B with Q⋆ ¼ 1 and Re ¼ 100. The times in (a) are t=tA⋆ ¼ 4, 40, 180, and 800.

AXEL BRANDENBURG et al. PHYSICAL REVIEW D 96, 123528 (2017)

123528-8



out to be close to 1 instead of the present value of 2. For
Run C, on the other hand, even though Q was initially 0.1,
it reaches unity at later times; see Fig. 3.
Indeed, comparing the pq diagrams for all three cases,

we see again that for Runs A and B, both PM and PK evolve
along the β ¼ 2 line toward the equilibrium line where
p ¼ 2ð1 − qÞ and thus p ¼ 6=5 and q ¼ 2=5. By contrast,
for Run C, the Pi (with i ¼ M and K) evolve towards the
β ¼ 4 line. Furthermore, the Pi seem to move away from
the equilibrium line. At present, we do not know whether
this could be an artifact of limited scale separation (k=k1 is
too small) for small values of k and also of the limited
inertial range between k0 and the dissipation wave number
above which the spectra stop being power laws.

B. White-noise spectrum and no helicity

Let us now turn to simulations with α ¼ 2, which was
recently studied in Ref. [8], where it was found that no
inverse transfer occurs in that case. Here we also compare
with simulations where an additional Gaussian profile is
included in the initial spectrum (G ¼ 1); see Eq. (24). We
only consider cases where Q⋆ ¼ 1 or → ∞.

Not surprisingly, the cases with G ¼ 0 (Run D; see
Fig. 4) and G ¼ 1 (Run D; see Fig. 5) are rather similar,
except that the early time evolution is closer to equipartition
We also compare with the case Q⋆ → ∞ (Run F). Again, it
has the same late-time evolution as Runs D and E, but the
early time evolution is now close to that of Run D;
see Fig. 6.
In all these cases, P evolves along the β ¼ 2 line towards

the equilibrium line. This implies that in these cases there is
no inverse transfer; see Eq. (33). This is consistent with
Ref. [8]. As we already noted, the white noise spectrum for
the initial magnetic field has only academic interest because
we expect causality to limit the power on large length scales
to subwhite noise levels; see footnote 2.

C. White-noise spectrum with magnetic helicity

The case of fractional helicity has been studied previ-
ously [12] in connection with QCD phase transition-created
initial magnetic fields. In these studies, α ¼ 4 was used, but
the resolution was only 5123.
We now discuss the case with α ¼ 2 (Run G). In contrast

to the earlier case with α ¼ 4 [12], there is now no inverse
transfer at early times when the magnetic energy is still
strong. As in earlier work, we plot the evolution of ξM, as
defined in Eq. (14), which increases like t1=2. We compare
this with ξmin

M , defined in Eq. (17), which increases with
time since HMðtÞ ¼ const and EM ∝ t−1. The result is
shown in Fig. 7. Evidently, ξmin

M ðtÞ ∝ t, and so ξmin
M ðtÞ will

be equal to ξM after some time. The initial value of ξmin
M ðtÞ

depends on the fractional helicity and is given by ϵMk−10 . It
turns out that the late-time subinertial spectrum for the
magnetic field changes from a k2 (white noise spectrum) to
a k4 (Batchelor spectrum) at the time when the magnetic
field begins to be fully helical. This change of slope was
also found for σM ¼ 0.1 [55].

D. Batchelor spectrum with initial kinetic helicity

The initial presence of kinetic helicity has profound
effects on the evolution of the magnetic field. Kinetic
helicity leads to an α effect, i.e., the destabilization of a
large-scale magnetic field. The details of this process in
decaying turbulence were studied in Ref. [37], where it was

(a) (b) (c)

FIG. 3. Same as Fig. 1, but for Run C with Q⋆ ¼ 0.1 and Re ¼ 35. The times in (a) are t=tA⋆ ¼ 0.4, 4, 18, 80, and 200.

TABLE I. Summary of our runs.

Run σK σM α G Q⋆ Qe te=tA⋆ βM qM pM Figurea

BKT 0 0 4 0 ∞ 2.8 1335 1.2 0.47 1.02 Ref. [58]
A 0 0 4 0 10 2.5 206 1.8 0.37 1.04 Fig. 1
B 0 0 4 0 1 2.4 114 1.9 0.36 1.03 Fig. 2
C 0 0 4 0 0.1 1.0 460 3.0 0.31 1.26 Fig. 3
D 0 0 2 0 1 3.2 208 1.7 0.38 1.03 Fig. 4
E 0 0 2 1 1 2.6 170 1.7 0.36 0.95 Fig. 5
F 0 0 2 1 ∞ 2.6 170 1.7 0.35 0.94 Fig. 6
G 0 0.03 2 1 1 3.2 1024 0.3 0.55 0.73 Fig. 7
H 1 1 4 0 1 1.3 562 0.6 0.46 0.76 Fig. 8
I 1 0 4 0 1 2.3 1250 0.2 0.49 0.58 Fig. 9
J 1 −1 4 0 1 2.9 460 0.1 0.48 0.57 Fig. 10
BK 0 1 4 0 ∞ 4.2 1025 0.0 0.59 0.62 Ref. [55]

aBKT refers to the nonhelical run of Ref. [58] and BK to a fully
helical of Ref. [55]. Q⋆ and Qe refer to the values of Q at the
beginning and end of the run, respectively. The instantaneous
scaling exponents βM, qM, and pM are given at the end of the run,
whose normalized end time te=tA⋆ is given.
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found that the initial kinetic helicity gets transformed
efficiently into magnetic helicity such that the residual
helicity, hω · ui − hJ · Bi=ρ⋆ is approximately constant.
During the time of their runs, the magnetic helicity

hA · Bi was still increasing, so one expects to reach the
familiar behavior with pi ¼ qi ¼ 2=3 at much later times.
In Table I, the corresponding results for p and q

from Ref. [55] are marked with BK. Pi evolves towards

(a) (b) (c)

FIG. 4. Similar to Fig. 1, but for Run D with Q⋆ ¼ 1, Re ¼ 600, and α ¼ 2, so ν⋆ ¼ 10−6cs=k1 and r ¼ −0.20 are used. The times in
(a) are t=tA⋆ ¼ 40, 80, 150, 400, 800, 1600, and 3000.

(a) (b) (c)

FIG. 5. Same as Fig. 4, but for Run E with G ¼ 1 and Re ¼ 200. The times in (a) are t=tA⋆ ¼ 0.6, 6, 12, 20, 50, and 200.

(a) (b) (c)

FIG. 6. Same as Fig. 5, but for Run F with Q⋆ → ∞, i.e., u⋆ ¼ 0, and Re ¼ 200. The times in (a) are t=tA⋆ ¼ 0.6, 6, 12, 20, 50,
and 200.

(a) (b) (c)

FIG. 7. Similar to Fig. 5, but for Run G with σM ¼ 0.03 and Re ¼ 300. The times in (a) are t=tA⋆ ¼ 0.6, 4, 18, 120, 300, 600, and
1200. In (b), the evolution of ξmin

M is shown as a green dashed-dotted line.
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the β ¼ 0 line, but it is still far away from the ultimate
equilibrium line p ¼ 2ð1 − qÞ. Instead, we see that in
Figs. 8–10, qM ¼ 0.4–0.5 during an extended time interval,
and that pM ¼ 0.5–0.6, while in the equilibrium state we
would expect pM ¼ 1.2–1.0.

E. Comparison with the equilibrium line

In Table II, we summarize the anticipated values of q and
p that would be expected for given values of q or β if the
solutions were to lie on the equilibrium line in the pq
diagram. These different cases are based on the dimensions
of potentially conserved quantities such as the Loitsiansky
and Saffman integrals,

L ¼
Z

r2huðxÞ · uðxþ rÞidr ∝ l5u2l ð34Þ

and

S ¼
Z

huðxÞ · uðxþ rÞidr ∝ l3u2l; ð35Þ

respectively [59], with typical velocity ul on scale l, the
conservation of magnetic helicity, hA · Bi, and the possible

(a) (b) (c)

FIG. 8. Similar to Fig. 2, but for Run H with σK ¼ σM ¼ 1 and Re ¼ 65. The times in (a) are t=tA ¼ 0.5, 3, 10, 25, 50, 100, 250, and
500.

(a) (b) (c)

FIG. 9. Similar to Fig. 8, but for Run I with σK ¼ 1, σM ¼ 0 and Re ¼ 160. The times in (a) are t=tA ¼ 1, 4, 14, 60, 180, and 600.

(a) (b) (c)

FIG. 10. Similar to Fig. 8, but for Run J with σK ¼ 1, σM ¼ −1 and Re ¼ 160. The times in (a) are t=tA ¼ 0.5, 3, 10, 25, 50, 100, 250,
and 500.

TABLE II. Scaling exponents and relation to physical invari-
ants and their dimensions.

β q p inv. dim.

4 2=7 ≈ 0.286 10=7 ≈ 1.43 L ½x�7½t�−2
2 2=5 ¼ 0.400 6=5 ¼ 1.20 S ½x�5½t�−2
1 2=4 ¼ 0.500 4=4 ¼ 1.00 hA2

2Di ½x�4½t�−2
0 2=3 ≈ 0.667 2=3 ≈ 0.67 hA · Bi ½x�3½t�−2
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conservation of the mean squared vector potential, hA2i,
which is known to be conserved in two dimensions (2D).
Comparing with the numerical results given in Table I,

we see that for the runs with fractional magnetic helicity or
with initial kinetic helicity, there is a tendency to develop
maximal magnetic helicity at later times. As a consequence,
all those runs are seen to develop toward the β ¼ 0 line.
However, in none of those runs there is a perfect con-
vergence toward the equilibrium point with p ¼ q ¼ 2=3,
as would be expected in the fully helical case. Instead, we
find that q ≈ 0.5 and p ≈ 0.6, so the decay is even slower
than with maximum helicity.
The departure from the expected equilibrium positionmay

well be a finite size effect of the computational domain.
Ideally, one would like to have a much larger numerical
resolution, so as to be able to follow an unimpeded develop-
ment of the inverse cascade for both EM and EK toward
smaller wave numbers. At the same time, of course, it is
important to include large enough wave numbers to resolve
the turbulent inertial and dissipative subranges.
In most of the runs without kinetic or magnetic helicity,

the final values of q are in the range 0.3–0.4, which is again
smaller than what is expected for the equilibrium points
ðp; qÞ ¼ ð0.5; 1Þ, when β ¼ 1 or (0.4, 1.2), when β ¼ 2;
see Table II. In those cases, on the other hand, there is a
clear trend that ðp; qÞ evolves along the β ¼ 2 line towards
the equilibrium point; see Figs. 1 and 2 for α ¼ 4 and
Figs. 4–6 for α ¼ 2.
Interestingly, the two groups of runs for α ¼ 4 and α ¼ 2

show the same convergence properties along the β ¼ 2 line
toward the equilibrium point ðp; qÞ ¼ ð0.4; 1.2Þ. This
decay law is suggestive of the case where the Saffman
integral (35) is conserved. Thus, what we have here is a
clear example where the temporal evolutions of EM and ξM
are independent of the initial slope α: the case with α ¼ 4
shows inverse cascading while that with α ¼ 2 does not, as
expected based on Eq. (33).
The subequipartition case with Q⋆ ¼ 0.1 is different

again; see Fig. 3, where we observe a clear development
along the β ¼ 4 line toward the equilibrium point on which
the Loitsiansky integral (34) is expected to be conserved.

V. DISCUSSION

This work has exposed several unknown behaviors of
decaying MHD turbulence. First, for nonhelical turbulence
with an α ¼ 4 Batchelor spectrum, large initial values of
Q⋆ (here Q⋆ ¼ 1 and 10) lead to distinctly different
behaviors than small values (here Q⋆ ¼ 0.1). While the
former case yieldsQe ≡QðteÞ ≈ 3 at the end of our runs (at
t ¼ te), the latter case yields QðteÞ ≈ 1; see Run C in
Table I. There is at present no indication that all these cases
yield ultimately the same late-time behavior. However, we
cannot exclude the possibility that large and small initial
Q⋆ values yield ultimately the same final Qe value.
Second, in the case with α ¼ 2, no inverse transfer was

found to be possible. This is because that case also yields

β ¼ 2, and so α ¼ β, which implies that no inverse transfer
is possible; see Eq. (33). This is compatible with recent
work by Reppin and Banerjee [8].
Third, in the case with initial kinetic helicity, a non scale-

invariant behavior is found during an extended period of
time where the points PK and PM evolve away from the
equilibrium line, p ¼ 2ð1 − qÞ.
In view of the early Universe, an important lesson is the

fact that even just a small amount of magnetic or kinetic
helicity yields the standard fully helical inverse transfer
after a certain time. The situation is similar in the case
where there is only kinetic helicity initially. In both cases,
βM ≈ 0, which implies that pM ¼ qM; see Eq. (29). This
also means that Brms ∝ ξ−1=2M . However, unlike the case with
initial magnetic helicity where pM ¼ qM ¼ 2=3, we find
here pM ≈ qM ≈ 1=2 during an extended period of time; see
Figs. 9 and 10. Ultimately, at very late times, we might still
expect pM ¼ qM ¼ 2=3, but the time required for this to
happen may be too long.
To put our results into perspective, it is instructive to

consider the evolution of Brms as a function of ξM, which, in
turn, is a function of time and thus of the scale factor or the
inverse temperature of the Universe. The turbulent evolution
of Brms and ξM proceeds from the time of magnetic field
generation until recombination. This implies an increase in
the conformal time by twelve orders of magnitude, and thus
eight orders ofmagnitude in ξM ∝ t2=3, if the initial magnetic
field is fully helical. On the other hand, if there is only initial
kinetic helicity, and if the ξM ∝ t1=2 decay law persists for a
significant fraction of time, we might only cover about six
orders of magnitude in ξM, but the field will not decay by as
much as in the former case.
Turning now to the cosmological applications of our

results, we are interested in predicting the magnetic field
characteristics at the epoch of recombination, trec, for
initial conditions specified at some earlier epoch, t⋆. In
Appendix B we show that, if there is sufficient time for
the magnetic field to reach maximal helicity, and if it is
not caused by initial kinetic helicity (which leads to
p ≈ q ≈ 0.5 for a long period of time, as in Run I), then

Brec

ξrec
¼ B⋆

ξ⋆

�
trec
t⋆

�
−1
: ð36Þ

This result is independent of the initial hydromagnetic state
and provides a universal result, applicable to a large number
of cases we have considered. Note that t⋆=trec ¼ Trec=T⋆.
Let us now discuss the different turbulent decay scenar-

ios for two cases, the best case scenario where a magnetic
field is generated at the horizon scale with a strength limited
by BBN and the second case where magnetic helicity is
generated by the chiral magnetic effect; see Fig. 11. In the
former case, if the initial field is fully helical, we will reach
a magnetic field at a scale of 30 kpc with a strength of
0.3 nG. If we only have kinetic helicity initially, and if the
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ξM ∝ t1=2 behavior persists during the whole time, we
might even get 3 nG, but only on a scale of 0.3 kpc. If the
magnetic field stays nonhelical during the entire time, and
if turbulence is magnetically dominated, the field would
again be of a typical scale of about 0.3 kpc, but now the
field is significantly weaker—about 3 × 10−3 nG. Even
magnetic fields amplified by the chiral magnetic effect
cannot have helicity in excess of hB2iξM≈5×10−38G2Mpc
if the chiral asymmetry is set by the temperature [33]. This
might still be compatible with the most conservative lower
limits on the magnetic field strength derived from blazar
spectra, when accounting for the fact that the TeV flux
activity is limited by the source observation period (few
years) [60,61], but not with stronger fields on large length
scales claimed in Ref. [62] through the assumption of a
constant mean blazar TeV flux.

VI. CONCLUSIONS

To understand the evolution of cosmic magnetic fields,
we have considered a broad range of different initial
conditions: magnetically and kinetically dominated cases,
with and without helicity either in the magnetic or the
velocity field, as well as with shallow and steeper initial

energy spectra. Our results are best summarized by
presenting them parametrically in the Brms versus ξM
diagram discussed in Sec. V. The resulting trajectories
have different slopes, −ð1þ βÞ=2, and cover different
extents in Δ log ξM ¼ qΔ log t in time. The most shallow
slope is 1=2 in the helical case, where β ¼ 0. This is
independent of whether helicity is initially in the magnetic
field or in the velocity.
Although the two cases are essentially the same as far as

the slope is concerned, there is a difference in terms of the
length scales covered during the evolution. The largest
range of scales is covered when the initial magnetic field is
fully helical and q ¼ 2=3, but is q ¼ 1=2 when only the
velocity is initially helical. Consequently, because p ¼ q in
the fully helical case, the magnetic field decays less in the
latter case. However, it is not clear whether there is any
physical mechanism that can create kinetic helicity
throughout the entire Universe. Familiar effects in dynamo
theory that involve rotation and nonuniformity always
produce positive and negative signs at the same time, so
there is no net effect on larger scales. For the magnetic field,
on the other hand, this limitation does not apply if it is
created through non-MHD effects such as the chiral
magnetic effect. One exception is the chiral vortical effect

FIG. 11. Turbulent evolution of Brms and ξM starting from their upper limits given by the BBN bound and the horizon scale at the
electroweak phase transition (EWPT) for the fully helical case (Brms ∝ ξ−1=2M ), the nonhelical case (Brms ∝ ξ−1M ), and the fractionally
helical case with ϵM⋆ ¼ 10−3. Circles indicate the final points at recombination for zero or partial initial magnetic helicity, the filled
circle marks the fully helical case, and the filled square indicates the case with initial kinetic helicity. The regimes excluded by
observations of blazar spectra are marked in gray. The upper boundary of the gray area corresponds to the lower bound claimed in [62]
based on the deficit of blazar gamma rays in the GeV band as compared to the flux expected due to the inverse cascade while assuming
that the mean blazar TeV flux remains constant. The bottom line in the gray area shows the lower bounds while assuming that the TeV
flux activity is limited by the source observation period (few years) [60,61]. The end of the evolution at recombination is denoted by the
straight line given by the relation in Eq. (36), and the final values of Brms and ξM are indicated for helical and nonhelical scenarios.
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[32], but since the chiral asymmetry is expected to be set by
the temperature, chiral effects will be constrained as
explained in Eq. (2) of the Introduction. This now seems
to be excluded by the observations of blazar spectra, which
are in agreement with the conclusions of Ref. [7].
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APPENDIX A: COMPARISON WITH THE
STANDARD MHD EQUATIONS

The purpose of this appendix is to contrast Eqs (19)–(21)
with the usual MHD equations for an isothermal gas, i.e.,

∂ ln ρ
∂t ¼ −ð∇ · uþ u · ∇ ln ρÞ; ðA1Þ

Du
Dt

¼ −
1

3
∇ ln ρþ 1

ρ
J × Bþ 2

ρ
∇ · ðρνSÞ; ðA2Þ

∂B
∂t ¼ ∇ × ðu × B − ηJÞ: ðA3Þ

In Fig. 12 we show a comparison of magnetic and kinetic
energy spectra for a low resolution version of Run I for
the relativistic and nonrelativistic equation of state. (This
run is identical to Run A of Ref. [37].) Note that the
magnetic energy spectra are virtually the same, but the

kinetic energy is slightly (factor 4=3) less in the relativistic
case where Q⋆ ¼ 1; see panel (a). For the case where
Q⋆ ¼ 0.1, themagnetic energy is slightly (factor 4=3) larger;
see panel (b).

APPENDIX B: THE RESULTING MAGNETIC
FIELD CHARACTERISTICS

Accounting for the scaling laws obtained for the runs
summarized in Table I, the (comoving) correlation length
and the mean (comoving) magnetic energy density at time t
for the ith run are given as

ξðiÞ ¼ ξðiÞ⋆
�
t
t⋆

�
qi
; EðiÞ

M ¼ EðiÞ
M⋆

�
t
t⋆

�
−pi

: ðB1Þ

Correspondingly, the magnetic field rms amplitude is

BðiÞ
rms ¼ BðiÞ⋆;rms

�
t
t⋆

�
−pi=2

: ðB2Þ

Let us consider MHD turbulence decay laws that conserve
different invariants during the turbulent decay process. In
this case the scaling exponents can be calculated using
Table II, where β ¼ p=q − 1 can be used as subscript
instead of the “i”. Hence we use pβ and qβ with β ¼ 1, 2, 4
for nonhelical and partially helical fields and p0 ¼ q0 ¼
2=3 for the case of fully helical decay.
If the initial magnetic fields are only partially helical, the

first evolutionary stage consists of the field developing

(a)

(b)

FIG. 12. Magnetic energy spectra (solid lines) and kinetic
energy spectra (dashed lines) for decaying MHD turbulence.
Black (red) lines are for the relativistic (nonrelativistic) equation
of state with (a) Q⋆ ¼ 1 and (b) Q⋆ ¼ 0.1.
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towards maximal helicity. During this period, the growth of
the correlation length is slower: ∼t1=2 for nonhelical
compared to∼t2=3 for fully helical cases in the magnetically
dominant scenarios. Also, in this period the mean magnetic
energy density decay is faster: ∼t−1 for nonhelical com-
pared to ∼t−2=3 for fully helical cases in the magnetically
dominant scenarios. The fractional helicity grows during
the turbulence decay process and reaches a state with
maximal helicity at the time [12]

thel ¼ t⋆ðϵM;⋆Þ−1=qβ ; ðB3Þ

where ϵM⋆ ¼ ϵMðt⋆Þ and ϵM is defined in Eq. (23).
The generation of the magnetic (and/or velocity) field

occurs deep in the radiation dominated epoch during
which a ∝ t (i.e., the conformal time) while the ending
evolution proceeds during the matter dominated epoch
when a ∝ t2. To compute the magnetic field character-
istics at recombination trec, namely the rms magnetic field
amplitude Brec and the correlation length ξrec, we first
calculate the correlation length and the rms magnetic
field when the fully helical state is reached:

ξhel ¼ ξ⋆
�
thel
t⋆

�
qβ
; Bhel ¼ B⋆

�
thel
t⋆

�
−pβ=2

; ðB4Þ

where qβ (pβ) is the correlation length scale growth (the
mean magnetic energy density decay) index during the
first partially helical stage: β ¼ 1, 2, 4. If the fully helical
stage is reached before recombination, the correlation
length and the rms magnetic field at recombination can
be calculated as follows:

ξrec ¼ ξhel

�
trec
thel

�
q0
; Brec ¼ Bhel

�
trec
thel

�
−p0=2

; ðB5Þ

with q0 (p0) referring to the correlation length (the mean
magnetic energy) growth (decay) index during the second
helical stage. It is easy to see that

ξrec ¼ ξ⋆
�
trec
t⋆

�
q0ðϵM⋆Þ−ðqβ−q0Þ=qβ ;

Brec ¼ B⋆
�
trec
t⋆

�
−p0=2ðϵM⋆Þðpβ−p0Þ=2qβ : ðB6Þ

Recalling the definition of the β parameter and the pq
equilibrium condition (see Sec. III C), we can express the
scaling exponents as follows:

qβ ¼
2

β þ 3
; pβ ¼

2

β þ 3
ðβ þ 1Þ: ðB7Þ

Hence Eqs. (B6) and (B7) show that the ratio of the
correlation length and the mean magnetic field amplitude
at recombination does not depend on the (fractional)

helicity of the initial magnetic field8 ϵM⋆ or the β
parameter itself:

Brec

ξrec
¼ B⋆

ξ⋆

�trec
t⋆

�−1
: ðB8Þ

This helps to set a common recombination limit for
different types of turbulent decay. On the other hand, the
mean magnetic field amplitude and the corresponding
correlation length of nonhelical or weakly helical fields,
when there is not sufficient time to reach a fully helical
state before recombination, can be calculated as:

Brms ¼ B⋆
�
ξM
ξ⋆

�
−ðβþ1Þ=2

: ðB9Þ

Figure 11 shows the evolution of the mean turbulent
magnetic field amplitude with respect to the correlation
length ξM for different classes of MHD turbulence. Initial
values (ξ⋆, B⋆) correspond to the maximal values set by
BBN constraints at the electroweak epoch.
We provide some numerical estimates of the growth of

correlation lengths for the magnetically dominant case. We
take ξM;⋆ to be the maximum comoving Hubble radius at
the epoch of electroweak phase transition, given by (9), and
note that at recombination, the temperature was ∼0.25 eV.
The correlation length evolution relations stated above can
be plotted as in Fig. 13.
We have used the fact that the conformal time is expressed

in terms of the scale factor aeq at the epoch of matter-
radiation equality and the fractional matter density Ωm;0 as

tðaÞ ¼ 2ffiffiffiffiffiffiffiffiffi
Ωm;0

p
H0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aeq þ a

p
− ffiffiffiffiffiffi

aeq
p i

; ðB10Þ

and that the effective degrees of freedom of the particle
species are roughly constant throughout.

FIG. 13. Ratio of correlation lengths, ξM=ξM⋆, for magnetically
dominant cases for nonhelical (blue), fully helical (red), and
fractionally helical (σ⋆ ¼ 0.03; magenta) cases.

8Note that in the case of initial kinetic helicity (which leads to
p ≈ q ≈ 0.5; see the square in the Fig. 11), Brec=ξrec does depend
on the initial magnetic helicity ϵM.
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